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Abstract. In a high-capacity cellular network with limited spectral resources, it is desirable to minimize the radio bandwidth costs associated
with paging when locating mobile users. Sequential paging, in which cells in the coverage area are partitioned into groups and paged in a
non-increasing order of user location probabilities, permits a reduction in the average radio costs of paging at the expense of greater delay
in locating the users. We present a polynomial time algorithm for minimizing paging cost under the average delay constraint, a problem that
has previously been considered intractable. We show the conditions under which cluster paging, a simple heuristic technique proposed for
use with dynamic location update schemes, is optimal. We also present analytical results on the average delay and paging cost obtained with
sequential paging, including tight bounds.
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1. Introduction

When a call arrives for a mobile user in a cellular network,
it is necessary to determine the location of this user in order
to route the call appropriately. In the earliest cellular sys-
tems, this was accomplished by paging all the cells in the
network [5]. Such an approach incurs a significant cost in
radio bandwidth utilization and is cost-effective only in small
networks. The second generation networks introduced the no-
tion of location updates, whereby the system is divided into
a number of location areas (LA’s), and the mobile unit no-
tifies the network when it moves from one location area to
another [18]. Upon arrival of a call, all the cells within the
user’s current location area are paged.

A number of location updating schemes that have been
proposed are based on improved LA partitioning techniques
[16,19,25,33]. Schemes based on the selection of designated
reporting cells can be found in [6,7,13]. The use of im-
plicit location registration information obtained during trans-
actions between the network and the mobile unit is discussed
in [30]. Research has also been directed to dynamic lo-
cation update schemes such as distance-based [2,3,8,17,24],
movement-based [4,8], velocity-based [21,32], and time-
based [8,29] strategies. A predictive distance-based mobile
tracking scheme is presented in [22], and a novel information
theoretic approach to user location, based on the Lempel–Ziv
family of source compression algorithms, is proposed in [9].

There is a tradeoff between the frequency of location up-
dates and paging costs: if location updates are frequent, there
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is less uncertainty about the user’s position and fewer cells
need to be paged; on the other hand, if the location updates
are infrequent, the cost of paging increases. Still, since paging
is necessary if the update scheme leaves any uncertainty at all
in the mobile’s exact location, it is possible to view paging as
a fundamental operation. As pointed out in [9], however, “the
majority of the research on location management has actually
focused on update schemes, assuming some obvious version
of paging algorithm.”

A simple two-stage strategy for improving paging costs
in the LA-based approaches is described in [23]. Paging is
initially performed in cells where information about recent
interactions with the mobile indicate that the user is most
likely to be present. If the user is not found in these cells,
then the remaining cells in the location area are paged. Se-
lective or cluster paging strategies, such as those used in
[3,4,11,17,26], assume that the mobile’s last known position
and its surroundings constitute the most probable current lo-
cation. The direction of the mobile’s motion is taken into
account in [21] and [10], with the cells in the direction of
the mobile’s motion yielding a higher probability of user lo-
cation. The use of user profiles, through probabilistic infor-
mation gathered either from the user or the billing database,
is considered in [27] as a means for reducing paging costs.
A similar use of collected user mobility statistics in the form
of multi-dimensional histograms is described in [31].

The notion that the policy of “paging more probable cells
first” reduces the cost of paging is made rigorous in [28]. It
is proved that sequential paging schemes, in which groups of
cells are paged in non-increasing order of user location proba-
bilities, are optimal in that they minimize the average number
of cells paged per call arrival. There is an implicit tradeoff in
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these schemes, however, between the delay in finding a mo-
bile user and the corresponding paging cost. At one extreme,
when a call arrives for the user, all base stations in that LA
send out paging messages and the mobile will respond in one
round no matter where it is. If the LA is large and a great
number of cells are paged, the radio costs are high. At the
other extreme, only one base station sends a paging message
in each round. Although this minimizes the paging cost, in the
worst case this would require as many rounds as the number
of cells in the LA – a potentially unacceptable delay.

It is shown in [28] that if the user location probabilities are
known, dynamic programming may be used to solve (a) the
problem of minimizing the average cost of paging under max-
imum delay constraint, and (b) the problem of minimizing
the weighted mean of paging cost and of average delay. We
extend those results by specifying algorithms for these prob-
lems and analyzing their worst case running time and space
requirements. Also discussed in [28] is the problem of mini-
mizing the paging cost subject to a constraint on the average
delay. The authors state that this problem is not amenable to
solution via dynamic programming, since the total cost is not
additive. They then proceed to provide an approximate solu-
tion via Lagrange multipliers using a continuous formulation.
This problem of minimizing the average paging cost subject
to the average delay constraint is also discussed in [1], where
again the authors suggest that the problem may be intractable.
We present an algorithm which solves this problem exactly in
polynomial time with respect to the total number of cells.

We also present results on the performance of sequential
paging schemes under two sets of assumptions: (a) uniform
user location probabilities, and (b) cluster paging with geo-
metric zone location probabilities. The first case, when the
user is equally likely to be in any cell in the location area, is
useful because it provides tight bounds on the performance
of sequential paging with an arbitrary location distribution.
Cluster paging is a special form of sequential paging that
arises in the context of dynamic location updating schemes.
In this case, we show necessary conditions for the optimal-
ity of cluster paging, and provide expressions for the average
paging cost and paging delay when the probability of user lo-
cation decreases geometrically with distance from the center
cell, such as the case when a mobile user provides location
updates relatively frequently.

