Ultrasonic Security System
Gen Masuda (gm348)

Xuefan Zhang (xz227)

Introduction

Sound bite - An ultrasonic security system that sends off sound alarm and updates
you via email in case of intruders.

Summary

We were inspired to build an ultrasonic security system for our final project by our
housing situation this summer. Security is an important part of home, especially if
we are going to share a house with prior strangers without a lock on our room door.
Yes, that is the situation we are walking into in order to drive down the cost of living
in NYC. And we anticipate that many college students could face a similar problem.
What is not to love about a device that looks like WALL-E and scans around for
possible intruders? In case of intruders, it sends off a sound alarm and alerts the
owner via email. It is also password protected and could be disabled via the correct
password.

High Level Design
Rationale for project idea

We came up with the idea because it could help us and others protect property and
privacy. Traditional household security systems often require installation and detect
based on opening of doors and windows. In the cases where installation is not
possible and/or the area of interest has no door, our ultrasonic security system will
come in handy because it requires no installation, and detects intruders based on
their physical presence.

Overview

The system uses ultrasonic sensor that has a transmitter part and a receiver part.
The ultrasonic transmitter periodically emits ultrasonic signals into an open area in
front of it. To cover a wide range, a rotating servomotor is used to allow the sensor
(transmitter and receiver pair) to cover roughly 180 degrees. If the signal ever hits a
physical object, it will be reflected back and, the receiver part of the sensor will then
capture it with the object considered detected as its position (distance from the

device and angle relative to the device) is now known. As the security system sends
off a sound alarm, the object position is polled by our MATLAB script, which then
plots it on a graph and logs the record. The record log is also sent as an email to an
address set by the owner in advance.

From the user's perspective, here is the flow of the system: LCD indicates user may
press the button "A" to start. After user presses "A", the LCD further asks user to set
up a password that could be used to disable the security system later, followed by
the button "#". After the user finishes entering the password, the password is stored
for the session, and the security system becomes active: motor starts rotating,
sensor is scanning for potential intruders within a distance (15 cm for our demo, but
could be anything realistically. It is only constrained by the sensor range, which is 5
meters theoretically), and in the case that an object is detected, the system beeps
and triggers MATLAB to send an email containing the time of detection to the user.
If the user wishes to disable the security system, he or she could type in the
password used to set up the session. LCD will then indicate session is ending, and a
new session is started in 2 seconds.

Logical structure

We will first talk about our hardware logical structure. The key hardware for this
project are Atmega644 microcontroller, URM37v3.2 ultrasonic sensor, Parallax
servo, LCD, and a keypad. The microcontroller sends the LCD various message
depending on the system state. Also, a user is expected to enter a password each
time he/she begins and terminates the system through the keypad. Finally, the
microcontroller communicates with both the sensor and PC (MATLAB) via same
rs232 serial port. Therefore, the sensor and MATLAB distinguishes the commands
by using unique headers.

Optoisolator

Now to the software logical structure. There are three functions that our C code runs
periodically: debounce function that debounces keypad in order to read user input
correctly, the system state function that moves through system stages (waiting to
password to on, on to OFF, setting up passwords, etc.), and the active security
function that rotates servomotor and sends signal off to detect potential objects. We
will describe all three functions in more details under the Software Design section.
These tasks go off at different times as they each have their own countdowns,
decremented and reset accordingly when a timer interrupt is received. Once their
times are up, the tasks are called by the while(1) loop in main. Debounce task sets a
flag when user presses keys, this flag helps the second task to move system to the
next state and operate accordingly. The second task also sets a flag when the system
state is set to ON, and this flag is needed for the third task because we only rotate
our motor and look out for objects/intruders when the security system is ON
(owner has set up password and system is ready to go). When an object is detected,
a trigger is sent to our MATLAB script, which has been polling for an intruder
trigger. Once the MATLAB script is triggered, it plots the object’s position and sends
user an email.

Initialization

object
detection

IEEE and FCC regulations

As far as we understand regarding the FCC standards, none applies to our design.
This is primarily because our design is an ultrasonic transducer, and not an RF.
Furthermore, we have closely familiarized ourselves with the IEEE code of ethics. In
particular, we have accepted responsibility in making decisions with priority placed
on safety, health, and welfare of the public during our final project. One safety
consideration here may be that, as our security system goes off, alarm sound is

blasted and LED is programmed to flash. We have carefully calculated and planned
the magnitude of our alarm during the implementation of the final project, as abrupt
siren of great amplitude may cause health hazard to those with heart diagnosis.

