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1 Abstract

Infostations offer geographically intermittent cov-
erage at high data rates for mobile wireless net-
works. The Infostation model trades off delay
of data delivery for increased network capacity.
Replication and storage of information in multi-
ple nodes of a mobile network can also be traded
off for reduction in delay. Thus, augmenting the
Infostation model with information replication, a
new concept which we refer to here as the Shared
Wireless Infostation Model (SWIM), results in
overall improved capacity-delay tradeoff at the ex-
pense of modestly increased storage requirements.

In this paper, we propose to apply SWIM to solve
a practical problem - information acquisition from
radio-tagged whales. In particular, we calculate
the expected storage increase for the reduction in
delay. Storage requirements can be further im-
proved without affecting the delay by wisely eras-
ing the replicated information from the network
nodes. We study the performance of five stor-
age/erasure techniques, which increase the com-
putational complexity of the storage algorithm,
in order to further mitigate the storage increase.
The results of our study will allow a network de-
signer to implement such a system with a suffi-
cient buffer size, as to ensure with some level of
confidence that the information will be success-

∗This work is based on an earlier work: “The Shared Wire-
less Infostation Model: A New Ad Hoc Networking Paradigm
(or Where There is a Whale, There is a Way),” in Proceedings
of the fourth ACM International Symposium on Mobile Ad Hoc
Networking & Computing, pp. 233-244, June 2003 c©ACM, 2003.
http://doi.acm.org/10.1145/778415.778443

fully carried through the mobile network.

2 Tagging Whales

Large whales, and marine mammals in general, are key-
stone species both in public interest and in assessing
the environmental impacts of human activities. Eight
species of large whales are on the Endangered Species
list: blue whale, bowhead whale, finback whale, humpback
whale, northern and southern right whales, sei whales,
and sperm whales. Upon hearing noise from underwa-
ter tests, beluga whales will often flee the location at full
speed for 2-3 days and not return to the site for weeks.
Beaked whales have been stranded in association with
naval exercises on several occasions. All of these species
are difficult to study because of their enormous home
ranges, the expense of oceanographic cruises, and the
paucity of locations for fixed monitoring stations. Wire-
less telemetry offers unequalled opportunities for moni-
toring the movemets and behaviors of whales and other
marine mammals. Whales are favorable subjects for ra-
dio telemetry because of their large size and their regular
visits to the surface to breathe. Radio tagged whales
can provide a wealth of oceanographic information along
with data regarding their movements, because collectively
they exploit a variety of resources across a wide range of
oceanic habitats.

Implanting animals with miniature electronic sensing and
transmitting tags provides unique opportunities to ob-
serve physiology, movements, and social behavior in a
free-ranging context [1]. The addition of environmental
sensors to animal tags provides the capacity to monitor
ecological and oceanographic processes, that is an effi-
cient method to monitor regions of biological interest,
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which may be difficult to reach otherwise. Although some
scenarios permit recovery of the tags, a much broader do-
main of applications requires implementation of a teleme-
try system to obtain the data from the tags, usually using
radio frequency signals [2]. Design of radio tags confront
conflicting demands. Transmit power must be minimized
to enable extended operations in a small form factor. On
the other hand, the enormous home ranges of whales ar-
gue for substantial transmission power to maximize the
distance over which the tag telemetry can be received.

The vast majority of today’s radio tags are simple bea-
cons that broadcast signals with frequency on the order of
a second. To recover the data from the tags, animals are
tracked with intensive operator effort, either by approach-
ing and following the animal or by making coordinated
measurements of bearings to the triangulate signals from
two or more locations. The operator often measures the
bearing by swinging a directional antenna through an arc
and deciding on the direction that presents the strongest
signal. This approach yields valuable data; however it
also suffers from severe limits on the number of animals
that can be tracked and the area that can be monitored.
Alternatively, satellite radio tags have been also in use
for some time, with the ARGOS system being the pri-
mary provider of such a service1. ARGOS satellites orbit
the Earth with an approximate 5000-kilometer-diameter
“footprint,” and in most areas they provide each day only
a limited number of opportunities for offloading (recov-
ery) of data. Furthermore, each offloading is limited to a
data packet of 256 bits of data, and the system limits each
tag to one message transmission every 45-200 seconds.

The seemingly irresolvable conflict between minimizing
transmit power consumption and maximizing the area
monitored can be successfully addressed by bringing the
infrastructure for receiving the tag telemetry close to the
tags themselves, where “close” usually ranges from a few
hundred meters to a few kilometers. Of course, bringing
the infrastructure close to the free-roaming animals may
not be a trivial matter, when taking into the account
the size of the animals’ habitats. Many fixed receiving
stations may be required, especially if the animals’ move-
ment patterns are not well specified or if it is unlikely
that tagged individuals will pass close to a single receiver
before exhausting the data storage capability or battery
lifetime of their tags. Another option is to use mobile re-
ceiving systems, which systematically survey the animals’

1www.argosinc.com

habitat. Data would be offloaded from each animal’s tag
when the receiving system reaches the vicinity of the ani-
mal. However, for large areas of habitat that are difficult
to access (open ocean, tropical rainforest), the safety, ex-
pense, and logistical difficulties of sustaining regular sur-
veys may be insurmountable.

