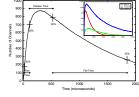
A Sensitivity Analysis of Chemical Kinetics Parameters for the Neuromuscular Junction

T.M. Bartol Jr.¹, T.J. Sejnowski¹, B.R. Land², E.E. Salpeter³, and M.M. Salpeter^{2*}

¹Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037 ²Section of Neurobiology & Behavior, Cornell University Ithaca, NY 14853 ³Departments of Physics and Astronomy, Cornell University, Ithaca, NY 14853

Introduction

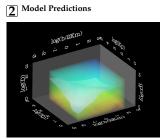
The simplest chemical kinetics scheme for the development of a miniature endplate current (MEPC) at the neuro muscular junction (NMJ) is:


$$2A + R \xrightarrow[K_{-}]{2K_{+}} A + AR \xrightarrow[2K_{-}]{2K_{-}} A_{2}R \xrightarrow[\alpha]{\beta} A_{2}R^{*}$$
(Rx1)

where A is the concentration of acetylcholine (ACh), R is the concentration of acetylcholine receptor (AChR), and A_2R^* is the concentration of the doubly-bound open channel configuration. Of course, ACh is free to diffuse through the NMJ, so a full description must include diffusion to make a coupled reaction-diffusion system. To estimate the values of the rate contants in Rx 1 from physio-logical data, we need a model which connects measured MEPC shapes with the reaction-diffusion scheme. We used MCell (www.mcell.cnl.salk.edu) to build a catalog of simulated MEPCs based on 1568 combinations of rate constants. We then searched the catalog of MEPCs for those with shape parameters (e.g. $t_{rNormal}/t_{rNormal}$ – see Glossary) that matched real MEPCs. The catalog of simulated MEPCs allows us to estimate the sensitivity of the model to changes in rate constants, and to invert this sensitivity to determine how well we can determine rate constants from MEPC data.

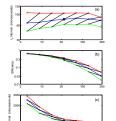
1 MCell Simulations

For the MCell simulations, four quantities were held fixed:

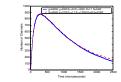

1. Anatomy of an MEPC.

MEPCs were simulated under three conditions: (1) at normal AChR den MEPCs were simulated under three continuons: (1) at norma n.c.ns oen-sity (Normal, net) (2) with ACBE classivated (noACBE, blue), and (3) with ACBE classifier (1) with ACBE classifier (1) and (1) with ACBE classifier (1) and (1)

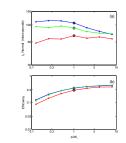
We carried out 1568 sets of simulations for each of the three conditions shown in figure 1. These simulations covered all combinations of:


$3/\alpha = 10, 20, 50, 100$	
3/2K_ = 0.125, 0.25, 0.5, 1, 2, 4, 8	
b = 4, 9, 17, 35, 70, 139, 279	
d = 18, 25, 35, 50, 71, 100, 141, 200	D

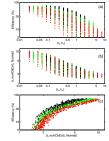
To reduce stochastic noise, each simulation case was re-peated 20 times and the results averaged. The total of 94080 MCell simulations were run in about 50 hours at the San Diego Supercomputer Center on BlueHorizon, an 1152 processor IBM SP Power3 massively parallel super-


2. Volume rendering of Normal rise time as a function of $log(\beta/2K)$, $log(K_s)$, and log(D).

The volume colormap represents the Normal rise time values (blue = lowest rise times, red = highest rise times) at the 72/78 (392) combinations of $\beta/2K_{\star}$, α_{t} , and D used in the simulations while holding $\beta \alpha$ constant at 20. An isorise-time surface at t_{\star} = 80 µs is shown embedded in the volume.

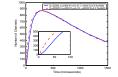

3. Normal rise time, efficiency, and fall time vs. t.,

3. Normal rise time, efficiency, and fall time vs. \mathbf{t}_p . Simulators run in the Normal condition with $t_p = 35\, green, 71$ (blue), and 140 (red)us. The thin black lines represent the effect of changing t_p and t_p by the same ratio, 160 kills et mix visual semandably little when t_p is a visual to (160 kills), the second sec



Differing input parameters can give similar Norma MEPCs.

