ECE 476 Lab 5

Greg Sanders (gts7)

Vincent Poon (vp28)

5 April 2005

Introduction

Lab 5 involves building a digital thermometer which displays the temperature on a LCD display and controls a fan with a user-selectable turn-on temperature similar to how a thermostat would work. The following specifications were met in the design:
· Measure room temperature with an LM34 and convert the output voltage to a number using an A-to-D converter program running on the MCU.

· Format the temperature and display appropriate messages on an LCD.

· When the user briefly presses one of two buttons (labeled increase and decrease), display the fan set point temperature. Make the default fan set point temperature (at RESET time) be greater than room temperature.

· If the user holds either button down for more than 1/2 second, the set point is modified in the appropriate direction and displayed.

· If the actual sensor temperature is above the set point, turn on the fan. If the fan is pointing at the LM34, it should cool the temperature sensor and turn itself off.

An important part of this project is the LM34 temperature sensor which produces a voltage output 10mV/degree F. This along with other parts of the circuit which we will describe later makes up the hardware portion of the project.
Procedure

Hardware

There are two circuits in this lab, one that is connected to the output which connects to the fan and one that connects to the input from the LM34 temperature sensor.
The circuit connected to the fan is shown in figure 1.

[image: image1.png]PortPin

32

MCU ground

Fan volts
Totor

001

4N35

TIP3
b

12volt return

[
'THIS IS NOT MCU GROUND

Figure 1

Here the 4N35 optoisolator electrically isolates the MCU from the motor in order to protect the MCU from nasty inductive spikes generated by the motor. The 1N4001 diode shorts out spikes when the motor is turned off. The second transistor on the right is to increase gain.
For the input circuit, we built what’s shown in figure 2.

[image: image2.png]100k LR 7111

LR34 ﬂﬁxh T
PI&Q

Figure 2.

The signal from the LM34 temperature sensor goes through a low-pass filter in order to get rid of noise. The gain on the op-amp is set to 4 so that we can take advantage of the full range of the ADC. Since we used an internal Vref of 5V, a gain of 4 will give us a temperature range of 0-125 degrees. If we had used a smaller gain, we would be able to measure higher temperatures, but larger increments. We thought a range of 125 degrees and an increment of half a degree, since we used an 8-bit ADCHigh, was ideal. We used a resistor pack in order to match the resistances so that we have almost exactly 4 times the resistance compared to the other resistor.

The formula for to convert the Ain to degrees is Degrees = (Ain/4*256*.01)*4.97. 4 comes from the gain, 256 is the number of values held in ADCHigh, .01 is to convert from mV and 4.97 is our Vref. We also needed to calculate this as a float.

Software

Results

Even though we had all the code done going into lab, we ran into a slight problem which took us almost the entire lab section to debug. We forgot that we cannot use “//” in order to comment while in assembly. This little mistake, unfortunately, took us hours to realize. Once this was fixed however, things went smoothly and we only had to fine tune the ADC converter.
Our thermometer could theoretically measure up to 125 degrees Fahrenheit (5V/(40mV/degree)), although we could not test to confirm this. The user interface worked just as it was supposed to as did the fan control.
Because we used a 8 bit ADCHigh, each bit in Ain represented .488281 degrees which is the accuracy of our thermometer and it is also what we observed when looking at the LCD which increased in .5 increments.

Conclusion

In conclusion, we are satisfied with this lab because it showed how some simple code combined with some circuitry can produce a very useful functionality. We also learned a lot about how to use peripherals and manipulate the signal so that it can be controlled bt the MCU. It’s not very far fetched to imagine how with the appropriate controls we could modify this to control a real home HVAC system.
Analytical (Lab) Questions

1) Refer to figure 1 and figure 2.
2) As stated in the results, our accuracy was to .488281 degrees and was very stable as there are no transient up and down readings in temperature.
3) Refer to appendix.

Homework Questions

1. Describe in detail why there is a diode across the motor. Include direction of inductive current flow during each part of the PWM cycle.

The diode placed across the motor shorts out spikes when the motor is turned off. Since the motor is a noisy inductor, it is governed by V=L*di/dt. There is no inductive current during the on phase or the off phase, but there is inductive current during the transition between those phases. Energy goes into the motor during the off-> on transition and out of the motor during the on-> off transition.

