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Summary

We extend the previously well-known results on the capacity of wireless networks and present the implications of

our results on network scalability. In particular, we find bounds on the maximum achievable per-node end-to-end

throughput, �e, and the maximum number of simultaneously successful wireless transmissions, Nmax
t , under a more

general network scenario than previously considered. Furthermore, in the derivation of our results, we make no

restrictions on the mobility pattern of the nodes or on the number simultaneous transmissions and/or receptions

that nodes are capable of maintaining. In our derivation, we analyze the effect of parameters such as the area of the

network domain, A, the path loss exponent, �, the processing gain, G, and the SINR threshold, �. Specifically, we

prove the following results for a wireless network of N nodes that are equipped with omnidirectional antennas:

(1) �e is �(1/N) under very general conditions. This result continues to hold even when the communication

bandwidth is divided into sub-channels of smaller bandwidth.

(2) Nmax
t has an upper bound that does not depend on N, which is the simultaneous transmission capacity of the

network domain, N
Q
t . For a circular network domain, N

Q
t is OðAminf�=2;1gÞ if � 6¼ 2 and OðA=logðAÞÞ if �¼ 2.

In addition, N
Q
t is Oð�2Þ and OðG=�Þ. Moreover, lack of attenuation and lack of space are equivalent, where

N
Q
t cannot exceed 1 þ G=�.

(3) As N ! 1 a desired per-node end-to-end throughput is not achievable, unless the average number of hops

between a source and a destination does not grow indefinitely with N, A grows with N and N is OðAminf�=2;1gÞ if

� 6¼ 2 and OðA=logðAÞÞ if �¼ 2. Copyright # 2004 John Wiley & Sons, Ltd.
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1. Introduction

Scalability of wireless networks has been an impor-

tant research topic in the recent years, because of the

growing demand to support a large number of nodes in

certain types of wireless networks such as sensor

networks, which can potentially consist of millions

of nodes. Two important questions in this context are:
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(1) are wireless networks scalable? In other words, is

it possible to support a large number of users in a

wireless network? (2) If there are scalable patterns of

wireless networks, what are the conditions that govern

their scalability?

To answer these questions, one must first define

what scalability is. In this work, we interpret scalabi-

lity as: non-vanishing per-node end-to-end throughput,

bounded end-to-end delay, bounded power consump-

tion, bounded processing power and bounded memory

requirement at each node, as the number of nodes

grows large.

In this paper, we focus on the throughput aspect of

scalability. Our objectives are: (1) to obtain theoretical

results that show the dependencies among the per-

node end-to-end throughput capacity �e, N and other

parameters of a wireless network and (2) to determine

the implications of these results on the scalability of

the wireless network.

One of the most well-known works on capacity of

wireless networks was published by Gupta and Kumar

[1]. Their work stimulated the scientific community to

search for a better understanding of what are the

scalability bounds of such networks. In that paper, a

theoretical framework to analyze the capacity of peer-

to-peer wireless networks was formalized through two

network models. The first network model, the arbi-

trary network model, assumes that all N nodes in the

network are static, there are no restrictions on nodes’

locations and the network domain (i.e. the region

within which the nodes are located) is a circular

disk of area 1 m2. Each node is capable of maintaining

at most one transmission or one reception at any given

time. There are no restrictions on the choice of

transmission powers, traffic pattern, routing protocol

and spatial-temporal transmission scheduling policy.

The second model is the random network model,

which assumes a uniform distribution of node loca-

tions, a random traffic pattern and a fixed transmission

power that is selected to ensure the connectivity of the

network as N tends to infinity.

Additionally, in Reference [1], two models for

successful reception are proposed. The first reception

model is the protocol model, which considers a

transmission as unsuccessful if the receiver is within

the interfering range of an unintended transmitter. The

second model is the physical model, which better

represents realistic reception in practical wireless

networks. In the physical model, for a transmission

to be successful, the signal-to-interference-and-noise

ratio, SINR, at a receiver has to be above some

threshold value. It is assumed that the antennas are

omnidirectional and that P=x� is the power received at

a distance x from a transmitter, where P is the

transmitted power and the path loss exponent � is

assumed to be larger than 2.

Reference [1] concluded that, with the protocol

model, �e is �ð1=
ffiffiffiffi
N

p
Þ for arbitrary networks,

whereas �e is � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NlogðNÞ

p� �
for random networks.

With the physical model, they concluded that �e is

Oð1=N1=�Þ and �ð1=
ffiffiffiffi
N

p
Þ for arbitrary networks,

whereas, �e is Oð1=
ffiffiffiffi
N

p
Þ and � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NlogðNÞ

p� �
for

random networks.

One of the assumptions of Reference [1] is that all

nodes are immobile. Grossglauser and Tse [2],

explored whether or not introducing mobility can

increase �e. Their network model introduced some

additional restrictions on the random network

model of Reference [1]. Firstly, they used the

physical model, but allowed wideband communica-

tion by incorporating the processing gain, as to

reduce interference. Secondly, the locations of the

mobile nodes form a stationary ergodic process

with a uniform stationary distribution in the network

domain. Thirdly, source–destination pairs do not

change. Finally, they assumed that very long end-

to-end packet delays are tolerable. Grossglauser and

Tse [2], concluded that there exists a routing and

scheduling policy that delivers a packet to its desti-

nation with not more than two hops and allows �e to

be �(1) as N becomes large. Moreover, both

References [1] and [2] concluded that it is possible

to schedule �(N) many simultaneously successful

transmissions in a wireless network.

Toumpis and Goldsmith [3], used an SINR de-

pendent rate model. Using numerical methods, they

evaluated the effect of spatial reuse, multi-hop

routing, power control and successive interference

cancellation for a particular placement of nodes.

They concluded that each of these schemes pro-

vides expansions of the capacity region that is

defined by the set of achievable rates between

the nodes.

Li et al. [4], pointed out the effect of traffic

pattern on �e and concluded that only wireless

networks with local traffic patterns can be

scalable.

Usage of directional antennas at the transmitters or

the receivers can provide significant increases in �e,

depending on how narrow the width of the antenna’s

main lobe and how small the side lobes of the

antenna radiation pattern can be made. For example,

using a sender-based interference model, Yi, Pei and

Kalyanaraman [5], investigated the improvement in
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�e provided by the usage of directional antennas for

arbitrary and random wireless networks.

The ability of a node to maintain multiple simulta-

neous transmissions and/or receptions can also pro-

vide an increase in �e. For example using directional

antennas, Peraki and Servetto [6], studied random

networks with and without multiple simultaneous

transmission or reception capability and concluded

that an improvement of at most �(log2(N)) can

be achieved over the � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NlogðNÞ

p� �
result of

Reference [1].

Deployment of a wired backbone can also provide

an increase in �e, since it allows reducing average

number of wireless transmissions per packet.

For example, Liu, Liu and Towsley [7], considered

the benefit of deploying base stations connected to a

wired backbone in the random network of Reference

[1]. They concluded that if the number of base

stations grows asymptotically faster than
ffiffiffiffi
N

p
, then

aggregate throughput capacity increases linearly

with the number of base stations.

There have also been information theoretical

approaches to analyze the throughput capacity pro-

blem, such as References [8] and [9]. These ap-

proaches concluded that sizable gains in network

throughput can be provided by not treating interfer-

ence simply as noise but rather employing more

sophisticated receivers and implementing certain

cooperation strategies among the nodes during

transmissions.

Our work has been motivated by the desire to relax

some of the limitations of References [1] and [2], and

to improve on their models. In particular, the radio

propagation model ðP=x�Þ, which has been widely

used in such studies, becomes inappropriate as the

transmitter–receiver separation becomes small. Since

the network domain in these studies is a disk of area

1 m2, the model gives unrealistic results when the

nodal density increases beyond some limit. In terms

of mobility, in Reference [1] nodes are immobile,

while in Reference [2] the mobility pattern is a very

special one. In our work, we allow for a general

mobility pattern of the nodes. Furthermore, we relax

the assumptions in Reference [2] that the source–

destination pairs never change and that the end-to-end

packet delays can be unbounded. Moreover, in

References [1] and [2] each node can maintain either

a single transmission or reception at a given time,

whereas our work also considers the situtation when

the nodes can maintain multiple transmissions and/or

receptions at the same time. In addition, we also

analyze the effect of parameters such as A, �, G and

� on �e, none of which has been addressed in

previous works.

