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Efficient Computations for Evaluating Extended Stochastic Petri      

Nets using Algebraic Operations 
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Abstract: This paper presents an efficient method to evaluate the performance of an extended 
stochastic Petri net by simple algebraic operations. The reachability graph is derived from an 
extended stochastic Petri net, and then converted to a timed stochastic state machine, using a 
semi-Markov process. The n-th moments of the performance index are derived by algebraic 
manipulations with each of the n-th moments of transition time and transition probability. For 
the derivation, three reduction rules are introduced on the transition trajectories in a well-
formed regular expression. Efficient computation algorithms are provided to automate the sug-
gested method. The presented method provides a proficient means to derive both the numerical 
and the symbolic solutions for the performance of an extended stochastic Petri net by simple 
algebraic manipulations. 
 
Keywords: performance evaluation, computation, n-th moment, extended stochastic Petri net. 

 
 
 

1. INTRODUCTION 

For the proper performance evaluation of some 
systems, it is necessary to introduce time delays asso-
ciated with transitions and/or places in Petri net mod-
els. This could be done, for example, through the use 
of stochastic Petri nets (SPN). A SPN is a Petri net in 
which each transition is associated with an exponen-
tially distributed random variable that expresses the 
delay from the enabling condition to the firing of the 
transition [1]. SPNs are extended to a class of gener-
alized stochastic Petri nets (GSPNs) by allowing im-
mediate transitions [1]. An extended stochastic Petri 
net (ESPN) is a useful extension of a GSPN, which 
allows generally distributed transition delays for non-
concurrent transitions [1, 2]. 

The Markovian analysis method based on the con-
struction of the reachability graph is a standard 

analysis tool for the performance evaluation of Petri 
net models [3, 4]. Unfortunately, the application of 
this technique is severely limited by the complexity 
of the solution of the Markov model. For example, 
the method in [5] based on the Markov theory re-
quires n3 multiplications, n2 differentiations, and 
many other computations to derive the mean first 
passage time of a semi-Markov process with n states. 

The use of moment generating function (MGF) has 
been studied [6] as a performance evaluation method 
for the ESPN model. This method converts an ESPN 
model to a state machine Petri net model and derives 
the transfer functions for the passages that represent 
the desired performance measure. The MGF method 
provides a transient solution as well as a steady-state 
solution that is both systematic and useful for the 
derivations of numerous performance measures re-
lated to passages. However, the computations of the 
MGF are rather complex, requiring many Laplace 
transformations and differentiations of complex equa-
tions, as well as the application of Mason's rule to a 
complex graph to derive the transfer function [6]. 
Even though [7] has automated the Mason's rule for 
the SPN, the computation burden of Laplace 
transformations and differentiations still remains.  

To generalize stochastic Deterministic Petri Nets 
(DSPNs) with the generally distributed times, Markov 
Regenerative Stochastic Petri Nets (MRSPNs) were 
introduced by H. Choi. However [8], H. Choi includes 
the restriction that, at most, only one generalized 
distributed time event can be enabled in each marking. 
Under this restricted assumption, the process subordi-
nated in the two regeneration time points is a continu-
ous-time Markov chain, and therefore the subordinated 
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process is analyzed separately with the embedded 
process of the regeneration time events. 

Recently, Telek et al. [9] provided the steady state 
analysis of MRSPNs with age memory policy apply-
ing Laplace Stieltjes transform, and Lindemann [10] 
suggested a Numerical Analysis Method for the steady 
state analysis of the concurrent deterministic cases. 
The transient analysis of the concurrent deterministic 
cases was solved after that by Lindemann in [11]. 
Puliafito et al. [12] provided a solution for the concur-
rent generally distributed cases, remedied with a re-
striction that the k transitions of general distributions 
are enabled simultaneously at an instant of time [12]. 

In most situations, a steady-state solution is 
enough for the performance evaluation of a Petri net 
model. Moreover, in many cases, the mean and the 
variance of a desired performance measure are suffi-
cient. The mean and the variance of a passage of time 
can be obtained simply by the computations using the 
first and the second moments of time delays of the 
transitions that compose the passage. With the above 
motivation in mind, this paper, which is based on 
[13], proposes a simple and systematic method for 
the performance evaluation of an ESPN.  

The proposed method applies the automata theory 
[14] and the probability theory to the Petri net theory. 
The method converts an ESPN model to a timed sto-
chastic state machine with semi-Markovian proper-
ties (SMSMP) in a way similar to the MGF method 
in [6]. However, unlike [6] in which a transfer func-
tion is derived, in our scheme, a set of transition tra-
jectories is derived to specify a performance measure, 
and the performance is then computed from the tra-
jectory set represented by a well-formed regular ex-
pression. The n-th moment of the performance index 
is evaluated from the trajectory set by recursively 
applying three algebraic conversion rules to the regu-
lar expression. Automatic algorithms are also pro-
vided to evaluate the performance measures directly 
from a given SMPSM without deriving trajectories. 
The proposed method provides both a symbolic solu-
tion, as well as a numerical solution. 

  
 2. PERFORMANCE MODEL 

An ESPN is a 7-tuple ( ), , , , , ,P T I O H m F  [2, 6], 
where: { }1 2, , , nP p p p= "  ( )0n >  is a finite set of 
places; { }1 2, , , nT t t t= "  ( )0s >  is a finite set of 
transitions with P T∪ ≠∅  and P T∩ =∅ ; I : 
P T N× →  is an input function where 

{ }0,1,2,N = " ; O : P T N× →  is an output func-
tion; H : P T N× →  is an inhibitor function; m : 
P N→  is a marking whose ith component is the 
number of tokens in the iP  place and the initial 
marking is denoted by 0m ; and F : T R→ , is a 

vector of firing time delays, specified as an extended 
distribution function. 

The firing time delays with extended distribution 
functions are defined such that generalized distribu-
tion functions are allowed for non-concurrent transi-
tions and only exponential distribution functions are 
permitted for concurrent transitions [6]. Two transi-
tions are said to be concurrent at marking m if and 
only if firing one does not disable the other. 

A transition t T∈  is enabled if and only if 
( ) ( , )m p I p t≥  for all p P∈  and ( ) ( , )m p H p t<  

for every p P∈  s.t. ( , ) 0H p t ≠ . An enabled transi-
tion t  may fire at a marking m  yielding the new 
marking m′  according to the following equation:    

( ) ( ) ( , ) ( , )m p m p O p t I p t′ = + − . 

