

· Multiple Access: EDMA	• Forward (
Dunlexing Scheme: EDD	• Forward C
· Channel Bandwidth: 30 [kHz]	paging and
 Forward Channel Spectrum: 869[Mhz] - 894[MHz] 	· Forward v
Reverse Channel Spectrum: 824[Mhz] - 849[MHz]	• Reverse C
 Transmit/Receive frequency spacing: 45[MHz] 	FCC
• Number of Channels: 666/832	Reverse V
Channel Reuse: 7	paired wit
 Base-station coverage radius: 2-25 [km] 	4
 Voice Modulation: FM 	991
 Peak Deviation for VC: +/- 12 [KHz] 	5
CC Date Rate: 10[Kbps]	
 Peak Deviation for CC +/- 8 [KHz] 	Reverse
 Spectral Efficiency: 0.33[bps/Hz] 	
 Data Coding: BCH (40,28) on FC and BCH (40,36) on RC 	Forward

A Morid of Street	MPS Ch	annel	ization	
 Forward (Downlink) Channel Forward Control Channel 	els from the	e Base-St dcast char	ation to the Mobile mel used for subscr	iber
paging and voice channel	assignment			
 Forward Voice Channel (F Devense (Uplink) Channel 	VC): Dedica	ted chann	el; used for a single	call
Reverse (Oplink) Channel Reverse Control Channel	(RCC): Rando	om Access	with "sensing" provi	ded by
FCC			5.	
Reverse Voice Channel (R	VC): Dedica	ted channe	el, used for a single	call and
paired with the FVC				
824-849[MHZ]		-	869-894[MHZ]	
991 1023 1 2 .	799	991	1023 1 2 799	
Reverse Channel	s	F	orward Channels	
Channel	Channel I	Number	Center Frequency [MH	lz]
Reverse Channels	$1 \le N \le$	799	$0.030 \cdot N + 825.0$	
Forward Chappels	$991 \le N$	≤1023 ≤ 700	$0.030 \cdot (N - 1023) + 825.0$	
Torward Channels	$1 \le N \le$ $991 \le N$	≤ 199 ≤ 1023	$0.030 \cdot (N + 870.0)$ $0.030 \cdot (N - 1023) + 870.0$)
©Wireless Networks Labo	ratory	Prof.	Zygmunt J. Haas	6

A did of Opportunity	Basic Call Set-up Procedure: Mobile Initiated Call			
1	<u>MSC</u>	BAS	<u>Mobile</u>	
		continuously transmits the setup		
			 scans and locks on FCC initializes call seizes RCC sends service request 	
		forwards service request		
 selects a \ sends cha BAS 	/C nnel assignment to			
		forwards channel assignment to the mobile (on FCC)		
			 tunes transmitter/receiver to the assigned VC transmits SAT on the RVC 	
		 detects SAT sends confirmation message to MSC 		
completes c	all through the PSTN			
©Wireles	Note: The example as Networks Labo	follows the (now obsolete) AMPS o pratory Prof. Zygr	air-interface. nunt J. Haas	

Basic C Net	Call Set-up Pr work Initiate	ocedure: d Call
MSC	BAS	Mobile
	continuously transmits setup data on FCC	
		scans and locks on the strongest FCC
 incoming call is received returns audible ring to the caller sends paging message to the cells 		
	 reformats the paging message sends the paging message on the FCC 	
		 detects the page seizes RCC sends service request
	forwards service request to MSC	
 selects VC sends channel assignment to the BAS 		
	forwards channel assignment to the mobile (on FCC)	
		 tunes transmitter/receiver to the assigned VC transmits SAT on the RVC
Note: The example fo	ollows the (now obsolete) AMPS a	ir-interface.
©Wireless Networks Labor	atory Prof. Zygm	unt J. Haas 10

