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Abstract. A question central to sensory processing is how signal information is encoded and processed by single
neurons. Stimulus features can be represented through rate coding (via firing rate), temporal coding (via firing
synchronization to temporal periodicities), or temporal encoding (via intricate patterns of spike trains). Of the three,
examples of temporal encoding are the least documented. One region in which temporal encoding is currently being
explored is the auditory midbrain. Midbrain neurons in the plainfin midshipman generate different interspike interval
(ISI) distributions depending on the frequencies of the concurrent vocal signals. However, these distributions differ
only along certain lengths of ISIs, so that any neurons trying to distinguish the distributions would have to respond
selectively to specific ISI ranges. We used this empirical observation as a realistic challenge with which to explore the
plausibility of ISI-tuned neurons that could validate this form of temporal encoding. The resulting modeled cells—
point neurons optimized through multidimensional searching—were successfully tuned to discriminate patterns in
specific ranges of ISIs. Achieving this task, particularly with simplified neurons, strengthens the credibility of ISI
coding in the brain and lends credence to its role in auditory processing.

Keywords: temporal coding, interspike intervals, model neuron, high-dimensional parameter optimization,
auditory midbrain

1. Introduction

A fundamental question in neural function is how sen-
sory information, such as sound frequencies or visual
motion, are encoded and processed. A prevailing ex-
planation is that ofrate coding, in which the signal is
directly encoded by the neuron’s average firing rate,
and any variability in that firing rate is considered
noise. Since such noise can be filtered out by averaging
across time or across populations, rate coding provides

for a robust representation. Another form that a spike
train may assume is summarized by the termtemporal
coding, which maintains that neurons can propagate
information via synchronization of spikes to a stimu-
lus’s temporal periodicities. An alternate strategy to
both rate coding and temporal coding is temporal
encoding, which proposes that information is repre-
sented within the more intricate timing patterns of ac-
tion potentials (Theunissen and Miller, 1995). Since
a spike train can contain multiple temporal patterns,
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temporal encoding potentially provides an efficient and
information-rich representation. Empirically, temporal
patterns in sensory systems such as vision (Richmond
et al., 1990; McClurkin et al., 1991), touch (Ghazanfar
et al., 2000), audition (Middlebrooks et al., 1994), and
olfaction (Laurent et al., 1996; Wehr and Laurent, 1996)
have been shown to convey information that firing rate
and simple temporal coding do not.

The present study examines a candidate for temporal
encoding in the auditory midbrain of the plainfin mid-
shipman (Porichthys notatus), a teleost fish with an au-
ditory system homologous to mammals (Palmer, 1990;
Fay, 1993). Male midshipman produce low-frequency
hums to attract passing females into their nests (Ibara et
al., 1983; Brantley and Bass, 1994), and phonotaxis ex-
periments (McKibben and Bass, 1998) have shown that
female midshipman consistently prefer some calls over
others, based in part on frequency. While the fish there-
fore has a demonstrated ability to encode frequency in-
formation, the mechanisms by which this information
is propagated through the auditory pathways toward
identification remain unknown.

The midshipman auditory system follows the same
progression of frequency coding as that observed in
other vertebrates including mammals. While afferents
in the eighth nerve transduce frequency via synchro-
nization (McKibben and Bass, 1999), his temporal
code breaks down by the time it reaches the midbrain
(Bodnar and Bass, 1997). Yet evidence for the temporal
encoding of frequency information has been identi-
fied (Bodnar and Bass, 1999). By examining the first-
order interspike intervals (ISIs) of spike bursts occur-
ring within the beat periods of two-tone stimuli, they
found that different sound frequencies generated dif-
ferent interspike interval distributions (Fig. 1). Specif-
ically, pairs of two-tone beat stimuli were applied that
shared a common difference frequency (dF) but dif-
fered in their frequency components (Fig. 1A). Spike
trains from over a hundred neurons were recorded
(Fig. 1B), whereupon the interspike intervals were mea-
sured and tabulated in histograms (Fig. 1C). Differ-
ent ISI distributions in response to beats differing in
their frequency components were generated by 97%
of observed neurons. However, the distributions rarely
seemed to differ across the entire range of ISIs; rather
the frequency information was encoded in a narrow
subrange of ISIs (Fig. 1D). For example, if two ISI dis-
tributions varied in length from 0 ms to 80 ms (Fig. 1C),
they might be dissimilar with respect to ISIs of lengths
20 ms through 40 ms (RangeY in Fig. 1D). Since

the two stimuli in each pair were controlled for dF,
amplitude, and starting phase while only one frequency
was varied, the significant differences found in the fir-
ing patterns could be construed to encode frequency
information.

If this is indeed the case and frequency information is
passed along subranges of available ISI bandwidth, the
reception of this information would require cells that
were selectively tuned to the same subranges (Fig. 1E).
Thus an initial question into the plausibility of the code
is whether standard nerve cells can attain this seemingly
complex capability. Simple model neurons presented
here demonstrate that they can and illustrate some of
the properties that provide this faculty.

