
Title: Digital Filtering for Atmel Mega32 (Version 2) 

Author: Bruce R. Land 

 

Introduction 

 

Digital filtering is like auto racing: No matter how fast you can go, you would like to 

faster. This observation suggests that optimization of filtering algorithms for speed of 

execution is always in good taste. For 8-bit microcontrollers, with no floating point 

hardware, optimization of filtering requires tradeoffs between accuracy, ease of 

programming, and speed. 

 

For ease of use and design, floating point arithmetic is the best. But when  using the 

Atmel Mega32 microcontroller and Codevision C, a floating point multiply takes around 

400 cycles and a floating add takes 120 cycles. For comparison of different techniques 

let’s compare how many 2-pole infinite-impulse response (IIR) filters we can run in real 

time at an 8KHz sample rate. An 8KHz sample rate translates to 2000 cycles between 

samples at a maximum CPU clock rate of 16 MHz. As will be shown later, a 2-pole IIR 

filter requires five multiplies and four adds per sample for a total of 2480 floating point 

cycles. So at 8KHz sample rate we cannot even run one filter in real time using floating 

point arithmetic. 

 

Going to the other extreme of simple 8-bit integer arithmetic, a one byte 8-bit by 8-bit 

multiply is performed in hardware in 2 cycles but takes a total of 8 cycles to fetch and 

store.  An 8-bit add is about the same speed. We could run about 40 2-pole filters in real 

time, but an 8-bit format does not have the dynamic range necessary to build accurate 

filters. As we shall see, building accurate filters means subtracting two numbers which 

are almost equal, so 8-bit numbers suffer because so few bits are left after the subtraction. 

 

A compromise is to use 16-bit fixed point arithmetic with 8-bits of integer and 8-bits of 

fraction (8:8 notation). As we shall see, a 16-bit fixed multiply-and-add (called a MAC 

operation) can be done in 24 cycles, including loading parameters. By the time registers 

are saved and restored in a C function call, the 2-pole IIR calculation takes 182 cycles. 

We can therefore perform about 11 filter operations per sample time!  Accuracy is good 

enough for filters up to about 4-poles, but some care is needed.  Narrow bandwidth may 

cause errors, the filter coefficients may need to be scaled, and actual filter response 

should always be measured. I chose 8:8 notation in spite of its accuracy limitations for 

three reasons: (1) It is very fast to compute. (2) We use 8:8 notation for other applications 

where a larger integer dynamic range is handy, specifically for video games. The integer 

part of the notation maps nicely into video pixels, while the 8-bit fraction is accurate 

enough to represent fractional pixel–change speeds. (3) The Matlab design tools that the 

students are used to using produce filter coefficients of up to +/-7 or so for some 

frequency ranges, but for smaller coefficients, it is easy to scale the Matlab-generated 

filter coefficients by 16 to increase fixed-point accuracy without changing the filter 

frequency response. Scaling required just one small change to the assembler filter code. 

 



Students in my ECE476 microcontroller class at Cornell University (see Resources) have 

used these digital filters for several applications over the last two years. These include:  

-- Music-controlled, stepper-motor driven Marionette.  

-- MIDI synthesizer. 

-- Guitar tuner/trainer.  

-- Music-controlled, solenoid-driven 8-channel water fountain.   

-- Voice-command car (which worked best in Hindi).  

-- Voice-command lock. 

 

 

Digital Filters at a high level 

 

At a high level, digital filtering attempts to use the current input sample, past inputs and 

past filter outputs to select certain frequencies of the input signal. We will restrict 

ourselves to a subset of digital filters which are referred to as linear, time invariant filters. 

With this restriction, we can use powerful design tools available on the Web or in 

languages like Matlab to build filters (see Resources). Any linear, time invariant filter can 

be written as 

 
a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) 
                      - a(2)*y(n-1) - ... - a(na+1)*y(n-na) 
 

where y(n) is the newly computed output at time n, x(n) is the current input, x(n-1) is the 

previous input, y(n-1) is the previous output, with other past samples needed up to the 

number of b (nb) and a (na) coefficients used.  The coefficient a(1) is generally set to 

unity in the design software.  This form is referred to as "Direct Form II Transposed". 

The Matlab filter command uses this form. Determining which values for the a’s and b’s 

to use has been the object of person-centuries of research, all of which is available in any 

digital filtering text, from Matlab help, or from the Web. To scale the filter coefficients 

for better accuracy, we will set a(1) to a power of two (say 16) and multiply all the other 

coefficients by 16 also.  This operation allows us to specify four more bits in the 

coefficients and only adds two cycles per bit of shift  to the execution time of the filter. 