A Horid of Street	Basic Ca Network	all Set-up Pro Initiated Ca	ocedure: II (con't)	_
	MSC	RAS	Mohile	
		detects SAT sends alert to mobile on FVC	alerts user	
			 sends ST on RVC 	
		detects ST	 user answers stops ST on RVC 	
		 detects absence of ST sends answer message to MSC 		
receives a stops aud completes PSTN	ible ring to the caller s connection through the			
	Note: The example follo	ows the (now obsolete) AMPS air-	interface.	
©Wireles	s Networks Laborat	ory Prof. Zygmu	nt J. Haas	1

Wireless Networks Spring 2	<u>013</u>
Part #2:	
Intro to Wireless Communication Systems	
<u>Goals:</u>	
 Introduce the fundamental concepts of a Wireless System 	
 Understand the basic operation of a cellular system 	
 Present the operation of a simple Wireless System (16 -) 	AMPS)
 Discuss the basic terms used in the field of Wireless Syst 	ems
 Introduce a number of Enabling Technologies 	
Disclaimer:	
 This material is copyrighted and is provided to you as part of 	
the ECE4960 (Wireless Networks) course. No further	
replication of this material is allowed for <u>any</u> purpose.	
• The material has not been verified for correctness and no	
representation is made with respect to correctness and/or completeness of this material.	
©Wireless Networks Laboratory Prof. Zygmunt J. Haas	12

A Street
 Are there any other consideration beyond bandwidth and QoS? of course!
 Many for example: cost, operational flexibility, design/operation complexity, advanced features, etc
 An additional consideration is the "type" of communication system
 Other limitations of Mobile System are: Energy/Power (limited by battery technology) Processing (limited by processing complexity) Size (limits certain physical processing; e.g., frequencies, MIMO, etc)
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 14

Elements of a Wireless Cellular System	Elements of a Wireless Cellular System
 Communication Type Simplex 	 The cellular infrastructure supports mobility management through the SS7 system.
 Half Duplex (Full) Duplex 	A mobile maintains air link with a BAse-Station (BAS) through a Common Air Interface (CAI).
 Channels: Type Control Channels 	Base-stations are connected to a Mobile Switching Center (MSC) through air or land lines. MSC was also referred to in the past as Mobile Telephone Switching Office (MTSO).
 Voice/Data/Traffic Channel Direction: 	 Mobility Management addresses two operations: handoff (also known as handover and ALT) and roaming.
 Forward (downlink) Reverse (uplink) Paging and Registration Operations 	2G and above systems use the MAHO (Mobile Assisted Handoff), in which the network makes the handoff decision based on the measurements of the signal strength of adjacent base stations.
	There are two protocols that support mobility management: EIA/TIA Interim Standard 41 (IS-41 or ANSI-41) and Global Systems for Mobile Communications (GSM) Mobile Application Part (MAP).
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 15	©Wireless Networks Laboratory Prof. Zygmunt J. Haas 16

Horld of Strend	Ca	all Se	t-up Ini	Proo tiate	cedu ed Ca	re: I all	Mobi	le
MSC		Base Stat	tion (BaS)	2	<u>Ma</u>	bile Stat	ion (Mos	<u>5)</u>
	FCC	RCC	FVC	RVC	FCC	RCC	FVC	RVC
		Receives call request, MIN, ESN, SCM. Forwards to MSC.	<			Transmits call request, MIN, ESN, SCM, called number		
Validates the MIN/ESN pair.	⇐━━							
Instructs BaS to assign a VC to MoS	J							
	Instructs MoS to tune to a specific VC			\implies	Tunes to the specified VC			
Bridges the MoS with the				- 11			- 1	
PSTN call.			Transmission of voice conversation	Reception of voice conversation			Reception of voice conversation	Transmission of voice conversation
SCN	\ = Station	n Class Mar	k					
©Wire	less Netu	orks Labo	oratory	P	rof. Zyg	munt J. I	laas	23

Frequency Division Multiplexing (con't) * The design of channelized access (such as FDMA) usually relies on the truncking efficiency, also called channel group efficiency. Due to the truncking efficiency, larger pool of available channels can serve larger user population with the same quality of service (and the channel utilization is higher). * For example, consider two cases: a pool of 15 channels and a pool of 45 channels. When designed for 1% blocking probability, the 15channel pool can support, on the average, 8 calls (at 53% occupancy), while the 45-channel pool can support, on the average, 33 calls (at 73% occupancy).