The rest of the paper is organized as follows: section 2
introduces some of the notation and preliminary definitions.
Section 3 presents two important problem formulations, dis-
cusses their structure, and presents algorithms to solve them.
The time and space requirements for these algorithms are also
provided. The performance of sequential paging schemes un-
der specific user location probability distributions is discussed
in section 4. Section 5 presents concluding comments. All
proofs have been deferred to the appendix.

2. Definitions and notation

The location area is the set of n cells C = {1, 2, . . . , n} such
that the mobile user is guaranteed to be in one of these cells at

the time of a call arrival1. We assume that for each user, the
probability of the user being present in a cell can be estimated
for each of these n cells at the time of a call arrival. Let πi
be the probability that the user is located in the ith cell. We
assume, without loss of generality, that the cells are numbered
in non-increasing order of user location probabilities, i.e. i <
j ⇒ πi � πj .

A sequential paging scheme is one where the cells in a
location area are partitioned into indexed groups referred to
as paging zones on the basis of the cell-wise user location
probabilities. Let Z1, Z2, . . . , Zw be the w-partition of the
set C (i.e. a partition of C into w groups), where each Zi is
non-empty and corresponds to a distinct paging zone. When
a call arrives for a user, the cells in paging zone Z1 are paged
simultaneously in the first round, then if the user is not found
in Z1, all the cells in paging zone Z2 are paged, and so on.
Let the number of cells in the ith paging zone be denoted
by ni = |Zi |, and let pi be the corresponding zone location
probability of the user:

pi =
∑
j∈Zi

πj . (1)

We say that Z1, Z2, . . . , Zw is a non-increasingly ordered
partition of C if for all i ∈ Zk and j ∈ Zl such that k � l, it
is true that πi � πj . Note that if we have a non-increasingly
ordered partition, then each paging zone will consist of con-
tiguously numbered cells. Thus, Z1 = {1, 2, . . . , n1}, Z2 =
{n1 + 1, . . . , n1 + n2}, and so on.

We now have the following observations:

• The total number of paging zones into which the location
area is partitioned, w, represents the worst case delay in
locating the mobile user.

• The average paging delay (number of paging rounds) in
locating a mobile,D, can be expressed as follows:

D =
w∑
i=1

ipi. (2)

• The average cost of paging (number of cells paged per call
arrival), L, can be expressed as follows:

L =
w∑
i=1

(
i∑
j=1

nj

)
pi. (3)

An example illustrating the notation and definitions
(1) n = 5 cells in location area, C = {1, 2, 3, 4, 5}.
(2) Cell-wise user location probabilities:

i 1 2 3 4 5

πi 0.3 0.3 0.25 0.1 0.05

(3) Number of paging zones w = 2.

1 This is a somewhat general definition of location area. It is applicable even
for dynamic location updating schemes, since we can always provide an
upper bound on how far the user could have traveled since the last location
update.
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Figure 1. Example location area and paging zones.

(4) Paging zones: Z1 = {1, 2}, Z2 = {3, 4, 5}.
(5) Number of cells in each paging zone: n1 = |Z1| = 2,

n2 = |Z2| = 3.

(6) Zone location probabilities: p1 = 0.3 + 0.3 = 0.6, p2 =
0.25 + 0.1 + 0.05 = 0.4.

(7) Average paging delay: D = 1p1 + 2p2 = 1 × 0.6 + 2 ×
0.4 = 1.4.

(8) Average paging cost: L = n1p1 + (n1 + n2)p2 = 2 ×
0.6 + 5 × 0.4 = 3.2.

These definitions and notation are reflected in figure 1. Note
that cells that belong to the same paging zone need not be ad-
jacent to one another geographically. As per our assumptions,
the cells are numbered in non-decreasing order of user loca-
tion probabilities. The first paging zone consists of the two
most probable cells, and the second paging zone consists of
the remaining three cells. When a call arrives, cells 1 and 2
are paged first, and if the user is not located in those two cells,
then cells 3, 4, and 5 are paged. For this partitioning of the
location area, the worst case delay is 2 rounds, the average
paging delay is 1.4 rounds, and the average paging cost is 3.2
cells paged/call arrival.

3. Optimization of sequential paging schemes

It is possible to formulate the problem of optimal sequential
paging in many different ways. There are three chief mea-
sures of performance that are of interest – average paging
cost, average delay, and worst case delay. It has been shown
in [28] that, to minimize D or L, the paging zones must be
partitioned in such a way that more probable cell locations
must be paged at an earlier round than less probable ones.
Theorem 1 presents this formally.

Theorem 1. The partition Z1, Z2, . . . , Zw of the set of all
cells in the location area, C, that minimizesD or L must be a
non-increasingly ordered partition.

Proof. See theorem 1 in [28]. �

In the following discussions, we will restrict ourselves to
non-increasingly ordered partitions only.

As mentioned earlier, there is a tradeoff between the aver-
age paging cost and delay. We can reduce the average paging
cost if we are allowed to increase the worst case delay.

