Walsh Functions:

A Digital Fourier Series

Using a mathematical technique called
Fourier analysis, it is possible to build
arbitrary wave forms by adding together
various ‘‘components.”’

While a full appreciation of the inner
workings of the Fourier series requires a
knowledge of advanced mathematics far
beyond the capacity of many persons inter-
ested in electronics, that in no way deters
them from using the concepts or even
simplified portions of the math in practical
applications. Even beginners are aware that
wave forms can be broken into a set of
harmonics and that a set of sinewaves of
integer multiple frequencies can be summed
to build up a complex wave form. In a like
manner, Walsh function concepts can be put
to work once a few fundamental ideas are
mastered. A key to generating complicated
sounds in computerized music and voice
outputs is the ability to generate arbitrary
wave forms from digital codes.

In these days of digital computers, a
person familiar with Fourier concepts might
ask the question: Is it possible to build up
any wave form out of a sum of square waves
of some type? Such a system would be ideal
for use with digital logic. This question has
been answered in the affirmative by the
German mathematician H Rademacher, not
in 1972 or 1962, but in 1922. His set of
square waves, called ‘‘Rademacher func-
tions,”” consists of a fundamental square
wave of 50% duty cycle at some frequency

plus  harmonics of square waves of
2,4.8,16,32 and higher powers of two times
the fundamental frequency. A deficiency of
this system, however, is that it is not
possible to generate any arbitrary wave
shape from only a simple sum of these
square wave harmonics.
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Figure 1: The Walsh Functions WAL(0)
through WAL(15). The fact that Walsh
functions lend themselves to digital genera-
tion is evident in the nature of the basic
wave forms. The notations SAL and CAL
emphasize the resemblance of Walsh func-

tions to the Fourier series trigonometric
functions SIN and COS.
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Figure 2: The logic of a digital circuit which generates a set -of Walsh
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Fourier series are used to
create wave forms as the
sum of pure sine and
cosine waves at selected
frequencies; this leads to
the obvious question: Is it
possible to use a similar
mechanism which builds a
complex wave form out of
digital wave forms with
sharp edges?

functions using a string of flip flops and some external gating. The flip flops
are connected as toggles (division by 2 at each stage). The exclusive OR gates

combine terms to produce the more complicated Walsh wave forms indicated.

Walsh functions are the
digital answer to sines and
cosines used in Fourier
analysis.

In translating a mathe-
matical summation into a
physical circuit, the opera-
tional amplifier provides
the summing element and
the resistors from inputs
to the summing node form
the coefficients of the
component signals.
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Also in 1922, }J L Walsh presented his
independently developed system to the
American Mathematical Society. His system
was later shown by the Polish mathematician
Kaczmarz in 1929 to include the Rade-
macher system as a subset of the Walsh
complete set of orthonormal functions,
which, in plain English, says that some of
the Walsh functions are square waves and
that if all Walsh functions are allowed (you
may not need to use them all, however) then
any arbitrary periodic wave form can be
built up by adding them together in a
manner totally analagous to sinewave sum-
mation in Fourier series.

Interest in the engineering applications of
Walsh functions was sparked by an article in
the IEEE Spectrum by Dr HF Harmuth of
the University of Maryland in 1968 and is
continuing because of the suitability of
Walsh functions to generation by digital
systems.

The fastest way to wunderstand what
Walsh functions are is simply to look at a
picture of some wave forms. Figure 1 shows
the Walsh functions WAL(O) through
WAL(15). It is seen that WAL(O) is merely a
DC level which we will usually ignore in
practical applications since offsets are easily
handled by other means and that WAL(1),
WAL(3), WAL(7), and WAL(15) are really

‘the square wave Rademacher functions. You

will note that in addition to the WAL(n)

designation, the functions are also labeled
with CAL or SAL. These labels are also
commonly used and are acronyms for the
terms Cosine wALsh and Sine wALsh by
analogy to Fourier analysis. In short all WAL
(even n) are called CAL and all WAL (odd n)
are called SAL. CAL and SAL are also
numbered but the numbers do not corres-
pond to the WAL designation though they
are easy to figure out, Also by analogy to
Fourier analysis, 2 Walsh spectrum is called a
sequency spectrum as opposed to a Fourier
frequency spectrum.

Enter Mr Gray and His Code

However, knowing what Walsh functions
look like and knowing how to generate them
digitally are two different things. It is clear
that the generation of WAL(1), WAL(3),
WAL(7), WAL(15), etc, is a snap since they
are simple square waves. A string of flip
flops does the job, as shown in figure 2. The
generation of the remaining functions, while
a little more difficult, is not impossibly
complex once the mathematics is shaken
down into a few simple rules:

1. To generate WAL(n), first write the
number n in Gray code. Gray code is a
modified binary code having only one
bit changing at a time when going to
the next higher or next lower number.
A table of Gray code numbers is



Table 1: Gray Code Bit Patterns for the
Walsh Functions WAL(0) Through
WAL(31). The corresponding SAL and CAL
notation of each WAL function is shown
down the right hand column of the table.

shown in table 1; and with a little
study, the pattern can easily be
extended to any value.