The main contribution of this study is in the

derivation of a new approach to analyze the scalability

patterns of wireless networks through the use of a

more general network model as compared with the

network models of previous studies.

The rest of the paper is organized as follows:

Section 2 presents our network model and Section 3

provides related definitions. In Section 4, we derive

the upper bounds on the simultaneous transmission

capacity and the per-node end-to-end throughput

capacity. In Section 5, we analyze the derived upper

bounds, together with illustrative figures. Section 6

completes the proof of ‘�e is �(1/N)’. Section 7

discusses the implications of our results on scalability.

Finally, we conclude in Section 8.

2. Network Model

In this section, we explain the assumptions underlying

our results. Some of the assumptions are quite general,

allowing our upper bound results to hold even in

networks that are configured with optimal settings of

the parameters. We will elaborate on this further, after

presenting our results.

2.1. Network Domain and Nodes

Network domain is defined to be the space within

which each node is constrained to reside. We denote

this space by Q. We will assume that Q is a closed disk

with a diameter D and an area A. There are N nodes in

the network domain and no restrictions on the mobi-

lity pattern of the nodes within Q.

2.2. Transmitter and Receiver Model

Each of the nodes is capable of being a transmitter

and/or a receiver at any given time. All transmitters

and receivers are equipped with omnidirectional

antennas. There are no restrictions on the variation

of transmission power during a transmission or on

the number of simultaneous transmissions and/or

receptions that a node is capable of maintaining.

Hence, the usual assumption that a node is capable

of maintaining either one transmission or one re-

ception at any given time is one of the many cases

covered by our model. For the time being, we

assume that all transmissions take place within the
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same communication bandwidth but we will relax

this assumption later. At the intended receiver of a

transmitted signal, all of the remaining received

signals are considered as interference. �iðtÞ is the

power of the thermal noise present in the com-

munication bandwidth at receiver i at time t. We

assume that each of the receivers can receive in-

formation intended for itself reliably at a rate not

larger than Wmax bits/s and only when the SINR at

the receiver is greater than or equal to the SINR

threshold, �. Information received when the above

condition does not hold is considered unreliable

and, thus discarded. In this paper, we let � be any

positive real number. In general, � is dependent on

the modulation scheme, the required bit error rate of

the received information, the required transmission

rate and the type of the error control code. The

processing gain, G, is the factor by which the total

received interference power is reduced at each of the

receivers. In this work, we let G be any positive real

number. Typically G> 1 for wideband communica-

tion systems, such as spread spectrum CDMA, and

is taken to be 1 for narrowband communications.

2.3. Propagation Model

Let P
j
tðtÞ be the power transmitted by the transmitter j

at time t. Let djiðtÞ be the distancez between the

transmitter j and the receiver i at time t. Let Pji
r ðtÞ

be the power received by the receiver i from the

transmitter j at time t. We will assume that

Pji
r ðtÞ ¼ P

j
tðtÞaðdjiðtÞÞ; ða:1Þ

where a(x) is the attenuation function. One of the most

commonly used expressions for a(x) is 1=x� , where

� � 0 is the path loss exponent.§ However, this

expression becomes inappropriate as x becomes smal-

ler than 1, as it results in receiving power that is larger

than the transmitted power. In fact, the received power

in the formula approaches infinity as x tends to zero.

Of course, this is unrealistic and is an artifact of

the inappropriateness of the expression for small

distances.{ The inappropriateness of the 1=x� formula

was also noticed in some previous works and to obtain

more meaningful results at small distances, while

approximating the conventional model at large

distances, the following alternative propagation

model was proposed in those studies (see, e.g. [12]

and [13]):

aðxÞ ¼ 1

ð1 þ xÞ� ; x � 0: ða:2Þ

We call this propagation model, the power law decay-

ing propagation modelk and we will use this model in

our calculations.

2.4. Traffic Pattern

In this work, there are no restrictions on the temporal

variation of destination of each of the information

sources, the route of the information through the

network and the segmentation of information, so

that different segments can possibly be transmitted

over different paths and at different times. As in

References [1] and [2], we assume that intermediate

nodes do not jointly encode and transmit information

zIn this paper, all distance measures and area measures are in
units of ‘m’ and ‘m2’ respectively.
§In free space �¼ 2, but in realistic mobile radio channels,
� can take values between 1.6 and 6 (see [10] and [11]).

{The precise reason for this problem can be explained as
follows: consider the free space case. In the derivation of the
received power expression, a unity gain point source in free
space is assumed and the flux of the transmitted power Pt,
per unit surface area of the sphere with radius x around the
source is calculated. The resulting power flux density
expression, Pt=ð4�x2Þ, has the unit watts/meter2. The
wave-front of the transmission occupies only part of the
aperture of the receiving antenna, so that the power captured
by the aperture results from only that part of the wave-front
that is seen by the aperture. To quantify this partial aperture
area occupied by the wave-front, effective aperture area, Ae,
is defined as the ratio of the available power at the terminals
of the receiver antenna to the power flux density at the
location of the receiver antenna. In general, Ae depends on
the physical characteristics of the receiver antenna and the
distance x between the transmitter and the receiver antennas.
In References [1] and [2], Ae is assumed to be independent
of x and is taken to be 4�meter2, so that the received power
expression simplifies to Pt=x

2. In fact, as x ! 0, the power
flux density approaches infinity, and with the constant Ae

assumption, the received power also approaches infinity.
This shows that Ae should not be taken as a constant for
small values of x. In fact, Ae should approach zero as x
approaches zero, so that the received power, AePt=ð4�x2Þ,
never exceeds Pt.
kThe corresponding Ae for this model in free space is equal
to 4�x2=ð1 þ xÞ2

meter2. Note that this expression con-
verges to 4�meter2 as x becomes large, which is also the
assumed aperture area in the conventional model.
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from different sources. Finally, we denote the average

number of hops between the source and the destina-

tion of a bit by �HH and we let it be any real number

larger than or equal to 1.

3. Definitions

We define a transmission at an arbitrary time t to be a

successful transmission, if the SINR at the intended

receiver of the transmission at time t is not smaller

than �. We denote the number of simultaneously

successful transmissions at time t by Nt. We define

the simultaneous transmission capacity of the net-

work, Nmax
t , as the maximum value of Nt over all the

placements of the N nodes, the choices of transmitters,

their intended receivers and the transmission powers.

Next, we define the simultaneous transmission capa-

city of the network domain, N
Q
t as the maximum value

of Nt over all the placements of the nodes, the choices

of the transmitters, their intended receivers and the

transmission powers, given that there are no restric-

tions on the number of nodes in the network. An

immediate consequence of these definitions is that

Nmax
t ¼ N

Q
t .

Let bi ðTÞ be the total amount of bits of information

generated by node i and received by its destinations

during a T second time interval [0,T]. We define the

end-to-end throughput of node i, �i, as follows:

�i :¼ lim
T!1

biðTÞ
T

; 1 � i � N:

We also define the per-node average end-to-end

throughput, �, as the arithmetic mean of �i’s, i.e.

� :¼ 1

N

XN
i¼1

�i:

Then, we propose two achievability definitions: an

end-to-end throughput �0 is said to be achievable by

all nodes, if there exists a mobility pattern of the

nodes, a traffic pattern, a spatial-temporal transmis-

sion scheduling policy and a temporal variation of

transmission powers, so that �i � �0 for all

1 � i � N. Likewise, an end-to-end throughput �0

is said to be achievable on average, if there exists a

mobility pattern of the nodes, a traffic pattern, a

spatial-temporal transmission scheduling policy and

a temporal variation of transmission powers so that

� � �0. Note that if �0 is achievable by all nodes,

then it is also achievable on average, and if �0 is

not achievable on average, then it is not achievable

by all nodes, either. Hence, we say that �0 is not

achievable if �0 is not achievable on average.