Theorem 2. Let L1, L2 be the minimum average paging cost
that can be achieved with w1, w2 paging zones, respectively.
If w1 < w2 then L2 � L1.

Proof. See appendix. �

Theorems 1 and 2 imply that if one wishes to minimize
the average paging cost without any constraints on delay, the
optimal sequential scheme is to page each cell one by one in
non-increasing order of user location probabilities. In other
words, the region is partitioned into n paging zones, each con-
sisting of exactly one cell.

3.1. Minimizing average paging cost under worst case delay
constraint

Problem A (Minimizing average cost of paging under worst
case delay constraint).

minL,

subject to:

w is a fixed natural number.

We first note that theorem 1 holds irrespective of whether the
delay w is constrained. An immediate consequence of this
for the problem of minimizing L under the worst case delay
constraint is that the total number of non-increasingly ordered
partitions is equal to

(
n−1
w−1

) = O(nw−1). We can, however,
do better in terms of running time. The following theorem
establishes the optimal substructure inherent in the problem.

Theorem 3 (Optimal substructure for problem A). If Z1, Z2,

. . . , Zw is the partition of cells in the location area that min-
imizes average cost of paging under a worst case delay con-
straint of w, then Z1, Z2, . . . , Zk is a partition of

⋃k
i=1 Zi

(the set of all the cells in the first k paging zones, 1 � k � w)
that minimizes the average cost of paging under a worst case
delay constraint of k.

Proof. See appendix. �

Definition. h[k, e] is the minimum average paging cost that
can be achieved in paging the first e cells using k � 2 paging
zones. We seek h[w, n].

It can be seen that

h[2, n] = n

min
n1=1

(n1p1 + np2). (4)

Thus, when only two paging zones are used, to calculate
h[2, n] we need only vary the number of cells that should be
paged in the first round (n1). In this case, the average paging
cost can therefore be minimized in linear time with respect to
the number of cells in the location area, i.e. in O(n).
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A quadratic-time algorithm
Now let us consider the general case, for arbitrary w and n.
The following recursive relation holds ∀k � 2:

h[k + 1, e] = e

min
j=k

(
h[k, j ] + epk+1

)
, (5)

where pk+1 = ∑e
i=j+1 πi .

We have the following initial conditions for h[·, ·]:

h[1, j ] = j

j∑
i=1

πi. (6)

We can think of h[·, ·] as a two-dimensional table of size
w × n, and using the recursive equation (5) and the initial
conditions in (6), build its entry from the bottom up or top-
down using memoization [12]. It takes O(n) time to find the
minimum of h[k, j ], ∀j and hence to calculate each entry of
the two-dimensional table. Thus the solution to this optimiza-
tion problem, h[w, n] can be solved in O(wn2) time. As in
simple dynamic programming, the partition of cells into w
paging zones that corresponds to this minimum value of av-
erage paging cost can be found by tracing back through the
table or by keeping track of decisions at each step as the algo-
rithm proceeds. The memory requirement is constrained by
the size of the table and is hence O(wn).

3.2. Minimizing average paging cost under constraint on
average delay

Problem B (Minimizing the average cost of paging under av-
erage delay constraint).

minL

subject to:

D � D∗, given a positive real numberD∗.

We note that while problem B is the one discussed in [1], an
equivalent equality constraint is used in [28]. The inequality
constraint is more meaningful, since we would generally be
interested in keeping the average paging delay below some
threshold, rather than at some exact value.

In [28], the authors claim that this problem is not amenable
to solution via dynamic programming, because the constraint
renders the cost function non-additive. They provide an ap-
proximate solution using a continuous formulation and La-
grange multipliers to perform the optimization. The authors
in [28] then show that these approximate solutions are very
close to optimal. We note that this in itself suggests that the
discrete problem is not computationally hard, and that it prob-
ably has an exact solution that can be determined in polyno-
mial time. In [1], however, there is a proof that the problem
is NP-complete. Unless P = NP, this would seem to indi-
cate that the problem does not have a polynomial time so-
lution. Indeed, the authors in [1] indicate the only way to
solve it exactly would take O(2n) time. What is the right
answer? It turns out that the proof in [1] showing the simi-
larity of this problem to the Knapsack problem does not take

into account bounds on the average paging delay constraint.
It is well known that while the general Knapsack problem is
NP complete, there exists a polynomial solution that uses dy-
namic programming for the special case of the problem when
the constraint is a polynomially bounded function of the in-
stance size [14]. For our problem, since the average paging
delay can never exceed the number of paging zones, we need
only concern ourselves with values of D∗ that are less than
or equal to n. This considerably simplifies the problem and
makes it tractable. We present below a dynamic programming
approach that solves this minimization problem in polynomial
time.

The first assumption we have to make regarding the prob-
lem is that D∗ is a positive number that can be represented
discretely as one of A discrete values. This is an entirely
reasonable assumption for our purposes, since any practical
system cannot estimate, calculate or store probabilities or de-
lays with infinite precision. Also, as we mentioned above, it
is assumed without loss of generality that D∗ � n.

Definition. h†[k, e, α] is the minimum average paging cost
that can be achieved when paging the first e cells using
k � 2 paging zones, with a maximum average paging delay
of α � n. We seek h†[w, n,D∗].

The result from theorem 1 still holds here, so that we only
concern ourselves with non-increasingly ordered partitions of
the setQ.