Here, we advocate a different approach. In our approach,
the infrastructure is extended to the mobile nodes by the
mobile nodes themselves; i.e., by creating a sensor net-
work [3]. In other words, we allow the information cre-
ated in the network to be replicated among the network
nodes. More specifically, a piece of information is allowed
to propagate among the mobile nodes in the network.
When the two nodes come into communication contact
due to their mobility, the nodes exchange their stored in-
formation, saving a single copy of each packet on each
whale tag. Then, when one of the network nodes which
carries the information reaches the vicinity of a collecting
station, the information is offloaded to the collecting sta-
tion. To increase the probability that the information is
recovered from the network, a number of collecting sta-
tions can be distributed throughout the habitat. Distri-
bution of the collecting stations should be done in a way
that maximizes the chances of information offloading.2

Thus, only one replica of the information piece needs to
reach only one collecting station to be successfully of-
floaded. Of course, this system might require each node
to store and forward a substantial amount of data that
originated from many other network nodes.

The idea of intermittent connectivity through a multi-
plicity of stations is not new; the Infostation model pro-
posed by researchers at WINLAB3 at Rutgers University
offers a similar approach [4]. The novelty in our design is
the replication, storage, and propagation (i.e., diffusion)
of the information within the Infostation environment.
Our system is essentially a marriage of the Infostation

model with the ad hoc networking technology [5]. Thus,
we refer to this augmented Infostation approach as the
Shared Wireless Infostation Model (SWIM) [6]. SWIM
allows delay reduction of the Infostation model, espe-
cially when the number of Infostations (SWIM stations)
is relatively low.

The SWIM tags and network communications protocols

2For example, the collecting stations should be placed near areas
that are frequented often by the animals, such as water reservoirs.

3winwww.rutgers.edu/pub/docs/research/Infostations.html
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combine the best features of two existing marine mam-
mal technologies: the small size and light weight of line-
of-sight implantable radio tags with the global coverage,
similar to what the ARGOS satellite system can pro-
vide. The SWIM tags exceed the capabilities of existing
systems by enabling higher telemetry rates than satel-
lite tags, with much lower power consumption and pack-
age size. The smaller package enables attachment to a
wider range of organisms, from greater distances. The
tags are equipped with microprocessors and frequency-
synthesized transmitters, so they can make measurements
from a variety of sensors and implement sophisticated dig-
ital telemetry protocols. The tags are designed to col-
lect sensor data continuously, to store summaries of these
data in time-stamped packets, and to store these pack-
ets in memory for subsequent uploading to a receiving
system. Examples of desirable data regarding the ani-
mal’s status are electrophysiological signals (cardiograms,
myograms), body temperature, feeding activity, orienta-
tion, depth/altitude, and local movements (acceleration).
Examples of desirable environmental data are ambient
acoustic spectra, ambient temperature (and salinity in
the ocean, humidity in the atmosphere), and light level.
The value of these data increases when they are delivered
relatively promptly, because this enables adjustment of
other observational schemes to take advantage of the un-
expected opportunities or phenomena.

3 The Tag Sensors

The radio tag utilizes a Texas Instruments MSP430F149
microprocessor to enable field programmable operation
and to schedule transmissions for power savings. The
MSP430 processor provides 60 kbytes of flash memory,
very low dormant power consumption (0.9 µA), an ex-
tremely small footprint, and a very low cost per unit.
The MSP430 provides opportunities to monitor a vari-
ety of sensors. These include pressure sensors, light and
temperature sensors, accelerometers, clinometers, micro-
phones, and physiological electrodes. The sensor integra-
tion strategy must emphasize the following factors: mini-
mal addition in size and weight, power shutoff capability,
breadth of potential research applications, and ease of in-
corporating flexible logging and telemetry features in the
tag software.

The radio tags can be programmed in the field, which
enables researchers to adapt the transmit schedule and
operating frequency to local conditions. This embedded
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Figure 1: Timer algorithm flowchart

microprocessor is also the key to dramatic power savings.
Scheduling transmissions to satisfy specific biological cri-
teria can realize more efficient use of transmission power.
Alternatively, tag sensor inputs (direct measures of activ-
ity) or an external signal (such as proximity to another
whale or to a SWIM station) could be used to trigger
transmissions. Scheduling is also relevant to the trig-
gered systems, because neither the sensor nor receiver sys-
tems requires uninterrupted power. Accordingly, a flexi-
ble scheduling scheme is integral to the transmitter tags.

Scheduling requires accurate timekeeping, for this the
tag uses a 32 KHz quartz crystal reference and achieves
clock drift to less than one second per day. The re-
searcher specifies the rate of regular timekeeping events.
All systems are powered down between these events. The
interval is defined by a 16-bit integer that determines
the number of 32 kHz oscillator cycles per timekeeping
event (or “chronos”), but specified by the user in sec-
onds. Thus, chronos periods range from 30.5 µs to 2
s. Total elapsed time is stored using three sixteen-bit
words, where the least significant bit corresponds to a
single chronos. Forty-eight bits provide a maximum tag
endurance of 272 years with a resolution of 30.5 µs. A
thirty-two bit counter would impose restrictive limit on
tag endurance of just over 1.5 days at the fastest chronos
rate. The cost (memory, processing time) for using three
words in not significant.