The blue trace was generated with large K, and small D which gives a high efficiency of 54%, while the red trace was generated with small K, and large D with a quite low efficiency of 6% (requiring large N).



5. Normal rise time and efficiency vs. β/2K 5. Normal rise time and errictency vs. $p(zk_{s,v})$ simulations run in the Normal condition with RG of 10 (blue), 20 (green), and 100 (red). Note again that the rise time changes very little with varying $\beta(zk_{s,v})$ especially for the most likely intermediate values of $\beta(z)$. The effi-ciency is somewhat small when $\beta/2K_{s,v}$ is very small, i.e. when unbinding out weight schannel opening.

6. Scatter diagrams

b. Scatter targetants. For all panels obtain indicates value of $k_1+t_d > 130 \, \mu_8 \, (red), 75 - 150 \, \mu_8 \, (green); <75 \mu_8 \, (black). (a) Efficiency vs. <math>k_1/t_k$. Efficiency generally decreases as k_1/t_k increases but as the color indicates, three ranges of k_1+t_k are mixed to correlation between the two quantities is fairly storage, since both decrease with increasing k_1/t_k . The curvature is due to the fact that $t_{ijkk}/t_k/t_{kommal}$. The solvest production of the maximum of the mass in the massing k_1/t_k . The curvature is due to the fact that $t_{ijkk}/t_k/t_{kommal}$. The solvest production of the mass in the mass in

7. Shape of rising phase could distinguish Normal MEPCs. ... compet on itsming prase could distinguish Normal MEPCs. Input parameters can be chosen to predict the same values of 1, 1_k and the two additional target values to within 20%. The edit race is for βx = 100 and the blue trace is of Fx = 10. The shape of the two MEPCs is similar from the platout to the falling phase. The rising phase is different in shape (see βx = 10. Thus, if decomplying and the experiments could be performed with very high accuracy, the shape of the row MEPC.

3 Inverting the model

Sm La Sm La Sm La

So Le

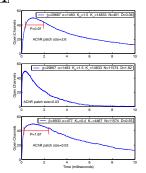

		Table	1a 731	oest f	it cas	es		
		(β/α β/2km)	β	α	Kp	Km	D	N
Smallest	β	(10 0.13)	11455	1145	32.6	45819	5.3	6120
Largest	β	(100 8.00)	630692	6307	5.6	39418	2.9	4922
Smallest	α	(100 0.13)	95870	959	27.3	383481	2.3	6399
Largest			183700				2.2	5074
		(50 8.00)					2.9	6180
		(10 0.13)					7.3	4886
		(10 4.00)					9.3	7584
Largest	Хn	(100 0.13)	109242	1092	62.0	436967	1.7	4186

	Table 1b	β=	60000	- 100	000		
	(β/α β/2km)	β	α	Kp	Km	D	N
allest a	(100 0.13)	95870	959	27.3	383481	2.3	6399
	(20 4.00)	96101	4805			3.3	5787
	(20 4.00)				11651		6507
	(100 0.13)		959		383481		6399
		93210	4661		11651		6507
rgest Kn	(100 0.13)	95870	959	27.3	383481	2.3	6399

Table 1c β = 40000 - 60000								
	(β/α	β/2km)	β	α	Kp	Km	D	N
allest α	(50	0.13)	52749	1055	30.0	210997	2.2	5490
rgest α	(10	4.00)	57431	5743	4.6	7179	4.0	5806
allest Kp	(20	2.00)	56567	2828	3.8	14142	3.7	6508
rgest Kp				1085	61.7	216933	3.5	4282
allest Kn	(10	4.00)	50993	5099	4.1	6374	9.3	7584
roost Kn	(50	0.13)	54233	1085	61.7	216933	3.5	4282