Next, we propose two capacity definitions: the per-

node end-to-end throughput capacity, �e, is the supre-

mum of all end-to-end throughputs that are achievable

by all nodes. The per-node average end-to-end

throughput capacity, �m, is the supremum of all

end-to-end throughputs that are achievable on aver-

age. An immediate consequence of these definitions is

that �m � �e.

Finally, we define the asymptotic notations: let f

and g be non-negative functions of a variable x. f is

O(g) with respect to x, if there exist positive real

numbers x0 and y0, such that 0 � f � y0g for every

x � x0. f is �ðgÞ with respect to x, if there exist

positive real numbers x1 and y1, such that

0 � y1g � f for every x � x1. f is �(g) with respect

to x, if f is both O(g) and �ðgÞ with respect to x.

We will omit the phrase ‘with respect to x’ when it can

be understood from the context. Also, we will make

use of the fact that f is �(g) with respect to x if

0 < limx!1
f
g
< 1.

4. Derivation of the Upper Bounds

4.1. Derivation of Upper Bounds on
Simultaneous Transmission Capacity

In this subsection, we prove the following theorem

that provides upper bounds on Nmax
t and N

Q
t :

Theorem 1. For every time instant t, simultaneous

transmission capacities of the network and the net-

work domain have the following upper bounds:

Nmax
t � N

Q
t � U�; ðT1:1Þ

Nmax
t � Nð1 þ G=�Þ; ðT1:2Þ

where

U� :¼

ð��1Þð��2Þð1þG=�Þd2

2 1þð��2Þ=ð1þdÞ��1�ð��1Þ=ð1þdÞ��2ð Þ ; � =2 f1; 2g ðT1:3Þ

1þG=�ð Þd
2 1�logð1þdÞ=dð Þ ; � ¼ 1 ðT1:4Þ

1þG=�ð Þd2

2 logð1þdÞ�d=ð1þdÞð Þ ; � ¼ 2 ðT1:5Þ

8>>>>><
>>>>>:

d :¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3 �

ffiffiffi
3

p
=ð2�Þ

q : ðT1:6Þ
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Proof. Consider an arbitrary time instant t. Recall that

Nt is the number of simultaneously successful trans-

missions at time t. Now, index each transmitter–

receiver pair that belongs to the same transmission

with a unique number between 1 and Nt. So, the

receiver i is the intended receiver of transmitter i for

every 1 � i � Nt. Let SINRi ðtÞ be the SINR at the

receiver i at time t. Then

SINRiðtÞ ¼
Pii
r ðtÞ

�iðtÞ þ 1
G

P Nt
j¼1

ð j 6¼ iÞ
P
ji
r ðtÞ

; 1 � i � Nt: ð1Þ

From the definition of a successful transmission, Nt,

simultaneously successful transmissions can take

place at time t if and only if

SINRiðtÞ � �; 1 � i � Nt

, 1

G

XNt

j¼1

ð j 6¼ iÞ

Pji
r ðtÞ �

Pii
r ðtÞ
�

� �iðtÞ; 1 � i � Nt

,
ðaÞ 1

G

XNt

j¼1

ð j 6¼ iÞ

P
j
tðtÞaðdjiðtÞÞ �

Pii
r ðtÞ
�

� �iðtÞ; 1 � i � Nt

,
ðbÞ 1

G

XNt

j¼1

ð j 6¼ iÞ

P
j
tðtÞaðdjiðtÞÞ

Pi
tðtÞaðdiiðtÞÞ

� 1

�
� �iðtÞ
Pi

tðtÞaðdiiðtÞÞ
; 1� i � Nt;

ð2Þ

where step (a) follows from (a.1), and step (b) follows

from dividing both sides by Pii
r ðtÞ ¼ Pi

tðtÞaðdiiðtÞÞ.
In general, for 0 � x � yþ z, y � 0 and z � 0

1

ð1 þ xÞ� �
1

ð1 þ yþ zÞ� �
1

ð1 þ yþ zþ yzÞ�

¼ 1

ð1 þ yÞy ð1 þ zÞ� :

Therefore, for a(x) as defined by (a.2)

aðxÞ � aðyÞaðzÞ; 0 � x � yþ z; y � 0 and z � 0:

ð3Þ

Now, let ljiðtÞ be the distance between the receiver j

and the receiver i at time t. Then, from triangle

inequality

djjðtÞ � djiðtÞ þ ljiðtÞ; 1 � i � Nt and 1 � j � Nt:

Setting x ¼ djiðtÞ; y ¼ djjðtÞ and z ¼ ljiðtÞ in Equation

(3) we obtain that

aðdjiðtÞÞ � aðdjjðtÞÞaðljiðtÞÞ: ð4Þ

Thus, from Inequalities (2) and (4), if Nt simulta-

neously successful transmissions can take place at

time t, then

XNt

j¼1

ðj 6¼iÞ

P
j
tðtÞaðdjjðtÞÞaðljiðtÞÞ
Pi

tðtÞaðdiiðtÞÞ

� G

�
� G�iðtÞ
Pi

tðtÞaðdiiðtÞÞ
; 1 � i � Nt:

ð5Þ

Define,

pjiðtÞ :¼
P
j
tðtÞaðdjjðtÞÞ

Pi
tðtÞaðdiiðtÞÞ

: ð6Þ

Next, we add all inequalities in (5), while incorporat-

ing (6). Hence, if Nt simultaneously successful trans-

missions can take place at time t, then

XNt

i¼1

XNt

j¼1

ð j 6¼ iÞ

aðljiðtÞÞpjiðtÞ �
GNt

�
�
XNt

i¼1

G�iðtÞ
Pi

tðtÞaðdiiðtÞÞ

)
XNt�1

i¼1

XNt

j¼iþ1

aðljiðtÞÞpjiðtÞ þ aðlijðtÞÞpijðtÞ
� �

� GNt

�

,
ðaÞXNt�1

i¼1

XNt

j¼iþ1

aðlijðtÞÞ pjiðtÞ þ pijðtÞ
� �

� GNt

�

)
ðbÞXNt�1

i¼1

XNt

j¼iþ1

2aðlijðtÞÞ �
GNt

�

,
ðcÞ XNt�1

i¼1

XNt

j¼iþ1

aðljiðtÞÞ þ aðlijðtÞÞ
� �

� GNt

�

,
XNt

i¼1

XNt

j¼1

ð j 6¼iÞ

aðljiðtÞÞ �
GNt

�

,
ðdÞXNt

i¼1

XNt

j¼1

ð j 6¼iÞ

aðlijðtÞÞ �
GNt

�
; ð7Þ

where steps (a), (c) and (d) follow from the fact that

aðljiðtÞÞ ¼ aðlijðtÞÞ for every i, j, t and step (b) follows

from the fact that xþ 1/x� 2 for every positive real

number x.
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From Inequality (7), we observe that the problem

of obtaining an upper bound on Nt reduces to finding

a lower bound on the summation term on the left-

hand side of the last inequality. This term involves

the sum of the attenuation function evaluated at the

inter-receiver distances defined by the placement of

the Nt ðNt � 1Þ=2 pairs of receivers. To find the lower

bound, we make use of Lemma 1, which is derived in

the next subsection.

4.1.1. Interpoint distance sum inequality

In this subsection, we derive a lemma that gives an

upper bound on the sum of the square of the nearest,

the second nearest, . . . , and the (n� 1)st nearest

neighbor distances from each of the n points that are

arbitrarily located in a disk of diameter D.

Lemma 1. (Interpoint distance sum inequality for

a disk) Let B(D) be a disk having diameter D.