The scheduling algorithm is based on a repeating se-
quence of up to 256 tasks. The original 32 kHz clock sig-
nal is divided by a 16 bit integer. The resultant clock sig-
nal constitutes the chronos that drives the timer/counter.
The task list begins with a series of tasks that are exe-
cuted once, followed by a series of tasks that are repeated.
Each task is stored as a pair of 16 bit counter values, rep-
resenting the durations of a pair of ON and OFF actions.
These counter values are followed by a field with binary
flags, specifying branching conditions, and a sixteen bit

3



\event{\Ontime{03:30:00}\Offtime{4:45:10}

\flags{2}\repeatN{5}}

\event{\Ontime{00}\Offtime{10:5.301}

\flags{1}\repeatN{0}}

\event{\Ontime{0:0:0.010}\Offtime{0:0:59.990}

\flags{2}\repeatN{7}}

Figure 2: A short sample of the timer programing script
language, depicting three events

integer specifying the number of times to repeat the task
before moving to the next task. Thus, each individual
sequence of ON and OFF actions can be repeated up to
216 times. Note that the ON or OFF actions can have
zero duration, to enable a sequence of tasks to behave
as an uninterrupted period of dormancy (or, less likely,
activity). A continuous period of almost 4.3 billion event
cycles (216 counter * 216 repeat = 232 event cycles) can be
scheduled with a single task (36 MS with 30.5 µs event
cycles). Tasks are processed in sequence, until a task
with a “repeat indefinitely” flag is encountered, or until
the end of the task list is reached. If the end is reached,
the task sequence restarts with the first task following the
initialization sequence.

Very complicated transmission schedules can be realized
with this scheme. Very rapid “schedules” can be used to
implement pulse code identifiers (including Morse code).

The time keeping system runs using interrupts, leaving
the microprocessor in power-saving mode during the time
between successive events. All microprocessor functions
are implemented using interrupts, so the default state of
the processor is dormant. This strategy results in approx-
imately 64% lower power consumption than a constantly
active microprocessor, with some variation in savings de-
pendent on the precise mix of tasks.

The MSP430 software includes a simple monitor program,
which manages communications with a notebook com-
puter or PDA through a serial interface. The schedule is
specified by a series of commands paired with the corre-
sponding tasks. A host program running on the laptop
(or PDA) enables the user to specify the timer tasks in
an hs:mm:sec format using a simple script language (see
Figure 2).

Once the schedule has been uploaded, the timer schedule
is stored in flash eeprom and a flag is set internally to
indicate that a valid schedule is in memory. If the tag

remains powered up then the first scheduled task is exe-
cuted immediately. When power is applied to the tag the
processor checks for a valid schedule and proceeds to the
first task if a schedule is present. Otherwise, the processor
goes into a low-power state and waits for scheduling in-
formation. The monitor and schedule execution software
are stored in flash memory and can be updated from a
personal computer through a serial link.

The 150 MHz tag (see Figure 3) uses the Silicon Labs
Si4112 phase-locked loop (PLL) RF synthesizer to gener-
ate the RF signal. The PLL is controlled by the MSP430
to produce the operating frequency specified by the user.
The frequency reference is provided by the microproces-
sor’s 4 MHz oscillator. A single external inductor deter-
mines the band of frequencies that can be programmed
in the field. With appropriate inductors, this part can
generate frequencies between 62 MHz and 1 GHz. With
a given inductor, the operating frequency is controlled by
writing to registers that specify the operating frequency
as a multiple of the 4 MHz clock. At the center frequency
of 150 MHz, the microcontroller can tune from 147 -153
MHz, with a resolution of 600 Hz. This allows the user to
select the operating frequency at the time of deployment.
The tag can also be programmed to produce ranges of fre-
quencies in higher RF bands with this inductor, though
operation in other bands would probably require changes
to the matching network and antenna.

The microprocessor and PLL can generate CW or FM
signals, and thus implement pulse interval coding or fre-
quency shift keying (FSK) telemetry protocols with no
additional parts. For FSK, the settling time of the Si4112
(typically 40µs) allows for modulation that supports data
rates on the order of 25 kilobits per second. This is 250%
of the typical voice telephony data rate, and about half
the data rate of the fastest telephone modems. Output
power is typically 0.4 mW into a 50 Ω load, for the low
power configuration and 20 mW into a 11 Ω load for the
high power version. Current consumption for the tag will
be 0.9 µA dormant, 2.5 µA processing, 8 mA transmitting
for the low power configuration and 35 mA for the high
power configuration. Power to the Si4112 is cut when the
tag is dormant.

The RF output of the PLL was boosted by a simple cas-
code RF amplifier to deliver a total of 20 mW of RF
power. The prototype antenna for this system was a nor-
mal mode radial helix, to satisfy mechanical and hydro-
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Figure 3: VHF-FM 148 MHz radio tag transmitter, show-
ing serial port connectors and the base of the normal
mode helical antenna mounted on a partially assembled
Titanium housing. A: Microprocessor view; B: PLL side.
Scale bar represents 25 mm

dynamic constraints while achieving desirable radiation
efficiency.

The radio tag is controlled by a microprocessor, based
on parameter settings specified by the researcher at the
time of deployment. The researcher specifies these oper-
ating parameters using a host program running on a lap-
top or PDA. This program accepts a simple text script
containing the researcher’s specifications, and it performs
consistency checks and display a visual summary of these
settings to enable the researcher to scan for errors. This
provides the capacity for last-minute changes in operating
characteristics, including broadcast frequency.

Flexible support for complex sensor measurement and RF
broadcast schedules is crucial to efficient use of battery
power. Power will be supplied to all systems for very brief
intervals as needed. In fact, the microprocessor itself will
spend most of the time in a dormant state, with brief in-
tervals of processing activity triggered by a combination
of regular interrupts and sensor readings. The processor
runs on a 4 MHz clock to enable rapid processing of inter-
rupts. All the timekeeping functions are based on a more
power efficient 32.768 kHz (“32 kHz”) kHz clock (with
the 4 MHz clock shut down between interrupts).