In a graphical representation, places are drawn as 
circles, untimed transitions are depicted using thin 
bars, and timed transitions are drawn as thick bars. 
There are ( , )I p t  directed arcs from a place p  to a 
transition t , ( , )O p t  directed arcs from t  to p , 
and ( , )H p t  directed arcs from p  to t  with a 
small circle rather than an arrowhead. k parallel arcs 
can be drawn as an arc labeled with k. 

Fig. 1 shows an example of an ESPN that corre-
sponds to the machine-repairman model with a buffer. 
For a more detailed description of the problem, the 
reader is referred to [6]. In the ESPN model RPN , the 
firing delays for the transition 1t  have a normal dis-

tribution 2( , )N α σ . 2t  and 5t  have exponentially 
distributed firing delays with rates nλ  and µ , re-
spectively, where n  is the number of the tokens in 
the place 2p . Transitions 3t  and 4t  are immediate. 
Since transitions 2t  and 5t  are concurrent, their 
firing delays have exponential distributions, whereas 
the transition 1t  is not concurrent, and thus its firing 
delay may have any distribution, in this case normal 
distribution. 

Now, we define the timed stochastic state machine 
model, which is our intermediate model for the per-
formance evaluation. An ESPN model can be easily 
converted to a timed stochastic state machine model  

 

7p

4p 6p 8p

5p3p2p1p
1t 2t 3t 4t 5t

2
Ν(α,σ2) nλ µ

  
Fig. 1. ESPN RPN  for the three machine-repairman 

model with a buffer. 
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with help of the ESPN model the reachability graph.   
A timed stochastic state machine is defined to be a 

5-tuple ( , , , , )SM Q E T P S= , where Q is the finite set 
of states, E is the finite set of events, T Q E Q⊂ × ×  
is the transition relation, :P T →  [0, 1] is the transi-
tion probability function, and :S T →  cumulative 
distribution function is the stochastic transition time 
function. The timed stochastic state machine defined 
above is a semi-Markov process, and will be referred 
to as a SMPSM (state machine with semi-Markovian 
properties) throughout this paper. 1 2( , , )P q qσ  
represents the transition probability with which the 
transition from the state 1q  to the state 2q  occurs 
by an event σ . ( )E q  denotes the set of events that 
can occur in the state q; for each state q Q∈ ,  

( ) ( , , ) 1E q q P q qσ σ′∈ ′∑ ∑ = . For consistency, when 
there is no event that can occur in a state q, we set 

{ }( ) :E q ε=  and ( , , ) : 1P q qε = . For a transition t, 
( )S t  denotes the cumulative distribution function of 

the transition time of t when t is enabled. 
The set of trajectories of transitions, *T  is de-

fined as *
0

: i
i

T T
∞

=
= ∪ , where the element of 0T  can 

be thought of as a transition with the null event and is 
called the null trajectory. A null trajectory is denoted 
by η . 1 2( , )FT q q  denotes the set of all the possible 
trajectories that begin from 1( )q Q∈  and end at 

2 ( )q Q∈  , visiting 2q  for the first time. 
A SMPSM corresponds to a state machine PN [6], 

and an ESPN model can be converted to a SMPSM 
model, using the conversion procedure of an ESPN 
model to a state machine PN in [6]. More specifically, 
from an ESPN model, the reachability graph can be 
obtained. Then, by removing the vanishing markings, 
a SMPSM model for the ESPN model is achieved. 
The set of the tangible markings in the reachability 
graph is the set of the states in the SMPSM model, 
and the transition relation between the tangible mark-
ings in the reachability graph is the transition relation 
of the SMPSM model. 

Consider a marking m of an ESPN, a set of enabled 
transitions { }1 2, , , dt t t" ( 1)d ≥ , and the random fir-
ing time delay jX  for a transition jt  (1 )j d≤ ≤ . 

Let it′  be the transition in the SMPSM model that 
corresponds to the transition it  of the ESPN model. 
The transition probability ( )iP t′  is as follows: 

 
{ }( ) ,i i jP t P X X j i′ = ≤ ≠ ,  

0
1 ,

( ) (1 ( )) ,i j
j d j i

f F dτ τ τ
∞

≤ ≤ ≠
= −∏∫  (1) 

1 2 0 1 0 1 0 1

1 1 1 0 0 1 0 1

1 1 0 1 1 0 0 1

0 2 0 1 1 0 0 1

0 2 0 1 0 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0

0 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1

0 1 1 0 1 0 0 11M

2M

3M

4M
5M

6M

4V

3V

2V
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2t
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1t
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5t 2t
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1t4tt5
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Fig. 2. Reachability graph for the ESPN RPN . 
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Fig. 3. SMPSM model $M_R$ for the ESPN model 

RPN . 
 

where ( )jf τ  is the probability density function and 

( )jF τ  is the cumulative distribution function of the 

firing time delay of the transition jt . The cumu-lative 

distribution function ( )( )iS t τ′  for the transition it′  is 
as follows: 
 

1
( )( ) { min ( ) }i j

j d
S t P Xτ τ

≤ ≤
′ = ≤   

1
1 (1 ( )).j

j d
F τ

≤ ≤
= − −∏  (2) 

 
The reachability graph of the ESPN model in Fig. 

1 is shown in Fig. 2, with the corresponding SMPSM 
model shown in Fig. 3. In the reachability graph, the 
tangible markings M1, M2, M3, M4, and M5 are repre-
sented by ellipses and the vanishing markings V1, V2, 
V3, and V4 are represented by boxes. After removing 
the vanishing markings from the reachability graph 
for an ESPN model, the SMPSM model for the ESPN 
model is obtained, which for our example is shown in 
Fig. 3. The state qi in the SMPSM MR corresponds to 
the marking state Mi in the reachability graph. 

