
Using a Dataflow Language 
and the World Wide Web 
for Scientific Visualization 
HELEN M. DOERR 1• * and BRUCE R. LAND 2 

1 Mathematics and Mathematics Education, 215 Carnegie Hall, Swacuse University, Syracuse, New York 13244-1150, 
and 2Cornell Theory Center, 606 Frank H. T. Rhodes Hall, Cornell University, Ithaca, New York 14853; e-mail: 
hmdoerr@sued.syr.edu and bruce@cornell.edu 

ABSTRACT 

The visual programming language Data Explorer has been a powerful tool for teaching and 
learning introductory computer graphics. The World Wide Web was introduced as a mechanism 
for providing students with lab exercises, sample programs, and related course material, and 
as a site for the publication of their final design projects. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The past decade of technological advances in high­
performance computing and communications has 
brought dramatic improvements simultaneously in 
the infrastructure for accessing networks and in the 
performance of desktop workstations. Within the 
past 2 years, the advent of the supporting protocols 
for the World Wide Web (WWW) and browsers 
such as NCSA Mosaic and Lynx have resulted in an 
explosion of resources on the national information 
superhighway. At the same time, these tools now 
offer new opportunities for undergraduate science 
and mathematics education in a collaborative, net­
worked environment. These tools are beginning to 
change not only what we teach, but how we teach, 
and they suggest new roles and new opportunities 
for both students and teachers within an expanded 
classroom [1]. In this article, we describe how this 
has happened in an interdisciplinary, undergraduate 

* To whom correspondence should be addressed. 
Computer Applications in Engineering Education, Vol. 4(2) 
161-168 (1996) 
© 1996 John Wiley & Sons, Inc. CCC I 061-3773/96/020161-08 

course in computer graphics being taught at Cornell 
University. 

For the past 2 years, an undergraduate course in 
computer graphics with an associated lab course 
has provided students with an introduction to the 
principles of interactive computer graphics and sci­
entific visualization. More recently, we have created 
a Web site for the course to serve as an on-line 
resource for the students to review lab procedures 
and results. From the first day of the course, the 
students have access to all the information about 
the tasks that will be done throughout the course. 
More important, the final design projects (described 
below) from the previous offerings of the course 
are now available to the students and provide ideas 
and building blocks for their projects. Thus, the 
accomplishments of the students from each prior 
semester become part of the knowledge created 
through the course and an available resource for the 
next semester. In addition, the Web site provides 
linkages to the Cornell Theory Center's Data Ex­
plorer repository and on-line tutorial system (at 
http:/ /www.tc.cornell.edu:80/DX/). These mod­
ules and tutorials become part of an expanded set 
of classroom resources for the students, providing 

161 



162 DOERR AND LAND 

alternative paths for exploring the material covered 
by the class instructor. 

Scientific visualization is a way of organizing 
numerical results in a form which is accessible to 
humans. The human visual system is extraordinary 
in its ability to understand complex images. Visual­
ization uses this innate ability to find patterns in 
data of all kinds, from satellite imagery to quantum 
field simulations. As visualization techniques be­
come simpler and more accessible, applications 
abound in traditional engineering and science 
courses. This course is a first step in making visual­
ization techniques available to undergraduates. The 
students who take this course are primarily upper­
division science and engineering majors. It should 
be possible to construct a freshman-level course us­
ing DX which introduces computer graphics and 
visualization at an appropriate mathematical level 
and it would whet student appetites for further in­
struction. About half the students are from computer 
science, the department that gives the course. The 
rest are distributed among electrical and mechanical 
engineering, physics, mathematics, chemistry, and 
architecture. This diversity in student majors is re­
flected in the final design projects developed by the 
students. By way of example, Figure 1 illustrates 
the projectile motion of a basketball being thrown 
by a robot. Over the last 2 years, at least a fifth of 
the students taking the course either have gone on 
to work in research labs using scientific visualiza­
tion or have followed up with independent research 
projects. Examples of these projects can be found 
on-line at http: I /www.tc.cornell.edu/Visualization/, 
and then following any of the three years worth of 
CS490 links in the Education section. These proj­
ects serve as useful documentation for anybody at­
tempting to learn the functionality of DX. 