Table 1a-c. Range of models which fit the target values Lable la-c. Kange of models which in the larget values. The 1586 models have here scaled by that all haves 750 gene channels and the 1586 models have here scaled by that all haves 750 gene channels and reserved in the MEPC catalog is $\alpha=880$ to $1000 \, e^{+1}\beta=9100 \, to <math display="inline">2.710^{+}\, s^{+1}$, k=0.26 to $3500 \, 10^{-1}\, {\rm M}^{-1}$ and $k=0.000 \, {\rm M}^{-1}$ (i) and $2.000 \, {\rm M}^{-1}$ (i) and $2.000 \, {\rm M}^{-1}$ (ii) and $2.000 \, {\rm M}^{-1}$ (ii) and $2.000 \, {\rm M}^{-1}$ (ii) and $2.000 \, {\rm M}^{-1}$ (iii) and (iii) and

4 Extending the MEPC catalog

8. Effect of varying AChR patch size.

8. Effect of varying AChR patch size. Unlike the NM pome CNS synapses have a neceptor patch with fever receptor molecules than the quantal packet has agoinst. To simular possible of the network of t

422.17

Glossary

Physical input parameters: Physical input parameters: $K_{-} = binding constant (M^{+1})$ $K_{-} = whinding constant (s^{+1})$ $K_{-} = whinding constant (s^{+1})$ $\alpha = channel closing rate (s^{+1})$ $D = diffusion constant (cm^{+1})$ N = number of ACh in quantal packet(0.5%) is maximum number of open (h) bounded by two infinite planes) $<math>- \frac{4}{C^{+}D} - \frac{4}{active form} (m^{+1})$

 $\sigma = AChR density (\mu m^{-2})$ $\sigma_o = normal value of \sigma$

Three time scales:

Binding time: $t_b = 1.39h/(\sigma K_*)$ Diffusion time: $t_d = 0.8N/(4\pi\sigma D)$ Mean burst duration: mbd = $(1+\beta/2K_*)/\alpha$

Three target values: $(t_{t,Normal})/(t_{t,Normal})$ $(t_{i,noAChE})/(t_{i,Normal})$ $(t_{t,Poisson})/(t_{t,Normal})$

Typical experimental values of the targets: ...)/(t) ≈ 13.3 $_{\text{sAChE}}/(t_{\text{f,Normal}}) \cong 3.63$ $_{\text{sduced}}/(t_{\text{t,noAChE}}) \cong 1.90$

Conclusions

- (1) To specify a model uniquely eight parameters have to be specified. In our catalog only four dimensionless pa-rameters are varied: $\beta/\alpha_r \beta/2K_r$, t_{br} and t_{dr} while four others are kept fixed. However, scaling prescriptions are given to obtain results for the other parameters without requiring further simulations
- (2) Although one would expect the rise time to be directly correlated with the binding time, $t_{\rm r}$ varies remarkably little over a wide range of $t_{\rm b}$ if $t_{\rm d}$ is held constant. This near constancy is due to some accidental cancellations – as t_b increases, the efficiency decreases, which results in the peak occurring earlier in the binding phase.
- (3) With β and three target values specified to within 20% the resultant range of uncertainty in a. K., and K. is enormously larger then 20%. To obtain a moderately unique model, one has to specify the value of a second parameter (out of α , K_{x} , K_{y} , N_{y} and D). The large range of uncertaintly is connected to the cancellation noted in (2) above. A range of 20% in t_y results in virtually the whole range of t_b we simulated (see Figure 3a).
- (4) The curvature of the rising phase depends on whether the ratio of β/α is moderate to large (in the range of 10 to 100). If very accurate MEPC waveforms should become available, the rising phase could give information on β/α .

Acknowledgments: Supported by NSF IBN-9603611 (TMB & TJS), HHMI (TJS), and GM10422 (MMS).