2. Starting with the least significant bit,
assign a square wave Rademacher
function to each bit. Assign WAL(1)
to the LSB, WAL(3) to the next,
WAL(7) to the next, etc.

3. Any Rademacher function whose bit
s O is not used. Those whose bits
are 1 are combined by modulo 2 ad-
dition, which is to say by exclusive
OR gates to give the Walsh output of
that order.

4. Al Walsh functions must begin
positive so that the composite Walsh
output may need to be inverted de-
pending upon how many exclusive OR
gates were used to produce it.

A couple of examples are shown in figure 2
and a complete generator producing all
Waish functions from WAL(1) through
WAL(15) is shown in figure 3.

It should be noted that although a Walsh
function 1s mathematically defined as going
from +1 to —1, and it is possible to obtain
positive and negative swings with CMOS
logic with positive and negative supplies, in
practice little is gained by going this route
since all that is involved is a DC offset which
Is easily handled by the summing amplifier.
Thus, 0-5 volt TTL logic outputs are fine.

Now that a set of Walsh functions has
been generated, it only remains to add them
in a summing amplifier with appropriate
magnitudes and signs to simulate any wave
form with a stair step approximation. The
general expression of a Walsh function repre-
sentation is a summation analogous to that

found in Fourier analysis:
Arbitrary wave form = X(t) = A, +

E] (Aj SAL(i) + Bj CAL(i))

where A; and B; are weighting constants
which correspond to the resistors used in the
summing amplifier inputs. The size of the
steps and the number present will be deter-
mined by how many harmonics are com-
bined. The more you use, the smaller and
more numerous the steps, hence the better
will be your approximation to your original
wave form. The determination of these
combining coefficients from the wave form

desired requires a bit more detailed
consideration.
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WAL{10) | 10 o + 1t 1 1 CALI(5)
WAL(11) | 11 0 1 1 1 0 SAL(6)
WAL(12) | 12 0 1 0 1 0 | CAL(6)
WAL(13) | 13 0 1t 0 1 1 | SAL(7)
WAL(14) | 14 C 1 0 O 1t | CAL(7)
WAL(15) | 15 O 1 0 0 O } SAL(8)
WAL({16) | 16 1 1 0 0 0} CAL(8)
WAL(17) | 17 1 1 0 0 1 SALI(9)
WAL(18) | 18 1T 1 0 1 1 CAL({9)
WALI(19}) | 19 1 1 0 1 0 { SAL(10)
WAL(20) | 20 1 1 1 1 0§ CALQ10}
WALI(21) | 21 1T 1 1 1 1 § SAL{11)
WAL (22) | 22 T 1 1 0 1 CAL(11)
WAL(23) | 23 1T 1 1 0 0} SAL(12)
WAL(24) | 24 1 0 1 0 0} CALOZ)
WAL(25) | 25 1 0 1 0 1 SAL{13)
WAL(26) | 26 Tt 0O 1 1 1 CAL({13)
WALI(27) | 27 1 0 1 1 0 | SAL(14)
WAL(28) | 28 1 0 0 1 0 | CAL(14)
WAL(29) | 29 1 0 0 1 1 SAL{15)
WAL(30) | 30 1 0 0 0 1| CALUS)
WAL(31) | 31 1 0 0 0 0 | SAL(16)
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Wave Form Synthesis

Before proceeding any further into the
theoretical aspects of Walsh applications, a
review of what we are attempting to do and
how we intend to do it will help get our feet
on solid ground. The device we wish to build
using Walsh functions could be called “a

- square wave to arbitrary wave form con-

verter.”” It will be a circuit into which you
put a square wave of some frequency and
out of which comes a periodic analog signal
with a frequency related to that of the input
wave (perhaps some submultiple) and a wave
form that can be made to take any shape
desired by adjusting a set of controls,
switches or internal resistors. With such a
device, digital logic could be used to
synthesize a frequency and the converter
could then be set to produce a sinewave for
use in standard applications, or given suffi-
cient accuracy of conversion, a computer
could be made to talk or even sing. Both
have been done by engineers working in this
area.

The converter consists of two parts: The

So you want to produce a
sine wave?! Calculate the
values at 16 evenly spaced
focations in the period,
then use these values to
calculate the Walsh coeffi-
cients using a tabulator
method. Then wire in re-
sistors of values derived
from the Walsh coeffi-
cients and the output of
the circuit will be a step
function approximation of
the desired sine wave.
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Figure 3: Extending the
logic of figure 2, this cir-
cuit generates all the Walsh
functions WAL(1) through
WAL(15) as illustrated in
figure 1. This circuit uses
an alternate Rind of flip
tlop, the JK master slave
flip flop connected as a
toggle. This circuit could
be built with two 7473
ICs, three 7486 ICs and

one 7404 circuit. (One of

the 12 exclusive OR sec-

tions. is wused as an
inverter.)