GRAPHICS TECHNIQUES FOR 
SCIENTIFIC VISUALIZATION 

Scientific visualization is a topic that requires math­
ematical, programming, and artistic skills, along 
with content knowledge in a specific domain of sci­
ence or engineering. This introductory computer 
graphics course focuses on the mathematical skills, 
but also includes both programming to illuminate 
the mathematics and applications in science and en­
gineering. The course, described more fully else­
where [ 2,3], covers the following topics: 

· Construction of surfaces by explicit polygon 

lists, by parametric operations, and by hierar­
chic grouping of simple objects to form com­
plex surfaces 

Modification of objects by three-dimensional 
geometric transforms to animate their motion 

Viewing of a group of objects including clip­
ping to a window and perspective or parallel 
projection into a two-dimensional screen space 

Rendering of polygonal and parametric sur­
faces by hidden surface removal, by shading/ 
lighting, by antialiasing, as well as by surface 
property modifications such as texture- or 
bump-mapping 

Use of global illumination models to render 
interactions between surfaces 

Modeling of scientific data for scientific visual­
ization. 

In addition to traditional lectures using the work 
of Foley and van Dam [ 4] and Watt [5], the stu­
dents engage in a range of practical, hands-on expe­
riences. Each student completes eight lab exercises 
and a final design project of his or her own choosing. 
Each lab exercise contains both sample programs 
to introduce the concepts and related descriptive 
material about the manipulations required of the 
student. All work is based on Web documents which 
explain the lab procedure, show examples, and sup­
ply source code. Currently the exercises cover basic 
computer graphic rendering and introductory scien­
tific visualization. The first exercise shows the stu­
dent how to specify a polyhedron by specifying the 
vertices and the polygonal faces of polyhedra. The 
students are expected to design a tfox and a simple 
propeller and animate the box opening and the pro­
peller spinning. Specifying every vertex in a com­
plex scene is impractical, so the second exercise 
illustrates how to use parametric operations to pro­
duce complex objects (e.g. torus or horn) by mathe­
matical operations on a fiat sheet. The operations 
may generate quadric surfaces, surfaces of revolu­
tion, or translation surfaces. The students are ex­
pected to construct a beverage bottle mathematically 
and to animate a spring/mass system. To increase 
scene complexity further, the third exercise demon­
strates how to combine predefined, simple objects 
(polyhedra or parametric surfaces) into hierarchic 
objects. An example might be a robot with fingers 
made of cylinders, attached to an arm made of 
blocks, attached to a body which again is a cylinder 
(Fig. 1). The students must build one of several 
objects and animate it. This year the list included a 



DATAFLOW LANGUAGE AND WORLD WIDE WEB 163 

helicopter, a wagon, a robot, or a bird. Each of 
these objects had a required set of motions it had 
to perform. 

By this point in the course the students can build 
very complex scenes, so the emphasis turns from 
building objects to the process of converting those 
objects into pictures on a computer screen. The 
fourth exercise shows the students how to move a 
computer-graphic "virtual camera" around in the 
scene, just as a real videotape recorder must be 
moved through a room. They are introduced to the 
concepts of camera motion and of using a camera 
to produce an image which itself becomes part of 
the final picture. The students must produce a TV 
camera and TV monitor. The TV monitor displays 
what the TV camera is looking at. Both must be 
visible in the final picture. The fifth exercise contin­
ues on the camera theme by requiring the students 
to perform the mathematical transformations to con­
struct a perspective camera. The exercises then tum 
to computer graphic lighting and surface texturing 
techniques. In the sixth exercise, the students learn 
how to construct Phong illumination, allowing them 
to construct "spotlights." They must program 'a 
spotlight and fly it through a simple scene. The 
seventh exercise shows them how to map a picture 
onto a surface, how to apply a texture (e.g., ''mar­
ble'') to a surface, and how to make a smooth sur­
face appear rough. These techniques increase the 
realism of a scene without increasing the complexity 
of the underlying geometric objects. 