The model’s success in this task, discussed below,
provides two contributions. First, since the information
contained in the recorded spike trains seems to pertain
to frequency, the model provides an existence proof
for how that information can be decoded and made
available in higher auditory regions. Since no such in-
formation pertaining to fish is currently available, this
is an important consideration. And as fish share qual-
itative abilities for the perception of complex sounds
with other vertebrates (Fay, 1995) and are equipped
with a homologous auditory anatomy (Popper and Fay,
1993), such lines of inquiry are most likely relevant
to other vertebrates as well. Second, since the model
is derived from an empirical scenario, it complements
recent studies (i.e., Reich et al., 2000) exploring how
neural architectures might be equipped to process inter-
spike interval codes. This in turn lends understanding
to a novel form of temporal encoding that is only now
beginning to be acknowledged and explored.

2. Methods

2.1. Overview of Model Neurons

Nerve cells were modeled with the intent of develop-
ing neurons capable of responding selectively to nar-
row ranges of first-order interspike intervals. For an
efficient approach, neurons were simulated through a
10 parameter point neuron model. The point neuron
is an integrate-and-fire model that approximates the
input-output dynamics of a neuron with an equiva-
lent circuit localized at a single point in space. This
approach was chosen to relieve computational bur-
den while maintaining the most salient features of
processing.
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Figure 1. When different two-tone stimuli are presented to the midshipman fish, midbrain firings with different distributions of interspike
intervals result.A: Two sound stimuli consisting of different tones are applied to a midshipman fish. Sound 1 consists of pure tones at 90 Hz
and 84 Hz. Sound 2 consists of pure tones at 90 Hz and 96 Hz.B: Responses to these stimuli are recorded in the midshipman’s midbrain. ISIs
occurring within a beat cycle (indicated by the grey bar) were measured, while ISIs between beat cycles were excluded (grey X).C: Distances
between the spikes in the recordings, or the interspike intervals (ISI’s) are measured and recorded in a histogram.D: When the two histograms
are compared, there is a rangeY of ISI lengths across which the two histograms differ significantly. Elsewhere in the histogram, in rangesX and
Z, the histograms are statistically similar (Bodnar and Bass, 1999).E: This motivates the present study of building model neurons that respond
selectively to specificY ranges, effectively selecting for specific ranges of interspike intervals.



154 Wilson et al.

Six parameters were allocated to represent somatic
properties, while four parameters were used to model
synaptic input.

2.2. Somatic Properties

Somatic properties were based on a standard Mac-
Gregor model (MacGregor, 1987), an integrate-and-
fire framework that has successfully been applied to
simulate systems from the network level (Balis et al.,
1994) down to that of single auditory neurons (Ghoshal
et al., 1992). The model was tuned to approximate
an excitable membrane that, after crossing a threshold
value, displays a rapid change in voltage followed by
a rapid rectification period. The model was also made
to show threshold accommodation to stimulation.

The state of the modeled cell is depicted by four state
variables:

S a binary variable that depicts whether the cell is
firing or not,

V the current voltage across the membrane of the
cell,

Th the current value of the threshold in mV (accom-
modation variable),

gK the current level of potassium conductance (re-
covery variable).

We constructed a somatic model that relies on the
balance between the forces of excitation, accommoda-
tion, and rectification. Each of these forces is dependent
on two parameters, one which in a sense governs its rate
and the other its magnitude.

2.2.1. Excitability

Initial Threshold Th0. The initial threshold parame-
ter Th0 defines the membrane potential at which the
cell exhibits an all-or-none response comparable to a
Hodgkin-Huxley action potential. It was typically set
from 10 to 20 mV above resting potential. As shown
in Fig. 2, settingTh0 to different values results in sub-
stantially different firing patterns.

Membrane Time Constantτm. The membrane time
constant parameterτm determines the rate at which the
membrane voltageV is depolarized by a stimulating
currentI , as exhibited by the following relationship:

dV

dt
= − V

τm
+ I .

The characteristic values for realistic firing ranged
from 5 to 11 ms. Thus a shorter time constant meant
for a more rapidly excitable membrane.

2.2.2. Threshold Accommodation.The threshold
was allowed to accommodate to stimulation by moving
above the initial thresholdTh0. This flexibility was
added to provide the modeled cell with short-term
plasticity. Hill (1936) popularized the use of accom-
modation through experimental validation in spinal
motoneurons.

Threshold Sensitivity C.The amount by which the
threshold accommodates per unit time is defined by
the threshold sensitivityC. As exhibited in Fig. 3A,
the threshold is more sensitive with larger values
of C, which realistically varies from 0 to 1 (again,
MacGregor, 1987).

Threshold Time ConstantτTh. The threshold time
constantτTh directly determines the rate of change in
the threshold, with smaller values resulting in faster
adjustment. Typical values selected ranged from 20 to
25 msec. All threshold accommodation variables were
related in the model through the equation:

d(Th)

dt
= −(Th− Th0)+ C ∗ V

τTh
.

2.2.3. Rectification. Using simple parameters for
potassium-driven rectification simulates Hodgkin-
Huxley refractoriness. After an action potential, the
potassium conductance exhibits a tail that extends un-
til after the time necessary for excitation to return the
membrane potential to resting level. An afterhyperpo-
larization of the membrane potential results, and the
conductance further encourages refractoriness by leak-
ing off excitatory current.

Potassium Conductance Strength B.The potassium
conductance strengthB (Fig. 3B) determines the mag-
nitude with which the membrane repolarizes after firing
a spike.

Potassium Conductance Time ConstantτgK. τgK de-
termines the length of the time course over which the
rectification occurs. It is ranged from 3 to 10 msec,
with smaller values conferring more rapid rectification
(Fig. 3C).