In particular, the state q1 in MR corresponds to the 
marking M1 in the reachability graph. Since the only 
transition t2 is enabled solely at the marking M1, 

1( ) 1P e =  and 2
1( ) 1 tS e e λ−= − . The transition prob-

abilities and the transition time distributions for 2e , 

7e , and 8e  are obtained as follows: 2( ) 1,P e =  
2

2( ) ( , )S e N α σ= , 7 7( ) 1, ( ) 1 tP e S e e µ−= = − , and 
2

8 8( ) 1, ( ) ( , )P e S e N α σ= = . 
The state q3 corresponds to the marking M3, and 
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the transitions t2 and t5 are enabled simultaneously at 
the marking. Therefore, by applying (1) and (2), we 
obtain the transition probabilities and the transition 
time distributions for e3 and e4 as follows:  

3( )
2

P e µ
λ µ

=
+

, (2 )
3( ) 1 tS e e λ µ− += − , 

4
2( )

2
P e λ

λ µ
=

+
, and (2 )

4( ) 1 tS e e λ µ− += − . Simi-

larly, we can obtain 5( )P e µ
λ µ

=
+

, 

( )
5( ) 1 tS e e λ µ− += − , 6( )P e λ

λ µ
=

+
, and 

( )
6( ) 1 tS e e λ µ− += − . 

 
3. COMPUTATION OF THE PERFORM-

ANCE MEASURE AND REDUCTION RULES 

( )p t denotes the probability of the transition t T∈  
in a SMPSM and nt  ( 1)n ≥  denotes the n-th mo-
ment of the transition time of t. The definitions for 

( )P ⋅  and n⋅  are easily extended over to *T . 

For a transition trajectory 1 2 lu t t t= "  ( lt T∈ for 
1 )i l≤ ≤ , 1 2 1 2( ) ( ) ( ) ( )l lP t t t P t P t P t=" " . Let xi 
denote the transition time of a transition ti. Then,  

1

1 2 1 2 1 2( ) ( , , , )n
l l l ln

x

t t t x x x f x x x dx= + + +∫" " " "

2 1,dx x"   

where 1 2( , , , )lf x x x"  is the joint probability den-
sity function of xi's (1 )i l≤ ≤ . From the definition, 

0 1u =  for *u T∈ . For consistency, 

( ) : 1, : 0nP η η= =  ( 1)n ≥ , and 0 : 1η = . It is known 
that the following equation holds: 
 

1 2

1 2
1 2

1 2 1 2
1 2

, , , 0

!( ) .
! ! !

k

k
k

ii in
l k

ki i i n
i i i

nx x x x x x
i i i+ + + =

≥

+ + + = ∑
"
"

" "
"

 
With the above equation and our definitions, we 

conclude that  
 
 1 2 1 2( ) ( ) ( ) ( )k kP u u u P u P u P u=" "  (3) 
 
and 

1 2
1 2
1 2

1 2 1 2
1 2

, , , 0

!
! ! ! k

k
k

k ki in i
ki i i n

i i i

nu u u u u u
i i i+ + + =

≥

= ∑
"
"

" "
"

 (4) 

( 0)n ≥  for *
1 2, , , ku u u T∈" . 

Now, consider a sample trajectory w in the 
SMPSM, which begins at q1 and ends at q2, visiting q2 
for the first time. ( )wτ  denotes the time for the first 
passage through q2 for the sample trajectory w and 

( )f xτ  denotes its probability density function. The 
initial moment of the first passage time, T1 

is
0

( )xf x dxτ
∞
∫ . By Bayes's theorem of total probabil-

ity,
1 2( , )( ) ( | ) ( )

Fu T q qf x f x w u P uτ τ∈= =∑ and from 

the definition, 
0

( | )xf x w u dx uτ
∞

= =∫ . Therefore, 

 
  

1 2
1

( , )
( )

Fu T q q
T P u u

∈
= ∑ . 

 
In a similar way, the n-th moment of the first pas-

sage time, nT  is derived as follows: 
 

0
( )n

nT x f x dxτ
∞

= ∫  

1 2
0

( , )
( | ) ( )

F

n

u T q q
x f x w u P u dxτ

∞

∈
= =∑ ∫  

1 2( , )
( )

F
n

u T q q
P u u

∈
= ∑ . 

 
To derive Tn from a regular expression [14] which 

denotes 1 2( , )FT q q , the n-th moment of a passage 
time, ns  is defined for a regular expression s, 
which corresponds to a non-empty set of trajectories 
D(s). The passage probability ( )sπ  is defined as 
well.  
 
  

( )
( ) : ( )

u D s
s P uπ

∈
= ∑  

  
( )

: ( )n n
u D s

s P u u
∈

= ∑  for 0n ≥  

 
From the above definition, it follows that 

0 ( )s sπ=  and 0 1η = . For consistency, 

( ) : 0π ∅ =  and 0 : 0∅ =  for 0n ≥ . Furthermore, it 
also follows from the above definition that 

( )n nt P t t=  for each t T∈ . If sf is a regular ex-

pression, which denotes 1 2( , )FT q q , then n f n
T s= . 

And, ( ) 1fsπ −  if there exists a passage from q1 to q2. 
 

Next, we derive reduction rules for the computa-
tion of the passage probability and the passage time, 
for a passage represented by a well-formed regular 
expression. First, we introduce a special class of the 
regular expression, called the unambiguous regular 
expression (URE). 
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The URE is a regular expression that does not con-
tain any duplicated expression as the unambiguous 
rational subsets [15]. Its formal definition is given as 
follows. 
 

Definition 1 [Unambiguous regular expression] 
Unambiguous regular expression over T and the sets 
that they denote are defined recursively as follows. 

1. A regular expression ∅  is unambiguous. 
 2. A regular expression η  is unambiguous. 
 3. A regular expression t T∈  is unambiguous. 

Let r and s be unambiguous and denote the trajec-
tory sets R and S, respectively. 

4. A regular expression (r+s) is unambiguous 
if R S∩ =∅ . 

 5. A regular expression (rs) is unambiguous if                 
   1 2,u u R∀ ∈ , 1 2,v v S∈ , 1 1 2 2u v u v=  implies  
    1 2u u=  and 1 2u u= . 
 6. A regular expression r* is unambiguous if ri-1 r is 

unambiguous for 2i ≥  and i jr r+  is 
   unambiguous for i j≠ .    
 

For convenience, we will use the same symbol to 
represent trajectory *u T∈ and a regular expression 
which denotes {u}. From the definition of Kleene 
closure [14], * η∅ = . For an index set A, the regular 
expression 1 2 3r r rα α α+ + +" ( )i Aα ∈  is denoted 
by A rαα∈∑ . For a regular expression r, the set of 
trajectories represented by r is denoted by D(r). 