Prof. Zygmunt J. Haas

Time Division Multiplexing

- * Time Division Multiple Access allows multiple users to share the same frequency band by multiplexing their transmissions in time; i.e., time is divided into non-overlapping-in-time slots. These time slots are assigned to calls.
- * Note that the signaling rate is equal to the sum of all the data rates of all the multiplexed transmissions. Thus the bandwidth of the frequency band needs to be wide enough to accommodate this aggregated rate.
- * In practice, the total spectrum is divided into frequency channels (FDM) and each frequency channel is further divided in time by TDMA. Thus, the access scheme is often termed FDM/TDMA.
- * Practically, to avoid overlapping between transmissions in adjacent slots, some guard time is included in every slot. The overlap can be created by imperfect synchronization or uncompensated differences in delays between different mobiles and the base-station.

©Wireless Networks Laboratory

Prof. Zygmunt J. Haas

nd of Opport	6
A" MAL	Interes
	E.
orld of Stre	

Code Division Multiplexing

- * Code Division Multiple Access (CDMA) allows multiple users to share the same frequency band at the same time by multiplexing their transmissions in the code space. In other words, different transmissions are encoded with orthogonal codes and, thus, can coexist at the same time on the same frequency band.
- * As the cross-correlation between any two codes is very low (ideally zero), the destinations can retrieve the transmissions by correlating the received signal with the appropriate code.
- * CDMA is implemented through the use of Spread Spectrum techniques. Developed initially for military applications, Spread Spectrum spread the power of a signal over a bandwidth that is considerably larger than the signal's bandwidth. The spreading is done using one of the orthogonal codes.

©Wireless Networks Laboratory

Prof. Zygmunt J. Haas

Code Division Multiplexing (con't)	
* The features of the CDMA technique, useful for military communications are:	
★ The resulting spectral density is considerably smaller than the original one ⇒ this can be used to hide the signal	
★ After decoding, the power density of a narrow-band interferer (intentional or not) is very small ⇒ this can be used for anti- jamming protection	
★ After decoding, because of small cross-correlation between different codes, transmission encoded with different code appears as noise ⇒this can be used to multiplex a number of transmissions on the same channel (i.e., multiple access scheme)	
* Spread Spectrum can be done using several schemes; e.g., <i>Direct Sequence (DS)</i> or <i>Frequency Hopping (FH).</i> We will concentrate here mainly on the DS technique.	
©Wireless Networks Laboratory Prof. Zygmunt J. Haas	32

And of Streets	Code Division Multiplexing (con't)	
* The transi the s numbe	noise-like interference among the different CDMA missions, limit the number of users that can concurrently use name CDMA "channel." The quality of service determine this er of users.	
* Note, is sho	in CDMA a "channel" is defined as a spectral bandwidth that red among many users.	
©Wireles	ss Networks Laboratory Prof. Zygmunt J. Haas	33

	Advantage
	Advantages
*	Flexible system design: can accommodate variable traffic load with temporal quality of service degradation
*	Statistical multiplexing: taking advantage of idle connections (such as speed activity factor)
*	Interference is based on the average, rather than peak, energy level
*	Provides good discrimination from interfering transmissions
*	Reuse of 1: no channel assignment (reassignment) required
*	Support for <i>Soft Handoffs</i>
*	Improved performance in a multipath environment (the capture effect and rake-type receivers)
*	Coexistance with other wireless technology (such as mocrowave – especially with $\mbox{B-CDMA})$
*	Some limited degree of security due to the Spread Spectrum technique