Hardware Design

The Atmega644 microcontroller was used to interface with the URM37v3.2
ultrasonic sensor via rs232, Parallax standard servomotor via PWM, and to the
MATLAB running on a PC via rs232. For user interactions, there are LCD and keypad
wired to PORTC and PORTA respectively of the microcontroller. We will discuss
how each of these hardware interfaces with the microcontroller.

Atmega644 microcontroller

As the brain for the project, we built a target board for Atmega644 chip. The target
board itself was designed by Bruce Land, and the layout is as follows (images taken
from course website):

| de 07

R

™
-1 Yece
3 Gnd

ul2r2a12
Bruce Land
Cornell
ECE 4760

Q X
Q Vee

R T Q Gnd
DODODODOOODOOQOO0O0O0O0O00O vi2/2012)
Vcco thg - Se——— Bruce Land

GM - l “ ' o o cOY‘nEll
‘“l—l 000 O bl P 308 ECE 4760

“m:000 O lM% = mlw = ool’j Q

100k . 1u
22pf 22pf

[

Tuf

Brucel.and 2412
Carnell ECE47éQ

Here is the target board we built:

The key features of Atmega644 microcontroller that we used for this project are the
three timers and the serial rs232 USART. The timers are responsible of scheduling
periodical execution of various tasks (refer to "Software"), generate alarm tone, and
generate PWM signal with appropriate duty cycle and frequency to control the
servomotor.

The serial USART is used to communicate with the ultrasonic sensor and with the
MATLAB running on a PC.

The one problem we faced was the fact that there is only one USART, and there are
two items trying to connect through it. Thus, both the sensor and the MATLAB will
see all the outgoing bytes. We resolved the issue by simply wrapping the data with
unique header. It turns out that the sensor requires the header to be 0x22 in order

initiate a distance measurement (more on this later), and therefore we assigned
0x01 for MATLAB. Thus, both MATLAB and sensor will be constantly polling for a
command, but will only act upon it if the header matches.

URM37v3.2 ultrasonic sensor
The URM37v3.2 sensor was purchased through DFRobot (dfrobot.com). It has its

own little avr processor which executes a distance measurement when commanded
by the main MCU (atmega644). Here are the front and back layouts of it:

!smmgzs Q@E@ 8

= EE S _[‘E_'!

—
h -~ :

0% =
e @

The sensor has multiple modes of operation such as serial passive control mode
which always waits for command to initiate a measurement, autonomous trigger
mode which makes measures every 25msec, and PWM passive control mode which
outputs the measurement in an analog PWM format. We have decided to keep the
sensor in the passive control mode for simplicity. The specific command that the
sensor awaits to measure distance is: {0x22, degree, 0x00, checksum}. The
command is sent via rs232 serial communication with 9600 baud, 8 bit data, no
parity, and 1 stop bit (8N1). The degree mentioned above is an optional feature of
the sensor to directly control the servo motor to that specific angle. In our case, the
main atmega644 is responsible of the servo motor position, and thus the command
that is sent is: {0x22, 0x00, 0x00, 0x22}.

When the sensor receives this particular command, it responds with {0x22, high
distance, low distance, checksum}. Thus, the measurement can be retrieved by

shifting the high distance and or-ing with the low distance: dist = (high_dist<<8) |
low_dist.

Parallax standard servo motor

The servo motor requires a 5v dc power supply, and is controlled via PWM signal of
roughly 50Hz. The position of the servo is determined by the duty cycle of the signal.

The servo motor can produce inductive spikes, and therefore we placed an opto-
isolator between the MCU and the motor to protect the chips.