Let n points be arbitrarily placed in B(D). Suppose

each point is indexed by a distinct integer between 1

and n. Let lij be the Euclidean distance between

point i and point j. Define the mth closest point

to point i, aim, and the Euclidean distance between

point i and the mth closest point to point i, uim, as

follows:

ai1 :¼ arg min
j2f1;2;...;ng;

j 6¼i

lij
� �

1 � i � n;

aim :¼ arg min
j2f1;2;...;ng;

j =2fig[faikgm�1
k¼1

lij
� �

1 � i � n and

2 � m � n� 1;

uim :¼ liaim ; 1 � i � n and 1 � m � n� 1:

Then

Xn
i¼1

u2
im � mD2

c2

1 � m � n� 1 ðL1:1Þ

where c2 :¼ 2
3
�

ffiffi
3

p

2� :

Proof. The proof involves a spherical geometric ap-

proach, which is used to solve similar problems in

Reference [14]. Let BiðxÞ denote the disk of diameter

x, whose center is at point i. Consider the following

sets of disks

Rm :¼ fBiðuimÞ : 1 � i � ng; 1 � m � n� 1:

ðL1:2Þ

Let us first consider the disks in R1. All disks in R1 are

non-overlapping.** This can be proven by contra-

diction: suppose that there exist two points i and j such

that Biðui1Þ and Bjðuj1Þ are overlapping. This, by the

definition of overlapping, implies (ui1 þ uj1Þ=2 > lij.

Without loss of essential generality, suppose ui1 � uj1.

Then, ui1 > lij. However, this would contradict the

definition of ui1. Therefore, our original assumption,

i.e. the existence of two overlapping disks in R1, is

invalid.

Let AðXÞ denote the area of a region X. If X is a disk

with diameter a, then AðXÞ ¼ �a2=4. Next, we find a

lower bound on fim :¼ AðBðDÞ \ BiðuimÞÞ=AðBiðuimÞÞ
for every 1 � i � n and 1 � m � n� 1. Pick any

point S from the periphery of BðDÞ and consider the

following overlap ratio

f Sim :¼ AðBðDÞ \ BSðuimÞÞ=AðBSðuimÞÞ;
1 � i � n; 1 � m � n� 1:

Geometrical computation of f Sim using Figure 1

leads to the following formula: f Sim ¼ f ðyÞj
y¼Uim

D

, where

f ðyÞ :¼ 1

�
1 � 2

y2

� �
arccos

y

2

� 	
þ 1

y2
� 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

y2
� 1

4

s
:

Figure 2 shows the variation of f ðyÞ with y. Since f ðyÞ
is a decreasing function of y and uim � D, f Sim � f ð1Þ
Also, fim � f Sim. Hence, by defining c2 :¼ f ð1Þ, we

obtain the following lower bound on fim for every

1 � i � n and 1 � m � n� 1

**Two disks are defined to be overlapping if the distance
between the centers of the disks is smaller than the sum of
the radii of the two disks.

Fig. 1. Computation of the overlap ratio between BðDÞ and
BSðuimÞ.
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fim � c2; where c2 ¼ 2

3
�

ffiffiffi
3

p

2�
:

This shows that at least c2 fraction of the disks in Rm

are inside BðDÞ. Hence, for every 1 � i � n and

1 � m � n� 1

AðBiðuimÞ \ BðDÞÞ � c2AðBiðuimÞÞ ðL1:3Þ

Adding all the n inequalities in (L1.3) for a given

value of m, we obtain the following inequality for

every 1 � m � n� 1

Xn
i¼1

AðBiðuimÞ \ BðDÞÞ � c2

Xn
i¼1

AðBiðuimÞÞ: ðL1:4Þ

Since all disks in R1 are non-overlapping

Xn
i¼1

AðBiðui1Þ \ BðDÞÞ � AðBðDÞÞ: ðL1:5Þ

(L1.4) and (L1.5) imply

AðBðDÞÞ � c2

Xn
i¼1

AðBiðui1ÞÞ: ðL1:6Þ

In (L1.6), AðBðDÞÞ ¼ �D2=4 and AðBiðui1ÞÞ ¼
�u2

i1=4. Substituting these equalities into (L1.6) and

dividing both sides by �c2=4, we obtain

Xn
i¼1

u2
i1 � D2

c2

: ðL1:7Þ

Next, let us consider the disks in Rm for every

2 � m � n� 1. In this case, there can be overlaps

between some pairs of disks in Rm. Consider two

overlapping disks, BiðuimÞ and BjðujmÞ centered at the

points i and j respectively. Now, we show that if

uim � ujm then j 2 Sim, where Sim :¼ faik : 1 �
k � m� 1g. This can be proven by contradiction:

suppose j =2 Sim when uim � ujm. Since BiðuimÞ and

BjðujmÞ are overlapping, ðuim þ ujmÞ=2 > lij. Then,

since uim � ujm, uim > lij. However, together with

our assumption j =2 Sim, this would contradict the

definition of uim. Therefore, our original assumption,

i.e. j =2 Sim, is invalid.

Next, we show that any arbitrarily chosen point

within BðDÞ does not belong to more than m over-

lapping disks from Rm. The proof is again by contra-

diction: suppose there is a point in BðDÞ that belongs

to more than m overlapping disks from Rm. Take the

largest mþ 1 of these overlapping disks. Consider

the largest disk. Let b be the point at the center of

this largest disk. Then all other m disks belong to

Sbm due to the result proved in the previous

paragraph. However, this contradicts the fact that

the cardinality of Sbm is m� 1. Therefore, our

original assumption, i.e. the existence of a point

belonging to more than m overlapping disks from

Rm, is invalid.

Since any chosen point within BðDÞ can belong to

at most m overlapping disks from Rm, then for every

2 � m � n� 1, we have

Xn
i¼1

AðBiðuimÞ \ BðDÞÞ � mAðBðDÞÞ: ðL1:8Þ

(L1.4) and (L1.8) imply

Xn
i¼1

u2
im � mD2

c2

; 2 � m � n� 1: ðL1:9Þ

Combining (L1.7) and (L1.9) completes the proof.

&

4.1.2. Application of interpoint distance
sum inequality

In this subsection, we derive Lemma 2, which in

combination with Lemma 1, provides a necessary

condition for Nt simultaneously successful transmis-

sions. Next, by using this necessary condition and

another lemma, Lemma 3, we complete the derivation

of the upper bound on Nt, N
Q
t and Nmax

t .

In Lemma 1, by setting n ¼ Nt and the location of

the points as the location of the receivers at time t,

uimðtÞ becomes the Euclidean distance between the

Fig. 2. Variation of the overlap ratio as a function of
y ¼ uim=D.
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receiver i and the mth closest receiver to the receiver i

at time t. Hence, we obtain the following inequality

XNt

i¼1

uimðtÞ½ �2 � mD2

c2

; 1 � m � Nt � 1: ð8Þ

Also, from Equation (7), we obtain the following

necessary condition for Nt simultaneously successful

transmissions at time t

XNt�1

m¼1

XNt

i¼1

aðuimðtÞÞ ¼
XNt

i¼1

XNt

j¼1

ð j6¼iÞ

aðlijðtÞÞ �
GNt

�

,
XNt�1

m¼1

XNt

i¼1

1

1 þ uimðtÞð Þ� �
GNt

�
: ð9Þ

To incorporate the constraint of Inequalities (8) into

(9), we use the following lemma:

Lemma 2. Let xi; 1 � i � n and C be non-negative

real numbers satisfying the following inequality

Xn
i¼1

x2
i � C: ðL2:1Þ

Let b be a non-negative real number. Then

Xn
i¼1

1

ð1 þ xiÞb
� n

1 þ
ffiffiffi
C
n

q� 	b : ðL2:2Þ

Proof. For b¼ 0, (L2.2) is satisfied with equality.

Thus, we consider the case when b> 0. Define the

column vector x and the multivariate function f ðxÞ as

follows:

x :¼ ½x1x2 . . . xn�T ;

f ðxÞ :¼
Xn
i¼1

1

ð1 þ xiÞb
:

We use Kuhn–Tucker Theory [15] to find the mini-

mum value of f ðxÞ subject to the constraint in (L2.1).