Advantages vs. Disadvantages of CDMA	Spread Spectrum Multiple Access
<u>Disadvantages</u> * Requires code (PN sequence) synchronization and tracking * Requires (adaptive) power control to eliminate the near-far problem * Potential interference problems (especially in N-CDMA) due to sharing the broad spectrum of CDMA	 * Transmissions from "other users" (with orthogonal codes) are seen as noise. * A receiver needs to know the code that a transmission was encoded with to be able to decode the message. (Some limited security is provided by the Spread Spectrum technique.) * To decode the signal, for example, the received signal is slid along a local replica of the PN code. * Thus, Spread Spectrum allows multiple users to share the same channel. * Processing Gain (PG) is defined as:
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 41	©Wireless Networks Laboratory Prof. Zygmunt J. Haas 42

Spread Spectrum Multiple Access	Wireless No
* The PG indicates the amount of improvement in the Signal-to- Interference Ratio (SIR) resulting from spreading the signal bandwidth	Generation The
 Assume that the original pulse duration is n times the chip duration. Thus the PG equals n. 	<u>Goals:</u>
* For example, if the chip bit-rate is 1 Gbps and the signal is 10 Mbps, then the PG =100 or 20 dB.	 Introduce the Cellul Present the basics of
	<u>Disclaimer:</u> • This material is copyri the ECE4960 (Wire replication of this mat • The material has not representation is mad completeness of this n
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 43	©Wireless Networks Labor

A darled of Streets	Intro to the Cellular Principle					
* Advo	antages of Cellular Systems					
*]	Increased capacity					
* l	Lower transmission power					
* [Better coverage (more "predictable" propagation environment)					
* l	arger reliability (more robust system)					
* Disa	dvantages of Cellular Systems					
*	Interference from "co-channel" cells					
*	Handoffs/Handovers					
*	Network of base-stations					
*	More "hardware" and larger right-of-way costs					
*	Congestion in "hot spots"					
* De:	sign Choices					
*	Cluster formation (reuse pattern, cell sizing, etc)					
*	* Channel reuse and allocation schemes					
*	Handoff schemes					
*	Power control schemes					
©Wirele	ss Networks Laboratory Prof. Zygmunt J. Haas 48					

A Horld of Strends	Cellular System Modeling
* The	actual coverage of the radiation pattern is highly irregular and
is in	fluenced by various effects, such as terrain topology, man-made
stru	cture, atmospheric conditions
★ Cells	are modeled as hexagons, to describe continuous coverage.
(The	cells shape should approximate the "radiation pattern" of an
omni	-directional antenna, which we assume to be a circle. We use
hexc	igons, as the largest polygon that still tessellate a plane.)
★ The metr	cell size (the so called, macro-cell) can vary from 0.5 mile in opolitan areas to 10 miles in rual areas.
* Note	e that the "hexagonal" pattern is created by the location of
base	-stations.
©Wirele	ss Networks Laboratory Prof. Zygmunt J. Haas 49

$N = i^{2} + ij + ij$	$\frac{j^2}{Q} \equiv \frac{D}{R}$	ciple – Clust = √3N	er Formati	on
i, j	Cluster Size (N)	Co-channel Reuse Ratio (Q)		
i = 1, j = 1	3	3		
i = 1, j = 2	7	4.58		
i = 2, j = 2	12	6		
i = 1, j = 3	13	6.24		
©Wireless Netwo	orks Laboratory	Prof. Zygmur	nt J. Haas	59

The Cellular Principle – Cluster Formation						
$N=i^2+i_j$	j + j ² Q =	$\equiv \frac{D}{R} = \sqrt{3N} \qquad ($	$(S_I)_{downlink} = \frac{1}{6}Q^{\gamma},$			
i, j	Cluster Size (N)	Co-channel Reuse Ratio (Q)	$SIR = \left(\frac{S}{I}\right)_{downlink}$ $(\gamma = 4)$			
i = 1, j = 1	3	3	$\frac{1}{6}3^4 = 13.5 = 11.3[dB]$			
i = 1, j = 2	7	4.58	$\frac{1}{6}4.58^4 = 73.3 = 18.7[dB]$			
i = 2, j = 2	12	6	$\frac{1}{6}6^4 = 216 = 23.3[dB]$			
i = 1, j = 3	13	6.24	$\frac{1}{6}6.24^4 = 252.7 = 24[dB]$			
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 65						