In MacGregor’s point neuron, the relationship be-
tweenB andτgK is derived from an efficient model for
rectification provided by Kernell (1968), incorporating
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Figure 2. Setting for initial thresholdTh0 greatly affects the output of modeled cells.A: The same spike train is administered to two cells.
B: One cell has an initial threshold set to 10 mV. The other is identical except that its initial threshold is set to 15 mV.C: Different firing patterns
result from these different initial thresholds.

the spiking variableS:

dgK

dt
= −gK + B ∗ S

τgK
.

Altogether, while this model ignores the shape of
the action potential, it does capture spike onset with
the precise timing necessary for computation involving
ISIs.

2.3. Synaptic Properties

Each synaptic pulse of current to the soma was repre-
sented by an attenuated four-parameter alpha function
(see Jack et al., 1975). Synaptic impulses were initi-
ated according to recorded spike times from the mid-
brain (see Section 2.5, Inputs to the Model, below). The
shape of the pulse triggered at each recorded spike time
was defined by the following function and parameters:

I = Y ∗ α2e−α(xt)(xt) wheret = 1 . . .d.

2.3.1. Input Current Scale Y. Y (Fig. 3D) serves as
the vertical scaling factor of the input function. It varies
from 0 to 3, so that the synaptic current can be reduced
down to near zero.

2.3.2. Input Time Constantα. α is a measure of the
curvature of the synaptic function (Fig. 3E). It is possi-
ble for information to be conferred through the shape of
the input current. Furthermore, it provides a curve that
is more biologically plausible than the step function
input that would otherwise result.

2.3.3. Input Time Scale x. x is the horizontal scaling
parameter (Fig. 3F). Varyingx, from 0.1 to 1, allows the
curvature defined by alpha to be distributed differently
across the multiple milliseconds for which each input
spike acts.

2.3.4. Input Duration d. The entire alpha function
is calculated over a range oft ’s determined by the
spike duration. The usefulness of an intricate input
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Figure 3. Varying the model’s parameters affects its behavior in terms of certain state variables.A: Varying the threshold sensitivityC affects
the position of the threshold.B: Varying the potassium conductance strengthB modulates the overall potassium current in response to excitation.
C: Changing the potassium conductance time constantTg(K ) changes the time course of the potassium current. Larger values promote a longer
current.D: The synaptic current can be scaled by changing the parameterY. E: The parameterα allows control over the curvature of the synaptic
input function.F: A given synaptic input function can be stretched horizontally by varying the parameterx.

function is to provide the cells with the potential of tak-
ing on any realistic configuration of parameters. At the
same time, constraints on the synaptic parameters keep
the resulting current within a range that is compatible

with our somatic model (as defined in MacGregor and
Oliver, 1974). The combination of these realistic pa-
rameters resulted in a model that approximates realistic
neural function (Fig. 4).



Processing of Auditory Midbrain Interspike Intervals 157

Figure 4. The realistic parameter ranges made for realistic firing behavior, which could be manipulated by modulating parameter set-
tings. A: Recorded input trains are applied to the model.B: A cell that has been tuned to imitate the input in its output firing patterns.
C: Response to the same input by a model cell with a different set of parameters optimized for further ISI discrimination. Note: Due to the time
scale of the figure, spike bursts with short ISIs appear as broad action potentials.

2.4. Integration Method

The first-order differential equations listed above were
integrated at millisecond intervals using an exponen-
tially corrected Euler’s method. MacGregor (1987)
showed that this model has good stability with a 1 ms
step size. As will be shown below (see Section 3, Re-
sults, Fig. 8), smaller step sizes did not alter the re-
lationship between parameter choices and the model’s
performance.

2.5. Inputs to the Model

The purpose of the study was to generate model neu-
rons, using the parameters described above, that would
respond selectively to subranges of interspike intervals
(ISIs). The inputs to these neurons were thus pairs of
spike trains that were indistinguishable along all ISI
ranges except for the subrange for which we wished
selectivity (again, see Fig. 1). If a model neuron re-
sponded sufficiently differently to such a pair of spike
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trains, we would know that it was responding to the ISI
subrange where the differences resided.

All spike trains applied to the model were collected
during a previous study (Bodnar and Bass, 1999), in
which 514 recordings were elicited from the midbrain
of 52 male midshipman. Each “pair of spike trains” that
the model was asked to discriminate was acquired as
follows:

• Spike train 1 Two-tone stimuli, synthesized by cus-
tom software (CASSIE, designed by J. Vrieslander
at Cornell University), were presented to the fish at
naturally encountered frequencies. One tone was al-
ways 90 Hz, while the other differed from 90 Hz by
+ 2, 4, 6, 8, or 10 Hz. Ten trials of 1000 ms duration
were recorded from a given midbrain cell to measure
its response to these two tones.
• Spike train 2 A second set of two-tone stimuli

was also presented while making the same recording
from the same cell. One of the tones was again set to
90 Hz. This time, however, while the second tone de-
viated from 90 Hz by the same amount as with spike
train 1, it deviated in the opposite direction (this time
by− 2, 4, 6, 8, or 10 Hz).

Consequently, while spike train 2 was gathered us-
ing the same amplitude, phase, and difference between
the two tones, one of the tones was different from the
one administered during the recording of spike train 1.
The significant differences across subranges of ISIs ob-
served between each pair of spike trains collected in this
way (Bodnar and Bass, 1999) could thus be attributed
to differences in frequency content. Asking the model
to discriminate pairs of such spike trains was there-
fore equivalent to asking it to discriminate between the
frequency information they contained.