LCD
LCD is used as the main interface with the user. It is wired to all of PORTC of the

Atmega644 microcontroller. The instruction on how to set it up can be found on
the ECE 4760 course website

Keypad

Keypad is used for all user inputs, such as turning on the system and entering
password. It has 8 pins, where the first four corresponds to rows, and the second
four corresponds to columns. as a key is pressed, the intersection of a particular row
and column will create a short circuit, which is used by the microcontroller to
determine the key press. The detailed instruction on keypad is found on the ECE
4760 course website

Software Design

As we previously mentioned, there are three main functions that the C code runs
periodically, and they are the debounce function, the system state function, and the
active security function in charge of rotating motor, detecting objects, and triggering
MATLAB script. Here we will describe in details about how they work. We will then
talk how our MATLAB script works, as well as give brief descriptions about some
remaining functions.

Debounce function

The debounce function runs every 10 milliseconds. Instead of debounce function, it
should really be referred to as debounce functions. debounce_string() and
debounce_request() are both needed for the keypad to work correctly. The user
needs to press a certain button to start the system, and he or she also needs to press
a sequence of buttons to enter a password. As a result, we must debounce each of
the keypad buttons, which is done in debounce_request(), and we must support

string entering. A variable key_state is used to keep track of whether a single push is
expected (i.e. a command), or whether a series of pushes is expected (i.e. a
password). If key_state is DONE, we expect a single button push and call
debounce_request(); else, we expect a series of pushes, and debounce_string() is
called.

Debounce_request() will accept one character push only, while the
debounce_string() will accept a sequence of pushes, and forms a character array
from them. In the meantime, the keypad is constantly checked if any button is
pressed, and stores the value into butnum.

To understand butnum, we will put debounce aside for now and look briefly at how
the keypad is read in the first place. Keypad button is organized by row vs column
matrix, and a value is determined by looking at the intersection between them. For
example, button 2’ would be row 1, column 2. Thus, we will first read the row bits,
followed by the column bits, and OR them to evaluate exactly which intersection
was pushed. The corresponding code keypad() is presented here:

void keypad(void)
{

//get lower nibble
PORTDIR = 0x0f;
PORTDATA = 0xT0;
_delay_us(5);

key = PORTIN;

//get upper nibble
PORTDIR = 0OxT0;
PORTDATA = 0Ox0T;
_delay_us(5);

key = key | PORTIN;

//Tind matching keycode in keytbl
if (key != @xff){
for (butnum=0; butnum<maxkeys; butnum++){
if (keytbl[butnum]==key) break;
}

if (butnum==maxkeys) butnum=0;
else butnum++; //adjust by one to make range 1-16

}

else butnum=0;

Now that we know how butnum is acquired, let us dive into how we actually
debounce the keypad.

Debounce_request() is a simple state machine with four states: Release, Pushed,
StillPushed, and MaybeReleased. This is covered by Professor Bruce Land in lecture
and is used in previous labs. Here is a diagram of the state machine:

Butnum I‘-\haybe

Release butnum!=0;
bumumy set maybe = butnum

MaybeReleased

Butnum == maybe

butnum!=maybe W ﬁtnum == maybe

Similarly to the above is the debounce_string() function, which is practically the
same as with an addition of two more states: Terminated and Done. The idea behind
it is that until a certain termination key (in our case, '#') is pressed, a user is allowed
to keep pressing valid parameter that could be more than one digit long. Thus, at
each iteration, the state machine will check if the pressed button was '#'". If not, it
will keep asking the user to enter the next digit. This is again something covered by
Professor Bruce Land in lecture and implemented by us. Here is the detailed
diagram describing the state machine:

task requests strings

butnum !=0

&
-

butnum |= maybe

butnum == maybe

maybe == termlnator

SeTkeyready =];
Keystr[keycount) = 0;

maybe |= terminator
Set: keystr[keycount++) =
butnum + 0x30;

_ butnum |= maybe

) J stipushed :

butnum == maybe

butnum == maybe

As a button push or a string is captured, a variable check_flag is set to 1 to indicate
there has been user input. This is crucial to the system state function, which we will
talk about next.

System state function

This function, named check_task() in our C code, is in charge of moving through the
different stages of the security system, setting things up and preparing for the next
stage.

check_task() is called every 40 milliseconds, but it only actually runs if check_flag is
set to 1. check_task first checks if check_flag is set to 1. If it is, it does the appropriate
operations depending on what system_state is. Variable system_state can have four
values: OFF, WAIT_PASS, ON, and TERMINATED. OFF indicates that the user has not
set a password and started the security system is off; WAIT_PASS indicates the user
has sent command to start but has not finished inputting a password to start the
security session; ON means that the security system is operating by itself (motor is
rotating, sensor is actively scanning, etc.); TERMINATED indicates that the user has
typed in password to disable the security system, and the system state will go to
OFF by itself in a few seconds. Here is a diagram describing how the state machine
works:

on term_time on user finished

expires entering password

(check_flag = 1) (keyready == 1); also
set password to what
is entered.

