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Abstract. This paper presents a new distributed location management strategy for cellular mobile systems. Its salient features are fast
location update and query, load balancing among location servers, and scalability. The strategy employs dynamic hashing techniques and
quorums to manage location update and query operations. The proposed strategy does not require a home location register (HLR) to be
associated with each mobile node. Location updates and queries for a mobile node are multicast to subsets of location servers, which
change with time depending on the location of mobile node/querying node and load on the servers. Simulation experiments demonstrate
that such dynamism prevents situations of heavy load on some location servers when mobile nodes are not uniformly distributed in
space, or when some mobile nodes have their location updated or queried more often than others. Also, queries return the latest location
information of a mobile node with a very high probability. The proposed scheme requires at most one unicast and two rounds of
message multicasting for location update and query operations. All multicast messages have a small payload and are restricted to the high
bandwidth wired part of the mobile network resulting in low communication overhead. Moreover, if a quorum of location servers gets
overloaded, part of its load can be transferred to another lightly loaded quorum using dynamic hashing techniques.
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1. Introduction

In cellular mobile computing systems the service area is di-
vided into several registration areas (RAs), with each RA
composed of one or more neighboring cells. Location man-
agement pertains to operations for updating and retrieving
location information about mobile nodes at the granularity
of RA. The ability of mobile nodes (MNs) to autonomously
move from one part of the network to another raises inter-
esting issues in the management of location information of
these nodes.

1. Frequency of location updates. Location updates for an
MN should be performed when the MN moves out of one
RA into another. Three alternatives, namely time-based,
movement-based, and distance-based strategies to deter-
mine update intervals have been proposed in [6].

2. Information organization. As centralized location man-
agement strategies are neither robust, nor scalable, we
will concentrate on distributed solutions. Several strate-
gies for hierarchical organization of location information
have been proposed, for example, [4,28].
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3. Information placement. Should the set of location servers
associated with a mobile node be dependent solely on
the identity of the mobile node, or also on the location
of the mobile node whose information is being updated?
How many copies of location information for a mobile
node should be maintained in the system? Larger degrees
of replication may lead to quick retrieval of information
while incurring high storage and synchronization over-
heads.

4. Information retrieval. Who should be probed to obtain an
MN’s location information? Assuming there are multiple
location servers in the system, should the set of queried
servers depend on (i) the identity of the MN, (ii) location
of the node that is trying to locate the MN? The goal
should be to quickly retrieve location information and in-
cur low communication overheads.

5. Paging. Once location information has been retrieved at
RA granularity, how is the exact cell location of the MN
determined? Several paging schemes have been proposed
to determine the cell, within the RA, in which the MN is
present [3,26].

6. Adaptibility. The solution should be able to adapt to
the arrival (departure) of mobile nodes into (from) the
system, and significant changes in the update and query
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rates of mobile nodes. Also, while the system is ad-
justing to fluctuations in load offered by a group of mo-
bile nodes, location services (update and query) for other
nodes should not be suspended.

7. Local optimizations. Several optimizations like caching
location information [15], forwarding pointers [16] have
been proposed to reduce the number of location queries.

8. Suseptability to database failures. Failures of databases
that store location information may significantly affect
the performance of a location management system [13].
Replication of the information, such as in the quorum-
based scheme proposed here, reduces the effect of data-
base failures, as compared with the current centralized
schemes that do not employ replication.

It is extremely important that location management
schemes adequately address the issues mentioned above.
Otherwise, high communication overheads and/or delays
will be experienced. Also, it should be possible to combine
optimization schemes like caching and forwarding pointers
with the update and query strategies to further improve the
latter’s performance.

We expect two new issues to gain importance with the
increasing popularity of mobile systems:

1. Location independent numbering. Users would like to
have numbers assigned to them “for life” without having
to change them as they move from one place to another.
Location management schemes based on standards like
IS-41 [10] and GSM MAP [20] that rely on home loca-
tion register (HLR) and visitor location register (VLR)
based schemes may not be ideal in such a situation as the
home location of a mobile node may change with time.
Hence, new strategies need to be developed that discard
the notion of HLRs and VLRs.

1. Load balancing among location servers. Some loca-
tion servers may be overloaded with location update and
query requests while other servers are relatively idle.
Even though load balancing among servers has not been
addressed in existing literature, due to its potential im-
portance in future generations of mobile systems we feel
solutions should be designed a priori. Note that some-
times load balancing may succeed in reducing the maxi-
mum load among servers at the cost of increased average
load on all servers and/or increased communication over
the network. The solution described in this paper exhibits
such a behavior. Solutions that can minimize these over-
heads need further investigation.

In this paper we address the location information orga-
nization, placement, and retrieval issues described above.
Specifically, we present a distributed location management
scheme in which location information of mobile nodes (at
the granularity of RA) is replicated at O(

√
N ) location

servers, where N is the total number of location servers in
the system. A quorum based scheme [23] is employed to

determine the set of servers to be targeted for location up-
dates and queries. As a result, location updates and queries
can be performed in O(1) time, where the unit of time is the
round-trip message propagation delay. This is a significant
improvement over hierarchical tree-based schemes that incur
O(lgN) round-trip message delays for location query in the
worst case. In the best case scenario, when location informa-
tion of a queried mobile node is available at a local server,
both the proposed scheme and the hierarchical scheme have
comparable performance. Later, we also describe how to use
another replication strategy where location information of
most mobile nodes is replicated at O(lgN)1 location servers.
Hence, the storage overheads are comparable with those of
hierarchical schemes as described in [4,12]. Also, the notion
of HLRs and VLRs is discarded.

In fairness to hierarchical schemes, if location informa-
tion about a queried mobile node is not available at a lo-
cal server, location queries in the proposed quorum based
scheme require multicasting to a group of O(lgN) servers
over the fixed wireline network: a high communication over-
head. However, as these messages are identical, they can be
pushed as a single message towards a group of servers and
split into identical copies close to their destination, i.e., mul-
ticast can be employed.

The proposed solution satisfies the adaptibility require-
ment through load-balancing among location servers. Load-
balancing is achieved through dynamic hashing. Optimiza-
tion schemes like caching location information [15], main-
taining forwarding pointers [16], and search-updating [19]
can be easily combined with the proposed solution to further
improve its performance. Also, the proposed solution can
work with most strategies for paging and for determining
the frequency of location updates.

2. System model

We assume a wide area cellular system. Each cell has a
base station, henceforth referred to as the mobile service
station (MSS). A cell is uniquely identified by referring to
its MSS_id. The MSSs are connected to each other by a
fixed wireline network which also contains various location
servers. An MSS can be in wireless communication with the
mobile nodes (MNs) in its cell.

An MN communicates with other units, mobile or static,
only through the MSS of the cell in which it is present. If a
node (static or mobile) wishes to communicate with an MN,
first it has to determine the location of the MN: the cell in
which the MN is present.

The cellular coverage area is divided into several regis-
tration areas (RAs). Typically, a cluster of neighboring cells
constitute an RA. A mobile node’s location information is
updated when it moves from one RA to another. This loca-
tion information is stored at location server(s). A location
query operation returns the identity of the RA, henceforth
referred to as RA_id, in which the queried MN is present.

1 lgN denotes log2 N .
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Once the RA_id of the MN has been determined, paging is
performed within the RA to determine the cell in which the
MN is present.

We assume that one or more RAs constitute a zone. Each
zone has a location server associated with it. The location
server for a zone stores location information about every
MN currently present in the zone, and some MNs outside
the zone. The identity of MNs outside the zone whose loca-
tion information is stored at a location server is determined
by the proposed location update strategy. There are addi-
tional servers, also in the fixed wireline part of the network,
that can be used as location servers to share the burden un-
der high load situations. In low load situations, such servers
can be relieved of their location management responsibilities
and may perform other services.

