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1 Introduction
The sieve-like molds used early paper manufacturing leave characteristic chain
line patterns that can help determine if two pieces of paper were made using the
same mold [1]. Such moldmates can help in establishing chronology, suggest pa-
per preferences, and indicate periods of intense activity of an artist, and the study
of Rembrandt’s prints has occupied a prominent place within this scholarship [2].
There are two basic steps to the automation of the analysis. First, the chain lines
must be accurately marked, extracting points and lines from the x-ray images.
Second, the markings from many x-rays must be compared to find matches. This
paper presents improved algorithms for both of these tasks. Section 2 follows [5]
in replacing the classic Radon transform approach of [3] (which requires that the
chain lines be straight) with a local method that outputs marked grids of points.
The method segments the images, corrects for tilt, filters, conducts a (local) Radon
transform and then concludes with a peak detection. The marked grids from a
large collection of x-rays of Rembrandt’s prints is then used in Section 3 as input
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to the matching algorithm. Previous approaches were based on line-pairs, which
may be problematic due to individual missed lines and to error propagation. The
new approach uses a parameterization based on the Hesse normal form which
transforms the segmented lines into points. A modified Procrustean algorithm is
then applied to optimally match the complete set of points, bypassing issues with
the pairwise line comparisons. The performance of the system is evaluated using a
dataset of 462 radiographs of Rembrandt’s prints [4]. Results and new moldmate
matches are presented in Sec. 4 and compares the chain line approach with the
more traditional watermark-based approach.

2 Extraction of Chain Lines
Radiographs can be overly light or dark (see Fig. 1(a)), of low contrast, and noisy,
making the chain lines difficult to extract in a fully automated way. Accordingly,
we adopt a strategy that minimizes human intervention, leaving the human to
make only a handful of judgements at the start and at the end of a mostly auto-
mated procedure. The full procedure is described in several steps, and shown in
outline in Fig. 1.

2.1 Image Preparation
Each radiograph in the Rembrandt data set contains an identification number, the
Bartsch number, a ruler, and the image of the paper. We remove any image with
fewer than five chain lines. The resolutions of the images may differ, and so it is
necessary to find the dpi (dots per inch) for normalization. When the dpi is not
specified, it is possible to manually mark two end points on ruler; the dpi is the
ratio of the number of pixels along the line to the horizontal distance between the
endpoints.

2.2 Image Tilt and Equalization
Rotate the image so that the leftmost chain line is vertical, and apply histogram
equalization to heighten the contrast. Reverse the color of the image (if needed)
to ensure that the images have bright chain lines on a dark background, as shown
in Fig. 1. Part (a) shows the original dim and monochromatic radiograph. The
images in (b) (after equalization) are clearer.
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(a)

(b) (c)

Figure 1: The extraction of the chain lines begins with a manual step of image
cropping and rotation to locate the relevant portions of the image as in (a). The
operator then chooses three points (as in (b)) which are used by the automated
methods (as described in the text and drawn from [5]) to arrive at a collection of
keypoints. These are shown in yellow, aligned along each chain line, in (c). The
final step requests the user to verify that the derived points are sensible.
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2.3 Manual Marking (three points)
Mark three points on the chain lines, as shown in Fig. 1(b). The first point is
at the top of the leftmost chain line. The second point is at the bottom of the
rightmost chain line. These two points outline the bounding box formed by the
chain lines. Mark the third point on the second chain line from the left. This
is used to calculate an approximation to the average chain spacing in the image,
which can be used to help focus the automated procedure on the correct regions.

2.4 Automated Marking
The program divides the image into a number of horizontal strips (with default
ten). The Radon transform is applied in each strip; an example is shown in Fig.
1(b). The highest peaks correspond to the white straight lines at the edge; these
are removed. The repeated wide peaks are caused by the broad bright vertical
parts in the left image; it is the sharp local peaks that show the locations of the
chain lines.

Since the average chain spacing is known (from the manual marks), and since
the standard deviation of the chain spacing in any image is quite small (compared
to the distribution of average spacing over all images in the dataset [1]), small
“regions of interest” are set across the horizontal strip. These contain the bright
chain lines. Observe that these local peaks have some characteristic features. The
local peaks of interest are narrow and sharp, and have higher magnitude than other
needle-like peaks in the image. The local peaks of interest also have relatively
similar maximum values when compared with other noisy needle-like peaks. Thus
the program selects local peaks which have these characteristics. A threshold H
is derived from the magnitude of the local peak on the leftmost chain line in the
first image. This is compared to the height of the manually marked point with the
height of the points 10 pixels to the left and 10 pixels to the right; the larger height
difference is notated h and H = 0.55h is used for the thresholding.