We define the constraint function, g(x) as follows:

gðxÞ :¼ C �
Xn
i¼1

x2
i � 0:

Let y ¼ ½y1y2 . . . yn�T be the column vector at which f

takes its minimum value. Then, from Kuhn–Tucker

Theory, there exists � � 0, such that the following

conditions are satisfied

ðrf ðxÞ � �rgðxÞÞjx¼y � 0; ðL2:3Þ

yTðrf ðxÞ � �rgðxÞÞjx¼y ¼ 0; ðL2:4Þ

�gð yÞ ¼ 0; ðL2:5Þ

gð yÞ � 0: ðL2:6Þ

From Equations (L2.3) and (L2.4) we obtain

�b

ð1 þ yiÞbþ1
þ 2�yi � 0 1 � i � n; ðL2:7Þ

Xn
i¼1

yi
�b

ð1 þ yiÞbþ1
þ 2�yi

 !
¼ 0: ðL2:8Þ

Since y� 0, we need to determine whether the con-

straint is binding or not. Namely, we need to deter-

mine whether or not there exist any components of y
that are zero. To do this, we compare the values of f

in all possible cases. Let y has k zero components, i.e.

k :¼ jfi : yi ¼ 0; 1 � i � ngj. So, 0 � k � n. If

0 � k < n then from (L2.7) �> 0, from (L2.5)

g(y)¼ 0 and from (L2.8) all non-zero components of

y are equal to each other. Thus, since g(y)¼ 0, all non-

zero components of y are equal to ½C=ðn� kÞ�1=2
. If

k¼ n then all components of y are zero and f (y)¼ n.

Hence,

f ðyÞ ¼
k þ n�k

1þ
ffiffiffiffiffi
C

n�k

p� �b ; 0 � k < n

n; k ¼ n:

8<
: ðL2:9Þ

Next, we show that the expression in (L2.9) is

minimized for k¼ 0 and therefore, y has non-zero

components. To show this, we prove the validity of the

following inequality

xþ n� x

1 þ
ffiffiffiffiffiffi
C

n�x

q� 	b � n

1 þ
ffiffiffi
C
n

q� 	b ; x 2 ½0; nÞ:

ðL2:10Þ
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Define the function on the left-hand side of (L2.10) as

h(x). Taking the partial derivative of h(x) with respect

to x and using Bernoulli’s Inequality [16], we obtain

@h

@x
¼ 1 �

1 þ b
2
þ 1

� � ffiffiffiffiffiffi
C

n�x

q
1 þ

ffiffiffiffiffiffi
C

n�x

q� 	bþ1
> 1 �

1 þ b
2
þ 1

� � ffiffiffiffiffiffi
C

n�x

q
1 þ ðbþ 1Þ

ffiffiffiffiffiffi
C

n�x

q

¼
b
2

ffiffiffiffiffiffi
C

n�x

q
1 þ ðbþ 1Þ

ffiffiffiffiffiffi
C

n�x

q � 0

So, h(x) is an increasing function of x over ½0; nÞ.
Hence, h(x)� h(0) for every x 2 ½0; nÞ. This completes

the proof of (L2.10) and also implies that f ðyÞ
assumes minimum value for k ¼ 0. This further im-

plies that all components of y are equal to (C/n)1/2 and

that f ðyÞ ¼ n=½1 þ ðC=nÞ1=2�b. Since f ðxÞ � f ðyÞ for

every x � 0, (L2.2) follows. &

Next, in Lemma 2, we set n¼Nt, b¼ �, xi¼ uim(t),

C¼mD2/c2 for every 1� i� n and 1�m� n�1, so

that (L2.1) and (8) become identical. Also the left-

hand side of (L2.2) and the inner summation in

Inequality (9) become identical. Hence, we obtain

the following lower bound on the left-hand side of

Inequality (9):

XNt�1

m¼1

XNt

i¼1

1

ð1 þ uimðtÞÞ�
�
XNt�1

m¼1

Nt

1 þ Dffiffiffi
c2

p
ffiffiffiffi
m
Nt

q� �� : ð10Þ

Next, we define d :¼ D=c
1=2
2 . The quantity d is the

diameter of the network domain divided by a constant

approximately equal to 0.625. Combining this defini-

tion with Inequalities (9) and (10), we obtain the

following necessary condition for Nt simultaneously

successful transmissions at time t

XNt�1

m¼1

1

1 þ d
ffiffiffiffi
m
Nt

q� �� �G

�
)
ðaÞ
ðNt

1

1 þ d

ffiffiffiffiffi
x

Nt

r� ���

dx � G

�

,
ðbÞ 2Nt

d2

ð1þd

1þ dffiffiffi
Nt

p

u� 1

u�
du � G

�
; ð11Þ

where step (a) follows from the fact thatÐ bþ1

a
f ðxÞdx �

Pb
m¼a f ðmÞ, whenever a and b are in-

tegers and f(x) is a continuous and non-increasing

function of x over [a, bþ1] and step (b) follows from

changing the variable of the integration by defining

u¼ 1þd(x/Nt)
1/2. Next, we define � as follows

� :¼
ffiffiffiffiffi
Nt

p
=d: ð12Þ

The quantity �2 is proportional to the average number

of successful transmissions per unit area. Combining

Inequalities (11) and (12), the necessary condition for

Nt simultaneously successful transmissions at time t

becomes

2�2

ð1þd

1þ1
�

ðu1�� � u��Þdu � G

�
; ð13Þ

Next, we use the following lemma to obtain a closed

form solution for the upper bound on Nt.

Lemma 3. Let x> 0 and y> 0 be real numbers such

that xy � 1 and let a � 1 be a real number. Let

I :¼ 2x2
Ð 1þy

1þ1=xðua � ua�1Þdu. Then,

I � 2x2½að1 þ yÞaþ1 � ðaþ 1Þð1 þ yÞa�
aðaþ 1Þ

þ 2x2

aðaþ 1Þ � 1; a � 1 and a =2 f�1; 0g

ðL3:1Þ

I � 2x2y� 2x2logð1 þ yÞ � 1; a ¼ 0 ðL3:2Þ

I � 2x2logð1 þ yÞ � 2x2y

1 þ y
� 1; a ¼ �1: ðL3:3Þ

Proof. Firstly, consider the case when a� 1 and

a =2f1; 0g. For a 2 ð�1;�1Þ [ ð0; 1Þ, define

R1ðx; aÞ :¼
2x2

2xðx� aÞð1 þ 1
x
Þa þ aðaþ 1Þ

and for a 2 ð�1; 0Þ; define

R2ðx; aÞ :¼
2xðx� aÞð1 þ 1

x
Þa

2x2 � aðaþ 1Þ :

R1 and R2 are differentiable functions of x and partial

derivatives of them with respect to x are

@R1

@x
¼

4aðaþ 1Þx2aþ1 ð1 þ xÞ1�a � x1�a
h i

ð1 þ xÞ1�a
2x2ð1 þ xÞa � 2axð1 þ xÞa þ aðaþ 1Þxa½ �2

� 0;

@R2

@x
¼ �2að1 � a2Þð2x� aÞ

ð1 þ xÞ1�a
xa½2x2 � aðaþ 1Þ�2

� 0:
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Also, limx#0 R1 ¼ limx#0 R2 ¼ 0. So, R1 and R2 are

non-decreasing and non-negative functions of x.