The URE can be derived using general derivation 
methods for the regular expressions. Since all transi-
tions are distinct, it is intuitively true that a regular 
expression is unambiguous if any trajectory is not 
considered more than once in the derivation of the 
regular expression. The regular expression derived by 
the following algorithm is unambiguous. 

The following MR algorithm derives unambiguous 
regular expressions by an induction rule, where  
{ |1 }i sq i N≤ ≤  denotes the set of states. 
 

MR Algorithm 
- Basis: 0

1ij pr t t= + +"  ( or ∅  if there is no 

admissible transition ), where 1{ , , }pt t"  is the 

set of all admissible transitions from iq  to jq . 
 

- Induction Rule: 1 1 * 1 1( )( ) ( )k k k k k
ij ik kk kj ijr r r r r− − − −= +   

 
i and j (i ≠ j), k

ijr ( k
ijr η+ for i = j) denote the set 

of all trajectories from qi to qj while avoiding any 
state numbered higher than k as the induction rule in 
[14]. Consequently, the regular expression sN

ijr  de-

notes the set of all the trajectories from qi to qj for 
i≠j, and sN

ijr η+  denotes the set of all the trajecto-
ries from qi to qj. This induction rule is slightly dif-
ferent from the induction rule in [14] in the fact that 
η  is added for i=j after the entire induction. In our 

version, ( )k
ijD rη∉  for each k

ijr . This property is 
necessary for derivation of a well-formed regular 
expression. 

It can be proved that a regular expression derived 
by the above algorithm is unambiguous, since 0

ijr 's 

are unambiguous and k
ijr 's obtained by the above 

induction rule are unambiguous when 1k
ikr − , 1k

kkr − , 
1k

kjr − , and 1k
ijr −  are unambiguous. In general, any 

regular expression derived in a natural way is unam-
biguous in general. 

In what follows, we study the properties of ( )π ⋅  
and n⋅ over regular expressions. Since regular ex-
pressions are based on the three operations, concatena-
tion, union, and Kleene closure, the conversions of 

( )π ⋅  and n⋅  are studied over these three operations. 
 
 Lemma 1: For an URE 1 2 ks s s" , 

1 2
1 2
1 2

1 2 1 2
1 2

, , , 0

!
! ! ! k

k
k

k ki in i
ki i i n

i i i

ns s s s s s
i i i+ + + =

≥

= ∑
"
"

" "
"

                                     ( 0)n ≥  
 Proof: 

1 2 1 2( ) { | ( )k k i iD s s s u u u u D s= ∈" " for 1 }i k≤ ≤ . 
Since 1 2 ks s s"  is unambiguous, all 1 2 ku u u" 's are 
distinct. With this fact and the definitions, the 
remaining part of the proof is as follows. 
 

When ( )iD s ≠ ∅  for 1 i k≤ ≤ , 

1 1 2 2
1 2 1 2 1 2

( ) ( ) ( )
( )

k k
k k kn n

u D s u D s u D s
s s s P uu u uu u

∈ ∈ ∈
= ∑ ∑ ∑" " " "

 
Using the equations (3) and (4), the right-hand side 

of the above equation becomes: 

1 2
1 1 1 2

1 2

1 1 2
1 2( ) ( )

, , , 0

!( ) ( )
! ! ! k

k k k
k

k ki i i
ku D s u D s i i i n

i i i

nPu Pu u u u
i i i∈ ∈ + + + =

≥

∑ ∑ ∑
"
"

" " "
"

1
1 2 1 1
1 2

1 1
1 2 ( ) ( )

, , , 0

! ( ) ( )
! ! ! k

k k k
k

k ki i
ki i i n u D s u D s

i i i

n Pu u Pu u
i i i+ + + = ∈ ∈

≥

= ∑ ∑ ∑
"
"

"
"

 

1 2
1 2
1 2

1 2
1 2

, , , 0

!
! ! ! k

k
k

ki i i
ki i i n

i i i

n s s s
i i i+ + + =

≥

= ∑
"
"

"
"

for 1n≥ .  
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Note that the above relation also holds for n=0. 
 

Since n∅  for 0n ≥ , the relation also holds for 

the cases that ( )iD s =∅  for some 1 i k.≤ ≤      �  
 

Corollary 1: For an URE 1 2s s , 1 2 1( ) ( )s s sπ π=  

2( )sπ , 1 2 2 1 1 2( ) ( )s s s s s sπ π= +  and  
 1 2 2 1 1 2 1 22 2 2( ) ( ) 2s s s s s s s sπ π= + + . 
 

Lemma 2: For an URE 1 2 ks s s+ + +" ,  

1 2 1 2k kn nn ns s s s s s+ + + = + + +" "  ( 0)n ≥  
 

Proof: Since 1 2 ks s s+ + +"  is unambiguous, 
( ) ( )i jD s D s∩ =∅  for 1 ,i j k≤ ≤  s.t. i j≠ . 

Therefore, if ( )iD s ≠ ∅  for 1 i k≤ ≤ , 

1

1 2
( )

( )
ii k

k n n
D s

s s s P u uγ γ
γ ≤ ≤∈

+ + + = ∑"
∪

 

1( ) ( )
( ) ( )

k
n n

D s D s
P u u P u uγ γ γ γ

γ γ∈ ∈
= + +∑ ∑"    

1 kn ns s= + +" . 
 

Since ( ) 0π ∅ =  and 0n∅ = , the relation also 

holds for the cases that ( )iD s =∅  for some 
1 i k≤ ≤ .                                  �  
 

Corollary 2: For an URE 1 2s s+ ,  

1 2 1 2( ) ( ) ( )s s s sπ π π+ = + , 1 2 1 2( ) ( ) ( )s s s sπ π π+ = +   

1 2 1 2s s s s+ = +  and 1 2 1 22 2 2s s s s+ = + . 
 