2.5 Verification
This semi-automated chain line detection and marking method works well on
more than 95% of the images with over 5 chain lines. An example of a marked
up result is shown in Fig. 1(c). Typical failures occur when the method selects
a portion of the watermark (instead of the chain line). The final stage of human
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intervention is to visually examine the selected points (as in Fig. 1(c)) and to
remove those which are obviously in error.

The performance of the marking program is evaluated using the dataset of
1121 Rembrandt radiographs. In this dataset, 299 (22.9%) images are deleted
as having too few chain lines. Among the remaining 822 images, 805 images
(97.9%) are well marked, and 17 images (2.1%) are rejected. Using the semi-
automated method described above, it requires about one minute to extract the
chain lines from each image. In contrast, manually marking three point on each
chain line requires about seven minutes, even with the use of marking software.

3 Comparison of Extracted Chain Lines
Each image in the Rembrandt set contains between 5 and 8 chain lines. The
data extracted from each image by the technique of Section 2 consists of sets of
(x, y) coordinates which indicate points along the chain lines, and each line is
represented by up to 10 points. Since the goal is to align images by the underlying
lines (and not by the points themselves), the first step was to fit a line to the
measured points. MATLAB’s fit function was used to fit a linear polynomial to
the existing data, taking care to filter out missing data.

Each image is represented by a set of lines that are specified by their slope
and y−intercept. A metric is needed which can compare the sets of lines to de-
termine their similar or dissimilarity. The metric needs to allow the possibility
that the paper used in the sketch could have been rotated or flipped arbitrarily.
Moreover, the image could be just a portion of a larger paper, or be a shifted ver-
sion (for examples, lines 1 through 5 of one image might correspond to lines 2
through 6 of another mage). Accordingly the measure needs to be invariant to
such transformations. Throughout, there is an underlying assumption that the dis-
tance between two images should represent the minimum distance under all such
transformations.

The Cartesian representation of the lines was first transformed into a (ρ, θ)
parametrization

ρ = x cos(θ) + y sin(θ) (1)

where θ is the angle between the line and the y − axis, and ρ is the distance
between the origin and the closest point on the line. This transforms each line
in Cartesian space into a point in the (ρ, θ)−plane. The distance metric for the
difference between two lines is then defined to be a weighted l2 distance be-
tween the points (ρ1, θ1) and (ρ2, θ2) in the (ρ, θ)−plane. Two images are then
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compared using the l1 norm (absolute value of the sum) of all the line distances.
To be precise, consider two images I1 and I2, each consisting of n lines I1 =
{(ρ11, θ11), . . . , (ρ1n, θ1n)} and I2 = {(ρ21, θ21), . . . , (ρ2n, θ2n)}. The distance between
I1 and I2 is defined as

d(I1, I2) =
n∑

i=1

√
(ρ1i − ρ2i )2 + λ(θ1i − θ2i )2 (2)

for some weight λ > 0.
In order to optimally align the lines for comparison, it is necessary to find

min d(I1, I2) under all allowable transformations, that is, under all transforma-
tions that do not distort Euclidean distance. Perhaps the simplest way to achieve
this is to make each coordinate zero-mean. Thus

Ī = ((ρ1 − ρ̄, θ1 − θ̄), . . . , (ρn − ρ̄, θn − θ̄))

where ρ̄ and θ̄ are the means of the ρi and θi, respectively. Then the distance
between I1 and I2 is calculated as d(Ī1, Ī2), since Ī1 and Ī2 both have a mean of
(0, 0), meaning that they are optimally aligned in the (ρ, θ) plane. Translations in
the θ direction (increasing/decreasing the slope of the lines) correspond to rota-
tions of the image, and translations in the ρ direction (increasing/decreasing the
distance between the lines and the origin) correspond to translations of the image
in the (x, y) plane. Thus these two transformations preserve the distance between
parallel lines and the angles between non-parallel lines, and therefore do not dis-
tort Euclidean distances.

In computing min d(I1, I2), it is also necessary to account for arbitrary flips
and/or reflections. With respect to the (x, y) coordinates, it is necessary to com-
pare the lines with the y−coordinates negated, the x−coordinates negated, both,
and neither. Since there are only 4 possibilities (including the identity), it is easy
to exhaustly search over all four reflections and hence find the minimum. Also
note that negating either or both of ρ and θ provides a simple way to calculate
these reflections.