 

For a 2-pole filter the equation reduces to  

 
A(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) 
                 - a(2)*y(n-1) - a(3)*y(n-2) 

 

which has 5 multiplies and 4 adds as mentioned in the introduction. This formula requires 

that at any time, the last two past filter outputs and last two past inputs need to be 

available. If we used the scaled form with a(1)=16, then we will need to divide the new 

output value by 16, which is just four arithmetic-shift-right operations. 

 

Fixed point Arithmetic. 

 

Before we talk about the details of the filters, we need to talk about fixed point 

arithmetic. Figure 1 shows the bit layout for the number format we use. The 16-bit 



number is stored in a normal, signed, 2s-complement integer variable, but the bits are 

interpreted (from left to right) as sign bit, 7-bits of integer (-128 to +127), and 8 bits of 

fraction. The left-most digit of the fraction has a weight of 0.5 while the right-most digit 

has a weight of .00391=1/256. We can therefore represent any number in the range of 

minus 128 to plus 127 to a resolution of .00391. 

 

Figure 1 

 
 

Adding two of these numbers is easy. The 2’s complement add/subtract hardware simply 

adds them in two 8-bit pieces using an add followed by an add-with-carry instruction. 

Multiplication requires a little more care. Doing a 16-bit by 16-bit multiply results in a 

32-bit result (Figure 1), but the output value of the fixed multiply must be another 16-bit 

fixed point number. The top byte of the 32-bit result is treated as an overflow and 

discarded.  But where is the binary point in the result? Since there are two 8-bit fractions, 

there must be 16-bits of fraction in the output of the multiply. The lowest 8 bits is 

underflow. The desired 16-bit result is therefore the middle two bytes of the 32-bit result. 

The process can be summarized as a C language macro where x and y are 16-bit ints: 

 
#define multfix(x,y) ((int)((((long)(x))*((long)(y)))>>8)) 
 

This macro does the multiply and is faster then a floating multiply, but is slow compared 

to an assembly version of the algorithm for a couple of reasons. The first is that we never 

have to actually compute the top byte of the 32-bit result. The second is that the 32-bit 

shift right can be replaced in assembler by simply copying the middle two bytes to the 

desired destination. Since the operation we actually want for digital filtering is a multiply 

followed by a running sum of five terms, we can economize further by combining the two 

operations into a multiply and accumulate (MAC). 

 

The MAC operation which I wrote in assembler was based Atmel application note 

AVR201 entitled “Using the Hardware Multiplier”. The listing below shows the details. 

The AVR multiply opcodes only operate on a few registers, so placement of operands is 

pretty much fixed with one 16-bit value in registers r22 (low byte) and r23 and the other 

16-bit value in r20 (low byte) and r21. The MAC operation saves the low order result 



byte in r24 so that underflow values may be added in through all five MAC operations 

needed for a single filter operation. The 16-bit results are in registers r30 and r31. All of 

the multiply opcodes put the results in r0 and r1. First a signed multiply is used to 

compute the most significant byte of the result which is added to r31. Then an unsigned 

multiply is used to compute the product of the lowest two bytes. This is followed by two 

signed-unsigned multiplies to compute the remaining cross terms. The MAC was written 

as an assembler macro to minimize execution time. 

 

Listing 1 
.macro mult_acc         ;r31:r30:r24 += r23:r22 * r21:r20 += p1*p2 
        muls r23, r21  ; (signed)p1-high * (signed)p2-high 
     add r31, r0 
     mul r22, r20 ; p1-low * p2-low 
     add r24, r0 
     adc r30, r1 
     adc r31, r27 
     mulsu   r23, r20 ; (signed) p1-high * p2-low 
     add r30, r0 
     adc r31, r1 
     mulsu r21, r22 ; (signed) p2-high * p1-low 
     add r30, r0 
     adc r31, r1 
    .endm  
 

With the macro written, all that had to be done was to load 5 sets of samples (input and 

output) and filter parameters (a’s and b’s) into the appropriate registers, then save the 

updated sample history for the next sample. 

 

When specifying coefficients for the filters, it is convenient to have a couple of utility 

macros which convert floats to fixed point and back again. These macros would never be 

used in a fast loop, but only to define constants at the initialization or readout stages of a 

program where execution speed is not so important. Float2fix converts a float to a fix by 

shifting left 8 bits using a multiply by 256. Fix2float reverses this. 

 
#define float2fix(a) ((int)((a)*256.0))          
#define fix2float(a) ((float)(a)/256.0)          

 

Implementing the filters 

 

I implemented a general 2-pole IIR filter, as well as specialized 2-pole low pass, high 

pass and band pass Butterworth filters. I also implemented 4-pole Butterworth band pass 

filters. Butterworth filters have maximally flat frequency response and reasonable roll off 

rates. Table 1 shows execution times for the filters implemented. Symmetry in the 

Butterworth design allows one or two multiplies to be combined for extra efficiency.  The 

details can be found on the fixed point math web page referenced in the Resources 

section. About eight 4-pole filters will run in real time at 8 KHz sample rate.   