Now the students can build complex objects and 
view them in a way similar to videographic tech­
niques. The eighth exercise uses these techniques 
on objects derived from data as an introduction to 
scientific visualization. Rather than teach the stu­
dents a scientific discipline to motivate scientific 
visualization, we chose to use landscape generation 
as a "da't:a set" to be visualized. First, the students 
were shown how to generate and visualize a fractal 
landscape. The gradient of the landscape altitude 
was calculated as a vector field used to generate 
"streamlines" which became streams on the land­
scape. Clouds were generated by a three-dimen­
sional fractal density field and visualized in two 
different ways: by treating the density as numerical 
haze and by fitting polygons to a certain density level. 
The students had to add ''rapids'' to the rivers by 
coloring them white where the slope was high, add 
trees with positions based on altitude, and animate the 
cloud so that the density changed with time. 

Armed with the techniques taught in the first 
eight exercises, the final exercise asked the students 

to design an animation of their choice. There were 
only a few constraints: The animation had to use a 
selection of techniques taught in the course. The 
animation had to have a title frame which included 
the authors' names and a copyright notice. The ani­
mation had to use MPEG compression for final stor­
age. Students worked in groups of two and each 
person was expected to put in about 25 hours on 
the project. The resulting animations show a huge 
diversity. Some were artistic, others were scientific. 
The complexity and sophistication of many of the 
projects can be amazing. The Web location http: I I 
www. tc .cornell.edu1Visualizationlcontriblcs418-
sp941cs418.html has several examples of student 
work. Figures 2-4 illustrate some of these examples. 

At the introductory level, the lack of program­
ming tools often interferes with learning graphics 
operations. Typically, graphical operations either 
are provided as a large library of routines that stu­
dents must learn, or derive from relatively simple 
programming projects that students must code from 
scratch. DX is a block diagram, point-and-click pro­
gramming language designed for producing high­
quality images based on three-dimensional data 
which may represent objects (walls or stars) or 
fields (density or electric field). The block diagram 
program is built of "modules" and "wires" con­
necting them. A module is a primitive program 
function that appears on the screen as a block with 
input and output tabs. Figures 5 and 6 show two 
DX program examples. 

Wires are dragged with the mouse from outputs 
to inputs. DX modules include vector and scalar 
field rendering, and geometric operations (rotate, 
translate), in addition to x and y plGtting. The block 
diagram interface of DX can be customized to make 
a ''visual subroutine library'' of often-used graphics 
routines. Students can construct very complex 
scenes including camera and lighting control in a 
short time. They can also "open up" various visual 
subroutines and modify or extend them. The graphi­
cal nature of the user interface and its easy extensi­
bility make it possible for students to rapidly proto­
type a graphics operation, and to see the effects and 
modify the program. The Cornell Theory Center has 
added modules to make parametric surfaces, texture 
maps, bump maps, spotlights, and a variety of other 
graphically oriented functions. 

EVALUATION AND FEEDBACK FROM 
STUDENTS 

In the spring 1993, we made a videotape of the 
student final design projects. This videotape was 



164 DOERR AND LAND 

Figure 1 A robot shooting a basketball. For the anima­
tion, the trajectory of the basketball was iteratively solved 
using a symbolic algebra package. The trajectory was 
then used to control the movement of the robot so that it 
looked like the robot was producing the motion. The net 
is a parametric surface showing only the edges of the 
polygons making it up. 

shown to the students in the next offering of t~e 
course and provided positive motivation for those 
students. In the spring 1994, posting of student ani­
mations to the internet became possible with the 

Figure 2 The title of the animation was "It's not a bug 
it's a spider." The students constructed a simplified "spi­
der" using geometric primitives in DX. The spider geome­
try (vertex list) was then exported to a program which 
solved Laplace's equation on a square region, with boundary 
conditions of zero height, and with the additional constraints 
that at no place could the relaxation process move the solu­
tion below the highest point on the spider. The result is 
what appears to be a rubber sheet stretched over a spider. 
The positions of the sheet were imported back into DX and 
rendered along with the spider. Each frame of the animation 
required a separate solution. 