Finally, this metric assumes that both images have the same number of chain
lines n. There is a combinatorial issue when comparing images that differ in their
number of chain lines. For example, if one image has 8 chain lines and another has
7, then there are two possible comparisons to make when computing the metric
using 7 chain lines, but there are 7 possible comparisons when considering 6 chain
lines (and so on). Fortunately, it is easy to iterate over all possible comparisons.

6



ρ

θ

x

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1.54

1.56

1.58

1.6

ρ
0 200 400 600 800 1000 1200 1400 1600 1800 2000

-200

-100

0

100

200
Before After

Figure 2: Each color corresponds to a different image. The top row represents the
chain lines in the (x, y) plane, and the bottom row represents the chain lines as
points in the (ρ, θ) plane. The figures on the right show how the algorithm aligned
the images to minimize the sum of distances in the (ρ, θ) plane.

Using this metric, it is possible to compare images to look for possible matches.
The simplest way to proceed is to compute the pairwise distance between all im-
ages using the metric with a constant “# of chain lines to consider” parameter,
and then sort to create a list of possible matches. When conducting this for 6
chain lines, the top match was found to be an almost near-perfect comparison. On
closer inspection, this turned out to be a duplicate image in the collection. Figure
2 shows a less-trivial clustering of promising results.

4 Possible Matches in Rembrandt’s Papers
A natural way to asses the results is to compare the ranked list of matches to known
matches among Rembrandt’s papers. Since moldmates can often be identified by
watermark matches, each of the matches in the ranked list can be classified as a
true positive (moldmate match) or a false positive. Identifying watermarks can be
done using Hinterding’s catalogue [2]. Cross indexing the Bartsch number and the
museum identification code associated with each image, Appendix 2 (“Concor-
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dance by Bartsch number” in [2]) narrows down the type, variant, and subvariant
of the watermark. The main catalogue can then be used to confirm the watermark
classification.

The results of a reduced subset of the data were analyzed since there are fewer
images with a greater number of chain lines. For example, with the “# of chain
lines to consider” parameter set to 9 chain lines, there are only 12 images, but
there are 48 images with 8 chain lines. Using these 48, the program ranked 1128
unique matches. For all 48 images, the watermarks were (manually) identified
using the process above. Among these watermark identifications, 12 moldmate
matches were found, as well as one pair of duplicate images. Among the 1128,
the moldmate matches appeared at rankings 17, 43, 61, 73, 75, 88, 108, 111, 126,
147, 65, and 167. The match of the duplicate image appeared at rank 7. Note
that all these matches are in the top 14.8% of the results. Though there are false
positives in between, the 15% benchmark suggests a relatively small cutoff point
for positive matches, suggesting that with unfamiliar data sets, chain line matching
may be useful as one forensic in detecting moldmates.

In attempting to improve the results, either by pushing the moldmate matches
further up toward the top rankings, or by removing the false positives between
them, the weight λ in the cost function d(I1, I2) of Eqn. (2) was altered. Recall
that λ adjusts the relative importance of the chain line spacing and the angles θ
between the lines. The results above used λ = 1000. Increasing λ to 1200, the
moldmate matches then appear in the top 15.3% of the rankings. At 5000, the
matches appear in the top 35.7%. Adjusting in the other direction, decreasing λ
to 800, the value goes to 14.9%. Decreasing further to 100, 0.1, 0.01, and even
0.001, the value holds steady at 15.2%. Fig. 3 shows a graph of λ values vs. the
top percent of rankings in which the moldmate matches appear.

A relatively small increase in λ results in a sharp increase of the range of the
moldmate rankings, and decreasing λ to nearly 0 has a negligible effect, suggest-
ing that the angle θ could be removed from the cost function, so that the cost
measured only the difference in the line’s shortest distance to the origin. Indeed,
with λ = 0, the moldmate matches appear in the top 15.2% of rankings, though
the particular rankings shift around slightly. Since θ represents the angles of the
lines, the assumption that chain lines are parallel explains the negligibility of θ
in d. Likewise, because differences in ρ between lines corresponds to differences
in the chain line spacing, the importance of ρ in the cost function supports the
hypothesis that chain line spacing is the most pertinent parameter.
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Figure 3: λ values vs. the top percent of rankings in which the moldmate matches
appear
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