Finally, limx!1 R1 ¼ limx!1 R2 ¼ 1. Therefore,

for a 2 ð�1;�1Þ [ ð0; 1Þ;

R1 ¼ 2x2

2xðx� aÞð1 þ 1
x
Þa þ aðaþ 1Þ

� 1

a 2 ð�1;�1Þ [ ð0; 1�

)
2xðx� aÞð1 þ 1

x
Þa

aðaþ 1Þ � 2x2

aðaþ 1Þ � 1

ðL3:4Þ

and for a 2 ð�1; 0Þ,

R2 ¼
2xðx� aÞð1 þ 1

x
Þa

2x2 � aðaþ 1Þ � 1;

)
2xðx� aÞð1 þ 1

x
Þa

aðaþ 1Þ � 2x2

aðaþ 1Þ � 1:

ðL3:5Þ

Combining (L3.4) and (L3.5) we find that for a � 1

and a =2f�1; 0g,

2x2

aðaþ 1Þ � 1 �
2xðx� aÞð1 þ 1

x
Þa

aðaþ 1Þ

) 2x2½að1 þ yÞaþ1 � ðaþ 1Þð1 þ yÞa�
aðaþ 1Þ

þ 2x2

aðaþ 1Þ � 1

� 2x2½að1 þ yÞaþ1 � ðaþ 1Þð1 þ yÞa�
aðaþ 1Þ

þ
2xðx� aÞð1 þ 1

x
Þa

aðaþ 1Þ

¼ 2x2



1

ðaþ 1Þ ð1 þ yÞaþ1 � 1 þ 1

x

� �aþ1
" #

� 1

a
ð1 þ yÞa � 1 þ 1

x

� �a� �

¼ I:

This completes the proof of (L3.1). We prove

(L3.2) and (L3.3) as follows: Let i 2 f�1; 0g. Then

Ija¼i ¼
ðaÞ

lim
a"i

I

�
ðbÞ

lim
a"i



2x2½að1 þ yÞaþ1 � ðaþ 1Þð1 þ yÞa�

aðaþ 1Þ

þ 2x2

aðaþ 1Þ � 1




¼ðcÞ
2x2y� 2x2logð1 þ yÞ � 1; i ¼ 0;

2x2logð1 þ yÞ � 2x2y
1þy

� 1 i ¼ �1

(

where step (a) follows from the continuity of I at

a ¼ i, step (b) follows from (L3.1) and step (c) follows

from L’Hôpital’s Rule [17]. This completes the proof

of Lemma 3. &

By setting a ¼ 1 � �; x ¼ � and y¼ d in Lemma 3,

I becomes equal to the left-hand side of Equation

(13). Hence, using (L3.1), (L3.2) and (L3.3), we

obtain the following necessary conditions for Nt

simultaneously successful transmissions at time t

2�2 1��

ð1þdÞ��2 � 2��

ð1þdÞ��1

� 	
ð1 � �Þð2 � �Þ þ 2�2

ð1 � �Þð2 � �Þ � 1

� G

�
; � =2f1; 2g ð14Þ

2�2d � 2�2logð1 þ dÞ � 1 � G

�
; � ¼ 1 ð15Þ

2�2logð1 þ dÞ � 2�2d

1 þ d
� 1 � G

�
; � ¼ 2: ð16Þ

Solving Inequalities (14), (15) and (16) for � and

substituting � from Inequality (12), we obtain the

following upper bound on Nt

Nt � U�; ð17Þ

where U� is defined as in (T1.3), (T1.4) and (T1.5).

Recall that N
Q
t is the maximum value of Nt over all

the placements of the nodes, the choice of the trans-

mitters, their intended receivers and the transmission

powers, given that there are no restrictions on the

value of N. Since there have been no restrictions on

any of these parameters during the derivation of

Equation (17), hence, the right-hand side of Equation

(17) is also an upper bound on N
Q
t , which is not less

than Nmax
t . This completes the proof of (T1.1).

Finally, we complete the proof of (T1.2) as fol-

lows: suppose there is a single receiver node and Nt

transmissions intended for this node at time t. Then,

in Inequality (7), lijðtÞ is equal to zero for every i, j

and t. Thus, Nt will be not more than 1þG/�. This

shows that none of the N nodes can receive more

than 1þG/� simultaneously successful transmis-

sions intended for itself and, thus, Nmax
t cannot

exceed N(1þG/�). This completes the proof of

Theorem 1. &
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4.2. An Upper Bound on Simultaneous
Transmission Capacity Implies an Upper
Bound on Per-Node End-to-End
Throughput Capacity

In this subsection, firstly, we prove the following

theorem:

Theorem 2. �e and �m are upper bounded as follows:

�e � �m � WmaxU�

�HHN
; ðT2:1Þ

�e � �m � Wmax

�HH
1 þ G

�

� �
: ðT2:2Þ

Proof. Define the total information transmission rate

of the network at time t, C(t), as follows:

CðtÞ :¼
XNt

i¼1

WiðtÞ;

where WiðtÞ is the transmission rate of the ith success-

ful transmission at time t. By the definition of �HH in

Section 2.4, each bit of information delivered to its

destination is transmitted in �HH hops on the average.

Therefore, the time average of C(t) over t 2 ½0;1Þ
is not less than �HH

PN
i¼1 �i ¼ �HHN�. Also, since

WiðtÞ � Wmax and Nt � Nmax
t , C(t)�WmaxN

max
t .

Thus, average of C(t) over any time interval cannot

exceed Wmax multiplied by a time invariant upper

bound on Nmax
t , such as the upper bounds in (T1.1) and

(T1.2). Hence

�HHN� � WmaxU;

where U 2 fU�;Nð1 þ G=�Þg. As a result, we obtain

the following upper bound on �:

� � WmaxU
�HHN

: ð18Þ

It is worth emphasizing that, because of the generality

of the network model underlying the derivation of

Inequality (18), it is applicable even when the mobi-

lity pattern of the nodes, the spatial–temporal trans-

mission scheduling policy, the temporal variation of

transmission powers, the source–destination pairs and

the possibly multi-path routes between them are

optimally chosen as to maximize �. Similarly, In-

equality (18) is applicable even when the nodes are

capable of maintaining multiple transmissions and/or

receptions simultaneously.

Recall that �m is the supremum of all end-to-end

throughputs �0 for which there exist: a mobility

pattern of the nodes, a traffic pattern, a spatial-tem-

poral transmission scheduling policy and a temporal

variation of transmission powers, so that ���0.

There have been no restrictions on these parameters

during the derivation of Inequality (18), hence the

right-hand side of Inequality (18) is also an upper

bound on �m, which is not less than �e. This completes

the proof of Theorem 2. &

So far, there have been no restrictions on the

number of simultaneous transmissions and/or recep-

tions that a node is capable of maintaining. If, as in

References [1] and [2], there is also the additional

restriction that a node cannot transmit and receive

simultaneously and that a node is capable of main-

taining at most one transmission or one reception

at any given time, then Nmax
t � N/2 and thus, � �

Wmax=ð2�HHÞ. We will henceforth refer to this latter

case as the half-duplex restricted case. Combining

this condition with Inequality (18) leads to the follow-

ing upper bound on � for the half-duplex restricted

case

� � Wmax

�HH
min

U�

N
;
1

2


 

: ð19Þ

Hence, proceeding in a similar way as in the proofs of

(T2.1) and (T2.2), we conclude that the right-hand

side of Inequalitiy (19) is also an upper bound on �e

and �m for the half-duplex restricted case.

Finally, we show that dividing the communication

bandwidth into several sub-channels of smaller band-

width does not change the terms other than Wmax in

all of the results that we have presented so far. An

assumption behind the results is that all transmissions

are taking place in the same communication band-

width. If the communication bandwidth is divided into

several sub-channels of smaller bandwidth, then there

still is an upper bound on the transmission rate in each

of these sub-channels. All of the upper bounds on

simultaneous transmission capacities of Q and the

network are still valid for each of these sub-channels

individually. Therefore, if there are M sub-channels

and the transmission rate of the mth sub-channel is not

more than Wmax
m , then all of the upper bounds on �e

and �m are still valid if Wmax is replaced withPM
m¼1 W

max
m .
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5. Analysis of the Upper Bounds