The electronics and battery are protected from the ex-
ternal environment by a custom made housing machined
from 100% grade 2 Titanium with a pressure rating in
excess of 1700 m. This choice of materials serve two pur-
poses, to prevent corrossion and to reduce to a minimum
the tissue reaction during implantation.

Here, we have presented the transmitting portions of the
tags. To utilize our SWIM scheme, we require receiv-
ing functionality on the tags as well. In order to imple-
ment this full transceiving capability, we need to replace
the RF chip with one that is a transceiver, like the RF
Monolithics TR1000 or the ChipCon CC1000. All of these
chips are programmed through a serial connection, so the
changes to the electronic circuit layout would be minimal.
The commands that control the transmitter would need
to be changed, and we would need to implement physi-
cal and MAC layer protocols. One approach would be to
work with TinyOS, the operating system developed at U.
C. Berkeley to support wireless sensor networks.

4 The SWIM Networks

In the Infostation model, users can connect to the net-
work in the vicinity of ports (or Infostations), which are
geographically distributed throughout the area of network
coverage. The Infostation architecture includes low-
power base stations,4 which collectively provide strong
radio signal reception in small and disjoint geographical
areas and, as a result, offer very high rates to users in
those areas. However, due to the lack of continuous cov-
erage, this high data rate comes at the expense of pro-
viding intermittent connectivity only. Consequently, the
Infostation network architecture should be used for ap-
plications that can tolerate significant delay, since a node
that wishes to transmit data may be located outside the
Infostations’ coverage areas for an extended period of
time. Thus, the Infostation model trades delay for ca-
pacity by varying the degree of connectivity and by ex-
ploiting the mobility of the nodes.

Though significant delays can be tolerated in the whale
tag application, if the delays are too long the data will
likely be lost. The tags are foreign objects injected into
the whales, and they are typically expelled from the host’s
body within 3 to 3 1/2 months. Therefore, data retrieval
must occur through transmissions from the tag while it re-
mains attached to the whale. In the original Infostation

model, a user must physically travel to the vicinity of an
Infostation to communicate, which could lead to a signif-
icant delay in our whale tag application. Thus, to address
the requirements of our application, the Shared Wireless
Infostation Model has been developed as a more timely
method for data retrieval. We propose allowing informa-

4The information collecting stations
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tion to travel through the network by sharing (replicat-
ing, storing, and diffusing) itself as well, using the mobile
nodes as physical carriers.

Clearly, by allowing the packet to spread throughout the
mobile nodes, the delay until one of the replicas reaches an
Infostation can be significantly reduced. However, this
comes at a price; spreading of the packets to other nodes
consumes network capacity and storage space. Thus,
again, we are faced with the capacity-delay tradeoff. We
have developed a new way to control this tradeoff by con-
trolling the parameters of the spread; for example, by
controlling the probability of packet transmission between
two adjacent nodes, the transmission range of each node,
or the number and distribution of the Infostations. In
this paper, we examine the tradeoff between the amount
of storage required and the delay experienced in the sys-
tem.

First, we develop methods to calculate delays of pack-
ets in the system. Then, we examine the increase in the
required storage of the SWIM system, as compared with
the traditional Infostation model, for a particular reduc-
tion in delay. Since the delay in both of these systems is
a random variable and is unbounded, we define a prob-
abilistic metric to describe the reduction in delay of the
models. Let Pthresh be some threshold probability, which
we choose, with which the packet will be offloaded (reach
an Infostation) from the network. We compare the time
necessary for the packet to be offloaded with probabil-
ity Pthresh for the different network models. In general,
we expect the storage capacity necessary for the SWIM
model to increase, relative to the traditional Infostation

model, since in the SWIM model packets are copied on
many nodes; however, the time necessary to store pack-
ets (before they are offloaded with probability Pthresh)
is also smaller. Therefore, the overall and relative storage
requirements of the two schemes are subject of our study
here.

Note that the case in which the packets are shared be-
tween nodes with probability 1 each time two whales
are “close” to each other represents the largest delay re-
duction and the highest increase in storage of the sys-
tem. Sharing with probability 0 represents the pure
Infostation architecture. Thus, by sharing packets with
probabilities between 0 and 1, SWIM can achieve many
different instantiations of the tradeoff between network
capacity and network delay.

Figure 4: Whale tag prototype, to be delivered using a
crossbow

5 The Information Propagation

Model

Although our framework has a broad range of applica-
tions, our prime application that we address here is the
support of biological data acquisition and animal tracking
systems, such as the whale tags. Data that is collected
on a whale tag, like the tag shown in Figure 4, is stored
locally. As a whale comes in close proximity to another
whale, the stored information is transmitted, with some
“probability of packet transmission,” p, and is stored in
the recipient whale tag’s memory as well. As the whales
migrate throughout the system, a whale that surfaces and
comes in close contact with one of the SWIM stations, of-
floads all the data in its memory (whether its own data or
data from other whales) onto the SWIM station. Thus, as
the whales feed and socialize near the surface of the water,
the devices upload the packets of data at high data-rate
to the appropriately placed SWIM stations.