Theorem 4 (Optimal substructure for problem B). For the
problem of minimizing the average cost of paging under av-
erage delay constraint, the following recursive relation holds:

h†[k + 1, e, α] =
(e)

min
j=k h

†

[
k, j, α − (k + 1)

e∑
i=j+1

πi

]

+ e
e∑

i=j+1

πi. (7)

Proof. See appendix. �

The corresponding initial condition here is that

h†[1, j, α] =



j

j∑
i=1

πi, if
j∑
i=1

πi � α,

∞, otherwise.

(8)

Equation (7) tells us that the optimal solution for the problem
that involves (k + 1) paging zones and an average delay of α
can be written as the sum of the optimal solution for k paging
zones with a smaller delay and the average paging cost due
to the (k + 1)th zone. Specifically the delay for the optimal
sub-problem is reduced by an amount that depends upon the
“excess” probabilities due to the cells in the (k + 1)th paging
zone.

This recursive relation results in a dynamic programming
solution. We can think of h†[·, ·, ·] as a 3 dimensional table
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of size (w× n×A), where A is the number of discrete levels
used to represent α. The recursive relation (7), together with
the initial conditions (8) suffice to fill in all the elements of
this table. The element corresponding to h[w, n,D∗] gives
us the optimal solution. To determine which cells are placed
in which paging zone, one can trace back through the table,
keeping track of the decisions made at each step. A value
of ∞ (which can be replaced by some arbitrarily large num-
ber (any number greater than n will suffice) indicates that
there is no solution that satisfies the given average delay con-
straint. The space-complexity of this dynamic programming
algorithm is the size of the tableO(wnA). It takesO(n) time
to fill each element of the table, giving the algorithm a time-
complexity of O(wn2A). Thus we have a polynomial time
algorithm for this problem formulation.

4. Performance of sequential paging

This section presents results on the performance of sequential
paging under assumptions regarding the user location proba-
bilities. The first case we consider is the uniform distribution,
where the cell location probabilities are πj = 1/n for all n
cells. In the second case we consider, the zone location proba-
bilities are distributed geometrically, i.e. pi = ri/(∑w

i=1 r
i).

4.1. Uniformly distributed user location probabilities

It is shown in [28] that sequential paging schemes have the
worst case average paging cost and paging delay when the
mobile users are equally likely to be in any cell.

Let �n be any arbitrary distribution of the cell-wise user
location probabilities, for which the minimum possible aver-

age paging cost is L
�n
w and the minimum possible average de-

lay isD
�n
w when w paging zones are used. Let Un be the uni-

form distribution of probabilities = { 1
n
, 1
n
, 1
n
, . . .}, for which

the the minimum average paging cost is L
Un
w and the mini-

mum average delay is D
Un
w when w paging zones are used.

Then, we have the following:

Theorem 5. The uniform distribution case corresponds to the
upper bounds on the minimum average paging cost and min-
imum average paging delay when n cells are partitioned into

w paging zones: L
�n
w � L

Un
w and D

�n
w � DUnw .

Proof. See corollary 2 of theorem 2 in [28]. �

The first result we have for the uniformly distributed loca-
tion probabilities is that if we wish to minimize the average
cost of paging, we do not need to run the dynamic program-
ming algorithm described in section 3.3. This is because the
optimal solution has a specific structure, described in the fol-
lowing theorem.

Theorem 6. If each cell has equal probability of user location
then thew-partition of C which minimizes the average cost of

paging is balanced such that the difference in the number of
cells between any two paging zones is no more than one.

Proof. See appendix. �

Corollary 6.1. For the balanced partition in theorem 6 that
minimizes the average cost of paging,

∀i ∈ {1, 2, . . . w},
⌊
n

w

⌋
� ni �

⌈
n

w

⌉
.

We can normalize the average paging cost with respect to the
average paging cost when using only one partition. Let the
normalized reduction in average paging cost be defined as
follows:

��n(w) = L
�n
1 − L�nw
L
�n
1

. (9)

We would like ��n(w), which represents the reduction in
paging cost that is gained by using multiple paging zones,
to be as close to 1 as possible. If ��n(w) is 0.5, for exam-
ple, then we can get a reduction of 50% in the paging cost by
using w paging zones instead of 1.

Because of the known structure of the paging zone par-
titions under the uniform distribution, analytical expressions
can be derived for the performance of paging under a worst
case delay constraint.

Theorem 7. The following is true:

(i) lim
n→∞D

Un
w = w + 1

2
,

(ii) lim
n→∞�Un(w)=

1

2

(
1 − 1

w

)
.

Proof. See appendix. �

Theorem 7 and 9 together imply that for any arbitrary dis-
tribution of user locations�n:

lim
n→∞D

�n
w � w + 1

2
, (10)

lim
n→∞��n(w)�

1

2

(
1 − 1

w

)
. (11)

Equation (11) is a particularly appealing result. It tells us, for
example, that when there are a large number of cells in the
region, we can obtain asymptotically at least a 25% reduction
in paging costs by using 2 paging zones, and at least a 40% re-
duction in paging costs by using up to 5 paging zones. At least
for the uniformly distributed user location distribution, there
are diminishing returns after this point, with no more than a
further 10% gain possible if we increase the number of pag-
ing zones any further. Note that although we have presented
asymptotic results in theorem 7, we can actually calculate the
exact results for the uniform distribution easily as shown in
the appendix.
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Figure 2. An example of cluster paging for hexagonal cells, w = 3 paging
zones.