3. Previous work

The IS-41 [10] and GSM MAP [20] standards for cellular
radio communication use centralized location management
schemes. Two kinds of servers, namely Home Location
Registers (HLRs) and Visitor Location Registers (VLRs) are
used. IS-41 associates an HLR with each MN. When an MN
moves from one RA to another the MN registers its location
with the VLR of the RA it enters. If the old and new RAs are
associated with the same VLR, no further action is required.
Otherwise, the new VLR informs the HLR that it will now
be serving the MN. The HLR deregisters the MN at the old
VLR and associates the MN with the new VLR. For location
query, the querying node can identify the HLR to be queried
based on the identity of the MN it is trying to locate. The
HLR forwards the query to the VLR where the queried MN
is known to be registered.

Various improvements have been suggested.2 To reduce
the signaling traffic due to location registration, forward-
ing [4,16] and local anchoring [14] have been proposed.
Both these schemes reduce the location update overheads,
but may incur extra delays during location queries. Depend-
ing on the call-to-mobility ratio, the two approaches lead to
varying degrees of performance improvement.

In [27], a user profile replication scheme is proposed.
A central processor collects information about the mobility
and calling patterns for all the MNs. Based on this data, de-
cisions are made about replicating location information (and
other user profile information) about a mobile node at mul-
tiple location servers. Such a centralized scheme is not scal-
able as the analysis of data about all the MNs is computation-
intensive and time-consuming [2]. Hence, distributed profile
replication schemes are needed.

Distributed location management schemes [4,25,28] em-
ploy hierarchical databases to store location information
about subsets of MNs. In [4], a hierarchy of distributed re-
gional directories is maintained. The ith level regional di-
rectory enables a node, static or mobile, to track any mobile

2 A thorough survey of recent work in location management can be found
in [2].

node within a distance of 2i from it. Corresponding to each
level i, query and update sets of directories are associated
with nodes u, v such that queryi (u)∩ updatei (v) �= ∅, ∀u, v
within 2i distance from each other. The update set for a node
is the set of directories where the location information of the
node is stored. The query set for a target node is the set of di-
rectories that will be probed to find the location of the target
node. If location information is not found at the ith level re-
gional directories, the region of search is expanded by prob-
ing higher level directories. So, in [4], multiple rounds of
probes may be required. If an MN is highly mobile, the time
to locate it will be greater.

The locality of reference patterns is exploited in [25].
Nodes in an MN’s working set communicate with the MN
more frequently than nodes that are not in the working set.
An MN can dynamically determine its working set depend-
ing on the call-to-mobility ratio between network node and
MN pairs. Nodes in the working set are informed about the
location update when an MN moves, while other nodes are
made to search for the MN when they wish to communicate
with the MN.

In [17], the issue of location independent numbering is
addressed. As a VLR cannot determine the HLR for an MN
solely from the MN’s number, a mapping from the number to
HLR needs to be stored. However, replicating such a map-
ping table at all the VLR is not practical. So, a new class
of translation servers (TS), mapping an MN’s number to its
HLR, is introduced. Let a VLR need to determine an MN’s
HLR. The VLR employs a hash function to determine the
TS that stores the appropriate mapping. The TS so identified
is queried to determine the HLR for the MN. Thus, an extra
step of table look-up and an extra set of translation servers
are introduced.

In this paper we assume that a policy to determine the size
and layout of registration areas (RAs) has already been de-
cided. We proceed from that point and address the informa-
tion organization, placement, and retrieval issues. We pro-
pose an algorithm for efficient location updates and queries.
Also, once the RA for the queried MN has been determined,
any paging strategy can be employed to pin-point the MN’s
cell. Location independent numbering is handled using quo-
rums in conjunction with dynamic hashing. However, un-
like [17], the proposed algorithm does not introduce an extra
step for number to TS translation, and it does not require an
extra set of translation servers. The hash function directly
maps the location update or query operation for an MN to a
small set of location servers.

4. Motivation and the basic idea

In several existing schemes, even though a mobile node is
free to roam throughout the coverage area and still be ac-
cessible, its location information is, in a sense, immobile as
all location registrations have to be conveyed to the HLR
whose location is fixed. The distributed schemes proposed
in the past suffer from high latency of location queries as
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they may have to perform multiple directory look-ups in a
sequential fashion, or follow a series of forwarding pointers.
We propose a novel approach which is motivated by the two
shortcomings mentioned above. Its salient features are:

1. The concept of HLRs is discarded. As an MN moves
from one RA to another, the set of location servers storing
its location information changes. Also, location queries
originating in different parts of the system, for the same
mobile node, are targeted towards different sets of loca-
tion servers. As a result, MNs that are generating a large
number of location updates, and/or are being queried very
frequently do not lead to some location servers being
overloaded.

2. In existing distributed schemes, like [4], concurrent
querying is performed at the query set for a given level.
However, the query rises through the levels sequentially.
In the proposed scheme, if location information about
the queried mobile node is not available at the location
server for the local zone, a small set of location servers
are queried concurrently. Similarly, location updates are
sent concurrently to a set of location servers. Updates
and queries can be accomplished in one or two round-
trip message propagation times. If one waits until all re-
sponses are received, the slowest location server domi-
nates the communication time. However, even then one
would expect this to result in smaller delays than that in-
curred in multiple round-trip propagation times: one per
level of the hierarchy until the information is retrieved.

4.1. Using quorums for fast update and query

We employ ideas discussed by Mullender and Vitányi for
distributed match-making [21]. The proposed approach has
the following characteristics: (i) multicast location updates
for a mobile node to a set of location servers (update set),
(ii) if location information of a mobile node is not avail-
able locally, multicast queries for the mobile node to a set of
servers (query set), (iii) update and query sets for a mobile
node must intersect. The update and query sets correspond
to quorums. In the past, quorums have been used in dis-
tributed computing for mutual exclusion: in order to acess
a shared resource in an exclusive mode the requesting node
needs to receive permission from a quorum of nodes, and
each node can grant only one request at a time. As two quo-
rums always intersect, for every pair of concurrent resource
requests there will be at least one node that will receive both
the requests. This node will act as a tie-breaker for the two
requests, sending a grant to only one of them. Thus, mutual
exclusion is guaranteed.

In this paper we use the same notion of quorums in a dif-
ferent context of location management.

Mobile nodes exhibit a spatial locality of reference: even
though all nodes in the system can potentially communi-
cate with a given node, bulk of the references for the given
node originate from only a subset of nodes (referred to as
the working set in [25]). The nodes in the working set may

be clustered in different parts of the network. So, to reduce
query costs, it is advisable to have location servers for the
MN in the vicinity of such clusters. Using only the MN’s
identity to determine its location servers fails to exploit the
locality of reference characteristics.

Determining the location servers of an MN based solely
on MN’s location will lead to uneven distribution of respon-
sibility. Often a significant fraction of MNs are concentrated
in a very small area, while there is a very low density of MNs
in the rest of the network. For example, most of the MNs
may be situated on the highways and other major streets
of a city during the morning and evening rush-hour traffic,
and most of the MNs may be concentrated in the business
districts of the city during rest of the day. In such situa-
tions, the directory servers [4] and reporting centers [5] in
the high density RAs will be overburdened, while the di-
rectory servers and reporting centers in other RAs will be
comparatively lightly loaded. Also, the area of MN concen-
tration changes with time of day. So, equipping each area
with enough servers to handle the peak load will mean that
for most of the day these servers will be underutilized.