Lemma 3: For an URE *s  with ( ) 1sπ < , 

* 1( )
1 ( )

s
s

π
π

=
−

 and for 1n ≥ ,  

*
1

1

1 ( )
(1 ( ))

n
n
jjn j

s s
sπ +

=
= Ψ

−
∑ , 

where 

1 2
1 2
1 2

1 2
1 2

, , , 1

!( )
! ! ! j

j
j

n
j ki i i

ji i i n
i i i

ns s s s
i i i+ + + =

≥

Ψ = ∑
"
"

"
"

 

 

Proof: *

00
( ) ( ) ( ).k k

kk
D s D s D s

∞ ∞

==
= = ∑∪  From Lemma 2, 

*

0

k
n k n

s s
∞

=
= ∑  

     
0

k
nk

s
∞

=
= ∑   (5) 

From Lemma 1, 
 
 k

nn
s ss s= "  

1 2
1 2
1 2

1 2
, , , 0

!
! ! ! k

k
k

i i i
ki i i n

i i i

n s s s
i i i+ + + =

≥

= ∑
"
"

"
"

  

                       (6) 
 

For 1n ≥ , (6) can be rewritten as follows. 
 

1 2
1 2
1 2

0
1 21

, , , 1

!(6) ,
! ! ! j

j
j

L
k j

k j i i i
jj i i i n

i i i

ns C s s s
i i i

−

= + + + =
≥

=∑ ∑
"
"

"
"

 (7) 
 
where L= min(k,n). Since, by the definition of the 
binomial coefficient [16], 0k jC =  for j > k, the 
equation~(\ref{eqn:sj}) can be written as follows: 
 

1 2
1 2
1 2

0
1 21

, , , 1

! .
! ! ! j

j
j

L
k jk

k j i i in jj i i i n
i i i

ns s C s s s
i i i

−

= + + + =
≥

=∑ ∑
"
"

"
"

     (8) 
 

Substituting equation (8) into equation (5), we ob-
tain that 
  

  0
0 1 0

( )! ( ).
! !

n
kk n

jnk j k

k js s s
k j

∞ ∞

= = =

+
= Ψ∑ ∑∑  (9) 

 
Now substituting  
 

          1
0

( )! !
! (1 )

k
j

k

k j jx
k x

∞

+
=

+
=

−
∑ ,        (10) 

 
which holds when 0 1x≤ < , into the equation (9), 
we obtain the Lemma for 1n ≥ . 
 

For n=0, the equation (6) becomes ( )ksπ . There-
fore, 

*

0
( ) ( )k

k
s sπ π

∞

=
= ∑  

    1
1 ( )sπ

=
−

. 

 
The above proof also holds for s = ∅ .        � 

 
Corollary 3: For an URE *s  with ( ) 1sπ < , 

*
2

1
(1 ( ))

s s
sπ

=
−

 and 

2*
22 32

1 2
(1 ( )) (1 ( ))

s s s
s sπ π

= +
− −

. 
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It would be impossible for a Kleene closure opera-
tion *s  with ( ) 1sπ =  to be contained in a regular 
expression that denotes a set of first passage trajecto-
ries, since every intermediate loop in a trajectory has 
another branch with a positive transition probability. 

On the basis of Lemma 1, Lemma 2, and Lemma 3, 
the following theorem is obtained immediately as the 
main result for the proposed performance evaluation 
method. 
 

Theorem 1: Let sf be an URE which denotes 
1 2( , )FT q q . The n-th moment of the first passage time 

from q1 to q2 in an SMPSM, f n
s , can be repre-

sented by P(t) and nt 's ( 1n ≥ ) for each t T∈  
through the conversions of the regular expression 
with the three operations.  

 
Theorem 1 together with Lemma 1, Lemma 2, and 

Lemma 3 provides the basis of the proposed per-
formance evaluation method. 
It should be noted that the proposed algorithm cannot 
be applied to MRSPNs and DSPNs. Since MRSPNs 
and DSPNs allow for concurrent transitions with 
generally distributed firing time, the transition time 

ix  of a transition it  is not dependent on the adja-
cent ,ix so that  1 2 1 2( ) ( ) ( )lf x x x f x f x⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅  

( )kf x . Therefore, the equation (3) is not satisfied in 
the case of MRSPNs and DSPNs. 
 
4. PERFORMANCE EVALUATION PROCE-

DURE 

The performance of various systems such as manu-
facturing systems and communication systems can be 
evaluated according to the procedure shown in Fig. 4. 

For a given system and a performance measure to 
be used for evaluation, the system is first modeled as 
an ESPN. The ESPN model is then converted to an 
SMPSM model as presented in Section 2. From the 
SMPSM model, the set of transition trajectories is 
obtained, according to the required performance 
measure, and the trajectories are represented by 
UREs. By applying the three reduction rules to the 
UREs, the performance measure is then evaluated. In 
this section, we will provide an algorithm, which will 
facilitate the derivation of the set of transition trajec-
tories and the application of the conversion rules in 
an integrated manner, so that the performance meas-
ure can be evaluated directly from the SMPSM 
model. 

The steps in the performance evaluation process 
will depend on the particular performance measure. 
Throughout the balance of this section, we will as- 
sume that the performance evaluation procedures are: 

Extended Stochastic Petri Net

SMPSM (Reachability graph)

System to be evaluated + Performance measure

Passage represented
by a URE

Three reduction rules

Solution

Computation
Algorithm

  
Fig. 4. Flow chart of the performance evaluation pro-

cedure. 
 

the first passage of time, the recurrent time, and the 
steady-state probability. 
 
4.1. The first passage of time 

The first passage of time is the time duration from 
leaving one state, 1q , until the first time the system 
visits another state, 2q . The n-th moment of the first 
passage of time can be obtained by applying Theo-
rem 1 to the SMPSM model together with Lemma 1, 
Lemma 2, and Lemma 3.  The procedures to derive 
the URE, which denotes FT ( 1q , 2q ) and to apply 
the three conversion rules to the URE are combined 
and automated by the following algorithm. 

The algorithm for the first passage of time, which 
is referred to as the FPT algorithm, is obtained by 
applying Theorem 1 to the MR algorithm together 
with Lemma 1, Lemma 2, and Lemma 3. By letting 

: ( )k k
ij ijp rπ=  and ( ) :k k

ij ij n
a n r= and applying the 

conversion rules, the FPT algorithm is obtained. Let 
{ 1 }i sQ q i N= ≤ ≤  be the set of the states in the 

SMPSM model under consideration. The FPT algo-
rithm gives the n-th moment of the first passage of 
time from a state Iq Q∈  to a state Fq Q∈ when 

I Fq q≠ . 
 
FPT Algorithm 
(1) Basis: Let ijA  denote the set of all admissible 

transitions from iq to jq . 