Wireless Networks	Spring 2013
Part #5: Capacity Improvement in Cel	lular Systems
<u>Goals:</u> • Present various schemes for capacity imp • Introduce the basic concepts of Traffic	provement Engineering
 <u>Disclaimer:</u> This material is copyrighted and is provided the ECE4960 (Wireless Networks) cours replication of this material is allowed for <u>any</u> The material has not been verified for conrepresentation is made with respect to concompleteness of this material. 	to you as part of se. No further purpose. rrectness and no rrectness and/or
©Wireless Networks Laboratory Prof. Zy	gmunt J. Haas 68

Improving Capacity and Reducing Interference
 Note that there is a close correspondence between the network capacity (expressed by N) and the interference conditions (expressed by S/I).
 Capacity can be increased and interference can be reduced by: Cell sectoring Cell splitting Cell sizing (micro-cellular networks, pico-cellular, nano-cellular)
 Cell sectoring reduces the interference by reducing the number of co- channel interferers that each cell is exposed to. For example, for 60 degrees sectorization, only one interferer is present, compared to 6 in omidirectional antennas.
 But, cell sectorization also splits the channel sets into smaller groups, reducing the trunking efficiency.
 Cell splitting allows to create more smaller cells. Thus, the same number of channels is used for smaller area. For the same prob. of blocking, more users could be allocated.
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 6

Sectoring – An example							
<u>N=3</u>	<u>N=3 γ=4</u>						
	<u>Case</u>	<u># Sectors per</u> <u>Cell</u>	<u># of</u> Interferers	<u>SIR</u>			
	No Sectoring	1	6	9.24 [dB]			
	120° Sectoring	3	2	20,1 [dB]			
	60° Sectoring	6	1	24.08 [dB]			
> But	> But what about capacity ?						
> As N remains the same, the number of channels <u>per cell</u> remains the							
 Sume. However, now these channels are partitioned into groups (equal to the number of sectors. How does this affect the capacity ? 							
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 7						74	

A Horld of Strenge	Aicrocellular/Picocellular/Nanocellular Systems - Cell Sizing
> To al	low more capacity, the size of the cells are scaled down.
 Since the period 	the quality of service (S/I) depends only on the ration (D/I), erformance (i.e., interference level) is uneffected by the scaling.
> Howey area concur factor	ver, the same number of channels can now be used in a smaller (i.e., larger user density), increasing the total number of grent users. The increase is as $1/_{\alpha^2}$, where α is the scaling γ .
> Smalle lighter	er cells also imply less transmitted power - thus smaller and r handsets are possible.
> Howe > >	ver, smaller cells also imply: more infrastructure larger handoff rate (8).
©Wireles	ss Networks Laboratory Prof. Zygmunt J. Haas 76

A orld of Strengt	Erlang-B Formula and Trunking Efficiency	
 For syste Phon syste 	example, the Public Switched Telephone Network (PST) em is designed for 1% blocked calls, while the Celluk e System is designed for 2% blocking probability. The PC ems typically provide 1% blocking.	N) ar 35
 The on <u>effic</u> avail same 	design of channelized access (such as FDMA) usually relia the <u>truncking efficiency</u> , also called <u>channel grou</u> <u>siency</u> . Due to the truncking efficiency, larger pool able channels can serve larger user population with the quality of service (i.e., the channel utilization is higher)	es up of he
 For pool prob 8 cc supp exan 	example, consider two cases: a pool of 15 channels and of 45 channels. When designed for 1% blockin ability, the 15-channel pool can support, on the averag alls (at 53% occupancy), while the 45-channel pool co ort, on the average, 33 calls (at 73% occupancy). (So apple that follows.)	a ng e, an ee
©Wirele	ss Networks Laboratory Prof. Zygmunt J. Haas	82