Typically, the SWIM stations are placed on buoys, float-
ing in the water. Since moving information from a whale
tag to a SWIM station may be time-consuming, several
SWIM stations are placed along the whales’ paths. After
receiving and storing the information from the whales,
the SWIM stations transmit the information to shore,
either by coordination with other SWIM stations, or di-
rectly to a satellite, whenever the next satellite passes
overhead. SWIM stations could alternatively be placed
on seabirds, high above the water. These stations would
then be mobile, and the data would be collected at the
known roosting grounds of these seabirds.
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Figure 5: Markov chain model of an infectious disease
with susceptible, infected, and recovered states

If a whale does not come in contact with any SWIM sta-
tion for a long time, it may selectively discard the infor-
mation in its memory when there is high probability that
the information has already been offloaded to one of the
SWIM stations by another whale. On the other hand, if a
whale has been able to offload its stored information, the
whale’s memory could be cleared immediately. The whale
tag might also retain the identifier of the packet that it
offloaded, so that in the future it would not store (or even
accept) information that it had stored previously. These
different methods of erasure of the stored packets will be
addressed in more detail later in this paper.

Delay experienced in the network (the time for a whale
to reach a SWIM station) varies considerably depending
on the mobility patterns of the whales, which are specific
to the species of whales under consideration. One might
expect daily surfacing near SWIM stations for humpback
whales off the coast of the Hawaiian islands, leading to
delays on the order of hours. In contrast, some migratory
whales visit known feeding grounds once a year, so delays
may be on the order of months.

In order to study the delay of packets, we model the prop-
agation of each packet of data information generated by
a whale as the spread of one infectious disease. We first
consider the propagation of a unique packet. A whale is
“infected” if it has the data packet stored in its memory.
A whale is “susceptible” (to infection) if it does not yet
have the packet stored in memory, but could potentially
acquire the packet from another whale. A whale is “re-
covered” (healed from the disease) if it has offloaded the
packet to a SWIM station. A packet is stored only once
on each tag (one cannot be infected multiple times with
the same disease); i.e., by storing the unique identifiers
of the previously received packets, a whale may become
“immune” to receiving the same packet again. By mod-
eling the sharing of the packet in this way, we are able
to use formulae from epidemiology to find the probability
that a packet is offloaded (is “healed”) as a function of
the time it has spent in the system.

In Figure 5, the S(t) represents the state of “suscepti-
ble” whales at time t, I(t) represents the state of “in-

fected” whales, and R(t) represents the state of “recov-
ered” whales. β is the average contact rate between two
whales. Suppose that there are N whales in the system,
then a whale contacts β(N−1) other whales per unit time,
of which S

(N−1) do not yet have the disease. Therefore,

the transition rate from state S to state I becomes

total infection rate
= (#infected)(contact rate)(# susceptible whales)
= I [β(N − 1)][ S

(N−1) ] = βSI .

The recovery rate is labeled as γ – it is the rate of contact
between a whale and a SWIM station.

total recovery rate
= (whale-station contact rate)(# infected whales)
= γI .

Recall that if there are multiple SWIM stations, then γ

represents the contact rate per station; e.g., γ will double
if the number of SWIM stations is doubled.

Let T be a random variable representing the amount of
time a packet has spent in the system; that is, the time
from packet creation until it is offloaded to a SWIM sta-
tion. Once one packet reaches state R (meaning it has
been offloaded), the rates will change, so we deem the
model invalid. Since we consider only one packet in the
model, at time t = 0 only one whale carries the packet,
and since all the N whales are either in the state S or in
the state I while the model is valid, this means

S(0) = N − 1, I(0) = 1, S + I = N,

R(t) = 0 for t < T and R(T ) = 1

By solving the differential equations defined by the rates
of the Markov chain in Figure 5, it is possible to ar-
rive at the cumulative distribution function F (T ), which
represents the probability that the packet is offloaded
after spending time T in the system. For example, if
F (300) = 0.5, this means there is probability 0.5 that
a packet is offloaded in 300 time-steps or less. By us-
ing the inverse of this function, we can choose a de-
sired probability Pthresh and find the value Tp for which
Tp = F−1(Pthresh). This means that with probability
Pthresh, by time Tp, the packet will be offloaded. The
formula for this function F (t) is given by

F (t) = 1 − K

(

N − 1

eβNt + N − 1

)

γ
β

. (1)
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6 Simulating the Delay

Many possible mobility patterns exist for the whales.
Each of these mobility patterns is represented in Equa-
tion (1) through the values of the contact parameters β

and γ. A simple mobility pattern is random linear mobil-
ity. This pattern will be used to examine some common
F (T ) properties. In the simulation, the whales swim in
straight lines for a fixed number of time-steps, s, with a
randomly chosen velocity, and in a random direction. At
the beginning of each group of s time-steps, a new veloc-
ity and a new direction are chosen for the whales to swim
in a rectangular area. The area is a torus, with edges
that wrap around, so a whale that swims off the right
edge re-enters at the left edge; similar wrap exists for the
top and bottom edges.

At the beginning of the simulation, one whale carries the
only replica of the packet. At every iteration, if a whale
carrying a packet is within the infection range of another
whale, the packet is replicated at the other whale. If any
whale carrying the packet is within infection range of a
SWIM station, then the simulation is stopped, the time,
T , is recorded from the creation of the packet until the
termination of the simulation. The simulation was run
multiple times, and the data was compiled, representing
an empirical probability function, F (T ). As one would
expect, the F (T ) curves are steeper (representing shorter
delay) as the number of whales increases, and as the num-
ber of SWIM stations increases. Figure 6 shows the em-
pirical F (T ) curves with different numbers of SWIM sta-
tions, M = 1, 2, 3, 4. In this example, swimming speeds of
the whales were chosen from 0 to 6 units per timestep on a
300 by 300 toroidal area, and the reception radius of each
station was 15 units. The curves are also steeper, due to
increased sharing, as the number of whales increases. In
order to validate the empirical F (T ), we found the cor-
responding theoretical F (T ) using the simulation to find
β and γ. Through the use of the χ2 goodness-of-fit test,
we observed very good agreement between the theoretical
and empirical solutions.