Hence, it is desirable that the location servers storing
the location information of an MN be a function (h) of the
MN as well as the cell in which the MN is present, i.e.,
h : MSS ×MN → SLS. Here MSS denotes the mobile ser-
vice station of MN’s cell, and SLS denotes a set of location
servers. An MN’s location servers will change as it moves
from one registration area (RA) to another. Also, different
MNs in the same cell may have different sets of location
servers. This will result in better load distribution.

Nodes that wish to locate an MN should be able to access
at least some of the location servers of the MN quickly, and
in an inexpensive fashion. Function h(·), described above,
can be employed to determine the set of location servers that
should be queried to locate an MN if the information is not
available at the location server of the local zone. The set
h(MSS,MN) can represent the location servers that a node,
in the cell represented by MSS, should query when it wishes
to locate a mobile node MN. Thus, function h(·) determines
the update set when an MN moves, and the query set for the
location of the MN. The query and update sets (quorums)
for every (MSS,MN) pair intersect. So, the latest location
information of an MN can be accessed in a single round of
message exchange.

The current HLR-based location management scheme
can be interpreted as a special case of the proposed scheme
where the first parameter of h(·), namely MSS, is inconse-
quential. In such a situation, h(MSS,MN)→ HLR of MN.
So, it is possible to implement the proposed solution in ex-
isting systems.

In first and second generation cellular systems the sim-
plifying hypothesis of uniform user mobility was frequently
assumed, due to the fact that the user community mainly
consisted of business users with a very high mobility [12].
For systems such as Universal Mobile Telecommunication
System (UMTS) [7], this hypothesis can no longer be con-
sidered valid, due to the much greater user penetration, com-
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parable to that for fixed networks; in this case the presence
of high shares of users with limited mobility can be envis-
aged [12]. Studies carried out on current mobile systems
show that on average calling users do not address their calls
uniformly over the territory, but tend to call users registered
close to their own home node [8]. In future systems this
fact will be stressed even further due to user behavior which
will be more and more similar to that in current fixed net-
works [12].

So, it does not make sense to query the entire query set
to find the target MN each time a call is placed. The update
set for an MN consists of the location server for the MN’s
current zone and the set of servers returned by h(·). Dur-
ing location queries, first the querying node’s zonal location
server is probed. If the queried MN is in the same zone, lo-
cation information is returned by the zonal server. Due to the
locality of reference, a significant number of queries may be
satisfied by the zonal server. Otherwise, the set of servers
determined by function h(·) is queried.

4.2. Quorum selection

If each location server is contained in roughly the same num-
ber of quorums, then load balancing among location servers
can be achieved by ensuring that the function h(·) maps on to
each quorum with equal likelihood: a uniform hashing func-
tion. Here load reflects the number of updates and queries.

However, a uniform hashing function that ensures load
balancing at a particular time cannot guarantee load balanc-
ing among location servers at other times. A group of new
MNs may join the system. These new MNs and the nodes
querying their location may be such that the function h(·)
maps their location operations more frequently onto some
quorums than others. In such a situation some of the loca-
tion servers get overloaded while others are not so heavily
loaded.

4.3. Load balancing with dynamic hashing

A solution to the problem mentioned above is to employ a
family of universal hash functions [9]. Periodically, the sys-
tem can switch from one hash function in the family to the
other. This ensures that even if a particular hash function
does not provide good load balancing under certain circum-
stances, over the long run load balancing among location
servers is achieved. However, there are certain problems:

• Switching between hash functions may result in an
(MSS,MN) pair to be hashed to a quorum that is differ-
ent from the quorum selected by the previous hash func-
tion. This may require reorganizing information about all
the MNs at all the location servers: an expensive solution.

• Long term load balancing may be acceptable from the
point of view of the location servers. However, during
the switch, location updates and queries will have to be
suspended. From the user’s perspective, temporary out-
ages in location service may not be acceptable.

A better solution is to employ dynamic hashing. We de-
fine h(MSS,MN) to be a hash function whose range of val-
ues can expand or contract, depending on the load in the sys-
tem. Each value in the range of function h(·) corresponds
to a quorum. It is to be noted that in the proposed system
model, besides a location server for each zone, there are also
other general purpose servers. Under moderate to low load
situations quorums consisting of only the zonal servers are
in use. When overall load increases on the zonal location
servers, the general purpose servers are also deployed, cre-
ating new quorums. Hence, the load on individual location
servers declines. Conversely, when the frequency of location
updates and queries goes down the general purpose servers
involved in location management can be released leading to
fewer and/or smaller quorums. These released servers can
then be used for other services. The size and composition of
quorums will be described in section 7.

5. Location update and query

5.1. Determination of location servers

1. Given an MSS_id, denoting the cell in which the mobile
node is present, and an MN_id for that mobile node, we
employ double hashing [9], as follows:

h(MSS_id,MN_id)

= (
h′(MSS_id)+MN_id × h′′(MSS_id)

)
modm,

where [0,m−1] is the range of hash functions h(·), h′(·),
and h′′(·). Functions h′(·) and h′′(·) are uniformly distrib-
uted over the range [0,m − 1], and h′′(MSS_id) is rela-
tively prime to m. Therefore, h(MSS_id,MN_id) will be
uniformly distributed over the range [0,m− 1] [9].

2. Corresponding to each i = h(MSS_id,MN_id), there is
a set Si of location servers such that:

(a) Si �⊂ Sj , for 0 � i, j � m− 1, i �= j .

(b) Si ∩ Sj �= ∅, for 0 � i, j � m− 1.

(c) |S0| = · · · = |Sm−1| = K .

(d) Any location server is contained in K Si ’s, 0 � i �
m− 1.

Properties (c) and (d) represent the equal effort and equal
responsibility properties, respectively. Together they rep-
resent the symmetry property.3

So, if an MN with identity MN_id, in the cell corre-
sponding to MSS_id, updates its location information,
the update is done at the server for the local zone
and all location servers in the set Sj such that j =

3 Strictly enforcing the symmetry property reduces flexibility in constituting
quorums. Hence, we shall later relax the symmetry property, in section 7,
to construct quorums of different sizes, some of which have cardinality
O(lgN), where N is the total number of zonal and general purpose loca-
tion servers. Having such small quorums will lead to low overheads for
location update and query operations.
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h(MSS_id,MN_id). Sj is referred to as the update set.
As j is uniformly distributed over the range [0,m − 1],
if the quorums are symmetric, the responsibility for lo-
cation management is uniformly distributed among the
location servers.

To perform location updates and queries the following
types of messages are used: QUERY, RESPONSE, ADD,
DELETE, and REPLACE. Their meaning will be clear in
the following description.

5.2. Updating mobile node location

Let old_MSS be the MSS of the cell where the MN was lo-
cated when the MN initiated the previous location update.
Let new_MSS be the MSS of the cell in which the MN is
present when it is about to initiate the latest location update.
Before we describe the operations let us define some terms:

purge_set: Set of location servers containing outdated loca-
tion information of the MN. The outdated location infor-
mation needs to be deleted from this set of servers.

inform_set: Set of location servers that should store the new
location information for the MN.

The purge and inform sets correspond to the old and new
update sets of an MN, respectively. Note that if a location
server S belongs to both the purge and the inform sets of
an MN, then the outdated location information should be re-
placed with the new location information of the MN at S.

The following operations are performed to update the lo-
cation information of the MN when it moves from the previ-
ous registration area to the new registration area:

1. purge_set← zonal server for old location; inform_set←
zonal server for new location.