Figure 3 The title of the animation was ''Fasten Your 
Seat belts! ! ! ' ' The students found geometric models of 
cars at an internet site, downloaded them, and converted 
them to DX object format. They figured out a parametric 
distortion of the geometry which approximated crumpling 
of the front of the cars. They then animated the cars and 
applied the distortion functions at the appropriate times 
(when the cars hit a wall or each other). 

advent of the Web, Mosaic, and MPEG compres­
sion. Publication and distribution via the Web ap­
pear to have the potential for an even larger motiva­
tion effect. Moreover, students can now sign up for 

Figure 4 The title of the animation was "Space Shut­
tle.'' The students modeled a space shuttle by explicitly 
designing a vertex list describing a polygonal approxima­
tion to a real shuttle. They modeled the fuel tanks and 
boosters by parametric operations. The smoke was a frac­
tally deformed density field which was converted to an 
isosurface of constant density, then scaled flat along the 
ground. 



DATAFLOW LANGUAGE AND WORLD WIDE WEB 165 

Figure 5 A DX program example. The program shown generates a flat 2D surface, defmms 
it to a 3D function of two variables, applies a lighting model, and renders it. The resulting 
image is shown in the lower right. The expression in the compute module which deforms the 
surface is shown in the upper right. 

the course with a tangible image of the kind of work 
they can be expected to produce at the end of the 
semester. The students can view the previous year's 
final design projects throughout the semester. These 
animations serve as illustrations of the techniques 
which the students are currently studying. The final 
design projects serve to set a level of expectation 
for the course, define a style and allow students to 
plan for their final animation projects from the first 
day of class. As creators of animations, the students 
are motivated by the large potential audience to 
refine their work carefully. There are several issues 
regarding intellectual property rights that were ad­
dressed. We do not require that students post their 

animation to the Net. In our view, the students 
clearly own their work and may not want to share 
it for any number of reasons. One side effect of this 
guideline is a level of self-selection of work that is 
published on the server, with the resulting tendency 
for only the best work to be submitted for inclusion. 

Course evaluations were conducted for each of 
the 3 years this lab course has been taught. In gen­
eral, the results indicated overall student satisfaction 
with the course. Comments were encouraged on the 
evaluations. Many students commented on the ease 
of use of the programming environment: ''Excellent 
software-allowed us to concentrate on graphics 
rather than computer programming"; "The soft-



166 DOERR AND LAND 

Figure 6 A DX program example. Shown here is the program which generates two octa..'ledra 
and animates them. In the upper right comer is the control panel, defined by the student to 
vary the color of one shape and the opacity of the other. In the middle right is the sequencer 
which controls the animation. At the bottom right is the image corresponding to one frame of 
the animation. 

ware was very simple and allowed easy application 
of the techniques from lecture"; "For a teaching 
environment, DX makes you do the right amount 
of stuff yourself to make you learn how the graphics 
details work." Not surprisingly, a few students 
wanted to delve into the details of the inner work­
ings of the graphics software: ''Labs were too far 
from internal workings of Data Explorer"; "I liked 
DX but a few of the assignments should be in C so 
we could become familiar with graphics at a lower 
level.'' The goal of the course was not to teach the 
inner workings of DX, but rather to provide the 
students with tools for scientific visualization and 

creating computer graphics. The maJonty of re­
sponses indicated satisfaction with DX as a vehicle 
for learning the visualization and graphics tech­
niques. 

In the spring 1995, in addition to the course eval­
uation, we administered a pre- and postcourse ques­
tionnaire to examine the students' attitudes toward 
and uses of the Web as a tool for enhancing teaching 
and learning. Because all of the lab materials were 
on the Web site, no paper was handed out for the 
labs. We found that about a third of the students 
printed less than 10% of the material, but a fourth 
printed 80% or more of the lab pages. This suggests 



DATAFLOW LANGUAGE AND WORLD WIDE WEB 167 

that although many students are eager to make 
nearly exclusive use of on-line information, there 
is still a significant number of students who desire 
to have the materials in print format. Of course, the 
use of the Web makes accommodating both of these 
groups rather easy. A full 60% of the students indi­
cated on the postcourse questionnaire that the use 
of Web for course materials increased their produc­
tivity in labs. On the precourse questionnaire 40% 
of the students indicated that they felt that having 
materials on-line would help them learn at their own 
pace. This expectation was more than met, because 
on the postcourse questionnaire 55% of the students 
indicated that they were better able to learn at their 
own pace. 