A more realistic mobility model captures the physical
whale behavior by incorporating feeding grounds. In this
enhanced model, three issues govern the direction of the
whales’ positions at any time: migration in a specified
direction, grouping of whales, and direction of the near-
est feeding ground. Females tend to group together with
other females, while grown males tend to be more solitary
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creation until offloading, for different numbers of SWIM
stations in the system
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in their behavior and group with females, but not with
other males. All whales are attracted to feeding grounds
when they are hungry. Inside the feeding grounds, whales
move slowly and sometimes stop. When a whale becomes
less hungry it can leave the grounds for a significant time
before returning. Direction for the whales’ mobility is
determined by a weighted vector sum of the directions of
migration, of the direction to the nearest female, and of
the direction the nearest feeding area.

Since the whales are attracted to the centers of the feeding
grounds, they are likely to swim close enough to a SWIM
station inside the feeding grounds to offload their packet.
Thus, when SWIM stations are placed inside the feed-
ing grounds, delays can be significantly reduced. This is
shown in Figure 7 by the “Center of feeding grounds” and
“Near to feeding grounds” curves. If the SWIM stations
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are sometimes placed outside the feeding grounds, delays
increase, since the whales are attracted to regions far from
the SWIM stations, shown by the “Poisson distributed”
curve in Figure 7. Obviously, location of the SWIM sta-
tions is a very significant parameter. The grouping of
whales can also significantly affect the delay, since more
grouping promotes more sharing of packets.

Up to this point, we have assumed that the collection
points (i.e., the SWIM stations) are fixed in their loca-
tions. Another possible model for the biological informa-
tion acquisition system considers mobile collection points
as well as mobile nodes – for example, SWIM stations
mounted on seabirds that glide above the ocean along
the turbulent air above the waves. Figure 8 shows that
increasing the speed of the mobile SWIM stations has a
positive effect on the packet offload time. Larger speeds
of the SWIM stations allow them to pass through groups
of whales more often, though staying near the groups for
shorter periods each time. This larger frequency of visit-
ing allows the packets to be offloaded more often and at
more regular intervals.

7 Calculating the Storage Re-

quirements

Equipped with these F (T ) curves, the information about
the contact rate between the whales, and the contact rate
between the whales and the SWIM stations, we are able
to calculate the expected storage requirement for all the
copies of one packet, given a desired confidence level of
the packet delivery, Pthresh. As an example, suppose
that the designer specified a confidence level of 0.9, then

T0.9 = F−1(0.9) is the time necessary to wait to achieve
the probability of 0.9 of packet offloading. This is the “ex-
piration time” of the packet and its replicas. If any replica
of the packet remains in the system for this maximum de-
lay, it is erased, even if it has not yet been offloaded.

A quick, though näıve, approach of calculating the re-
quired storage for the system involves the average num-
ber of packets in the system at the time of offloading and
applying Little’s formula. Suppose that 10 adult whales
are tagged and, at each timestep, placed randomly5 in an
area of 900 km2 with 1 SWIM station. The transmitting
range of the radio tags is 1.4 km and reception range of the
stations is 3 km. This can be modeled as a system with
N = 10 whales, M = 1 SWIM station, and the probabil-
ity of transmission p = 1. From the corresponding F (T )
curve, we find that F−1(0.9) ≈ 78. The “expiration time”
of the packets is therefore 78 time-steps.

Now suppose that each whale generates a packet every 30
time-steps. Using Little’s formula with generation rate
λ = 1

30 time-steps per packet per whale, the expected
number of all the packet replicas in the system is:

EP = (number of whales)λT0.9

= 10 1
30 [packets/time-step](78 [time-steps])

= 26 [packets].

An estimate of the expected number of copies of each
packet in the system, EI , is the average number of whales
infected with the packet at the time of offloading. It can
be shown from our simulation that EI = 2.5523 in this
case. This number assists us in the calculation of a global
storage requirement for the radio devices:

storage requirement
= (duplicates)(different packets)(bytes/packet)

= EI ∗ EP ∗ (330 bytes/packet)
= (2.5523) ∗ (26 packets) ∗ (330 bytes/packet)
= 21898.734 bytes
= 21.38548242 kB = 2.138548242 kB/whale.

Recall that in this example, the probability of sharing
packets between close-by whales is 1, so the results corre-
spond to the largest delay decrease and the largest stor-
age requirement of the SWIM model. Figure 9 shows that
the increase in storage is very reasonable for the achieved
large decrease in delay. The advantage of SWIM is even
more pronounced as the number of whales increases.

5with a Poisson distribution
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While in the non-sharing case, the per-whale storage re-
quirement remains the same as the number of whales in-
creases, the storage requirement in the SWIM case grows
slightly due to the replication of packets. If the density
of whales is larger, then the packet is shared with more
whales and more storage is required. This increased stor-
age requirement is mitigated by the fact that the delay is
reduced; i.e., in SWIM, there are more packet copies in
the network, but they remain for a shorter time.

The expected delay for the non-sharing system is constant
over the different numbers of whales, since more whales in
the system offer no advantage in this case. In other words,
every whale must itself reach the SWIM station to offload
its packets. On the other hand, SWIM replicates packets
among the network nodes, so if there is a larger density
of whales, there will be more copies of a packet present
in the network. Thus, SWIM achieves smaller delays as
the number of whales increases.