The 514 pairs of spike trains recorded in this fashion
were binned according to the high and low cutoffs of
their differing ISI ranges. Spike-train pairs were con-
sidered similar enough to share a bin if both their high
and low cutoffs differed by less than 5 milliseconds.
A representative pair of recordings was selected from
each of these bins and was applied to the model as an
input.

An input to the model thus consisted of a pair of spike
trains whose within beat ISI distributions diverged only
over a specific ISI range. Altogether, we applied a full
spectrum of ISI ranges encountered (see Section 3,
Results, Fig. 7A), using tones that deviated across the
entire natural range, for a total of 114 different ISI range
inputs to the model.

2.6. Optimization of Modeled Cells

One modeled cell was generated and optimized to pro-
cess each input. The goal of each cell was thus to
take a pair of spike trains that only differed across
a subrange of ISIs and produce an output pair of
spike trains that differed across their entire range of
within beat-period ISIs; as for the analysis of input
spike trains, between beat-period ISIs were not in-
cluded. For each inputed pair of spike trains, the pa-
rameters of a point neuron were varied until its overall
response to one spike train in the pair was significantly
different, in terms of overall ISI distribution, from its
response to the other spike train in the input pair. Dif-
ference in distribution was measured by constructing
ISI histograms for the model’s two responses and per-
forming a Mann-Whitney U-test(Z> 1.95, p< .05).

2.6.1. Brute-Force Method. Optimization on mod-
eled cells was attempted by performing constrained
minimization on the cell’s 10-dimensional parameter
space. Brute-force methods of trying random combi-
nations of parameter settings immediately proved to be
too coarse a strategy for localizing optimal parameter
combinations. Therefore, and more efficient optimiza-
tion routines were employed.

2.6.2. Downhill Simplex Method. The downhill sim-
plex method, originally due to Nelder and Mead (1965),
is an effective gradient-descent method for locating
minima in multidimensional spaces. A simplex is a ge-
ometric figure comprising, inN dimensions,N + 1
points and the line segments and faces that connect
them. Since each point of the simplex was a location in
the parameter space that we hoped to minimize, points
that evaluate to higher values represent worse perfor-
mance. The simplex’s mobile behavior was thus as-
signed several rules:

• When moving toward a local minimum, the point
with the highest numerical evaluation (which repre-
sents the worst performance) is translated through
the geometric center of the simplex. If this results
in a combination of better performance (i.e., a lower
evaluation function), the point remains. Otherwise it
is returned to its original position.
• When all points evaluate to similar values (it appears

to be on a “plain”), the simplex is expanded in search
of a gradient.
• When sitting around the sides of a “valley,” so that

all good moves seem to be toward its interior, it
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contracts around its center to locate a more precise
minima.

The following rules were added to improve its per-
formance:

• When stuck inside a long, narrow “gorge” in which
movement in almost any direction results in worse
performance, it locates the transverse direction of the
gorge, if any, and proceeds quickly down it.
• When no such transverse direction exists, and it is

reasonably sure that it has encountered a local mini-
mum (the best point in the area but perhaps not in the
entire parameter space), all points but the best one
are relocalized to a random area of the search space
and allowed to assume a stabilized form between its
new points and the previous optimized one.
• After several runs of this procedure, the entire sim-

plex is relocalized to a new region.

A successful implementation of the simplex method
produced rapid minimization(Fig. 5), achieving in min-
utes what the brute-force method failed to achieve over
days of computation. One limitation encountered with
the simplex method was that since it searches by fol-
lowing a performance gradient, it always goes down
while refusing to go up. Thus, it often gets stuck in
tiny valleys, while a much deeper valley could reside
just beyond. The topography was nonlinear in charac-
ter, resulting in treacherous terrain. To overcome this
problem, elements of simulated annealing (Kirkpatrick
et al., 1983) were added to our simplex method to over-
come the problem of local minima.

2.6.3. Simulated Annealing Method. Our imple-
mentation of simulated annealing modified step 1
above in the following way. As before, the translated
point always remained if it resulted in a lower evalua-
tion function; however, if it did not, it was allowed with
probability p to remain despite this fact, whereas the
move would have otherwise not been permitted. The
value forp was initially set to 1 but was then gradually
decreased to 0 as the search continued. This resulted
in a gradient descent that would at first easily make
upward moves but would become less likely to as time
went on. The net result was that the searcher overcame
large valleys first and then (through a slow reduction
of p) began to settle in smaller and smaller valleys
until it had found a close-to-global minimum region
of the search space. We used simulated annealing to

locate high-performance areas of the parameter space
and then searched these spaces thoroughly through
multiple runs of the downhill simplex method.

2.7. Computational Materials

Simulation, searching, and visualization software was
custom-designed in C, with integrated analysis scripts
written for MatLab (MathWorks, Inc.). Preliminary
computation was performed on an IBM RS6000, with
most of the parameter searching carried out on the IBM
SP2 supercomputer at the Cornell Theory Center.