4.2. Cluster paging with geometric distribution

A cluster paging scheme was introduced in [26]. In this spe-
cial case of sequential paging, successively concentric rings
are paged from the last known location outwards. An example
with a maximum of 3 rounds of paging can be seen in figure 2.
Paging zone 1 consists of the center cell, paging zone 2 con-
sists of the 6 cells in the ring surrounding it, and paging zone
3 is the ring of 12 cells on the outside. Cluster paging finds
applications particularly in the context of dynamic location
update schemes such as distance, movement and timer-based
techniques.

Under what conditions is cluster paging optimal? The fol-
lowing theorem suggests the answer.

Theorem 8. Assume we have a location area consisting of
w groups of cells, such that in the ith group, each cell has
equal user location probability λi . Let ki the number of cells
in the ith group, and pi = ki · λi be the probability of user
location in the whole group. Further, let the following con-
ditions hold: If i < j , then ki < kj and pi > pj . Under
these conditions, the w-partition of the n = ∑w

i=1 ki cells in
this location area that minimizes the average paging cost is
the w-partition in which the cells of the ith group form the
ith paging zone.

Proof. See appendix. �

The key assumption in this theorem, which makes it non-
trivial, is the requirement that if i < j , then ki < kj
and pi > pj . This need not be true simply because the
cells have monotonically decreasing user location probabil-
ities. As a counter-example, consider a scenario with four
cells and two cell groups, with location probabilities as fol-
lows: { 1

3 ,
2
9 ,

2
9 ,

2
9 }. In this case, p2 = 2

3 > p1 = 1
3 , and the

partition which minimizes the average paging cost consists of
Z1 = {1, 2} and Z2 = {3, 4}. Note that in this optimal par-
tition the cells of the second group are not all paged at the
second paging round.

Therefore cluster paging is an optimal sequential paging
scheme when the following conditions hold:

Figure 3. The average paging delay for geometric distribution of zone loca-
tion probabilities in cluster paging.

• There are w− 1 distinct rings outside the center cell in the
location area, where w is the number of paging rounds.

• Each cell in the ith ring has equal probability of user loca-
tion, for i = 1, 2, . . . , w − 1.

• As we move outwards from the center cell, each consecu-
tive ring has a lower probability of user location.

• The number of cells in each successively outward ring is
increasing.

It is argued in [26] based on empirical studies that the prob-
ability of user location decreases geometrically with distance
from the center cell in a location area. Thus for some 0 < r �
1, we have for cluster paging that

pi =
1+k2+···+ki∑

j=1+k2+···+ki−1

πj = ri∑w
i=1 r

i
. (12)

The number of cells in each ring/paging zone can be charac-
terized as follows: say the the ith paging zone consists of ki
cells. We let k1 = 1 and ki = M · (i − 1) for i � 2, where
M is a positive integer constant that depends on the cell shape
(for example,M = 6 for hexagonal cells, and 8 for rectangu-
lar cells). Thus the number of cells in each successive paging
zone increases linearly.

Under these assumption on the geometric distribution of
zone location probabilities and the cellular topology, it is pos-
sible to evaluate the average delay and paging costs for the
optimal sequential paging scheme:

Dw =
∑w
i=1 ir

i∑w
i=1 r

i
= 1 − r
r − rw+1

w∑
i=1

iri

= −wrw+2 + (2w + 1)rw+1 − (w + 1)rw + r + 1

1 − r − rw−1 + rw ,

(13)
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Figure 4. The normalized reduction in average paging cost for geometric
distribution of zone location probabilities in cluster paging.

Lw =
∑w
i=1(r

i
∑i
j=1 kj )∑w

i=1 r
i

= 1 − r
r − rw+1

·
w∑
i=1

(
1 +

i−1∑
j=1

jM

)
ri . (14)

Figures 3 and 4 plot the average delay Dw and the normal-

ized reduction in average paging cost �
�n
w with respect to w

for cluster paging when the zone location probabilities de-
crease geometrically, along with the worst case bounds that
arise when r = 1 (uniform distribution). Note that in these
figures the total number of cells n in the location area is also
increasing with w, since n = 1 + 0.5Mw(w − 1). These re-
sults indicate that the best performance, both in terms of low
average paging delay as well as high normalized reduction in
average paging cost, is obtained when the parameter r of the
geometric distribution is small. This corresponds to a situa-
tion where the user location probabilities are “concentrated”
in a relatively small number of cells. The results are intuitive
as we should expect to make significant savings on the aver-
age paging cost as well as on paging delay when the user’s
movements are restricted to a few cells in a large location
area.

5. Conclusion

In high-capacity cellular networks with limited radio re-
sources, it is desirable to minimize the radio costs when lo-
cating mobile users during call arrival. Sequential paging
schemes permit a reduction in paging costs at the expense of
potentially greater delay.

We presented a polynomial-time algorithm to solve the
problem of minimizing the average paging cost under the con-
straint on average delay. This problem had previously been
considered computationally intractable. Thus in conjunction
with [28], our results show that the task of determining the
optimal sequential paging scheme is, in general, feasible.