 

Table 1. Execution time for various filters 

Filter: Execution time  



in cycles 

2-pole general IIR 182 

2-pole Butterworth low/high pass 148 

2-pole Butterworth band pass 140 

4-pole Butterworth band pass 228 

 

 

The following listing gives the source for the general 2-pole IIR filter. The Codevision C 

compiler allows inline assembly code which is indicated by the #asm directive. The input 

parameter xx is passed on the data stack, which is pointed to by the hardware registers 

r28 and r29. These two registers together are referred to in the assembler as the Y 

register. A variable declared in C may be referenced in assembler by prepending an 

underscore to its name. So if the variable b1 was declared in C to be of type int, then _b1 

is the address at which the low byte of b1 is stored and _b1+1 is the address of the high 

byte. The routine pushes a couple of registers on the hardware stack, clears the MAC 

accumulator, performs five load-and-MAC operations, and ends by updating the sample 

history and restoring the two registers. The previously defined macro is inserted five 

times. If coefficient scaling is used, eight  lines near the end should be uncommented, and 

the input coefficients should be multiplied by 16 before calling this routine. 

 

Listing 2 
int IIR2(int xx) 
// xx is the current input signal sample 
// returns the current filtered output sample 
begin 
    #asm  
    push r20    ;save parameter regs 
    push r21 
     
    clr r27     ;permanent zero 
    clr r24     ;clear 24 bit result reg; msb to lsb => r31:r30:r24 
    clr r30       
    clr r31 
     
    lds  R22, _b1       ;load b1 from RAM 
    lds  R23, _b1+1  
    ld   R20, Y         ;load input parameter xx from stack 
    ldd  R21, Y+1 
    mult_acc            ; b1*xx   
     
    lds  R22, _b2       ;load b2 from RAM 
    lds  R23, _b2+1  
    lds  R20, _xn_1     ;load x(n-1) from  RAM 
    lds  R21, _xn_1+1 
    mult_acc            ; b2*x(n-1)  
     
    lds  R22, _b3       ;load b3 from RAM 
    lds  R23, _b3+1  
    lds  R20, _xn_2     ;load x(n-2) from  RAM 
    lds  R21, _xn_2+1 
    mult_acc            ; b3*x(n-2) 
     



    lds  R22, _a2       ;load -a2 from RAM 
    lds  R23, _a2+1  
    lds  R20, _yn_1     ;load y(n-1) from  RAM 
    lds  R21, _yn_1+1 
    mult_acc            ; -a2*y(n-1)   
     
    lds  R22, _a3       ;load -a3 from RAM 
    lds  R23, _a3+1  
    lds  R20, _yn_2     ;load y(n-2) from  RAM 
    lds  R21, _yn_2+1 
    mult_acc            ; -a3*y(n-2) 
     
    lds  R20, _xn_1     ;load x(n-1) from  RAM 
    lds  R21, _xn_1+1 
    sts  _xn_2, r20      ;store x(n-2) to  RAM 
    sts  _xn_2+1, R21  
    ld   R20, Y         ;load input parameter xx from stack 
    ldd  R21, Y+1 
    sts  _xn_1, r20     ;store x(n-1) to  RAM 
    sts  _xn_1+1, R21  
    lds  R20, _yn_1     ;load y(n-1) from  RAM 
    lds  R21, _yn_1+1 
    sts  _yn_2, R20     ;store y(n-2) to  RAM 
    sts  _yn_2+1, R21 
;to scale the filter by 16, uncomment the next 8 lines 
 ;   asr  r31  ; divide by 16 for coeff prescale 
 ;   ror  r30 
 ;   asr  r31 
 ;   ror  r30 
 ;   asr  r31 
 ;   ror  r30  
 ;   asr  r31 
 ;   ror  r30  
    sts  _yn_1, r30     ;store new output as y(n-1) to  RAM 
    sts  _yn_1+1, r31  
  
    pop r21             ;restore parameter regs 
    pop r20  
    #endasm   
end 

 

Testing the Filters 

 

I wrote a test program to verify the frequency response of the filters. The program 

consists of a timer interrupt service routine (ISR) running at 8KHz and a main routine 

running in the background. The ISR synthesizes a sine wave at a frequency selected by 

the main routine. The sine wave is produced using direct digital synthesis (DDS) with a 

16-bit accumulator (see Resources for more information on DDS). At every sample, 

either a 2-pole or 4-pole filter is executed using the sine wave as input. The ISR also 

measures the peak amplitude of the filter output and maintains a counter so that the main 

routine can measure real time. The main routine initializes the sine table necessary for 

DDS, the timer ISR, and the UART. It then steps through a list of test frequencies. For 

each frequency, main computes the DDS increment, then waits a few tenths of a second 



for transients to settle, reads the maximum amplitude measured by the ISR and prints the 

maximum. The programs are available at a link given in the Resources section. 