2. j ← h(old_MSS,MN_id); purge_set← purge_set∪Sj ;

3. j ← h(new_MSS,MN_id); inform_set ← inform_set ∪
Sj ;

4. new_MSS sends DELETE message, containing MN_id,
to all location servers belonging to the set difference rep-
resented by purge_set − inform_set.

5. new_MSS sends ADD message, timestamped with MN’s
local clock value and containing MN_id and new_MSS,
to all location servers in the set difference represented by
inform_set − purge_set.

6. new_MSS sends REPLACE message, timestamped with
MN’s local clock value and containing MN_id and
new_MSS, to all location servers in inform_set ∩
purge_set.

When a location server receives a DELETE message it
deletes location information about the MN_id carried in the
message. On receiving an ADD message, a location server
adds an entry for MN_id indicating new_MSS as its location
at the time indicated by the timestamp. On receiving a RE-
PLACE message for an MN, the old_MSS and old timestamp

Figure 1. Location severs receiving ADD, DELETE and REPLACE mes-
sages.

value are replaced by the new_MSS and new timestamp
value in the MN’s location entry, as shown in figure 1.

5.3. Locating a mobile node

When a mobile service station with identity MSS_id, or a
node inside the cell corresponding to this MSS wishes to
locate an MN whose identity is MN_id, following actions
are taken by the MSS:

1. Probe own zonal location server for MN_id’s location.

2. Exit if location information returned by zonal server.
Otherwise, execute the following steps:

3. j ← h(MSS_id,MN_id); query_set← Sj .

4. Send QUERY to all location servers ∈ query_set to lo-
cate MN with identity MN_id.

5. If a queried server contains location information about
MN_id, it sends this information in its RESPONSE along
with the associated timestamp. Otherwise, the servers
sends a NULL response.

6. On receiving RESPONSE(s) containing location infor-
mation, select those with the latest timestamp and extract
the location information contained in them.4

As Si ∩ Sj �= ∅ for 0 � i, j � m − 1, the query and
the update sets for every pair of tuples (MSS1,MN_id) and
(MSS2,MN_id), respectively, are bound to intersect. There-
fore, every location query will return location information
about the queried MN’s RA.

5.4. Accuracy of location operations

Accuracy denotes the likelihood of a query for an MN re-
turning the latest location information about that MN, stored
anywhere in the system. Once location update operations
(ADD, DELETE, REPLACE) have been performed at all the
servers that belong to the inform_set and purge_set, only the
latest location information is available at a subset of loca-

4 A conservative termination strategy would be to wait for all RESPONSEs
to arrive, whether NULL or non-NULL, and then determine the location.
However, a faster approach would be to extract the location information
from the first non-NULL RESPONSE. In section 5.4 we describe why this
approach returns accurate information with very high probability.
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Figure 2. Impact of temporally overlapping location updates and queries.

tion servers (inform_set of latest update). Hence, all RE-
SPONSEs to queries will either be NULL or return the lat-
est location information, with at least one RESPONSE be-
ing non-NULL. So, queries return accurate location infor-
mation.

However, let us consider the situation where a query for
an MN’s location is multicast to a quorum of servers, and
that MN’s location is being updated at the same time. Refer
to figure 2. With regard to the location servers that belong
to the inform_set and purge_set, there are six possible situa-
tions for the arrival of a location query message:

1. Location query reaches a location server belonging to
(purge_set− inform_set)∩ query_set before information
is DELETED during location update: the location server
sends outdated location information.

2. Query reaches location server belonging to (purge_set −
inform_set) ∩ query_set after old location information is
DELETED: location server sends a NULL reply.

3. Query reaches location server belonging to (inform_set−
purge_set) ∩ query_set before location information is
ADDED there: location server sends a NULL reply.

4. Query reaches location server belonging to (inform_set−
purge_set) ∩ query_set after location information is
ADDED there: location server sends latest location in-
formation in the reply.

5. Query reaches location server belonging to (inform_set∩
purge_set) ∩ query_set before location information is
REPLACED there: location server sends outdated loca-
tion information in the reply.

6. Query reaches location server belonging to (inform_set∩
purge_set) ∩ query_set after location information is RE-
PLACED there: location server sends latest location in-
formation in the reply.

All other queried location servers, i.e., those belonging to
query_set − (purge_set ∪ inform_set) return NULL replies.

Thus, for each of the three mutually disjoint sets:
(i) (purge_set − inform_set) ∩ query_set, (ii) (inform_set −
purge_set) ∩ query_set, and (iii) (purge_set ∩ inform_set ∩

query_set) there are two possibilities of the relative arrival
time of location update and location query messages, lead-
ing to eight different combinations. Moreover, the inter-
section of the three sets, namely purge_set, inform_set, and
query_set may be empty. After all, the quorum system does
not explicitly state anything about the intersection of three
quorums.

If the intersection of the three sets is empty situations 5
and 6 are not possible, leaving only four possible combi-
nations of situations. Then all non-NULL responses return
old location information when the following combination of
situations occur: (1, 3), and no information is returned if sit-
uations (2, 3) occur. For the other two combinations, namely
(1, 4) and (2, 4) new information is returned.

If the intersection of the three sets is non-empty, all
non-NULL responses contain old location information if
the following combination of situations occurs: (1, 3, 5) or
(2, 3, 5). Under all other combinations of situations at least
one RESPONSE contains the information stored by the lat-
est location update operation. Assuming that local clocks
of all nodes increase monotonically, outdated location infor-
mation will have an earlier timestamp, and the latest loca-
tion information will have a later timestamp. Therefore, the
location information with the latest timestamp, which also
happens to be the latest location information, is selected.

If old location information is retrieved by a query, the
situation can be handled by temporarily maintaining a for-
warding pointer at the old location while location informa-
tion is being updated and for a short duration after that. The
issue of when to purge stale forwarding pointers has been
discussed in [19]. If no information is retrieved by a query,
and no server has failed, it is a definite indication of the fact
that the query for an MN’s location was initiated while the
corresponding information was being updated. So, the query
is retransmitted. It is expected that within a small number of
retransmissions (usually no more than one), servers in the
inform_set will have acquired the new location information
which will be returned by the query.

In summary, a location query has a very small probabil-
ity of failing to return the latest location information: only
during the time interval that a location update message is
in transit from a cell to a location server in the inform_set.
These messages travel along the high bandwidth fixed wire-
line network, So, we can safely assume that: (i) message
propagation time is small, and (ii) the time between suc-
cessive location updates for a mobile node is much greater
than a message’s propagation time. Therefore, most of the
time location queries return the latest location information.5

Results of simulation experiments, presented later in sec-
tion 9.2, confirm that the error rate is extremely low for MNs
moving at pedestrian speed as well as for MNs moving at
highway speeds.

5 If location update conditions proposed in [6] were to be employed then
the interval between successive location updates for an MN would depend
on the triggering threshold set for the time-based, number of movements-
based, or distance-based policies (depending on which one is employed)
and the mobility pattern of the MN.
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6. Load balancing by dynamic hashing

Sometimes, even if the hash function is properly selected
and the quorums are carefully formed, there is a possibility
that some quorums may get more heavily loaded than other
quorums. This problem can be handled by adding new loca-
tion servers to the system when load increases. The new
location servers, drawn from the pool of general purpose
servers in the system, can be integrated with the existing lo-
cation servers using tries, a dynamic hashing technique, as
described in [11]. Basically, if a quorum of location servers
is heavily loaded, a new quorum is added to the system. Lo-
cation management responsibilities of the old quorum are
now shared between the old quorum and the newly added
quorum. Also, when load decreases, some of the location
servers can be released and location management responsi-
bilities of two lightly loaded quorums can be reassigned to
just one quorum. Quorum addition and deletion, and inte-
gration of new location servers into the system can be ac-
complished seamlessly. Also, location information of only a
small subset of mobile nodes has to be redistributed among
the location servers during this process.