3. Results

We attempted to produce model neurons that responded
selectively to specific ranges of interspike intervals (as
discussed in Fig. 1). Through our optimization routines,
we were able to develop neurons that preferred to re-
spond to a subrange of ISIs, so that two inputs differing
along that range would be significantly discriminated
(Fig. 6). Figures 6A and 6B show interspike interval
histograms of an example input spike train pair, while
Figs. 6C and 6D show the corresponding interspike in-
terval histograms for the model’s output. The within
beat ISIs are those which are less than approximately
100 ms, while the longer ISIs (peak near 150 ms) corre-
spond to between beat ISIs. Qualitative differences can
be observed in these probability distributions at shorter
ISIs; however, it is difficult to determine the range and
extent of these differences. The points of divergence in
these ISIs are more easily observed in the inverse cu-
mulative distributions (Figs. 6E and 6F). The plots in
Fig. 6E show the inverse cumulative ISI distributions
for the input spike train pair shown in A and B with the
arrows designating the range of significantly different
ISIs; a expanded view of this range is shown in the
inset plot. The inverse cumulative distributions of the
model output spike train pair are shown in Fig. 6F.
The output spike trains differ from one another across
their entire within beat ISI distributions (∼ <100 ms)
in the same manner as the subrange of the input spike
trains.

Overall, 114 inputs were applied to the model
(Fig. 7A). Most inputs (72%) consisted of a pair of
spike trains that differed only across a narrow ISI range
and were otherwise not significantly distinguishable
(Fig. 7B). For each of these inputs, a point neuron was
constructed that successfully discriminated between
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Figure 5. Examples of the convergence of parameter searching. Threshold sensitivity (A) and potassium conductance strength (B) quickly
converge in their settings, as a solution is approached.C: Solution is found as searcher descends into areas of better performance.D: Meanwhile,
performance found is rapidly optimized.

the two spike trains (Fig. 7C). The integration time
step for our model did not influence the success of the
neurons’ discrimination. As shown in Fig. 8, reducing
the time step by a factor of 10 did little to change the
general behavior of our model. Thus, of the 114 ISI
ranges applied, our model neurons processed 100% of
them.

3.1. Properties of Modeled Cells

The model cells that resolved each input were not a
collection of random solutions that happened to work
in isolated instances. Rather, they had a great deal
in common, implying a set of properties that univer-
sally facilitated the task. Most remarkably, all cells that
successfully processed the inputs were exactly the same
with respect to 8 of their 10 parameters. The parame-
ter settings used in the model are marked in Fig. 9.
This figure also depicts the effect, on average perfor-
mance, of manually varying the parameters away from
these optimal values. Performance generally decreased

by varying individual parameters away from observed
optimal values. The extent of this decrease, however,
varied from one parameter to the next and exhibited a
nonlinear character.

This nonlinearity is further emphasized when two
parameters are varied together, as in Fig. 10. As can
be seen, the effect of varying one parameter on per-
formance depended on the particular setting of the
other parameter. This illustrates the complexity of this
optimizaton problem, as all 10 parameters had to be
searched simultaneously.

Somatic properties that proved conducive to discrim-
ination across all inputs included a medium-level initial
threshold, a low membrane time constant, a high thresh-
old time constant, and a high potassium conductance
time constant.

While discriminating any ISI range required the
careful selection of 8 universal parameters, selecting
between the different ISI ranges was achieved by vary-
ing the remaining two parameters—threshold sensi-
tivity and potassium conductance strength. These pa-
rameters were deemed likely candidates for extending
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Figure 6. An example of the model’s performance for a single pair of inputs. The model discriminates input patterns through the selective
filtering of specific ISI ranges.A, B: Histograms of interspike intervals observed in two spike trains that were applied to the model; A: 84+ 90
Hz, B: 90+ 96 Hz.E: Cumulative ISI distributions same input spike trains from A and B. The arrows indicate range of statistical difference; an
expanded view of this range is shown in the inset.F: Cumulative ISI distributions same model spike trains from C and D.

the range of discrimination through the type of infor-
mation portrayed in Fig. 11. Each parameter was in-
crementally varied while monitoring its effects on the
discrimination of each individual ISI range. Some pa-

rameters, such as synaptic input strength, exhibited
wide ranges of settings in which no ISI ranges were dis-
criminated well. For example, Fig. 11A demonstrates
what happens to discrimination performance as the
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Figure 7. Model performance across all inputs.A: The model was asked to discriminate 114 pairs of spike trains, which encoded a complete
spectrum of naturally-occurring pure tones, and with each’s content differing along a unique ISI range.B: In most cases of the input, the
overall information content between each pair of spike trains did not differ significantly (Z< 1.95; p> .05), as delineated by the dashed line.
Nonetheless, in response to each such pair of inputs, the model generated a pair of output trains that contained significant differences in content
C: 100% of the inputs were discriminated beyond significant levels(Z> 1.95; p< .05).

input current scale parameter is smoothly varied from
its low value to its high value. At low values all ISI
ranges are poorly discriminated, as denoted by the light
hues. As the parameter setting approaches middle val-
ues, the hues quickly darken, indicating that the middle
range provides good discrimination. As settings begin
to get high, however, lighter hues are soon observed
as discrimination worsens. Discrimination thus occurs
over a restricted band of certain parameter settings, and
this band is shared by most of the inputs. It made sense
to set parameters exhibiting this pattern to the narrow
range in which they conferred maximal discrimination.