In practice, one would want to include an extra safety fac-
tor in the memory calculation to protect against statisti-
cal variability in the number of packets stored in a tag.6

This safety factor is not included in our simple approach
presented in this section. However, we will reexamine
our storage evaluation in the more precise calculations of
storage requirements in the following sections.

6Not including this factor would assume that the loss due to
buffer overflow is negligible.

7.1 Single-Packet Storage Methods

There are numerous methods which could be used to
model the packet generation, storage, and erasure. We
will consider here five possible methods: JUST TTL,
FULL ERASE, IMMUNE, IMMUNE TX, and VAC-
CINE. These methods progressively extend one another.
In all of these methods, the original packet and all of its
copies are erased by Tp = F−1(Pthresh) time-steps after
the original packet was created.

• JUST TTL is the simplest method. All packets re-
main in the system until Tp = F−1(Pthresh) time-
steps have elapsed from the original packet creation.

• FULL ERASE erases the copy of the packet com-
pletely from the offloading node just after it has been
offloaded to a SWIM station. Once a copy of the
packet has reached a SWIM station, there is no need
for it to be stored on any of the whale tags. It is,
however, possible that other whales still carry the
packet once it has been erased from the offloading
whale, so a whale might get infected with the same
packet multiple times.

• IMMUNE erases the packet when it is offloaded
like FULL ERASE, but keeps an identifier of the of-
floaded packet, so the whale will not receive that
packet again. We refer to this identifier as an “an-
tipacket,7” since it prevents re-infection of packets.

• IMMUNE TX erases the packet when it is of-
floaded, keeping the antipacket, like IMMUNE. It
also shares this antipacket with other whales that
carry copies of the offloaded packet. This means a
whale may receive an identifier “antipacket” from a
transmitting whale only if a copy of the offloaded
packet is already stored. At that point, the copy
would be erased and “antipacket” identifier kept.

• VACCINE erases the packet when it is offloaded,
like previous methods. It also shares all packets and
antipackets between whales. In this case, a whale
may receive an antipacket from a transmitting whale
even if the receiving whale does not have a copy of
the packet stored.

7Similar to antibody of a biological agent
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Figure 10: Expected storage required for 10 whales, as-
suming 4-byte identifier and packet contents of 326 bytes

We are able to calculate the average number of copies
of the packet in the system for a given time using each
of these five methods. Call this average number EI(T ).
Since the F (T ) curve expresses the desired confidence
level as a function of time, we are able to plot para-
metrically the average storage requirement as a func-
tion of the desired confidence level, (F (T ), EI(T )), as
shown in Figure 10. Notice that for methods IMMUNE,
IMMUNE TX, and VACCINE the average storage begins
to decrease at high confidence level. This is due to the de-
pendence of the confidence level on T . As the confidence
level approaches 1, the necessary time T for the packet to
remain in the system becomes higher and higher, even-
tually T → ∞ as F (T ) → 1. In the methods IMMUNE,
IMMUNE TX, and VACCINE the packet identifiers pro-
hibit the whales from storing a copy of the packet again,
so eventually as T gets large, nearly all the whales refuse
storage of the packet, and the average required storage is
thereby reduced.

We can also depict the storage-delay tradeoff using
SWIM. We fix the desired Pthresh = 0.9, then to re-
duce the delay, we increase the sharing of the packets by
increasing the density of whales in the system. Figure 11
exhibits the storage-delay tradeoff due to this increased
sharing; clearly, to achieve shorter delay, one must invest
more storage in the system.

7.2 Multiple-Packet Storage Methods

For each of these five methods, we can obtain a time-
average of the number of replicas of a packet in the sys-
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Figure 11: Storage-delay tradeoff of SWIM using the dif-
ferent methods of erasure

tem, EI . With the help of the Little’s formula, the mean
storage requirement per whale is:

EI ∗ λ ∗ Tp ∗ (330 bytes/packet).

This does not, however, provide an indication of the vari-
ance of the number of packets stored on each whale tag.
The variance is important to calculate the “safety factor”
in evaluation of the necessary buffer size, as to ensure
that due to the statistical behavior of the packet arrival
process at the nodes, at most only a small fraction of the
packets would be lost.

We would like to learn more about the probability distri-
bution of the number of packets on each whale tag, Qi.
To assist us in the solution of Qi, we model the system as
an imaginary global queue that at each point in time con-
tains all the packets present in the system. In particular,
let Q =

∑N

i=1 Qi represent the number of all the copies of
all the different packets in the system; i.e., the number of
packets in the global queue. However, due to the complex
nature of the global queue, we employ an approximation;
we assume that the arrival of all the copies of a packet to
the global queue occurs at the time of the original packet
creation, rather than at time when the packet is repli-
cated from one whale to another. This is a conservative
approximation for the purpose of evaluation of the vari-
ance of Qi, since in reality the arrival of the copies of a
packet will be spread in time, reducing the variance due
to the aggregation of such arrival processes of many other
packets. We further assume that the number of replicas
of the packet to arrive to the global queue is equal to the
maximum number of the packet copies that will ever be
present in the system. For the JUST TTL case, pack-
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ets are replicated when they are shared between whales,
but are never removed from the system. Thus at time
Tp = F−1(Pthresh), the number of copies of a particular
packet in the system will be a maximum. Using other
methods, the maximum number of packets may occur at
a value smaller than Tp.

We can simulate this global queue, Q. The simulation
generates packets periodically for every whale in the sys-
tem, given the set of periods and their offsets in time.
Let I(tmax) be a random variable representing the distri-
bution of the number of packets in the system when the
expected number of packets in the system is a maximum.
When a new packet is generated, the maximum number
of its copies that will ever be present in the network is
drawn from the distribution I(tmax). Those copies are
then added to the global queue, Q, as soon as they are
generated and removed after time Tp. After the simula-
tion ends, the sample mean and sample variance of the
number of packets in the global queue at steady-state are
calculated.