6.1. Dynamic quorum system approach

We assume that there exists a means to determine which quo-
rums are heavily loaded (please refer to [24] for a discus-
sion). Dynamic hashing (as described in [11]) is employed to
relieve the load on heavily loaded quorums. The hash func-
tion h(·), stated in section 5.1, can be defined in a generic
form as

h(a, b) = (
h′(a)+ b × h′′(a)

)
modm.

Let m be a power of 2. Then we can define an entire series
of hash functions, H , of the form:

hi(a, b) =
(
h′(a)+ b × h′′(a)

)
mod 2i

for 0 � i � limit, for some sufficiently large constant limit.
Therefore,

hi(a, b) = hi−1(a, b)

or

hi(a, b) = hi−1(a, b)+ 2i−1.

So, given MSS_id and MN_id, the hash function hi can be
applied to map every (MSS_id,MN_id) pair to an integer in
the range 0 to 2i − 1. Each integer corresponds to a quo-
rum of location servers. Thus, each quorum in the location
management strategy is similar to a bucket for holding data
items that are hashed to the same value.

Each value returned by the hash function is also as-
sociated with a non-negative integer variable referred as
local_depth. When hash function hi is in use, the maximum
permissible value of local_depth is i. Consistent information
about local_depth is maintained at all the MSSs.

Initially, let hash function hi be employed to map
(MSS_id,MN_id) pairs to values in the range 0 to 2i − 1.

Each of these values, v, has its local_depth set to i, and there
is a one to one mapping between a value and a quorum. Let
us refer to the quorum of location servers corresponding to
the value v as Sv . Let us assume that up to 2limit distinct
quorums of location servers can be formed.

Let the cumulative update and query rates (load) corre-
sponding to Sv exceed a pre-specified upper threshold. This
is similar to a bucket overflow in the context of hash func-
tion. In such a situation, the action taken depends on the
local_depth of Sv . There are two distinct cases with respect
to local_depth:

6.1.1. Case 1: local_depth equals i
Let local_depth(v) = i at the time when Sv is over-
loaded. Then, the location management scheme switches
from hash function hi to the next higher hash function
hi+1. As a result of the switch to a higher hash function,
if hi(MSS_id,MN_id) = v, then:

hi+1(MSS_id,MN_id) = v,

or

hi+1(MSS_id,MN_id) = v + 2i .

Also, local_depth(v) and local_depth(v + 2i) are set to
i + 1. For all values 0 � w �= v < 2i the value of
local_depth(w) remains unchanged. For all newly created
values 2i � w �= v + 2i < 2i+1 in the range of function
hi+1, local_depth(w) = local_depth(w − 2i ).

Also, if value w was previously mapped to quorum
Sw , then as a result of the split, hash values w and
w + 2i are mapped to quorums Sw mod 2local_depth(w) and
S(w+2i )mod 2local_depth(w) , respectively.

Assertion 1. As a result of the hash function switch, the
(MSS_id,MN_id) pairs that were previously mapped to the
heavily loaded quorum Sv are now split between two distinct
quorums, namely, Sv and Sv+2i .

Assertion 2. After the hash function switch, all other
(MSS_id,MN_id) pairs, that were not mapped to the heavily
loaded quorum, are mapped to the same quorum as before.

Proofs of these assertions can be found in [24].

Inference. As a result of hash function switch from hi to
hi+1, a quorum of location servers that was heavily loaded
now has its load split between two quorums: the previous
heavily loaded quorum and a new quorum. Location in-
formation of only a fraction of mobile nodes will have to
be shifted: from the location servers belonging to a heavily
loaded quorum to location servers belonging to the new quo-
rum. Other mobile nodes and location servers are unaffected
by the split.

6.1.2. Case 2: local_depth less than i

Let the hash function in use be hi , quorum Sv be overloaded,
and local_depth(v) = k < i. By construction of the hashing
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scheme, this indicates that for all w: 0 � w < 2i ∧ w =
v + j × 2k, where j is an integer, local_depth(w) = k. This
indicates that all (MSS_id,VMN_id) pairs that are hashed
to values corresponding to w are mapped to the same quo-
rum Sv .

In such a situation, switching up from hash function hi
to hi+1 is not required. Instead, the following steps are exe-
cuted:

1. local_depth(w) = k + 1, ∀w: 0 � w < 2i ∧ w =
v + j × 2k, j ∈ I .

2. All (MSS_id,VMN_id) pairs such that hi(MSS_id,
VMN_id) = w, are now mapped to quorum Sw mod 2k+1 .

As a result, all (MSS_id,MN_id) pairs that were pre-
viously mapped to the heavily loaded quorum Sv are now
distributed between quorum Sv and Sv+2k . The mapping
from other (MSS_id,MN_id) pairs to quorums remains un-
changed.

6.2. Handling quorum switch

Let some (MSS_id,MN_id) pairs, previously mapped onto
quorum Sv , now be mapped onto a new quorumSv+2i , where
i � 0. Then location information has to be reconfigured for
the mobile node whose identity is MN_id, and whose lat-
est location update was made while it was present in the
cell represented by MSS_id. Reconfiguration of location
information is similar to location update described in sec-
tion 5.2, except for one difference: in location reconfigu-
ration, the location information of mobile node(s) does not
change, but the set of location servers storing this informa-
tion may change.

All location servers in the set Sv − Sv+2i are asked to
DELETE location information about the mobile node MN.
No action needs to be performed at location servers be-
longing to the set Sv ∩ Sv+2i . Location servers in the set
Sv+2i − Sv are asked to ADD location information about
MN. The timestamp associated with the MN’s location in-
formation being added is the same as the timestamp associ-
ated with MN’s location information in the location servers
belonging to the set Sv − Sv+2i .

6.2.1. Example
Let, initially, only four quorums be in use: S0−S3. Also, let
the local depth of each quorum as well as the global depth be
equal to 2. Quorum S2 gets heavily loaded. As local depth
of S2 is the same as the global depth, a switch is made from
hash function h2 to h3. Now, the queries/updates previously
meant for quorum S2 are split between quorums S2 and S6.
The location information of some MNs is reconfigured be-
tween S2 and S6 by sending appropriate ADD, DELETE,
and NO CHANGE messages to servers in S2 and S6. Other
MNs remain unaffected. The local depths of S2 and S6 are
increased from 2 to 3, while the local depths of other quo-
rums remain unchanged at 2.

Later, when quorum S1 becomes heavily loaded, there is
no need to switch from hash function h3 to h4. This is be-

cause the local depth of of S1, which is 2, is lower than the
global depth. A new quorum S5 is added, location informa-
tion of some MNs is reconfigured between S1 and S5, and
both these quorums have their local depths increased from 2
to 3.

6.2.2. Quorum addition and deletion
It is to be noted that each time the load of a heavily loaded
quorum is split between two quorums, we are in essence
adding one new quorum to the quorum system. The addi-
tion of quorums can be handled in the following manner:

1. Given a set of location servers, construct a quorum sys-
tem in advance consisting of 2limit distinct quorums.

2. Initially, use only a subset of quorums from the quorum
set for location management. Let us refer to the quorums
in use as active quorums and the remaining quorums as
reserve quorums.

3. As load increases, due to addition of new mobile nodes
and/or increase in location query and update activity of
existing mobile nodes, add quorums from the reserve
quorum set to the active quorum set.