.
0

0,

( ) ( ) .
ij

i F

ij
i n

t A

if q q

a n P t t Otherwise
∈

=
= 


∑  

(When 0, ( ) 0.ij ijA a n= ∅ = )  
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(2) Induction Rule: 
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1 1 2

1 2 1 20 0
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k
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k k
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jj l l ikk
l l
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i
a l a l Otherwise

l lp

i

−

−

− −

− +
= + + =

≥

Φ =

−

−

 =






∑ ∑
"
"

"
"

     
(3) For ,i j  s.t. i Iq q=  and j Fq q= , ( )SN

ija n  
is the n-th moment of the first passage of time from 

Iq  to Fq .    

The recursive equation for ( )k
ija n  becomes 

somewhat complicated as n increases. The FPT al-
gorithm is most efficient for calculation of low order 
moments. For instance, in the evaluation of the mean  
and the variance of the first passage of time, only 

( )k
ija n -s for 2n ≤  are of interest, and the recursive 

equations are simplified as follows: 

1 1
1

1 ,
1

k k
ik kjk k

ij ijk
kk

p p
p p

p

− −
−

−
= +

−
 

1 1 1 1
1 1 1

1 1 2 1

1

1 (1 ) 1

,

k k k k
kj ik kjk k k kik

ij ik kk kjk k k
kk kk kk

k
ij

p p p p
b b b b

p p p

b

− − − −
− − −

− − −

−

= + +
− − −

+

 

and 

1 1 1 1
1 1 1

1 1 2 1

1 1
1 1 1 1 1

1 2 1 2

1 1
1 1 1

1 1 3

1 (1 ) 1

2 2
(1 ) (1 )

12 2 (
1 (1 )

k k k k
kj ik kjk k k kik

ij ik kk kjk k k
kk kk kk

k k
kjk k k k kik

ij ik kk kk kjk k
kk kk

k k
ik kjk k k

ik kj kkk k
kk kk

p p p p
c c c c

p p p

p p
c b b b b

p p

p p
b b b

p p

− − − −
− − −

− − −

− −
− − − − −

− −

− −
− − −

− −

= + +
− − −

+ + +
− −

+ +
− −

2) ,
 

where : (0), : (1),k k k k
ij ij ij ijp a b a= = and : (2)k k

ij ijc a= . 

Since the computational complexity of the MR al-
gorithm is 3( )SO N , the above algorithm is also 

3( )SO N  for the computation of the low order mo-
ments. Moreover, by using the FPT algorithm, both 
symbolic solutions as well as numerical solutions can 
be obtained. 
 
4.2 Recurrence time 

The recurrence time is the time for a system to re-
generate a state; i.e., it is the first passage of time 
from a state Fq  to itself. Therefore, the recurrence 
time can be evaluated in a similar way to the evalua-
tion of the first passage of time.  

One possibility for evaluating the recurrence time 
of a state Fq  in an SMPSM is to use the FPT algo-
rithm. To do so, an extra state Fq′  is introduced and 
all the transitions from the state Fq  are altered to 
occur from the state Fq′ . Then, the first passage of 
time from Fq′  to Fq  is the recurrence time for Fq , 
which can be obtained by the FPT algorithm as pre-
viously indicated. 

Let us derive a formula for the n-th moment of the 
recurrence time. Let Ns

iFr denote the set of trajectories 
from a state iq  to the state Fq  as the first visit and 

0
Fir denote the set of admissible transitions from the 

state Fq  to a state iq . 0
FFr  denotes the set of ad-

missible transitions from the state Fq  to the state 
itself. Consider the SMPSM with the additional 
state Fq′ . Then, ( , )F F FT q q′  can be denoted by rs  
as follows: 

 

,

0 0

1
.S

S

N
r Fi FFiF

i N
i F

s r r r
≤ ≤
≠

= +∑  

 
By applying Lemma 1 and Lemma 2, 

1 2, 1 2 ,
1, 2

,

1 21
0

1 0

! ( ) ( )
! !

! ( ) ( ) .
!( )!

S

S Fi FF

S

S Fi FF

N
r iFn i nii N i i n t A t A

i F i i

n
N

iF n l nli N l t A t A
i F

ns P t t r P t t
i i

n r P t t P t t
l n l

≤ ≤ + = ∈ ∈
≠ ≥

−
≤ ≤ = ∈ ∈
≠

= +

= +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

          (11) 
 

Therefore, we obtain the n-th moment of the recur-
rence time from the FPT algorithm as follows. 
 

,1 0

! ( ) ( ) ( )
!( )!

S

S Fi FF

n
N

r iF n l n
i N l t A t A

i F

ns a l P t t P t t
l n l −

≤ ≤ = ∈ ∈
≠

= +
−∑ ∑ ∑ ∑

(12) 
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4.3 Steady-state probability 
The steady-state probability of a state Fq  in an 

SMPSM can be derived from its mean recurrence 
time and its special mean recurrence time, which is 
defined as a mean recurrence time on a graph with all 
the transition delays set to zero, except that the transi-
tion delays from the state Fq are timed transitions. 
The special mean recurrence time for Fq is calcu-
lated as follows: 

 
'

.
1

( )
S Fi

R
i N t A

T P t t
≤ ≤ ∈

= ∑ ∑              (13) 

 
From (12), the mean recurrence time for Fq  is: 
 

,

,

1

'

1

{ ( ) (1) ( )}

( )

{ (1) ( )} .

S

S Fi Fi

FF

S

S Fi Fi

N
R iF

i N t A t A
i F

t A

N
RiF

i N t A t A
i F

T P t t a P t

P t t

a P t T

≤ ≤ ∈ ∈
≠

∈

≤ ≤ ∈ ∈
≠

= +

+

= +
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∑

∑ ∑ ∑

  (14) 

 
The steady-state probability for Fq  can now be ob-

tained by calculating '
R RT T with the help of (13) 

and (14). 
 

5. EXAMPLE 

In this section, we detail how the methods pro-
posed in this paper can be efficiently applied to 
evaluate the performance of a system. Two examples 
are presented. The first example shows the effective-
ness of the FPT algorithm. 