A second type of pattern was exhibited by param-
eters like threshold sensitivity and potassium conduc-
tance strength. For these parameters, there was no clear

setting that provided universal discrimination. Instead,
moving the setting changed the selectivity of the cell
from one group of ISI ranges to another. Figures 11B
and 11C provide a graphical description of this effect.
At low ranges of a parameter setting, certain ISI ranges
are discriminated well (darker regions) while others
are not (lighter regions). When shifting the parame-
ter setting into the high range, however, these darker
regions become light, and other ISI ranges that were
previously marked with a light hue become darker.
In cases like these, there was no globally optimal
parameter setting: some settings worked for some ISI
ranges, while another setting was needed for others. It
was thus theorized that modulating these parameters
might bring discrimination to even more ISI ranges
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Figure 8. Model performance at a smaller time step size. Our findings were robust even when a smaller integration step size was applied to
the model. When the step size is decreased by a factor of 10, from 1 ms to 0.1 ms, modeled neurons perform just as well at discriminating input
patterns at significant levels.

than could be handled by a generally effective point
neuron.

Admittedly there were several parameters that fit this
criterion (such parameters are depicted in Fig. 9 by a
relatively flat line). However, in the interest of keeping
modeled cells as similar as possible, we attempted to
minimize the parameters that could vary freely between
cells. Two of the parameters differed from the other
three in that their globally successful setting (midline
of their Fig. 9 plot) was not their maximum setting,
a fact that permitted more flexibility in the direction
they could be potentially adjusted. These same two pa-
rameters had the additional property that they were not
coupled: they did not define the same state variable
(threshold time constant and threshold sensitivity were
part of the same update equation and thus would not
provide the same flexibility as two variables participat-
ing in two different equations). Given these standards
and with all other factors seeming equal, these two
parameters, threshold sensitivity and potassium con-
ductance strength, seemed the most useful parameters
to vary. Using this strategy to direct our optimization
methods, we discovered that selectivity to all ISI ranges
could be achieved by our realistic point neuron by rang-
ing only two of its 10 parameters.

3.2. Observations of Modeled Cells’ Behavior

Comparison of the firing activity between the model’s
input and output reveals some of its most interesting
characteristics (Fig. 12). First, the output firing rate by
all modeled cells is nearly identical to the firing rate
of the recorded inputs (Fig. 12A:−dF spike trains;
Fig. 12B:+dF spike trains). While the model seems
to preserve spike rate, however, an examination of its
firing patterns reveals that it is nonetheless exerting
some form of selectivity (Fig. 12C). Only a fraction of
the input spikes elicited a response from the modeled
cells, which ignored an average of 25 out of 45 spikes
(56%) every second.

Scrutinizing the model’s firing patterns reveals the
mechanism by which it is able to ignore certain
spikes while still firing the same number of times
(Fig. 13). Specifically, 25% of the model’s output
spikes were burst-like spike pairs with an ISI of
1 ms (Fig. 13A; example spike train in Fig. 4C).
Figure 13B shows the distributions of all input ISIs, and
Fig. 13C does the same for the output. When the dispro-
portion of 1 ms ISIs is disregarded (Fig. 13D), it is ob-
served that the output distribution closely resembles the
input.
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Figure 9. Each parameter setting is varied individually while the resulting change in the model’s performance, summed across all inputs, is
assessed. Each parameter was varied (X-axes) across its complete physiological range. Each parameter setting that contributed to the global
minimum is marked with an oval. Some parameters (initial threshold, membrane time constant) seemed to demonstrate distinctly optimal settings.
Others (threshold sensitivity, potassium conductance strength) did not show a clear maximal performance at any particular setting.

4. Discussion

Modeled cells, which were identical in all but two pa-
rameter settings, succeeded in extracting information
from all midbrain-generated ISI ranges (Fig. 7). An
examination into the interplay of the modeled set of
parameters may yield a deeper understanding of the

extraction algorithm and potentially insight into the en-
coding process as well.

4.1. Temporal Coding Versus Temporal Encoding

A fundamental issue in neural coding is how sen-
sory stimuli are encoded within a spike train—via the
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Figure 10. Two parameters (threshold sensitivity and potassium conductance strength) are varied in tandem while the resulting overall perfor-
mance across all inputs is assessed. Color denotes the local slope of the surface at each given point to emphasize the curvature of the topography.
The effect that varying one parameter has on performance changes depending on the particular setting of the other parameter, a nonlinearity that
is further augmented when all 10 dimensions of the parameter space are considered simultaneously.

average spike number (rate coding)—by synchroniza-
tion (temporal coding) or through the various timing
patterns of the spikes (temporal encoding). Here we
examine the representation of frequency information
in the auditory midbrain of fish, which seems a poor
example of temporal coding (Bodnar and Bass, 1997)
but a possible candidate for temporal encoding (Bodnar
and Bass, 1999) through representations across narrow
ranges of interspike intervals. But its eligibility as a
code depends on the feasibility of its decoding.

Analysis of frequency information on the basis of
interspike intervals within the auditory CNS was first
proposed by Licklider (1951, 1956). Under this model,
frequency information is extracted by neural circuits
that essentially perform an autocorrelation analysis via
delay lines and coincidence detection, thereby filter-
ing different ranges of interspike intervals. Our model
demonstrates that interspike interval filtering can be
achieved by a single point neuron and that variation of
cellular parameters can determine the band-pass range
of the interspike intervals.