Thus, initially all the location servers may not be in use
for location management. The set of active quorums may
not fully cover the set of location servers. In low to moder-
ate load situations, active quorums are composed of only the
dedicated zonal location servers. With increasing load, as
the number of required quorums increases, more and more
general purpose servers (usable for location management, as
described in section 2) are pressed into service. This seems
to be contrary to the desirable properties of equal responsi-
bility and equal effort on the part of all location servers. So,
we restate the properties as follows:

• All the location servers in use at any given point of time
share equal responsibility and expend equal effort in lo-
cation management.

• If the load (effort) of a non-empty subset of active loca-
tion servers exceeds a pre-specified threshold, additional
location servers are activated. The responsibility for lo-
cation management is now shared among a larger number
of location servers. As a result, the load on each server is
reduced.

Just as the set of active quorums expands with increasing
load, the set shrinks with decreasing load. When the rate
of location update and query operations declines, some quo-
rums can leave the active set and join the reserve set.

7. Quorum construction

The performance of the location management scheme de-
pends on the size of the query and update sets (quorums).
First, we will briefly describe three simple quorum construc-
tion strategies. Quorums so generated are symmetric. We
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will then describe yet another quorum system that compro-
mises symmetry for smaller quorums. The communication
and storage overheads for the smaller quorums are compa-
rable to those for hierarchical, tree-based, location manage-
ment schemes. Also, the upper bound on location query time
is reduced to O(1) round-trip message delays as compared to
O(lgN) for tree-based schemes, where the total number of
location servers in the network is N .

7.1. Grid-based scheme

Let N = l2 for an integer l. An l× l grid is constructed. The
grid points are numbered from 0 to N−1. A quorum consists
of all the grid points on a row, and one grid point on all the
other rows. Thus, the cardinality of each quorum Si is equal
to 2
√
N − 1. If N is not a square of an integer, a degenerate

grid can be constructed with the outermost row/column be-
ing reduced in size. In such a case, while constructing Si , the
partial row/column is complemented using grid points from
another row/column. Therefore, the size of each query and
update set is O(

√
N ).

7.2. Reduced overhead grid-based scheme

The degree of replication of location information for every
MN can be nearly halved by adopting the following strategy
described in [21]:

1. Once again all the location servers are arranged in a
square grid.

2. There are 2
√
N quorums in all. However, they are distin-

guished as
√
N update quorums and

√
N query quorums.

3. The range of the hash function h(·) is [0,
√
N − 1].

4. queryi is the ith query quorum, where 0 � i <
√
N , and

consists of all location servers in the ith row of the square
grid.

5. updatei is the ith update quorum, and consists of all lo-
cation servers in the ith column.

For all i, j , such that 0 � i, j <
√
N , queryi and updatej

always intersect in exactly one location server.
Thus, compared to the simple grid-based scheme, the

storage and communication overheads are reduced. How-
ever, in the simple grid-based scheme any two quorums have
at least two location servers in common. So, failure of one of
those common servers does not prevent location information
from being accessed. Such redundancy is not present in the
reduced overhead scheme.

As described in section 5.4, when the quorum systems
generated by the strategies mentioned above are employed
there is a very small possibility that a query may return a
NULL response. In order to preclude such a possibility, the
following simple extension to the grid based scheme can be
used:

Figure 3. A CWlog quorum system with N = 49.

7.2.1. Extended grid-based scheme
Let N = m3 for an integer m. An m × m × m grid is
constructed with the grid points corresponding to location
servers. A quorum can be formed by taking all the grid
points that belong to three mutually perpendicular planes in
the grid. So, the size of each quorum is O(N2/3), and any
three quorums will have at least one location server in com-
mon.

7.3. Crumbling walls: efficient quorum system

The grid based scheme and several other quorum systems
generate fairly large sized quorums. Moreover, as stated
in [23], they are asymptotic in nature, manifesting their op-
timality only when the value of N is very large. We propose
to use a particular type of crumbling walls quorum system,
called the CWlog quorum system described in [23]. Like
the grid based schemes, the location servers are logically
arranged in rows. However, row widths are not uniform.
The number of servers in the ith row is �lg 2i�.

A quorum is the union of all location servers in one full
row and a single representative from every row below the full
row. In the CWlog system several quorums of size as small
as lgN can be formed. This is a significant improvement
over the grid-based schemes where each quorum is of size
O(
√
N ). Let us consider a 49-server system as shown in

figure 3. The smallest quorum of size 4 consists of servers
46–49. Four quorums of five servers each, sixteen quorums
of six servers each, and sixty-four quorums of seven servers
each can be formed. In comparison to the grid-based scheme
described earlier, where all quorums will be of size 13, more
than 280,000 quorums of size 12 or smaller can be formed.
In the CWlog system with 49 servers, the largest quorum
size is 15.

8. Performance analysis

8.1. Time for location operations

A message round consists of multicasting a message and re-
ceiving a response. For a location update at most three mul-
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ticast messages (ADD, DELETE, and REPLACE) to three
disjoint sets of location servers are needed. As there are
no causal dependencies between these messages they can be
sent concurrently. Hence, updates take one round-trip mes-
sage time. This is comparable to the hierarchical tree-based
schemes where location of an MN is updated at all location
servers along the path from the MN (a leaf node) to the root
node.

If a node makes a location query for an MN in the same
zone as the node, or if the location server of the node’s zone
belongs to the update_set of the MN, a look-up at the loca-
tion server of the zone will provide the information. Oth-
erwise, location information about the MN can be obtained,
with a very high probability, in a single round of message
exchange with a quorum of location servers. If all RE-
SPONSEs are NULL another round of query will be made.
By the time this query reaches servers in the inform_set, lo-
cation information would have been ADDed there. So, the
time to locate a mobile node is bounded by two round-trip
message delays plus the time to perform a lookup at the
zonal location server of the local zone: a constant. This is
considerably lower than the hierarchical schemes where the
bound is equal to O(lgN) round-trip message delays, N be-
ing the number of location servers. The constant time bound
on location queries, in terms of network round-trip message
delay, regardless of the number of location servers, indicates
that the proposed scheme is scalable.

As the locality of queries increases, more queries can be
satisfied by performing a look-up at the local server, and ex-
pected time declines. Also, as the call to mobility ratio in-
creases, the probability that a query conincides with location
update for the queried MN decreases. This means there is a
lower probability of retries, resulting in reduced query time.

8.2. Communication overheads

The message complexity of each location operation is
O(
√
N ) if the grid-based scheme is used. If the CWlog

quorum system is used, the size of the multicast set (quo-
rum size) can vary between lgN − lg lgN (if the last row
is used as quorum) and N/ lgN . However, a large number
of quorums, and therefore multicast sets, of size O(lgN) are
available. So, most of the time communication overheads
are of the order O(lgN).

Each message has a small size, consisting of at most two
MSS identities, one MN identity, a quorum identity, and a
flag indicating the nature of the message (query, ADD, RE-
PLACE, etc.). Moreover, these messages are transmitted in
the fixed wire network, which has a much higher bandwidth
than the wireless MN–MSS links.

For the reduced overhead grid-based scheme, even
though the size of each quorum is

√
N , in several instances

the actual communication overhead is significantly less than√
N times the communication overhead of the HLR/VLR

based scheme. Let us illustrate the fact with the help of a
simple example. Under the proposed scheme, let the geo-
graphical position of location servers also be such as to form

a
√
N ×√N grid. Let the corresponding HLR/VLR system

consist of N independent networks integrated together such
that the N HLRs are also located in a similar grid pattern.
Let the communication overhead to traverse each link of the
grid be one unit.