Erlang-B Traffic Tables Maximum Offered Load vs. N and P								d P _b
N/P _b	0.01%	0.1%	1%	2%	5%	10%	20%	40%
1	0.0001	0.0010	0.101	0.204	0.526	0.1111	0.2500	0.6667
2	0.0142	0.0458	0.1526	0.2235	0.3813	0.5954	1.000	2.000
5	0.4520	0.7621	1.361	1.657	2.219	2.881	4.010	6.596
8	1.422	2.051	3.128	3.627	4 543	5.597	7.369	11.42
10	2.260	3.092	4.461	5.084	6.216	7.511	9.685	14.68
20	7.701	9.412	12.03	13.18	15.25	17.61	21.64	31.15
30	14.25	16.68	20.34	21.93	24.80	28.11	33.84	47.74
40	21.37	24.44	29.01	31.00	34.60	38.79	46.15	64.35
50	28.87	32.51	37.90	40.26	44.53	49.56	58.51	80.99
100	69.27	75.24	84.06	87.97	95.24	104.1	120.6	164.3
			\cup					
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 8					83			

Tru	nking Efficiency – An example
In this problem, we	ill demonstrate the concept of trunking efficiency.
 What is the aver blocking probabil 	ige total <u>carried load</u> (in Erlangs) that 15 trunks can support with ty of 1% ?
b. What is the aver blocking probabil	uge total <u>carried load</u> (in Erlangs) that 45 trunks can support with ty of 1% ?
c. Using a. and b., e	plain the concept of trunking efficiency.
<u>Solution</u> a) 15 trunl F f	s, P _b = 1% from the Erlang-B Traffic Tables, we find that the <u>offered</u> load or the system is: $\Gamma_{offered} = 8.11$ [Erlangs] $\Gamma_{carried} = (1 - P_b) * \Gamma_{offered} = 0.99 * 8.11 = 8.03$ [Erlangs]
b) 45 trun F f	(s, $P_b = 1\%$ from the Erlang-B Traffic Tables, we find that the <u>offered</u> load or the system is: $\Gamma_{offered} = 33.44 [Erlangs]$ $\Gamma_{carried} = (1 - P_b) * \Gamma_{offered} = 0.99* 33.44 = 33.11 [Erlangs]$
©Wireless Netwo	ks Laboratory Prof. Zygmunt J. Haas 8

orld of Strends	Channel Allocation Strategies	
 Fixe freq loca (Tra freq traf 	<u>d Channel Allocation (FCA):</u> repetitious pattern allowing uency reuse based on the assumption that a mobile may be ted anywhere within a cell. <u>ffic Bounded) Dynamic Channel Allocation (DCA):</u> allows pool of uencies to be reused at every cell, based on time-varying fic conditions (once a channel is used, it can be reused based on "FCA" rule).	
♦ <u>(Internet</u> reus pack	erference Bounded) Dynamic Traffic Allocation: allows frequency e based on interference conditions (i.e., allows ma×imal ing); e.g., DECT.	
©Wirele	ss Networks Laboratory Prof. Zygmunt J. Haas	8

A orld of Streets	Channel Allocation Strategies – Dynamic Channel Allocation (DCA)	
•	 DCA has it problems: Due to random channel assignment, the channel reuse is not efficient; i.e., there is no maximal packing; i.e., the reuse distance is not minimal. Satisfying the reuse requirement introduces high overhead. 	
©Wirele	ess Networks Laboratory Prof. Zygmunt J. Haas 9	94

Chanel Borrowing – Borrowing with Channel Ordering	
 An improvement is introduced, where it is ensured that the channels are borrowed from the most available neighbor cell; i.e., a neighbor cell with the most unused channels. 	2
 Consider the following two extensions of the channel borrowing approach: <u>Borrowing with Channel Ordering</u> <u>Borrowing with Directional Channel Locking</u> 	
 Borrowing with Channel Ordering has the following distinctive features: The ratio of fixed channels to dynamic channels varies with traffic load The nominal channels are ordered. The lowest-numbered nominal channels of a cell have the highest priority of being used by a cal within the cell, while the highest-numbered nominal channels are most likely to be borrowed by neighbor cells. Once a channel is borrowed, the channel is "locked" in the co-channel cells within the reuse distance of the cell in question (a "locked" channel cannot be used or borrowed). 	l f
©Wireless Networks Laboratory Prof. Zygmunt J. Haas	97