The availability of last year's animation projects 
influenced a large percentage of the students. About 
30% of the students got ideas from last year's proj­
ects and another 35% indicated that it increased 
their motivation. In the judgment of the instructor, 
overall the projects were more elaborate. Many stu­
dents commented on pride of workmanship and en­
thusiasm for having their final projects shared with 
not only their friends, but the world at large. Several 
students noted that putting the animation up on the 
Web site would become part of their portfolio as 
they created their job resumes. The two major sug­
gestions that emerged from this assessment were, 
first, a strong desire on the part of the students to 
have the full course notes available on-line. This is 
now a current effort under way. Second, the students 
expressed a desire for a "chat" facility to support 
communications among the students and between 
the students and the course instructors and teaching 
assistants. This is now in place for the next course 
offering. 

CONCLJJSIONS 

The visually oriented, block diagram language al­
lowed the students to concentrate on learning the 

applications and graphics content rather than fo­
cus on the details of a programming environment. 
Students were able to generate code to create im­
ages in a fraction of the time required of a C 
language environment, thus encouraging both ex­
perimentation and exploration. The acquired 
background in computer graphics was readily put 
to use in scientific visualization as students ap­
plied their skills in research projects across cam­
pus. The introduction of the Web site provided 
several advantages to the students, including ac­
cess to all lecture and lab materials and additional 
related resources. The Web site also provided a 
forum for students to publish their final work to 
the larger research community. We anticipate that 
the work published last year will serve as a model 
and as a set of building blocks for new project 
ideas by this years students, much as the video 
presentation had done in the past. 

REFERENCES 

[1] R. D. Pea, "Beyond amplification: Using the com­
puter to reorganize mental functioning,'' Educational 
Psychologist, Vol. 20, No.4, 1985, pp. 167-182. 

[2] B. Land, ''Teaching computer graphics and scien­
tific visualization using the dataflow, block dia­
gram language Data Explorer," in University Ed­
ucation Uses of Visualization in Scientific Com­
puting, Vol. A-48, 1994, pp. 33-36. Amsterdam, 
Netherlands: International Federation for Infor­
mation Processing. 

[3] The lab exercise software plus student lab instructions 
are available on-line from the anonymous ftp site 
at Cornell University (ftp.tc.comell.edu) or http:// 
www .tc.comell.edu:80Nisualization/Education/cs418/. 

[4] J. D. Foley and A. Van Dam, Computer graphics: 
Principles and practice. 2nd Edition. Addison-Wes­
ley, Reading, Massachusetts, 1990. 

[5] A. Watt, 3D computer graphics, 2nd Edition. Addi­
son-Wesley, Reading, Massachusetts, 1993. 



168 DOERR AND LAND 

BIOGRAPHIES 

Helen M. Doerr is an assistant professor of 
mathematics education at Syracuse Univer­
sity. Her current research interests include 
mathematical modeling, functions, and 
problem solving. She continues to examine 
the use of networking technologies to sup­
port teaching and learning. Prior to her ap­
pointment at Syracuse, she was the associate 
director of scientific computational support 

for the Cornell Theory Center. She was responsible for the overall 
on-line information, education and training programs at the The­
ory Center, as well as the technical support and academic out­
reach efforts of the center in support of the national scientific 
community. 

Bruce Land is the project leader of the visu­
alization group at the Cornell Theory Cen­
ter. He also teaches in the Computer Science 
Department at Cornell. Land received a PhD 
in neurobiology in 1976 from Cornell Uni­
versity, and a BS in physics from Harvey 
Mudd College in 1968. He was a lecturer in 
the Neurobiology Department at Cornell for 
I 0 years and did research on coupling of activ­

ity at the vertebrate neuromuscular junction, both experimentally 
an.d by computer modeling. During this time, he taught in the 
Electrical Engineering Department at Cornell for 2 years. He came 
to the Cornell Theory Center in 1986 as a computational research 
associate, then started supporting graphics and animation in 1987. 
In 1992, he started teaching an introductory graphics course in the 
CS Department at Cornell. 