We also presented some analytical results on the perfor-
mance of sequential paging schemes under assumptions on
the distribution of user location probabilities. The first case
we discussed is that of the uniform user location probabil-
ities which provides tight bonds on the performance of se-
quential paging for any arbitrary distribution. We showed that
the normalized reduction in average paging costs increases as
1
2 (1− 1

w
) with respect to w, the total number of paging zones.

This implies, for example, that using as few as 2 paging zones
we are guaranteed to obtain at least a 25% reduction in pag-
ing costs on average compared to the policy of paging all cells
in the location area. Similarly, the average paging delay was
shown to be upper bounded by (w + 1)/2.

The second case we considered was that of cluster pag-
ing with geometric zone location probabilities. Cluster pag-
ing is a special case of sequential paging that arises partic-
ularly in the context of dynamic location updating schemes.
We showed conditions under which cluster paging is an opti-
mal sequential paging scheme. Also, a common assumption
in cluster paging schemes, justified by empirical observations
in [26], is that user location probabilities decrease geometri-
cally with distance. Under this assumption, we derived results
for the performance of the optimal cluster paging scheme.
These results confirm the intuition that the more “concen-
trated” the user location probabilities are in a portion of the
location area, the better the performance of sequential paging.

It must be noted that sequential paging schemes may be
somewhat complicated to implement because they are devised
on a per-user basis and require the tracking of location statis-
tics for each user. One extension of this work would consider
simpler but sub-optimal aggregate paging schemes in which
multiple users may be paged jointly [15]. In any case, the use
of sequential paging schemes is predicated upon the ability to
obtain good estimates of the cell-wise user location probabili-
ties, which require the use of an appropriate location tracking
scheme. Another related issue that arises is the question of
the sensitivity of sequential paging to the estimates of user lo-
cation probabilities. We have addressed some of these issues
in [20], but these questions are still topics for future work.

Appendix. Proofs

Theorem 1. The partition Z1, Z2, . . . , Zw of the set of all
cells in the location area, C, that minimizesD or L must be a
non-increasingly ordered partition.

Proof. See theorem 1 in [28]. �

Theorem 2. Let L1, L2 be the minimum average paging cost
that can be achieved with w1, w2 paging zones respectively.
If w1 < w2 then L2 � L1.

Proof. Let w′ = w1 + 1, and let Lw′ be the minimum aver-
age paging cost that can be achieved using w′ paging zones.
It suffices to show that Lw′ � L1, since this would imply that
L2 � · · · � Lw′ � L1. This can be shown by constructing
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a w′-partition of C that has an average paging cost no greater
than L1.

Let Z1, Z2, . . . , Zw1 be the partition of C that yields the
minimum average paging cost L1. If w + 1 � n, we
can always choose a paging zone Zm such that it has more
than one cell: nm > 1. Now partition this paging zone in
any manner into two non-empty paging zones Zm1 and Zm2 .
Z1, Z2, . . . , Zm1 , Zm2, . . . , Zw1 is now a w′-partition of C.
Let L

∗
be the average paging cost for this partition. The fol-

lowing holds:

L1 − L∗ =
w1∑
i=1

pi

i∑
j=1

nj −
w′∑
i=1

pi

i∑
j=1

nj

= pm
m∑
j=1

nj −
(
pm1

m1∑
j=1

nj + pm2

m2∑
j=1

nj

)
(A.1)

= pm
m∑
j=1

nj − (pm1 + pm2)

m∑
j=1

nj + pm1nm2

= pm1nm2 � 0. (A.2)

We now have that L
∗ � L1. Since Lw′ is the optimal paging

cost with w′ paging zones, Lw′ � L
∗ � L1. �

Theorem 3 (Optimal substructure for problem A). If Z1, Z2,

. . . , Zw is the partition of cells in the location area that min-
imizes average cost of paging under a worst case delay con-
straint of w, then Z1, Z2, . . . , Zk is a partition of

⋃k
i=1 Zi

(the set of all the cells in the first k paging zones, 1 � k � w)
that minimizes the average cost of paging under a worst case
delay constraint of k.

Proof. For the optimal w-partition Z1, Z2, . . . , Zw, the av-
erage paging cost Lw can be expressed as:

Lw =
w∑
i=1

pi

i∑
j=1

nj =
w−1∑
i=1

pi

i∑
j=1

nj + pwn. (A.3)

From this it is obvious that Z1, Z2, . . . , Zw−1 is the optimal
partition of

⋃w−1
i=1 Zi . For if not, then there exists some other

partition of
⋃w−1
i=1 Zi with a lower average paging cost, and

using this other partition along with Zw as a w-partition of C
would result in an overall average paging cost lower than Lw ,
which contradicts our assumption that Z1, Z2, . . . , Zw is the
optimal w-partition.

Using the above argument inductively, it can be seen that
∀k ∈ {1, 2, . . . , w}, Z1, Z2, . . . , Zk is an optimal partition of⋃k
i=1 Zi . �

Theorem 4 (Optimal substructure for problem B). For the
problem of minimizing the average cost of paging under av-
erage delay constraint, the following recursive relation holds:

h†[k + 1, e, α]
= e

min
j=1

(
h†

[
k, j, α − (k + 1)

e∑
i=j+1

πi

]
+ e

e∑
i=j+1

πi

)
.