The decoding of interspike intervals does not re-
quire anything more complex than neurons that are
sensitive to the durations of individual ISIs, with some

variability in the range of their response. Buonomano
(2000) purports that this sensitivity can be embodied
in a single synapse. The seeming complexity of such
a code is offset by the potential simplicity of its im-
plementation: it would not require averaging across
stimulus repeats, stretches of time that may be long
compared with the time scale of firing-rate modula-
tion or a large population of neurons that carry sim-
ilar information. This renders ISI processing equiva-
lently feasible to more accepted representation forms
such as rate coding. The success of our model in
manipulating ISI distributions shows that this realm
of processing may be more tenable than previously
believed.

4.2. Analysis of Model’s Output

Our model cells showed clear preference for cer-
tain spikes (Fig. 12C), while maintaining a spike rate
strikingly comparable to that in their input (Figs.
12A and 12B). This was accomplished largely by
making more spikes per response, through two-spike
bursts that were markedly prevalent in the model
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Figure 11. The model’s performance on each individual input is assessed while single parameters are varied. With some parameters such as
input current scale (A), a clear range of settings (30–70) provided good discrimination for many inputs, as denoted by the darker hues, while
settings outside that range provided poor discrimination, as indicated by the lighter hues (inputs in A grouped by dF). With other parameters,
such as threshold sensitivity (B) and potassium conductance strength (C), settings provided good discrimination of some inputs but not for
others. As various inputs required various settings for optimal discrimination, it proved wise to permit flexibility in these parameters.

neuron outputs (Figs. 13A and 13C). Hence, the
interspike intervals that were discriminated seemed
to be bordered by not one but two spikes on a side.
This would provide a statistically robust code, in that

two spikes would have to be deleted in order for
the duration of the longer interspike intervals to be
significantly altered. In addition, given the large num-
ber of doublet spikes, many single spikes would have
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Figure 12. Spike-train properties of the modeled cells’ output compared to their input.A, B: All 114 modeled cells preserved the overall rate
of firing received in the input (A:−dF spike trains; B:+dF spike trains).C: All modeled cells also ignored a large percentage of available input
spikes, indicating some form of selectivity.

to be lost to significantly reduce the number of short
intervals.

The fact that all cells optimized exhibited these same
firing properties suggests that they may be a basic
feature of this extraction process, even across mul-
tiple ISI ranges. This transformation in the temporal

characteristics of the spike-train code enhanced differ-
ences in the overall distribution of their interspike inter-
vals elicited by different frequency content. Thus, our
model demonstrates that modification of the temporal
characteristics of a spike train alone, with no change
to its average firing frequency, can greatly improve
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Figure 13. Comparison of input and output ISI distributions.A: 25% of all output ISI’s were 1 ms in length, indicating bursting activity.B: A
histogram of ISIs found in all input spike trains.C: A histogram of ISI’s found in all output spike trains.D: A closer look at the nonbursting
part of the output (excluding 1 ms ISIs).

discrimination between two spike trains and thereby
the stimuli they encode.

4.3. Examination of Parameter Settings

Point neurons achieved successful discrimination
across all inputs due to eight parameter settings that
were universal amongst the modeled cells and two that
were varied to accommodate specific inputs. As shown
in Fig. 11, some parameter settings provided univer-
sal discrimination when locked within a narrow range
(Fig. 11A), while others needed to be allowed to vary
to cover the specific input in question (Figs. 11B and
11C).

Analysis of the mechanisms behind the parameters
that needed to be varied may provide insight into why

they could not be locked at a setting to provide uni-
versal discrimination. One of these parameters, thresh-
old sensitivity, is a property of accommodation, while
the other, potassium, conductance strength influences
rectification.

Accommodation results in a less excitable mem-
brane and occurs as a result of stimulation. The thresh-
old sensitivity determines how quickly the cell be-
comes less excitable. A high value would cause the
cell to become less excitable very soon after an im-
pulse, thus leading the cell to ignore short intervals.
A low value, in contrast, would permit small ISIs to
be transduced, as only the shortest intervals in quick
succession would render the cell inexcitable. A neural
mechanism by which the threshold sensitivity could
modulate discrimination was observed (Fig. 14). A
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Figure 14. Modulating threshold sensitivity affects the resulting ISI distribution.A: Two different parameter settings (0.1, left; 0.5, right) confer
thresholds with different sensitivities.B: Due to these different sensitivities, one threshold (right) fluctuates much more.C: These fluctuations
allow the threshold to soar above the reach of some membrane excitation that would otherwise trigger action potentials.D: Thus, certain spikes
that are present in the output on the left, are absent on the right. With spikes missing, ISI’s measured (double arrows) are different.

sensitive threshold elevated more quickly than its rigid
counterpart, so that the former cell failed to respond to
the subsequent spike. With this spike missing from its
output train, two shorter ISIs were converted into one
longer one. This clearly has direct implications for the

ISI distributions in the cell’s output and consequently
our assessment of discrimination ability.