'
entered

There are specific operations we do to prepare the system before it goes to the next
state, such as update LCD with the appropriate message, setting password, etc. For
details please see the actual code under check_task(). Also notice that check flag is
not just set by button push: although that is the case most of the times, it is also set
to 1 when the system state go from TERMINATED to OFF in order for correct
implementation.

Active security function

This is the function that rotates motor, request sensor to detect potential
objects/intruders, and sends off sound alarm as well as triggers MATLAB script in
case of object found. This function is named the_task() in our code.

Although this function is called every 200 millisecond, it only really runs if
system_state is ON. What it does is that it moves servomotor by roughly 6 degrees
each time, and sends a measuring distance command to the sensor by calling
function measure_distance(), which we will discuss later. The resulted distance dist
is set to -1 if there is no object detected, else it is the distance measured by the
sensor. If the distance is within range, it beeps and triggers the MATLAB script by
calling trigger MATLAB, which takes in distance and the position of the servomotor
(so we know the angle).

In our code, a variable email_time is set to 2 seconds, and its purpose is not to
repeatedly send emails to owner within a very short period of time, since the sensor
can detect the same object/intruder many times within 2 seconds.

EmailAndPlot.m

This MATLAB script is to run on the PC that is connected to the microcontroller via
serial port. It constantly polls the port for a data with format {0x01, dist, angle,

0x01}. The 0x01 wrapper is there to distinguish the messages that are sent to the
sensor on the same line, which are wrapped by 0x22. The script will only receive
message when an object has been detected on the sensor. This script also has a nice
visual radar field where upon object detection, a field will be marked red.

The most critical functionality of this script is, however, the emailing. Each time the
object is detected, the script will send an email to pre-set address with the exact
time of detection. This allows user to be physically away and still be notified of
potential privacy violation.

measure_distance()

To initiate a distance measurement, a command, {0x22, 0x00, 0x00, 0x22}, must be
sent to the sensor via rs232 serial link. This is done by sending the command one
byte at a time to the UDRO buffer as shown below. The sensor will fetch the
command from UDRO upon ready. Similarly, when the sensor returns the
measurement, it is again in similar format, {0x22, high_dist, low_dist, sum}. The
UDRO is once again used as the buffer. To retrieve the distance from the data, we
need to left shift the high_dist by eight and OR with the low_dist. Here is the code:

int measure_distance(){
//int dist;
int 1i;

// transmit the command
for (i=0; i<d4; i++){
while ((UCSR@A & (1<<UDRE®)) == 8); // Wait until UDR is ready for
data
UDR® = request_distance[i]; // transmit one byte at a time

}

// capture returned data
for (i=0; i<d; i++){
while ((UCSR@A & (1<<RXCO)) == 0); // Wait until data is received
received_data[i] = UDR®; | // fetch the return data byte
one at a time

}

return (received_data[1]<<8) | (received_data[2]); // retrieve 16bits data
from cascading two Bbits chunks

Results

Matlab radar plot

As mentioned, the program triggers a MATLAB script to plot the detected objects.
Here is what the graph looks like:

Distance measurement accuracy

Our sensor calibration and utilization gave us a distance measurement with roughly
1.5 cm accuracy. Provided that we are using the sensor to detect presence of an
object more so than the exact distance, this accuracy is tolerable.

Speed of detection

[t takes a maximum of three seconds for the system to detect a newly present object,
and to turn on the alarm. This is because the servomotor is set to cover 180 degree
range, and thus it takes roughly 3 seconds for it to start from one angle and back.
However, a user can easily configure the servo to a narrower angle to focus at
specific area (such as doorway), in which case the sensor will detect newly present
object in less than a second.

Detection accuracy

Through our tests, we believe our system is capable of detecting intruders 95% of
the time, provided that sensor was placed at appropriate position. The few times
that intruder get away are when they are capable of crossing past the sensor quicker

than 200 msec, which is our measurement interval hard-coded into our code.