 
Example 1 (The recurrence time and the steady-
state probability of a machine-repairman model) 

The recurrence time and the steady-state probabil-
ity are evaluated for the machine-repairman model 
using a buffer, which has been considered in Section 
2. Table 1 summarizes the transition probabilities and 
the transition times in the SMPSM RM  model, 
where iF  is the cumulative distribution of the 
transition delay for a transition ie , and ip  is the 
transition probability for a transition ie . In this 
example, it was assumed that λ  = 0.5/hour, µ = 
1/hour, α  = 0.5 hour, and σ =0.1 hour, as in [6]. 
The numerical values of the transition probability, 
and the first and the second moments of the transition 
delay are calculated and shown in Table 1. 

We consider here the recurrence time of 1q . By 
applying the RT algorithm, the first moment of the 
recurrence time, (1)RT , and the second moment of 
the recurrence time, (2)RT , are derived. The basis 
for the RT algorithm is given as follows:  

0
12 1(0)a p= , 0

12 1(0)a p= , 0
23 2(0)a p= , 0

31 3(0)a p= , 
0
34 4(0)a p= , 0

42 5(0)a p= , 0
45 6(0)a p= , 

0
56 7(0)a p= , 0

64 8(0)a p=  and 0 (0) 0ija =   

otherwise; 0
12 1 1(1)a p e= , 0

23 2 2(1)a p e= ,  
0
31 3 3(1)a p e= , 0

34 4 4(1)a p e= , 0
42 5 5(1)a p e= ,  

0
45 6 6(1)a p e= , 0

56 7 7(1)a p e= , 0
64 8 8(1)a p e= , 

and 0 (1) 0ija =  otherwise; 0
23 2 2 2(2) ,a p e=  

0
31 3 3 2(2) ,a p e= 0

34 4 4 2(2) ,a p e= 0
42 5 5 2(2)a p e= , 

0
45 6 6 2(2) ,a p e= 0

56 7 7 2(2) ,a p e=
0
64 8 8 2(2) ,a p e=  and 0 (2) 0ija =  otherwise. 

 
We then apply the FPT algorithm to obtain the 

6
1( )ia n -s for 0 2n≤ ≤ . Since 1 jA =∅  except for 

j=2 . Equation (12) provides that 

!
1 121 .!( )!

0
( )S

n
Nn

r n ll n l
l

s a l p e −−
=

= ∑  

Therefore, we have that (1)RT = 4.75 hours and 
2(2) 43.9RT hour= . The above mean recurrence time 

of 1q , agrees with the result of [6]. Finally, we can  
 

Table 1. Transitions of the RM model. 

Numerical Values  
Tran-
sition 

 
iF   

 
ip  

 
ie  

 
2ie  ip ie

 
2ie

 

1e  21 te λ−− 1 1
2λ

 
2

1
2λ

 1 1 2 

2e  2( , )N α σ 1 α  2 2α σ+  1 0.5 0.26

3e  (2 )1 e λ µ− +−
 2

µ
λ µ+

 

1
2λ µ+

 
2

2
(2 )λ µ+

 

0.5 0.5 0.5 

4e  (2 )1 e λ µ− +−
 

2
2

λ
λ µ+

 

1
2λ µ+

 
2

2
(2 )λ µ+

 

0.5 0.5 0.5 

5e  ( )1 te λ µ− +−
 

µ
λ µ+

1
λ µ+

 
2

2
( )λ µ+

 2/3 2/3 8/9 

6e  ( )1 te λ µ− +−
 

λ
λ µ+

1
λ µ+

 
2

2
( )λ µ+

 1/3 2/3 8/9 

7e  1 te µ−−  1 1
µ

 
2

2
µ

 1 1 2 

8e  2( , )N α σ 1 α  2 2α σ+  1 0.5 0.26
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compute the variance of the recurrence time of 1q is 
2(2) (1)R RT T−  221.3 hour= . 

Through symbolic manipulation of the FPT algo-
rithm and (12), the mean recurrence time and the 
variance of the recurrence time of 1q  can be derived 
in terms of λ , µ , α , and σ . 

The symbolic values in Table 1 are assigned as the 
basis for the FPT algorithm and after applying the 
induction rule of the algorithm and the Equation (12), 
the obtained mean recurrence time of 1q , (1)RT , 
is as follows: 

  
2 2 2

2 3 2
2 2 2 2 2(1) ( 1) 1.RT λ λ λ λ λα

µ µµ µ µ
= + + + + + +  

In the MGF-based approach introduced by [6], a 
transfer function is used. The transfer function W for 
the transition delay performance measure is given by: 

  i i iW p M= 1 2 3 6 7 8

4 5 2 6 7 8

(1 )
,

1
W W W W W W

W
W W W W W W

−
=

− −
 

where i i iW p M=  and iM  is the moment generat-
ing function for the transition delay of the transition 

ie . From W , one can compute all the moments in 
particular, 

0
(1) ( )R

s
T W s

s
δ
δ =

=  

and 
2

2
0

(2) ( )R
s

T W s
s
δ
δ =

= . 

The MGF-based approach is useful when the com-
plete distribution for a performance measure is re-

quired. However, the derivations of ( )W s
s
δ
δ

 and 

2
( )

S
W sδ

δ
 are rather complex. 

The steady-state probability of the state 1q  is ob-

tained as the ratio of '
RT to (1)RT . 

From (13), '
1 1 1.RT p e= =  Therefore, the 

steady-state probability of the state 1q is 
' 1 4.75 0.21.R RT T = =  
The following example derives the mean service 

time of a station in a timer-controlled token bus net-
work. It shows that the proposed method is helpful 
for deriving the analytic solution even when the 
model has a variable. 

Example 2 (Service time of a timer-controlled to-
ken bus network) 

The performance model is based on [17], and the 
highest access class of the IEEE 802.4 token bus 
network is considered. 

The operation of a station (1 )i i N≤ ≤ in the timer-
controlled token bus network is modeled by an ESPN 
as in [17]. Fig. 5 shows the ESPN model tbPN . The 
detailed description of the model is referred to in [17]. 

When a station receives the right for a medium 
( 3p  is marked), the internal timer is set to its initial 
value iH ( 5p is marked). Before the timer expires, a 
station may transmit messages. Place 2p  represents 
the transmission queue of the station with a buffer 
capacity of iK . The number of tokens in 2p  is the  
number of frames waiting to be transmitted. The 
frames are arrived as a Poisson process with parame-  
ter iλ  (firing of 1t ) and transmitted with service 
times of exponential distribution with parameter iµ  
(firing of 4t ). If there are no more frames to be 
transmitted or the timer expires ( 5t ), the right for the 
medium is passed to the next station ( 8p ). If the 
timer expires during transmission of the current data 
frame (when 4p  is not marked), the right for the 
medium is passed to the next station following com-
pletion of that transmission. 
 