We also examined how the potassium conduc-
tance strength modulated ISI distribution (Fig. 15).
Rectification properties determine how quickly the
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Figure 15. Modulating the potassium conductance strength affects the resulting ISI distribution.A: A higher setting for B results in a larger
potassium conductance (right side).B: The increased potassium flow shortens what is a long burst (left side, first arrow) to a smaller burst (right
side, first arrow). Note: Due to the time scale of the figure, 1 ms ISI bursts appear as broad action potentials. Additionally, the rectification
completely inhibits one of the spikes, altering the ISI recorded (double arrows).

cell’s membrane potential is repolarized from excita-
tion and how long it remains in afterhyperpolarization.
We noted that a cell with a higher setting for this param-
eter missed out on several firing opportunities. First, a
higher potassium conductance strength (15A) causes a
larger influx of potassium than a lower setting (15B).
When a cell with this higher setting fires a burst of
spikes, the resulting rectification is more powerful, and
the burst ends one spike more abruptly than its low-
setting counterpart. Consequently, a spike is missed and
the ISI distribution is affected. Another result of a high
setting was seen when a spike that one cell responded
to was missed by the high-setting cell, which was still
hyperpolarized when the input spike arrived. Again, a
spike is missed, and the ISI distribution is modified.
Varying only these two parameters produced modeled
cells that varied enough to successfully process all of
the inputs. It seemed necessary that the pair encom-
pass two distinct aspects of the cell’s current dynamics,
in this case accommodation and rectification. Varying
two parameters that defined the same current dynamic

would probably not produce as wide a range of pos-
sibilities as varying two parameters that defined two
different current dynamics.

4.4. Implications of the Model

The general view of neural coding by the midbrain
is that frequency is encoded according to a rate-place
code. Within the auditory system of mammals there
is a tonotopic representation of frequency based on
narrow spike rate tuning curves (Merzenich and Reid,
1974; Semple and Aitkin, 1979; Schriener and Langner,
1994). The segregation of concurrent vocal signals
with small frequency differences poses a significant
challenge to this coding strategy as the two frequen-
cies will fall within the filter bandwidth and hence
remain unresolved. In the midshipman, this coding
strategy is even less likely as no tonotopic map has
been identified in the midbrain and frequency tuning
curves are not as narrowly tuned as mammals.
Yet behavioral experiments have demonstrated that
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midshipman are capable of segregating overlapping
signals
with small dFs and hence, the central auditory sys-
tem must encode frequency information in some form
(McKibben and Bass, 1998).

In the peripheral auditory of midshipman as in other
fishes, frequency is largely coded temporally via affer-
ent synchronization (Fay, 1995; McKibben and Bass,
1999). In response to beats, midshipman afferents tem-
porally code both components of the signal and show
low synchronization to dF (McKibben and Bass, in
review). Within the auditory midbrain, neurons show
insignificant synchronization to the individual compo-
nents of beats (Bodnar and Bass, 1997). However, dif-
ferences in interspike intervals within specific ranges
have been identified that potentially encode frequency
information of beats (Bodnar and Bass, 1999). Our
model demonstrates that these interspike interval pat-
terns can be successfully discriminated. The model
therefore provides an existence proof for how fre-
quency information could be maintained in the higher
auditory centers of the fish in the absence of a tem-
poral synchronization code, potentially facilitating the
segregation of concurrent vocal signals.

In midshipman frequency information appears to
be transformed from a temporal code of absolute fre-
quency in the periphery into an interspike interval code
within the midbrain. The output of our model fur-
ther tranforms the spike trains. How the midbrain in-
terspike intervals represent frequncy remains unclear
and is currently under investigation; there does not ap-
pear to be a simple mapping of frequency period onto
the interspike intervals (Bodnar and Bass, unpublished
observations). Hence, understanding how the model
represents frequency information also remains unde-
termined. However, the performance of the model indi-
cates that frequency information can be discriminated
and hence is encoded within the spike trains. Determin-
ing the nature of the code both within the midbrain and
postsynpatic neurons is the next step in understanding
mechanisms involved in concurrent vocal signal
segregation.

An alternate explanation for how frequency in-
formation could be propagated beyond primary nu-
clei as demonstrated here may provide insights into
auditory processing by higher auditory centers in
other vertebrates. Similar to midshipman, afferents in
the mammalian auditory system temporally code the
fundamental frequencies of concurrent vocal sig-
nals via synchronization to the individual compo-

nents (Palmer, 1990; Cariani and Delgutte, 1996).
Synchronization is maintained into the cochlear nu-
cleus by at least two populations of neurons (Keilson
et al., 1997). Within the auditory midbrain temporal
coding of frequency information is not apparent; how-
ever, recent studies into the regularity of interspike in-
tervals have been observed suggesting that temporal
encoding may be present (Rees et al., 1997).

Alternate explanations, such as the temporal en-
coding examined here, require that normal cells can
actually perform the computations necessary to discern
them. The fact that the model achieves this computa-
tion, even through highly simplified cells constrained
by natural physiology, strengthens the notion that such
a decoding may in fact be possible. Specific predictions
pertaining to the model are as follows. First the model
predicts that discrimination will be carried out by cells
of an average threshold that adapts slowly, a membrane
that responds quickly, and a slow potassium conduc-
tance. Then just as the auditory periphery contains an
array of cells tuned to narrow ranges of frequencies,
the level of processing presented here predicts a bank
of neurons selective for narrow bands of ISIs. Finally,
locations for cells that could receive midbrain firing
are anticipated by recently elucidated downstream con-
nections of the nucleus centralis, the auditory center of
the midshipman midbrain, and the homologue of the
mammalian inferior colliculus. The level of processing
discussed here most likely takes place in one or more
of the targets of the nucleus centralis, such as the me-
dial pretoral, lateral preglomerulus, or central posterior
nuclei (Bass et al., 2000).

Apart from predictions related to the system in ques-
tion, the work presented here attempts to provide an
example of using modeling to explore the feasibility
of temporal encoding, while delineating its biologi-
cal constraints. Further work uniting experiment with
high-powered modeling will hopefully make the more
complex forms of neural coding more accessible.
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