(A.4)

Proof. We can justify equation (A.4) using the definition of
h†[·, ·, ·] (see section 3.2).

Looking at the right-hand side of equation (A.4), we see
that we are separating the properties of the first k partitions
from those of the (k+1)st partition. For a fixed value of j , the
additive contribution of the (k + 1)st partition to the average
cost of paging is exactly the second term: e

∑e
i=j+1 πi =

epk+1.
Now, if Z1, Z2, . . . , Zk+1 is the (k + 1)-partition of the

set
⋃k+1
i=1 Zi that yields the minimum average cost of paging,

then the set
⋃k
i=1 Zi must be partitioned to yield the lowest

possible cost of paging (for the same reasons as in theorem 3
for problem A), subject to the constraint that the average de-
lay due to the first k paging zones be no more than α − (k +
1)pk+1. Note that this average delay constraint must be satis-
fied if the average delay for the (k + 1)-partition of

⋃k+1
i=1 Zi

is constrained to be less than α. The minimization of the
first term with respect to j , h†[k, j, α − (k + 1)

∑e
i=j+1 πi],

represents this lowest possible cost of paging under the aver-
age delay constraint of α − (k + 1)pk+1 for the first k pag-
ing zones. Adding these two terms on the right-hand side
of equation (A.4) yields the minimum average paging cost
for k + 1 paging zones under the constraint that the aver-
age paging delay may not exceed α, which is the left hand
side. �

Theorem 5. The uniform distribution case corresponds to the
upper bounds on the minimum average paging cost and min-
imum average paging delay when n cells are partitioned into

w paging zones: L
�n
w � L

Un
w and D

�n
w � DUnw .

Proof. See corollary 2 of theorem 2 in [28]. �

Theorem 6. If each cell has equal probability of user location
then thew-partition of C which minimizes the average cost of
paging is balanced such that the difference in the number of
cells between any two paging zones is no more than one.

Proof. This can be shown by the following argument. Con-
sider two w-partitions of C: partition Z′

1, Z
′
2, . . . , Z

′
w with

an average paging cost of L
′
, and partition Z′′

1 , Z
′′
2 , . . . , Z

′′
w

with an average paging cost of L
′′
. Let these two partitions

be identical in all but two paging zones l and m: Z′
l �= Z′′

l

and Z′
m �= Z′′

m. For the first w-partition, these two paging
zones are unbalanced, i.e. n′

l = n′
m + k, where k � 2. For the

second w-partition, they are balanced, i.e. n′′
l = nl − �k/2�,

n′′
m = nm + �k/2�. Note that we can generate the fully bal-

anced partition mentioned in the theorem by repeatedly ap-
plying these balancing steps two paging zones at a time, start-
ing from any arbitrary w-partition of C. Hence, if we can
show that L

′′
< L

′
, then it is true that the average paging

cost of the fully balanced partition is the minimum that can
be achieved. Since the two partitions only differ in paging
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zones l and m,

L
′ − L′′ =

w∑
i=1

n′
i

n

i∑
j=1

n′
j −

w∑
i=1

n′′
i

n

i∑
j=1

n′′
j (A.5)

= 1

n

[(
n′
l

w∑
i=1

n′
i + n′

m

w∑
i=1

n′
i − n′

ln
′
m

)

−
(
n′′
l

w∑
i=1

n′′
i + n′′

m

w∑
i=1

n′′
i − n′′

l n
′′
m

)]
(A.6)

= 1

n

[
n′′
l n

′′
m − n′

ln
′
m

]
= 1

n

[(
n′
m +

⌈
k

2

⌉)(
n′
m +

⌊
k

2

⌋)
− n′

m

(
n′
m + k)]

(A.7)

= 1

n

(⌈
k

2

⌉⌊
k

2

⌋)
> 0. (A.8)

�

Corollary 6.1. For the balanced partition in theorem 8 that
minimizes the average cost of paging,

∀i ∈ {1, 2, . . . w},
⌊
n

w

⌋
� ni �

⌈
n

w

⌉
.

Theorem 7. The following are true:

(i) lim
n→∞D

Un
w = w + 1

2
,

(ii) lim
n→∞�Un(w)=

1

2

(
1 − 1

w

)

Proof. Let us do these one by one.
(i) From corollary 8.1, it follows that

∀i ∈ {1, 2, . . . , n}, 1

n

⌊
n

w

⌋
� pi � 1

n

⌈
n

w

⌉
. (A.9)

Therefore, since D
Un
w = ∑w

i=1 ipi ,

w∑
i=1

i
1

n

⌊
n

w

⌋
� DUnw �

w∑
i=1

i
1

n

⌈
n

w

⌉
(A.10)

⇒ lim
n→∞D

Un
w = lim

n→∞
1

n
· n

2
· w(w + 1)

2
= w + 1

2
.