 

Because of limited accuracy of a 16-bit fixed point system (relative to the floating design 

tools), it is important to characterize the limitations on filter performance. Figure 2 shows 

the results of testing two 2-pole Butterworth band pass filters. With a bandwidth of 400 

Hz (0.1 of the Nyquist frequency), the filter computed by Matlab on the PC matches the 

response measured on the Mega32 very closely. However with a bandwidth of 200 Hz, 

there is a 6% gain error (-0.5 db) because some of the coefficients are so small that very 

few bits are left in the terms multiplied by b1. Scaling the coefficients by 16 and using 

the scaled filter code reduces to error to less than 1% for the narrower bandwidth. The 

filter test code may be found online. 

 

Figure 2 

 
 

Figure 3 shows the results of testing two 4-pole Butterworth band pass filters. The filters 

exhibit sharper cutoffs, but more gain errors. With a bandwidth of 800 Hz (0.2 of Nyquist 

frequency) the filter computed by Matlab matches the response measured on the Mega32 

within 2% near the peak. However with a bandwidth of 400 Hz, there is as much as an 

8% gain error (0.7db) at some frequencies and 4% near the peak. Scaling the coefficients 

by 16 reduce the error to less than 1% for the narrower bandwidth. 

 

 

Figure 3 



 
 

Figure 4 shows the results of testing two 2-pole Butterworth low pass filters. With a 

bandwidth of 1000 Hz (0.25 of Nyquist frequency) the filter computed by Matlab on the 

PC matches the response measured on the Mega32 very closely. At a bandwidth of 400 

Hz there is a 7% gain error (-0.6 db) at low frequencies. Scaling the coefficients by 16 

reduce the error to less than 1%. 

 

Figure 4 

 
 



Conclusions 

 

The filters have been used successfully by several student projects in the course I teach 

(see Resources).  The filters execute quickly enough to allow students to use ten general 

2-pole IIR filters or eight 4-pole Butterworth band pass filters (at a sample rate of 8KHz). 

This is enough to do some elementary voice processing and to identify features in music. 

 

Even the 16-bits used in fixed point format with 8 bits of fraction does not provide 

enough accuracy for very narrow bandwidth filters. As a rule of thumb, if you do not 

scale the filter coefficients, you should limit the bandwidth of 2-pole filters to greater 

than 200 Hz (at 8KHz sample rate) and 4-pole filters to greater than 400 Hz, in order to 

maintain less than 1 db gain errors.  By scaling filter coefficients, you can make narrower 

filters. Scaling by 16 allows bandpass filters as narrow as 250 Hz at 8000 Hz sampling 

rate with 1 db error for 4-pole Butterworth filters. With scaled filters, dynamic range may 

suffer for larger valued inputs. Using only inputs with values less than one (8-bit 

accuracy) minimizes the chance of overflow.   Narrower bandwidth filters should always 

be tested for adequate filter performance and for numerical overflow. 

  

Resources. 

 

Atmel AVR201 appnote “Using the Hardware Multiplier” 

http://www.atmel.com/dyn/resources/prod_documents/DOC1631.PDF 

 

Fixed Point Math description, including filter routines and test programs. 

http://instruct1.cit.cornell.edu/courses/ee476/Math/index.html 

 

Cornell ECE476 course and Student Projects  

http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/ 

http://instruct1.cit.cornell.edu/courses/ee476/ 

 

 

Direct Digital Synthesis 

Circuit Cellar #129 April 2001 page 12, Part 1: A High-Performance DDS Generator, by 

Robert Lacoste 

and 

http://www.geocities.com/CapeCanaveral/5611/dds.html 

 

Designing Digital Filters 

http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFilterDesign.html but note that the 

definitions of a's and b's are reversed and that the indexes are zero-based, rather than one-

based. This applet assumes a sample frequency of 8000 Hz, but you can scale to other 

sample rates by making the normalized cutoff frequency,  

(cutoff frequency)/(Nyquist frequency)=(cutoff frequency)/4000, the same. 

and 

http://www2.enel.ucalgary.ca/People/Turner/fpeffects/fpeffects.html  Finite Precision 

Effects in Digital Filters, by Laurence E. Turner 



 

 

 

 

 

 

 

 

 

 

 

 

 

 