1p

1t
Ki

λi

2p

3p

4p
5p

7p
6p

8p

2t

5t

3t

4t

6t

8t

7t

µi Hi

 
Fig. 5. An ESPN model of the timer-controlled token 

bus network: tbPN . 



International Journal of Control, Automation, and Systems Vol. 1, No. 4, December 2003          441

The mean service time at a station i , i
sT  can be 

represented as follows: 
 

, ,
0

,
iK

i i i
s a j s j

j
T p T

=
= ∑              (15) 

 
where ,

i
a jp  denotes the probability that there are j  

frames in the transmission queue of the station i  
when the token is arrived at the station i  and ,

i
s jT  

denotes the mean service time of the station i  in the 
case where there are j  frames in the transmission 
queue of the station i  when the token is arrived at 
the station i . 

The mean service time can be obtained only if 

,
i
s jT  is computed [17]. For simplicity of the analysis, 

this paper assumes the exhaustive service. This as-
sumption excludes the firing of the transition 5t . 
Under this assumption, the reachability becomes as is 
shown in Fig. 6. The states 1 2 3( , , )x x x of the reach-
ability graph represent 1x , 2x , and 3x  tokens in 

2p , 4p , and 6p , respectively. In the reachability 

graph, ,
i
s jT  is the mean first passage time from the 

marking ' ( )j jM M  to the marking 0M . 

The SMPSM model for tbPN  can be obtained 
from the reachability graph as shown in Fig. 7. The 
state (1 )iq q K≤ ≤  in tbSM  corresponds to the 

 

0M
0 0 1

4t
1M1 0 1

4t
2M2 0 1

4t

4t
Ki-1 0 1

4t
Ki 0 1

0M'

1M'
1t

1t

1t

1t

...

Ki 1 0 3t

Ki-1 1 0 3t

2 1 0 3t

1 1 0 3t

0 1 0 3t

2M'

K -1M' i

KM' i

K -1M i

KM i   
Fig. 6. The reachability graph for tbPN . 
 

012...

b
bbbc

a a a a
Ki Ki-1

 
Fig. 7. The SMPSM model tbSM  for tbPN . 

marking qM  in the reachability graph. Since the 

transitions , 1q qt − from the state q  to the state  

1(1 1)iq q K− ≤ ≤ −  have the same , 1( )q qP t −  and 

, 1( )q qS t − , they are denoted by b . The transitions 

, 1( )q qP t +  from the state q  to the state 

1(1 1)iq q K+ ≤ ≤ −  have the same , 1( )q qP t + and 

, 1( )q qS t + , and they are denoted by a . 

From (1) and (2), ( ) ,i

i i
P a

λ
λ µ

=
+

( ) ,i

i i
P b

µ
λ µ

=
+

 

1 ,
i i

a b
λ µ

= =
+

 2 2 2
2 ,

( )i i
a b

λ µ
= =

+
 ( ) 1,P c =  

1 ,
i

c
µ

=  and 2 2
1

i
c

µ
= . 

Let ( , )f iS K j denote the URE of the first passage 

from the state j  to the state 0 in tbSM . Then, 
 

, ( , )i
s j f iT S K j=               (16) 

 
( , 1)f iS K  can be derived by induction. (1, 1)fS , 

(2, 1)fS , and the induction rule is obtained as fol-
lows: 
   

(1, 1) .fS c=                          (17) 

(2, 1) ( ) *fS ac b= .                 (18) 

( 1, 1) ( ( ,1) * .f i f iS K aS K b+ =               (19) 

( , 1) ( 1, ) ( ,1).f i f i f iS K J S K j S K+ = −        (20) 

By applying Lemma 1, Lemma 2, and Lemma 3 to 
(17), (18), and (19), 

1 1
,

1

1( 1) .
i

i
i

K
K l

f i iiK
ii

S K λ µ
µ

− −

=
= ∑            (21) 

Applying Lemma 1 to (20), 
 

,
0

( 1) ( ,1) .
j

f i f i
p

S K j S K p
=

+ = −∑          (22) 

 
From (21), we obtain 
 

1
1

,
0 1

1( ) .
i

i
i

K pj
K p l p l

f i i iK
p li

S K j λ µ
µ

−−
− − + −

= =
= ∑ ∑   (23) 
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The variance of the service time can also be ob-
tained from (17), (18), (19), and (20) by applying 
Lemma 1, Lemma 2, and Lemma 3. 

The result derived in this section well corresponds 
to that in [17]. In addition, the performance of the 
timer-controlled token bus network was derived ana-
lytically using only simple algebraic manipulations 
without applying Mason's rule to complex graphs, 
and Laplace transformations and differentiations on 
complex transfer functions. 

 
6. CONCLUSIONS 

In this paper, we have introduced an efficient 
method to evaluate the performance of an ESPN 
through simple algebraic manipulations. The pro-
posed method applies the automata theory and the 
probability theory to the Petri net theory. A perform-
ance measure is represented by a well-formed regular 
expression for the transition trajectories concerned, 
and the computation of the n-th moments of the regu-
lar expression is performed by applying three simple 
reduction rules. In addition to a numerical solution, a 
symbolic solution can be obtained as well. 

The evaluations of the first passage of time, the re-
currence time, and the steady-state probability were 
presented, and an algorithm was provided to auto-
mate the entire computation. When the reachability 
graph of an ESPN model has SN tangible marking 
states, the complexities of the algorithms are 

3( )SO N and the algorithm requires 2( )SO N  memory 
spaces for calculation of the moments of low orders. 
Each step of the algorithm consists of simple alge-
braic operations, and does not need matrix inversion, 
integration, or differentiation. 
Two additions, one subtraction, five multiplications, 
and one division are required at each step to derive 
the mean value for a performance measure. The 
method is efficient for computation of low order 
moments, however, it is inadequate for high orders. 

As a future direction of this work, it may be perti-
nent to consider developing a direct application of the 
proposed method to an ESPN model without the in-
termediate conversion step to an SMPSM model. 
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