In this section, firstly, we analyze the asymptotic and

limiting behavior of the upper bound U� in Theorem

1, to draw the following conclusions about N
Q
t

� lim
�!1

U�

�2 ¼ 1
2c2

ð1 þ G
�ÞD2 ) N

Q
t is Oð�2Þ

� lim
D!1

U� j�¼1

D
¼ 1

2c2
1=2 ð1 þ G

�Þ ) N
Q
t is OðDÞ if � ¼ 1

� lim
D!1
ð�<2Þ

U�

D� ¼ 1

c
�=2

2

ð1 � �
2
Þð1 þ G

�Þ ) N
Q
t is OðD�Þ if � < 2

� lim
D!1

U� j�¼2

D2=logðDÞ ¼ 1
2c2

ð1 þ G
�Þ ) N

Q
t is OðD2=logðDÞÞ if � ¼ 2

� lim
D!1
ð� > 2Þ

U�

D2 ¼ ð��1Þð��2Þ
2c2

1 þ G
�

� 	
) N

Q
t is OðD2Þ if � > 2

� lim
G=�!1

U�

G=� ¼ f ð�; dÞ :¼ U�

1þG=� ) N
Q
t is OðG=�Þ

� lim
�#0

U� ¼ lim
D#0

U� ¼ 1 þ G
� ) Lack of attenuation is eq-

uivalent to lack of space:

Also, since the area of the network domain is

A¼ �D2/4, D can be replaced with (4A/�)1/2. Doing

so, we can also conclude that N
Q
t is O(Amin{�/2,1}) if

� 6¼ 2 and O(A/log(A)) if �¼ 2. Regardless of the

value of �, this also implies that N
Q
t cannot grow

with the area of Q super-linearly. Linear growth is not

possible when �� 2 and can only be possible when

� > 2.

In Figure 3, U� is plotted as a function of A and �,

for G¼ �¼ 10. This figure illustrates the growth trend

of U� as � and/or A increase. It is possible to observe

the linear and the sub-linear growth of U� with Awhen

� > 2 and 0<�� 2 respectively. The figure also

illustrates the equivalence of the lack of attenuation

(�¼ 0) and the lack of space (A¼ 0). One should also

notice the quadratic growth of U� with �.

Secondly, we analyze the upper bounds on Nmax
t .

(T1.1) of Theorem 1 shows that Nmax
t is O(1) with

respect to N. Since Nmax
t � N

Q
t , all of the above

asymptotic results are valid for Nmax
t , too.

However, from (T1.2), Nmax
t � Nð1 þ G=�Þ.

Therefore, for a given N, G, and �, the upper bound

on Nmax
t in (T1.1) loses its tightness beyond some

finite values of D and �. Existence of an upper bound

on Nmax
t independent of D and � also shows that Nmax

t

is O(1) with respect to A and �. The reason is that

beyond some finite values of A or �, the network

domain provides sufficient space and attenuation, so

that the upper bound on the number of simultaneous

receptions per-node, i.e. 1þG/�, becomes the limit-

ing factor.

Next, we analyze asymptotic and limiting behavior

of the upper bounds on �e and �m. (T2.1) of Theorem

2 shows that �e and �m are O(1/N) and O(1/�HH). It also

showsyy that �e and �m are O(G/�). We also observe

that �e and �m are upper bounded by Wmax(1þG/� )/

(�HHN) when the network domain lacks attenuation or

space. Due to (T2.2), �e and �m cannot exceed

Wmax(1þG/�)/�HH, which is independent of A and �.

So, Wmax(1þG/�)/�HH becomes the dominant upper

bound beyond some finite values of A or � and thus,

�e and �m are O(1) with respect to A and �. Similar

behavior is also observable in the half-duplex re-

stricted case; beyond some finite values of A or �,

the network domain provides sufficient space and

attenuation so that bN=2c simultaneously successful

transmissions become possible.zz However, no more

transmission can be scheduled, since there are no

remaining inactive pairs of nodes, and thus, �e and

�m cannot exceed Wmax /(2�HH). In general, there is a

region of (A,�) pairs for which the dominant upper

bound on �e and �m is WmaxU� /(�HHN). This region is

bounded by the A axis, the � axis and the set of (A,�)

pairs for which U� /N¼ 1þG/�. Since U� is an in-

creasing function of A and �, this region will expand

as N increases. This shows that the limitation of �e and

�m due to shortage of space and attenuation is more

pronounced when N is large compared to U�. Addi-

tionally, we have shown that U� is �(Amin{�/2,1}) when

Fig. 3. Upper bound on the simultaneous transmission
capacity of the network domain as a function of area of

the network domain and the path loss exponent.

yyThe O(G/�) result assumes that Wmax is not dependent on
G/�. However, in some practical systems, Wmax is inversely
proportional to G/�, as we will see in Section 7.
zzbxc denotes the largest integer smaller than or equal to x.
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� 6¼ 2, �(A/log(A)) when �¼ 2 and also �(�2). These

observations support the claim that for large N, there

is a region of (A,�) pairs where additional space and

additional attenuation provide considerable increase

in �e and �m, where the behavior of �e and �m

resembles the asymptotic behavior of U� and beyond

this region the behavior �e and �m changes into �(1)

with respect to A and �.

Next, we demonstrate the above results through an

example. Consider the half-duplex restricted case. We

have shown that �e and �m cannot exceed the right-

hand side of Inequality (19). Now, we normalize this

quantity with respect to Wmax and we denote the

resulting expression by �U. In Figure 4, �U is plotted

as a function of A and �. The other parameters for this

example are: G¼ �¼ 10, N¼ 250 and �HH¼ 1.§§ This

figure illustrates the variation in the growth trend of

�U as a function of A for various values of �. Also, it

demonstrates the presence of a region of (A,�) pairs

where the limitation of �e and �m is due to shortage of

space and attenuation. For the (A,�) pairs outside of

this region, shortage of inactive pairs of nodes be-

comes the dominant limitation and thus, Wmax/(2�HH)

becomes the dominant upper bound on �e and �m.

In Figure 5, parameter values are the same except

that N is now an independent variable and �¼ 3. The

green region consists of the (A,N) pairs where the

limitation of �e and �m is due to shortage of space. For

the (A,N) pairs outside of this region, namely inside

the blue region, shortage of inactive pairs of nodes is

the dominant limitation, and thus, Wmax/(2�HH) is the

dominant upper bound on �e and �m. The figure also

demonstrates that if the area of the network domain is

kept constant and the number of nodes is increased,

then �U decays as �(1/N), so that �e and �m vanish as

N grows large. However, if the area also increases with

N, we observe that it can be possible to keep �U at a

constant level so that it does not rule out the possibi-

lity of achieving a non-vanishing per-node end-to-end

throughput as the number of nodes grows large. We

will elaborate on this result in Section 7.

6. ke and km are H(1/N )

In the previous section, we have shown that �e and �m

are O(1/N). Next, to prove they are also �(1/N), we

show that they are �(1/N). We do this by constructing

a TDMA scheme that assigns each of the nodes a

separate time slot of constant duration. In such a

scheme, there are N slots in each cycle and each of

the nodes transmits directly to its destination in the

slot assigned to itself, with a transmission power large

enough to satisfy the signal to noise ratio requirement.

Assuming � is an upper bound on the power of noise

in the used communication bandwidth, a transmission

power of ��/a(D) guarantees successful reception.

Although this simple scheme takes no advantage of

spatial reuse, it allows each of the nodes transmit-

ting 1/N fraction of the time. Thus, assuming that

each transmission satisfying the signal to noise

ratio requirement can occur with rate W, a per-node

§§This is the least possible value �HH can take and achieved
when each bit of generated information is destined for a
node one hop away.

Fig. 4. Upper bound on the normalized per-node end-to-end
throughput capacity as a function of area of the network

domain and the path loss exponent.

Fig. 5. Upper bound on the normalized per-node end-to-end
throughput capacity as a function of area of the network

domain and number of nodes in the network.
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end-to-end throughput of W/N is achievable by all

nodes. This shows that �e and �m are �(1/N). As a

result, �e and �m are �(1/N).

7. Implications of the Results on
Scalability

In this section, we consider the following scalability

problem: we are increasing the number of nodes in the

network indefinitely and we want to achieve a desired

per-node end-to-end throughput, say �0. �0 is not

achievable if no other parameter is increased as a

function of N, since �e and �m are no more than

WmaxU�/(�HHN), which is O(1/N). So, one or more of

the parameters from Wmax, �, G/� or A must increase

with N and N must be increasing according to a

function of U�, so that WmaxU�/(�HHNÞ��0. Note

that �HH cannot be indefinitely reduced to compensate

for increasing N, because �HH� 1, as every bit of

information has to be transmitted for at least one

hop. This shows that �HHN must be O(WmaxU�).