Email notification

Upon object detection, we successfully receive emails that contains the exact time
when the security was triggered. This is a standard email delivery, and therefore it
could take a minute or two for it to reach your inbox. When the object continues to
be in the way, the system does continue to send emails. So far, we have not seen any
false positive alerts.

Conclusions

Overall, this portable security system was a successful build, and we anticipate using
it for the summer in NYC as we live at shared apartment against potentially bad
housemates. The sensor is reliable, with convenient email-alert.

Expectation

Our original proposal was to build a simple ultrasonic radar that would shine laser
at a target within range. As noticeable, we have diverged some bit from that, as we
decided to make something more convenient and of potential, which is why we
ended up with this ultrasonic security system. Based on the provided results from
above, we believe our design possesses competitive features to many of the home
security system out there, except at much more portable level.

Intellectual property

This project used several pieces of code provided by Bruce Land and/or the ECE
4760 website. First is the keypad() and debounce() tasks, provided by Bruce Land,
which captures the button number pushed exactly once. Second is the 'lcd_lib.c/h’,
which is distributed under the GNU public license.

Ethical consideration

We have closely familiarized ourselves with the IEEE code of ethics. In particular,
we have accepted responsibility in making decisions with priority placed on safety,
health, and welfare of the public during our final project. One safety consideration
here may be that, as our security system goes off, alarm sound is blasted and LED is
programmed to flash. We have carefully calculated and planned the magnitude of
our alarm during the implementation of the final project, as abrupt siren of great
amplitude may cause health hazard to those with heart diagnosis.

Also, being a security product, the system must not fail once enabled. Therefore, the
system must be fully powered by batteries. A standard electric outlet will not pass
as any blackouts will immediately fail our security system. Thus, our system is
designed such that it is operable with 9v battery for the main board and 4 AA
batteries for the servo motor.

Further, we did not practice bribery to accomplish this project, and will not accept
any in the future dates even if approached by one.

Legal consideration

To our knowledge, our design does not violate any legal standards, as we are only
emitting short-range ultrasonic signals and not RF.

Appendix
Commented program listing

C code MATLAB code

Libraries and source code from ECE 4670 website that we used:

lcd_lib.h lcd_lib.c uart.h uart.c

Schematics (see next page)

2 L 18 .
N .
Py 08
39 ey, ancy
7 i
S g U 3 PSS T 2
% INTAINS
4 % :::::::E: ' m'msf
7, o] AP - PLDD
L[PAPROCT oy [
L R
L " ﬁ Pe7/ 10502 [
O L
PEVAIN g [
e P2 InTo e
i ey
e et - padsgegp L
' P.B?,.SEK, RSA]_9_‘
/RESET U6/ 10P 26,
e " Psice [EL
e
AREF
o’
| OND G

1|3

LCD

™
URIB7,3.2

v

gn

Ggn Masida™ ~ | Rev 1@
[Xuedan hang VT,

Cornel L U. ECE 4768

Ultrasonic Security System

Cost details

Item Description | Supplier Quantity Price
URM37 v3.2 Ultrasonic DFROBOT |1 $22.00
sensor
900-00005-ND | Servo Motor | Digikey 1 $12.99
Mega644 MCU Lab 1 $6.00
PiezoSpeaker buzzer Lab 1 $0.00
Resistors 300, 1k, 1M | Lab 3 $0.00
Capacitors 0.1uF Lab 1 $0.00
keypad Lab 1 $6.00
LCD Lab 1 $8.00
Serial Board Lab 1 $5.00
Power Supply Lab 1 $5.00
White Board Lab 1 $6.00
Total $70.99
Work division
Tasks Xuefan Both Gen
Project idea X
Servomotor research and implementation X
Serial communication X
Research on sensor X
Design and/or Implementation of state machines (for X
security system flow and keyboard debounce)
MATLAB script X
Hardware design and wiring X
Testing and Debugging X
State machine diagrams X
Schematic X
Progress reports X
Lab report X
Website X

References
Datasheets we have referenced:

URM37v3.2 datasheet Parallax Servo datasheet Atmega644 datasheet

Website we have referenced for code:

ECE 4760 course website

Vendor sites:

Digi-Key DFRobot