In the HLR/VLR based scheme a query or an update mes-
sage may originate at any point of the grid and may be des-
tined for any arbitrary HLR. Therefore, the expected com-
munication overhead incurred by a message is proportional
to the average distance between two arbitrary grid points.
Also, in the proposed scheme using the reduced overhead
grid-based quorum system let an ADD message originate at
an arbitrary grid point and be sent to an arbitrary column of
location servers. Such a message can be propagated by first
routing the message to the nearest grid point for the desti-
nation column. In a

√
N ×√N grid, the expected commu-

nication overhead for such routing is (
√
N + 1)/3. Then,

the message travels along at most
√
N − 1 links to reach

all the location servers in that column. Therefore, the total
cost is equal to (4

√
N − 2)/3. Conceptually, this is akin to

a broadcast along a tree consisting of the node that is the ori-
gin of the message and a column/row of location servers. Ta-
ble 1 compares these costs for the HLR/VLR based scheme
and the proposed scheme for various values of N .

Indeed, the communication overhead of the proposed
scheme is less than twice, and not

√
N , times as high as the

HLR/VLR scheme. The extra communication overhead is
offset by the increased speed of location updates and queries,
load balancing, decentralization of control, and scalability
provided by the proposed scheme, as shown later in sec-
tion 9.

8.3. Storage overheads

Assuming that the number of mobile nodes in the network
is M , each of the N participating location servers has to
store location information for O(M/

√
N ) mobile nodes for

the simple grid-based approach. This is because the loca-
tion information of each of the M mobile nodes is repli-
cated O(

√
N ) times in the location directory, and the entire

directory is distributed uniformly over N location servers.
Each of these O(M/

√
N ) pieces of information contains the

MSS_id for the cell in which the mobile node is present. As-
suming there are m MSSs in the system, this piece of in-
formation requires lg(m) bits. Besides this location infor-
mation, each location server has to store an extra O(Q

√
N )

entries, each of size lg(m) bits, indicating memberships of

Table 1

N Overhead: HLR/VLR scheme Overhead: Proposed scheme Cp/Ch
(Ch) (Cp)

4 1 2 2.0
9 1.78 3.33 1.87

16 2.5 4.67 1.87
25 3.2 6.0 1.88
. . . . . . . . . . . .

144 7.94 15.33 1.93
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all the quorums. Q is the total number of quorums in the
quorum system (Q = 2limit), and as already mentioned

√
N

is the number of servers in each quorum.
If the CWlog quorum system is used, each location server

may not store the same amount of location information be-
cause the quorums are not symmetric. So, storage overheads
can be expressed in terms of the number of copies of loca-
tion information maintained for an MN. This number varies
between lgN − lg lgN and N/ lgN .

8.4. Fault-tolerance

All the quorum based protocols fall into the class of repli-
cated data management protocols. These protocols provide
limited fault-tolerance at low communication costs [1]. For
example, in the grid based scheme, two quorums intersect at
no fewer than two servers. The probability that a query suc-
ceeds equals the probability that at least one server common
to the update and query quorums is alive. If all servers have
failure probability of p, and server failures are independent,
the probability of success of a query is 1− p2.

In the HLR/VLR scheme we have to consider two possi-
bilities of query failure:

(1) the queried node is in its home RA and the HLR has
crashed,

(2) the node is in a foreign RA and either the HLR or the
foreign RA’s VLR or both have crashed.

Assuming that HLRs and VLRs have the same failure
probability as the servers in the proposed scheme, the prob-
ability of a query succeeding in the first situation is 1 − p.
The probability of success in the second situation is (1−p)2.
Thus, the quorum based scheme has a greater tolerance to
failures.

If server(s) crash, a high availability of update and query
operations can be maintained by employing the notion of
structured read and write quorums with respect to logical
structures, as proposed by Agrawal and El Abbadi [1]. A de-
tailed discussion is not within the scope of this paper.

9. Simulation experiments

9.1. Load balancing

Three experiments were performed to evaluate the load bal-
ancing capabilities of the proposed distributed location man-
agement scheme. Event-driven simulations were performed
where each MN’s call arrivals, call terminations, and loca-
tion updates were treated as individual events. The scheme
was also compared with the conventional location manage-
ment algorithm, which is based on the use of HLRs.

9.1.1. Experiment #1: Control case
The first simulation serves as a control case. A hexagonal
cellular system was simulated with 100 MNs traveling ran-

domly in a 100 km× 100 km closed rectangular grid.6 Each
cell was equipped with an MSS, for a total of 5000 MSSs
systemwide. The maximum velocity, Vmax, and the rate of
the maximum angular change,7 �max, for all MNs were as-
sumed to be 60 mph and 24 degrees, respectively. Velocity,
direction, and position updates were performed every two
seconds based on the following equations (for more details
about this model see [22]):

v(t +�t)=min
[
max

(
v(t) +�v, 0

)
, Vmax

]
, (1)

�(t +�t)=�(t)+��, (2)

x(t +�t)= x(t)+ v(t) · cos�(t), (3)

y(t +�t)= y(t)+ v(t) · sin�(t), (4)

where [x(t), y(t)] denotes the MN’s position at time t , and
v(t) and �(t) are the velocity and direction of the MN at
time t , respectively. �v, the velocity change, was uniformly
distributed in the interval (−Amax ·�t,Amax ·�t), Amax be-
ing the maximum acceleration/deceleration of the MN (as-
sumed to be 1.2 m/s2). ��, the change in MN’s direction,
was uniformly distributed in the interval (−�max,�max).

The on-call (call duration) and off-call (idle times) in-
tervals are assumed to be exponentially distributed with ex-
pected values of 3 minutes and 30 minutes, respectively.

Each mobile was assigned an identification number
MID = 0, 1, . . . , 99. Each base station at location (x, y)

was also assigned a unique number given by MSS_id =
50x + �(y + 1)/2�.

There were fifteen location servers (LS) in the system.
We employed a variation of the grid based scheme for quo-
rum construction due to its simplicity of implementation.
Even though the communication overheads of the grid based
scheme are greater than the communication overheads of
the crumbling walls scheme, the former is good enough to
demonstrate the load balancing features of the proposed lo-
cation management scheme.

The fifteen location servers were arranged as the follow-
ing six quorums of 5 servers each:8

S0 = {LS1,LS2,LS3,LS4,LS5},
S1 = {LS1,LS6,LS7,LS8,LS9},
S2 = {LS2,LS6,LS10,LS11,LS12},
S3 = {LS3,LS7,LS10,LS13,LS14},
S4 = {LS4,LS8,LS11,LS13,LS15},
S5 = {LS5,LS9,LS12,LS14,LS15}.

6 The meaning of a closed rectangular grid is that if a mobile exits from
one side of the rectangle, it emerges from the opposite side with the same
velocity and direction.

7 All angles are measured relative to the positive x-axis.
8 With the reduced overhead grid based scheme it is possible to arrange six-

teen location servers into four query quorums and four update quorums of
4 servers each resulting in an immediate reduction of about 20% in the
load on location servers, compared to the results presented in this sec-
tion. Thus, the efficiency of the proposed scheme can be easily extended
beyond the values presented in this section.



LOAD-BALANCED LOCATION MANAGEMENT 509

During position update, each MN was checked to see if
it had crossed the cell boundary. If so, we obtained two sets
of LSs, the quorums Si and Sj where i and j were related to
the mobile host identification number (MN_id), the previous
base station number (old_MSS), and the new base station
number (new_MSS) in the following manner:

i = (MN_id + old_MSS)mod 6,

j = (MN_id + new_MSS)mod 6.

Messages, consisting of DELETE, ADD, and UPDATE,
were sent to appropriate servers in the set Si ∪ Sj . The write
counter of each of these servers was increased by one.