For practical systems, � is a property of the wireless

channel and it cannot increase with N. Wmax cannot

increase indefinitely with N, because of the presence

of noise and because of the maximum transmission

power constraints. These limit reliable information

transmission to rates that do not grow with N. On the

other hand, G/� depends on the implementation of the

communication system and increasing it for a given

system bandwidth usually requires decreasing Wmax.

For example, it is shown in Reference [10] that in

spread spectrum CDMA, for a given system band-

width, symbol transmission rate is inversely propor-

tional to the processing gain. Likewise, reducing �
requires a proportional decrease in the symbol trans-

mission rate to satisfy a given bit error rate require-

ment. Therefore, increasing G/� will not compensate

for increasing N. So, the only way of achieving �0

would be increasing A as N increases. Hence, N must

be increasing as a function of A. We have shown that

U� is �(Amin{�/2,1}) when � 6¼ 2 and �(A/log(A)) when

�¼ 2. Therefore, unless N is O(Amin{�/2,1}) when

� 6¼ 2 and O(A/log(A)) when �¼ 2, �0 is not achiev-

able. Also, �HH must be �(1) with respect to N due to

the following reasoning. We know that �HH� 1, which

implies that �HH is �(1). To see why �HH must be O(1)

with respect to N, recall that �0 cannot exceed

Wmax(1þG/�)/�HH and increasing G/� requires a pro-

portional reduction in Wmax, as is the case in spread

spectrum CDMA. Thus, compensating for indefinitely

growing �HH by increasing G/� is not possible.

The above results can also be stated in terms of

node density, 	 :¼N/A. From the above paragraph,

dividing N and the asymptotic upper bounds on N

by A, we obtain the following result: unless 	 is

O(Aminf�=2�1;0g) when � 6¼ 2 and O(1/log(A)) when

�¼ 2, �0 is not achievable. In other words, �0 is not

achievable if 	 grows with N indefinitely when � > 2,

if 	log(A) grows with N indefinitely when �¼ 2, and if

	A1��=2 grows with N indefinitely when � < 2. In any

case, �0 is not achievable if 	 grows with N indefi-

nitely. Also, when �� 2, unless 	 decays down to 0 as

N ! 1, �0 is not achievable. Our observations in

this and the previous paragraphs prove the following

corollary regarding practical systems.

Corollary. (Necessary condition for scalability of

practical systems) A desired per-node end-to-end

throughput is not achievable as N ! 1, unless H is

�(1) with respect to N, A also grows with N and the

following equivalent conditions are satisfied.

� N is O(Aminf�=2;1g) when � 6¼ 2 and O(A/log(A))

when �¼ 2, or, equivalently

� 	 is O(Aminf�=2�1;0g) when � 6¼ 2 and O(1/log(A))

when �¼ 2.

Figure 6 illustrates this corollary. In this figure,

G¼ �¼ 10, �HH¼ 1 and the curves are obtained by

plotting the (A,N) pairs, for which �U¼ 0.1 and � 2
{0,1,2,3}. We know that normalized �e and �m are no

more than �U, which is a decreasing function of N and

an increasing function of A when �U
�HH< 0.5. There-

fore, each of these curves separates a region of (A,N)

Fig. 6. Curves formed by the (A,N) pairs for which �U¼ 0.1.
For the (A,N) pairs above the curves, any normalized

throughput greater than or equal to 0.1 is not achievable.
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pairs where a normalized end-to-end throughput of

0.1 is not achievable and another region where it may

be achievable on average or by all nodes. For example,

when �¼ 2 and (A,N)¼ (3,400), the normalized end-

to-end throughput 0.1 is not achievable, whereas it

may be achievable on average or by all nodes for

(A,N)¼ (3,100). The corollary tells us that for the

sequence of (A,N) pairs forming each of the curves in

Figure 6, N is �(1), �(A1/2), �(A/log(A)) and �(A)

when � is 0, 1, 2 and 3 respectively. Equivalently, for

the sequence of (A,	) pairs associated with each of

these curves, 	 is �(1/A), �(1/A1/2), �(1/log(A)) and

�(1) when � is 0, 1, 2 and 3 respectively.

8. Conclusions

In this paper, we have studied the capacity of wireless

networks with a more general network model than the

models used in References [1] and [2], and we have

presented the implications of our results on network

scalability.

Instead of the propagation model used in

References [1] and [2], we used the power law decay-

ing propagation model, which was proposed in other

studies such as References [12] and [13], to obtain

more realistic results for small transmitter–receiver

distances, while approximating the conventional

model at large distances. Using this model,{{ we

concluded that Nmax
t cannot exceed N

Q
t , which is

independent of N, but depends on A, �, G and �.

The analysis of the upper bound on N
Q
t in Theorem 1

has revealed that N
Q
t is OðAminf�=2;1gÞ for � 6¼ 2 and is

OðA=logðAÞÞ for �¼ 2. The analysis has also shown

that N
Q
t is Oð�2Þ and OðG=�Þ.

Additionally, since the network model that we have

used is quite general, our results in this paper do not

only hold for the network scenarios of References [1]

and [2], but also hold for networks whose nodes move

with any mobility pattern or are capable of maintain-

ing any number of simultaneous transmissions and/or

receptions. Hence, we have been able to show that

maximum achievable per-node end-to-end throughput

is �(1/N), even when the mobility pattern of the nodes,

the spatial–temporal transmission scheduling policy,

the temporal variation of transmission powers, the

source-destination pairs and the possibly multi-path

routes between the nodes are optimally chosen.

Furthermore, the result holds even when the commu-

nication bandwidth is divided into sub-channels of

smaller bandwidth.

Moreover, our results are valid for any non-

negative value of �.kk This allowed us to show that

lack of attenuation and lack of space are equivalent,

where Nmax
t and N

Q
t cannot exceed 1þG/�. Also, in

these equivalent cases, �e and �m cannot exceed

Wmax(1þG/�)/(�HHN).

We have also shown that no node can receive more

than 1þG/� simultaneously successful transmissions

intended for itself. This allowed us to show that Nmax
t ,

�e, and �m are O(1) with respect to A and � for a given

N. Together with (T2.1), this also allowed us to justify

that the limitation of �e and �m due to shortage of

space and attenuation is more pronounced when N is

large.

Finally, we have studied the implications of our

results on the scalability patterns of wireless networks.

We have shown that as N becomes large, unless one or

more of the parameters from Wmax, �, G/� or A grows

with N, and �HHN is O(WmaxU�), a desired per-node end-

to-end throughput is not achievable. Regarding scal-

ability of practical systems, we have concluded that �HH
must be �(1) with respect to N. Moreover, we have

concluded that A is the only feasible parameter whose

growth can compensate for increasing N. Above all, we

have proved that as N ! 1, a desired per-node end-to-

end throughput is not achievable, unless A also grows

with N, and N is O(Aminf�=2;1g) when � 6¼ 2 and is O(A/

log(A)) when �¼ 2.

In summary, in this paper, we derived a new

approach to analyze the scalability patterns of wire-

less networks through the use of a more general

network model and we determined several necessary

conditions for the scalability of this network. This was

performed by considering only one of the funda-

mental requirements for scalability, which is the

requirement of a non-vanishing per-node end-to-end

throughput as the number of nodes grows large. An

interesting extension of this work would be to deter-

mine the additional necessary conditions that result

from other fundamental requirements for scalability,

such as bounded end-to-end delay, bounded power

consumption, bounded processing power and bounded

memory consumption at the nodes.

{{Note that the difference between our results and the
results in References [1] and [2], which concluded that
Nmax

t is �(N), is due to the different propagation model.

kkThus, our results extend the results of References [1] and
[2] that are limited to values of � that exceed 2.
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