The global queue can also be solved analytically. When
the number of whales is moderately large and the ar-
rival processes of new packets at different whales have
slightly different periods, the arrivals of groups of packets
act like a Poisson queue with batch arrivals. The sys-
tem is said to have infinitely many servers, since all the
packets are “served” at the same time. A Poisson queue
with batch arrivals involves groups of customers which
reach servers with i.i.d. exponentially distributed inter-
arrival times. The numbers of customers in these groups
is determined by the distribution function I(tmax). The
service times in this case are deterministic, meaning that
any customer leaves the system after a constant time Tp.
Finally, since there are infinitely many servers available,
customers never have to wait in the global queue; i.e., the
only delay is due to the deterministic service time.

By using the global queue with deterministic service times
described above and by assuming that all of the whale
tags are i.i.d with respect to the number of packets they
carry, we can simply divide the global queue by the num-
ber of whales to find the distribution of the number of
packets on each individual tag. This provides not only
the mean number of packets, which is already known from
the single packet methods, but any quantile that the de-
signer wishes to use in order to provide the “safety factor”
in packet buffering.
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Figure 12: Mean number of packets with error bars indi-
cating variance for a 10-whale system

Figure 12 compares the numbers of packets in the 10-
whale system for four different metrics, exemplifying the
methods described earlier, using a random mobility pat-
tern for 10 whales. The first metric uses the single packet
Markov chain to find EI(tmax) and uses the Little’s for-
mula N ∗EI(tmax)∗λ∗Tp ∗(330 bytes/packet), described
earlier, to give a conservative estimate of the mean num-
ber of packets. This method does not provide error bars
since the variation in numbers of different packets on a
tag cannot be measured using this method.

The second metric is the average number of packets in
the system measured in the whale simulation at steady
state. This is an empirical measurement of the actual
number of packets in the system, rather than the conser-
vative estimate used in the other methods. For this rea-
son, the curve of the second metric is lower than the other
curves. The third metric uses the simulation of the global
queue with batch arrivals with distribution I(tmax), and
the fourth metric calculates the probabilities analytically.
These metrics all provide error bars for the variance, since
they supply the entire distribution of the number of pack-
ets stored in the system.

As shown in Figure 12, the single packet Markov chain
gives a reasonably conservative estimate of the packet in
the system. By adding one standard deviation of the
number of packets in the queue to the mean, we can en-
sure even less packet loss in the system. Using this esti-
mate, the storage requirement per whale for JUST TTL is
4.77 packets/whale, for FULL ERASE is 1.89 kB/whale,
for IMMUNE is 1.73 kB/whale, for IMMUNE TX is 1.54
kB/whale and for VACCINE is 1.53 kB/whale. Compare
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these value to the average requirement of 2.14 kB/whale
calculated at the beginning of this section. We conclude
that even accounting for variability in the tag queues,
the storage requirements remain reasonable for practical
implementation.

8 Conclusions

We have proposed SWIM, an augmented Infostation

model, and applied SWIM as an efficient method to solve
the problem of data retrieval from animal tags. In this
model, users disseminate information packets throughout
the system, sharing them with other users, and since only
one of the replicas needs to reach a collection point, the
overall delay in offloading the data is reduced. Using a
probabilistic metric for the delay, we show that the delay
could be reduced by 320% for a 50% increase in storage
compared to traditional Infostation networks, compar-
ing a system with 5 whales to one with 40 whales, each
with packet generation every 30 timesteps.

We have shown a number of methods for storing and
erasing packets, using the single and the multiple packet
models. By using the single packet model to find the
mean storage per whale and the multiple packet model
to find the variance, one can efficiently design a system
with reasonably-size storage requirements at each node
and low packet loss.

Though this model is well-suited to design and evalu-
ate moderately delay-tolerant applications, such as the
above biological information acquisition system, the same
methodology can be also used to model and evaluate other
systems that use our augmented Infostation model.

References

[1] H. Wang, J. Elson, L. Girod, D. Estrin, and K.
Yao, “Target Classification and Localization in Habi-
tat Monitoring”, IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP
2003), Hong Kong, China, April 2003.

[2] I.G. Priede, “Wildlife telemetry: an introduction” in
“Wildlife telemetry: remote monitoring and track-
ing of animals”, Ellis Horwood, I.G. Priede and
S.M. Swift, eds., Chichester, U. K., 1992, pp. 3-25.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci, “Wireless sensor networks: a survey”,

Computer Networks, vol. 38, no. 4, pp. 393–442,
March 2002.

[4] A. Iacono and C. Rose, “Infostations: New Perspec-
tives on Wireless Data Networks”, WINLAB techni-
cal document, Rutgers University, 2000.

[5] Z.J. Haas, J. Deng, P. Papadimitratos and S. Sa-
jama, “Wireless Ad Hoc Networks”, Encyclopedia of
Telecommunications, John Proakis, editor, John Wi-
ley, 2002.

[6] T. Small and Z.J. Haas, “The Shared Wireless Infos-
tation Model – A New Ad Hoc Networking Paradigm
(or Where there is a Whale, there is a Way)”, ACM
MOBIHOC’03, Annapolis, Maryland, June 2003.

[7] L. Kleinrock, “Queueing Systems Volume I: Theory”,
John Wiley & Sons, Inc., 1975.

13