Maximum Channel Packing	Maximum Channel Packing - An example
 The maximum cardinality of a clique is w(G) G is called γ -perfect is: γ(G) = w(G) The chromatic number γ(G) is the minimum number of channels required to carry some traffic load. γ(G_n) = w(G_n) = ma×_j (Σ_{i∈qj} n_i) 	Comparison of FCA, MPDCA, and Hybrid Channel Allocation (HCA) Consider the case of a 2-dimensional grid of hexagonal cells with 1 buffer-cell between reused channels. In particular, consider one cell in the grid, cell-1, in which there are 8 calls in progress. Cell-1 is adjacent to 6 other cells, counting clockwise, cell-2, cell-3, cell-6, and cell-7 (cell-7 is adjacent to cell-2), in which there are the following number of calls in process of being set up, respectively: 11, 0, 14, 1, 7, and 9. There are total of 28 channels in the system. A new call arrives in cell-1. For each of the following cases, what is the minimum number of calls that needs to be blocked? a. The <u>Fixed Channel Allocation</u> b. The <u>Maximal Packing Dynamic Channel Assignment (DCA-I)</u> algorithm c. A hybrid scheme in which 3 channels are permanently assigned to each cell and the rest use dynamic assignment (DCA-I).
©Wireless Networks Laboratory Prof. Zygmunt J. Haas 105	©Wireless Networks Laboratory Prof. Zygmunt J. Haas 106

And of Opportunity	Maximum Channel Packing - An example	Anorta of Street
a. <u>Fixed C</u> ł	annel Allocation (FCA).	b. <u>Ma</u>
In the Fixe of channels uniform use	d Channel Allocation scheme, we simply assign a fixed number to each cell. Using a reuse factor of N=3 and assuming r density, we arrive at:	
28 channels	for 3 cells \rightarrow 9 [channels/cell]	
Thus, the a some of the	alls in cells 2 and 4 exceed this 9 channel/cell limit and thus em have to be blocked.	
Specifically This gives (, 2 calls in cell 2 are blocked and 5 calls in cell 4 are blocked. is a total of 7 blocked calls.	
©Wireless	Networks Laboratory Prof. Zygmunt J. Haas 107	©Wirel

Maximally-Packed Dy	mamic Channel Allocation (MPDCA) (con't):	[10]
[1 1 1 0 0 0	0	19
101100	0 $1, cell j \in clique i$	22
- 100110	$0 = 0$ 0, otherwise $U^T \vec{u}$	23
$T = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$	0	16
100001	$\vec{n} = \begin{bmatrix} 8 & 11 & 0 & 14 & 1 & 7 & 9 \end{bmatrix}^T$	24
1 1 0 0 0 0		28
where $ec{n}$ is the deman	nd vector.	
he clique consisting	of cells (1, 2, 7) is using all 28 channels. If a	new

Autorid of Street	Maximum Channel Packing - An example	
с. <u>Ну</u> ь	rid Channel Allocation (HCA)	
Since e channe	each cell now has 3 fixed channels, we can first use these Is to take care of some of the load in each cell.	
Cell 1: Cell 4: Cell 7:	8 - 3 = 5; Cell 2: 11 - 3 = 8; Cell 3: 0 - 3 = 0; 14 - 3 = 11; Cell 5: 1 - 3 = 0; Cell 6: 7 - 3 = 4; 9 - 3 = 6	
These dynami 3 chan 28 cha	new demand values then need to be assigned channels cally using the remaining available channels. Since we are using nels per cell, and each clique contains 3 cells, then instead of nnels, we only have 28 – 9 channels left to assign dynamically.	
Using 1	the same method as part b:	
©Wireles	ss Networks Laboratory Prof. Zygmunt J. Haas	110