When a call arrival event was served, the quorum Sk was
selected as follows:

k = (MN_id +MSS_id)mod 6,

where MSS_id was randomly generated (to mimic call orig-
inating from a random location in the network), and MN_id
was the mobile host being queried. The servers that be-
longed to Sk were then queried and the read counter of the
queried location servers was incremented by one.

Following a 90-minute transient period after the start of
the simulation run, data were collected for 300 hours of sys-
tem operation and the update and query loads on each lo-
cation server were computed. The results are shown in fig-
ure 4(a).

9.1.2. Experiment #2: Mixed call and mobility pattern
The second simulation was similar to the first, except that
some MNs were assigned different calling and mobility pat-
terns, as follows:

Vmax = 65 mph, φmax = 2 deg/s,

λ = 1

3
min−1, for 0 � MN_id � 5;

Vmax = 5 mph, φmax = 10 deg/s,

λ = 1

120
min−1, for 6 � MN_id � 99,

where λ is the average call arrival rate. The results of the
experiment are shown in figure 4(b).

9.1.3. Experiment #3: Comparison with HLR scheme
In the third experiment, the conventional HLRs were used
to track the location of MNs. There were 15 HLRs in the
system. The mobility and call-pattern parameters of MNs
were the same as in experiment #2. Each MN was assigned
a fixed HLR, i.e., MN_id is assigned to HLRi , where i =
�(MN_id + 1)/7�.

When an MN crossed the boundary between adjacent
cells, the corresponding HLR recorded the new location.
When an MN was paged, the system performed one read
operation at the corresponding HLR. At the end of the exper-
iment, the write and read loads on each HLR were recorded.
Figure 5 shows the results of the experiment.

9.1.4. Discussion
Both experiment #1 and experiment #2 have uniformly dis-
tributed write and read load on all location servers even
though the system in experiment #2 contains some MNs
with significantly different mobility and call-patterns. Under
the same conditions, on the other hand, in experiment #3,
HLR1 which was assigned the highly active mobiles, has
much higher load than the others. The conventional scheme
binds one HLR to a fixed set of MNs. Therefore the load on
the HLR depends entirely on the parameters of those MNs.
The proposed algorithm uniformly distributes the updates
and queries among all location servers, hence achieving load
balance.

Figure 4. Load across servers with the load-balancing scheme and mixed call and mobility patterns.
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Figure 5. The histogram of load across servers: the traditional HLR mobil-
ity management with mixed call and mobility patterns.

The penalty for the achieved load balancing is that the av-
erage load on the servers is higher (figure 5). This is caused
by the fact that, overall, there are more write and read oper-
ations, as each location update/search addresses a number of
servers. However, the improvement is in the scheme’s abil-
ity to eliminate overloading of some servers, while others
remain underutilized.

Note that in the first two experiments locality of queries is
not exploited as all queries are directly sent to the query_set
without first querying the local zonal server. If locality were
to be exploited, the read load on location servers would be
further reduced, as described in section 8. Moreover, un-
like the HLR/VLR scheme, the performance of the proposed
scheme will improve as the system grows and the number of
servers increases. This is because 2×√N as a fraction of N
diminishes with increasing N .

9.2. Accuracy of location operations

As described in section 5.4, some delay occurs between the
instant at which location update is initiated and the time the
servers are updated. So, it is possible that a query will fail
to produce any response or that the first response will point
to an out-of-date location. We refer to these two cases as a
read error, and investigated the relationship between the read
error rate (number of read errors divided by the number of
queries) and the time delay of the location server update.

We assumed the average time delay on all location servers
to be the same. The read error rate was measured for delay

Figure 6. The rate of read failures as a function of update delay.

intervals from 50 to 400 ms in steps of 50 ms. Three sim-
ulations were performed using the mixed mobility and call
patterns, as described earlier in section 9.1. To ensure good
statistical averaging, 300 errors were collected in each run.

Figure 6 shows that the read failure probability is quite
small for realistic values of parameters. The read error rate
is an almost linearly increasing function with respect to the
location server delay within 400 ms. Also, the error rate in-
creases with MN’s velocity, and the slope of the linear curve
is approximately proportional to MN velocity.

9.3. Query delay

When a call is made to an MN, the system queries the lo-
cation servers in a quorum. An alternative is to partition
servers in a quorum into groups of some size and sequen-
tially query the groups (by simultaneously querying all the
servers in a group). We investigated the impact of group size
on read delay (the number of group-read requests sent per
call) and the load per query (the number of servers queried
per call).

Quorums of size 12 were used, thus allowing group sizes
of 1, 2, 3, 4, 6, and 12. In each run of the simulation using
group size m, when a call arrived and a read quorum was
determined, m servers were randomly chosen from the quo-
rum. If an appropriate MSS_id was contained in one of these
servers, the call was made successfully, otherwise, another
group of m servers was randomly chosen from the remain-
ing servers in the quorum, until an MSS_id was obtained.
The total numbers of group-read and servers queried were
recorded and divided by the total number of calls to deter-
mine the read delay and load per query.

Figure 7 shows the read delay and the load per query with
a logarithmic x-axis and a linear y-axis. The load per query
is the average number of server reads per query, while the
read delay indicates the average number of groups polled
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Figure 7. The load per query of and the read delay as a function of read
group size.

per query.9 The read delay is a decreasing function of group
size, and that load per query is an increasing function of
group size. Thus varying the group size allows trading the
network bandwidth (load per query) with the speed of ob-
taining the search results (read delay).

10. Conclusion

We presented a distributed dynamic location management
scheme. Dynamic hashing is used in conjunction with quo-
rum systems to ensure fast update and retrieval of location
information. The responsibility for location management is
shared among all the servers in a fair manner. The proposed
scheme does not require a home location register (HLR) to
be associated with each mobile node. Location information
is also mobile as it moves with the mobile node. Hence, the
proposed scheme is especially suited for future systems em-
ploying location independent numbering schemes.

If a subset of location servers collectively gets overloaded
with location management operations, their tasks are distrib-
uted among a larger set of location servers (quorum split)
using dynamic hashing techniques. Also, if a set of location
servers are very lightly loaded, some of them are released
to perform other tasks and the remaining servers handle all
location operations (quorum join). Thus, resources for loca-
tion management, in the form of location servers, are dynam-
ically allocated based on the demand. Location information
of only a small subset of mobile nodes, affected by quorum
split/join, has to be moved from one set of servers to another.
All other mobile nodes remain unaffected. Thus, the system
can gracefully adapt to changes in load.

Simulation results demonstrate that even if location query
and updates are not uniformly distributed among all mobile

9 And is, thus, proportional to the time until the location information is
found.

nodes, each location server is equally loaded. This is in stark
contrast to the HLR-based schemes where query and update
loads are non-uniformly distributed among all the HLRs.
The percentage of location queries that are incorrectly an-
swered is negligibly small for the set of parameters studied.
Also, varying the query group size results in a trade-off be-
tween the delay in obtaining search results and the control
traffic in the network.

If the quorums are constructed so that servers in a quo-
rum are uniformly distributed in the geographical coverage
area then regardless of where the query originates, at least
one location server of the queried quorum is close to it. So,
there will be little variance in receiving a reply. On the other
hand, with the HLR/VLR scheme there will be a greater vari-
ance in response time depending on the distance between the
place where the query originates and the HLR.

A similar approach can also be used to solve the mobility
management problem in other networking environments like
mobile ad hoc networks. For example, a solution has been
presented in [13]. Also, [18] presents quorum-based heuris-
tics for information dissemination in a partitionable mobile
ad hoc network.
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