PROGRAMMING INSIGHT

DRAGON

BY BRUCE R. LAND

Recursive drawing of a dragon curve on the Macintosh

THIS PROGRAM uses the I

MocFORTH™ 2.0 ©1984 (51 |

you can note in listing 1.

high-resolution Macintosh | ,&%

display and the rapid ex-
ecution rate of MacFORTH
(Creative Solutions Inc.) to
produce a recursive draw-
ing of the so-called Harter-
Hightway Dragon (de-
scribed in reference 1). The
resulting curve (see figure 1)
is interesting to look at
because it has features on
many different length

16 DCURVE

this verb must always be
"used in pairs or strange
things will happen. -
FORTH is a bottom-up
programming language in
which you start with the
primitive operations and
build up complex ones.
After defining the RECURS
verb, the program defines
four variables to locate a
“drawing turtle”’ 1 used a

scales, from the very
smallest kinks to the major
"body” segments.

Figure 1: A 16th-order dragon drawn
by the FORTH program DRAGON.

2l turtle-graphic approach
because the code was
translated from Apple
UCSD Pascal (reference 3).

The curve is constructed
by successive fragmenta-
tion of line segments into ever-smaller
right angles. This construction lends
itself to implementation by recursion.

Recursion is a process by which a
task is broken up into smaller tasks
that are similar except for, perhaps, a
count of how many times the smaller
task has been performed. The unique
feature of recursion is that a recursive
procedure calls itself before it finishes
execution, so that intermediate results
pile up, to be resolved later when an
end condition (for instance a count)
indicates that the recursion is com-
plete.

To perform recursion in FORTH you

must consider two things. The first is

that all local variables of the recursive
routine must be on the stack, because
when a routine calls itself, FORTH
(unlike Pascal) does not make copies
of variables for each invocation. The
second is that FORTH normally
assumes that no one would ever want
to invoke a verb whose definition is
not complete, so a recursive call
within a definition is considered an
error. This problem is easily handled
by defining a verb called RECURS
(reference 2) in listing 1 that tem-
porarily tricks the compiler into con-
sidering the definition complete. As

MacFORTH does not have
turtle qperations, but it is easy to pro-
duce the turtle operations TURN and
MOVE. TURN accepts an angle (in
degrees) on the stack and updates the
turtle direction. MOVE causes the tur-
tle to take one step forward in the
direction it is facing.

The main work is done by
DRAGON, which is the recursively
called routine. Each time you enter
DRAGON it calls itself twice until a
value on the stack, called "level” in

(continued)
Bruce R. Land, PA.D. (Box 73, RD #1,
Trumansburg, NY 14886), is a senior lec-
turer at Cornell University.

APRIL 1986 « BYTE 137

Scanned by CamScanner

DRAGON

Listing 1: The FORTH blocks for the DRAGON program.

Screen #1
(_ begin Dragon curve)
CREATE CURVE (a FORGETable nume)

CARTESIAN OFF

: RECURS SMUDGE ; IMMEDIATE (trick verb for recursion)

VARIABLE ANGLE
VARIABLE XCOOD
VARIABLE YCOOD
VARIABLE STEPSIZE

: TURN (deltangle-- | turn signxdelta)
ANGLE +! ;
2 4 THRU
Screen #2
MOVE (—- | takes a step in present turtle direction)

STEPSIZE @ DUP

ANGLE @ COS = 10000 / (rx cos of theta) XCOOD @ +
DUP (newX) XCOOD ! (update X)
SWAP
ANGLE @ SIN * 10ee0 / (r* sine theta) YCOOD @ +
DUP (newY) YCOOD | (update Y)
DRAW.TO H
Screen #3
DRAGON (sign level— |)

DUP level) @=

IF g at bottom of recursion)
DROP (level) DROP (sign)

ELSE

OVER 45 * TURN (getsign and turn)

1 (newsign)

OVER 1- (level=level-1)

RECURS DRAGON RECURS

MOVE (by stepsize)

OVER -90 * TURN (getsign & turn)
-1 (newsign) (edit to +1 for diff curve)
OVER 1- (level=level-1)

RECURS DRAGON RECURS
DROP (input level) 45 x TURN (getsign and turn)
THEN

Screen #4
DCURVE (level =—-—|
(init pen position)

PAGE 160 XCOOD | 90 YCOOD | 360 6 * ANGLE !
WHITE PENPAT XCOOD @ YCOOD @ MOVE.TO
PEN.NORMAL
1 STEPSIZE |
1 SWAP (level) DRAGON
WHITE PENPAT 4 10 MOVE.TO PEN.NORMAL ;
e T s a—

138

BYTE * APRIL 1986

With this MacFORTH
program, Yyou can
draw a 16th-order
dragon curve

in 4%, minutes.

the commands, reaches zero. At that
point a step is drawn. A l6th-level
dragon curve (the biggest that will fit
on the screen) results in 2'¢ separate
calls to DRAGON.

The final routine DCURVE initializes
the pen position, sets up the stack for
DRAGON, invokes DRAGON, and
finally moves the pen away from the
end of the curve. The program will
draw a 16th-order dragon curve in 4%
minutes.

The program has a few limitations.
The MacFORTH' sine and cosine
routines carry only four-place ac-
curacy, so the program runs correct-
ly only for even orders. An odd order
causes the turtle to wander off the
screen.

To run DRAGON, type N DCURVE,
where N is the order desired. At one
place in the program listing you'll see
a notation that editing will produce an
interesting variant. In particular, note
that a 16th-order curve will not fit on
the screen unless the STEPSIZE con-
stant is unity. m

[Editor's note: The source code for DRAGON
is available for downloading from BYTEnet
Listings. The number is (617) 861-9764. It
is also available on disk. See page 346 for
details. You will need MacFORTH to run the
program.|

REFERENCES

1. Mandelbrot, B. B. The Fractal Geometry of
Nature. San Francxsco Freeman, 1982,
page 66ff.

2. Smith, A.]. "Another Recursion!’ FORTH
Dimensions, vol. 3, no. 6, 1982, page 179.
3. Luehrmann, A., and H. Peckham. Apple

Pascal: A Hands-on Approach. New York:
McGraw-Hill, 1981, pages 335-344.

Scanned by CamScanner