(A.11)

(ii) From corollary 6.1, it follows that

∀i ∈ {1, 2, . . . , n}, 1

n

⌊
n

w

⌋
� pi � 1

n

⌈
n

w

⌉
(A.12)

and

i

⌊
n

w

⌋
�

i∑
j=1

nj � i
⌈
n

w

⌉
. (A.13)

Therefore,

1

n

w∑
i=1

⌊
n

w

⌋(
i

⌊
n

w

⌋)
� LUnw � 1

n

w∑
i=1

⌈
n

w

⌉(
i

⌈
n

w

⌉)
(A.14)

⇒ 1

n

(⌊
n

w

⌋)2
w(w + 1)

2

� L
Un
w � 1

n

(⌈
n

w

⌉)2
w(w + 1)

2
. (A.15)

We also know that average cost of paging when only one pag-

ing zone is used is L
Un
1 = n. Therefore,

lim
n→∞�Un(w)= lim

n→∞
L
Un
1 − LUnw
L
Un
1

= lim
n→∞

n− LUnw
n

(A.16)

= 1 − lim
n→∞

(
1

n
· 1

n
· n

2

w2
· w(w + 1)

2

)

= 1

2

(
1 − 1

w

)
. (A.17)

�

Theorem 8. Assume we have a location area consisting of w
groups of cells, such that in the ith group, each cell has equal
user location probability λi . Let ki the number of cells in the
ith group, and pi = ki · λi be the probability of user location
in the whole group. Further, let the following conditions hold:
If i < j , then ki < kj and pi > pj . Under these conditions,
the w-partition of the n = ∑w

i=1 ki cells in this location area
that minimizes the average paging cost is the w-partition in
which the cells of the ith group form the ith paging zone.

Proof. For the purpose of this proof, it will be helpful to
think of the partition of cells into paging zones as being equiv-
alent to the non-increasingly ordered partitioning of the cor-
responding set of user location probabilities. Look at the fol-
lowing examples with w = 3 and n = 6 for an illustration:

P1 = {λ1|λ2λ2|λ3λ3λ3}, P2 = {λ1λ2|λ2λ3|λ3λ3}.
Here the pipes indicate the partition boundaries. Thus P1 rep-
resents the partition we have claimed to be optimal: ele-
ments of group i are placed in the ith bin. Let’s denote such
w-partitions as P∗

w. In partition P2, we have an element of
group 2 in the 1st bin, and an element of group 3 in the 2nd
bin.

Let Si = ∑i
j=1 kj be the cumulative sum of cells in the

first i groups. The average paging cost associated with the
partition P∗

w is

LP∗
w

=
w∑
i=1

pi · Si =
w∑
i=1

ki · λi · Si . (A.18)

Now consider each element e ∈ {1, 2, . . . , n} of an arbitrary
partition P; say the element e belongs to group i, and is in
bin j . We construct a credit/debit value for each such element
as follows:
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• If there are N elements in the same bin j belonging to
“future” groups l, l > i, then element e has a positive
credit Ce = +(N · λi). Otherwise Ce = 0.

• If there are M elements in “future” bins l, l > j , that are
from the same group i, then the element e has a negative
debit De = −(M · λi). Otherwise De = 0.

The following facts can be derived easily from the definition
of this accounting scheme: (a) each element either has a non-
zero credit or a non-zero debit value, but not both, and (b) the
sum of all credits and debits for all elements e of P is the
“excess” average paging cost resulting from this partition. In
other words:

LP − LP∗
w

=
n∑
e=1

(Ce +De). (A.19)

To prove that P∗
w minimizes the average paging cost, it there-

fore suffices to show that ∀P �= P∗
w,
∑n
e=1(Ce + De) > 0.

The partitions P∗
w and P differ from each other in that P has

some bins which contain elements belonging to higher group
number than that bin, and bins which contain elements be-
longing to a lower group number. One can imagine that this
took place by a sequence of steps during which the bound-
aries of the partitions were moved from their original position
in P∗

w to either their right or left by an arbitrary number of
places.

In particular, we can think of getting from the partition P∗
w

through a finite sequence of simple moves to P as follows:

1. First move the boundary of the bins in P∗
w (if any) that need

to be moved to the right by moving the right boundary of
the rightmost such bin first to its required position in P,
then the boundary of next such bin and so on.

2. Now move the boundary of the bins in P (if any) that need
to be moved to the left, by moving the boundary of the
leftmost such bin first to its required position in P, then
the boundary of the next such bin and so on.

At each step of a move of type 1, the elements of bins on
either side of boundary that is being moved to the right looks
as follows:

{. . . λi . . . λi . . . λj−1 . . . λj−1λj . . . λj |λj , λj . . .}. (A.20)

When the element with value λj is moved from the right bin
to the left bin (correspondingly, when the boundary is moved
one place to the right), the total debits of all elements in the
partition can increase by no more than −(λj · kj ). This is
because only the λj element being moved to the left will ex-
perience an increased debit after the move. And the total cred-
its increase by at least +(λj−1 · kj−1), since each element of
group (j − 1) will be present in the bin to the left and will
gain a credit when the “future” element λj is moved into the
same bin. Since we know that λj · kj < λj−1 · kj−1 from
the hypothesis of the theorem, the sum of credits and debits
actually increases at each such step.

Similarly we can show that the sum of credits and debits
also increases at each step of a move of type 2. Since the sum

of credits and debits is 0 for P∗
w, and keeps increasing at each

step as we construct the partition P �= P∗
w, the sum of credits

and debits is positive for P �= P∗
w. �
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