2. Why is the LM7111 necessary? Consider error ranges from the ADC portion of the data sheet.

We can see from the ADC portion of the data sheet that the error range is 0.5 of the LSB. By using the LM7111 to amplify the signal from the temperature sensor by a factor of 2, we can achieve better accuracy by doubling the range and ignoring the last bit.
Appendix-Code

#include <Mega32.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <delay.h>

//debounce states

#define noPush 1

#define maybePush 2

#define push 3

#define maybeNoPush 4

#define LCDwidth 16

#asm

 .equ __lcd_port=0x15

#endasm

#include <lcd.h> // LCD driver routines

char lcd_buffer[17]; // LCD display buffer

unsigned char Ain, debouncing;

unsigned int time1, time2, pushTimer, pbDBState, bpush;

float temp, setTemp;

void pbMP(void);

void pbNP(void);

void pbPushed(void);

void pbMNP(void);

void pbDebounce(void);

void initialize(void);

interrupt [TIM0_COMP] void timer0_compa(void)

{

 // run to 0 every 30ms

 if(time1 > 0) --time1;

 if(time2 > 0) --time2;

}

//================

//Debounce the pushbuttons

void pbDebounce(void)

{

 bpush=(~PIND & 0x03); //get lower 2 bits

 switch(pbDBState)

 {

 case noPush:

 pbNP();

 break;

 case maybePush:

 pbMP();

 break;

 case push:

 pbPushed();

 break;

 case maybeNoPush:

 pbMNP();

 break;

 }

}

void pbNP(void)

{

 if (bpush) pbDBState = maybePush;

}

void pbMP(void)

{

 if (bpush)

 {

 pbDBState=push;

 debouncing = 0x01;

 //display the set temp

 lcd_clear();

 lcd_gotoxy(0,0);

 lcd_putsf("Set Temp:");

 lcd_gotoxy(0,1);

 ftoa(setTemp,2,lcd_buffer);

 lcd_puts(lcd_buffer);

 }

 else pbDBState=noPush;

}

void pbPushed(void)

{

 if (! bpush)

 {

 pbDBState=maybeNoPush;

 }

 else

 {

 if (pushTimer < 17) pushTimer++;

 else

 {

 pushTimer = 0;

 if ((bpush == 1) && (setTemp < 125)) setTemp += .25;

 if ((bpush == 2) && (setTemp > 0))
setTemp -= .25;

 lcd_gotoxy(0,1);

 ftoa(setTemp, 2, lcd_buffer);

 lcd_puts(lcd_buffer);

 }

 }

}

void pbMNP(void)

{

 if (! bpush)

 {

 pbDBState=noPush;

 debouncing=0;

 pushTimer=0;

 // display the temperature

 lcd_clear();

 lcd_gotoxy(0,0);

 lcd_putsf("Current Temp:");

 lcd_gotoxy(0,1);

 ftoa(temp, 2, lcd_buffer);

 lcd_puts(lcd_buffer);

 }

 else pbDBState=push;

}

//=======================================

// sets everything up

void initialize(void)

{

 // initialize the LCD for 16 char wide

 lcd_init(LCDwidth);
//initialize the display

 lcd_clear();

//clear the display

 lcd_gotoxy(0,0);

 lcd_putsf("Current Temp:");

 lcd_gotoxy(0,1);

 //DDRC = XX; LCD, set up elsewhere

 DDRA = 0x00; //ADC input

 DDRD = 0x00; //pushbutton input

 DDRB = 0xff; //output to optoisolator

 //timer 0 ticks every 1ms

 OCR0 = 249;
//set the compare reg to 249 time counts

 TCCR0 = 0b00001011;
//prescalar to 64 and turn on clear-on-match

 TIMSK = 2;

//turn on timer 0 cmp match ISR

 //ADC Stuff

 ADMUX = 0b00100000;

 //enable ADC and set prescaler to 1/128*16MHz=125,000

 //and clear interupt enable

 //and start a conversion

 ADCSR = 0b11000111;

 //start another conversion

 ADCSR.6=1;

 setTemp = 76.0;

 time1 = 500;

 time2 = 30;

 pushTimer = 0;

 pbDBState=noPush;

 //turn on timer 0 compare ISR

 TIMSK = 0b00000010 ;

#asm

 sei

#endasm

}

//==================================

void main(void)

{

 initialize();

 while(1){

// read sensor every 1/2 sec

if(time1 == 0)

{

 time1 = 500;

 //starts A/D conversion

 ADCSR.6=1;

 Ain=ADCH;

 temp = ((float)Ain/(4*256*.01)) * 4.97;

 if (debouncing==0)

 {

 // display the temperature

 lcd_clear();

 lcd_gotoxy(0,0);

 lcd_putsf("Current Temp:");

 lcd_gotoxy(0,1);

 ftoa(temp, 2, lcd_buffer);

 lcd_puts(lcd_buffer);

 }

 //turn on fan if sensor temp > set temp

 if (temp > setTemp) PORTB.0 = 1;

 else PORTB.0 = 0;

}

// debounce buttons every 30ms

if(time2 == 0)

{

time2 = 30;

pbDebounce();

}

//PORTB.0 = ~PIND.0; // turn on the fan when you push D0

 }

}