When Walsh function
analysis is applied to a
linear ramp, what’s the re-
sult? A set of resistor
values which form an ordi-
nary DA converter opera-
ting upon the binary value
in the counter used for the
Walsh function generator.
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first 1s the digital expander which expands
the input square wave into a variety of
digital wave forms, and the second is the
analog combiner which adds up these wave
forms to produce the periodic analog
output. The expander is, of course, the
Walsh generator shown earlier and the com-
biner will be dicussed below.

All of the Walsh outputs will be fed into
the summing junction of an operational
amplifier, but they will not have the same
strength or sign. 1t Is the strength and sign of
each component which will determine the
net analog output so that once we have
chosen the analog output we desire, the
relative strength and sign of each Walsh
harmonic must be calculated from that
desired wave form. Once these values are
known, a negative sign can be handled with a
digital inverter and the magnitude by the
choice of the resistor value into the summing
junction. The net output will then be a stair
step approximation to the desired output
which can then be made more perfect by
low pass filtering to smooth the wave shape.

Theoretically, the calculation of the coef-
ficients from the analog wave form desired

SAL |

- DC CAL |

SAL 2

C CAL2

L

SALS

CAL 3

involves complex operations with the inte-
gral calculus; but it turns out that it is
possible to shortcut the high powered math
by starting, not with the analog signal, but
rather with the stair step approximating
function itself. This function can be easily
determined by eyeball or by just taking the
height of each step to be the value of the
analog output at the center of each time
interval. Figure 4 shows two examples: a
linear ramp and a sinewave with 16 step
approximations. The height of each step is
shown.

Before proceeding to an actual calcula-
tion we will give some time and work saving
rules, which are illustrated in figure 5.

1. The waveform to be synthesized must
be repetitive (as in Fourier synthesis),
although it is easy to start and stop at
any point by control of the digital
input.

2. It is especially advantageous to use 27
steps in one period as this gives an
automatic cutoff to the number of
Walsh harmonics required.

Thus: With a 4 step output no functions



beyond WAL(3) are required, with OUTPUT

an 8 step output no functions beyond

WAL(7) are required, with a 16 step T

output no functions beyond WAL(15)

are required . . .etc. 3
3. If the coefficients for a higher order i

approximation are calculated (say 16 +9

steps), and a less accurate approxi- RAMP DES'REO\ .7

mation can be used (say 8 steps) then

one only need disconnect WAL(8)

through WAL(15) since the lower *3

order coefficients will have the same +|

value in either case (or nearly so). This 1.0 . -1

effect is demonstrated in the sine o APPROXIMATE

generator circuit. STAIRSTEP

If your wave form to be synthesized
possesses certain symmetries or can
be made to do so by a DC baseline -9
shift, many Walsh component coef- -1
ficients will be zero which will not | -13
only simplify the calculations, but the s
circuitry as well.

4. If the wave form to be synthesized is
even, which is to say that any value OUTPUT
that the function takes to the left of VOLTAGE
center Is the same as the value an equal !
distance to the right of center, then T <] *°98
only CAL functions will be used and | \ +-83
all SAL coefficients will be zero.

5. If the wave form is odd, or can be / \
made so by a baseline shift, then only +.55
SAL functions will be used and all / \
CAL coefficients will be zero. Here
any value to the left of center equals + 195
minus the value to the right of center. / \ /

6A. If the wave form is even as in point 4 —_ S— —_— et
above and in addition it is even about / \ /
the 1/4 point, then only CAL(k) -.195
where k is an even number will be \ /
present and all CAL(k) where k is an \
odd number will be zero. /

68. If the wave form is even as in point 4 \ /
above and in addition is odd about the
1/4 point, then only CAL(k) where k
Is an odd number will be present and N
all CAL(k) with k an even number wil} '
be zero.

TA. It the wave form is odd as in point 5 Figure 4: By picking a
above and in addition is even about wave form since that value will be exactly series of weighting con-
the 1/4 point, then only SAL(k) where half the sum of all steps. This is probably stants for each Walsh tunc-
k is an odd number will be present and best understood by examining some practi- tion term, the outputs of
all SAL(k) where k is an even number cal examples. figure 3 can be summed by
will be zero. an operational amplitier

/B. It the wave form is odd as in point 5, to produce arbitrary wave
and in addition is odd about the forms. Here are examples
1/4 point, then only SAL(k) with k an The first example will be the linear ramp. of the ramp and sine wave
even number will be present and all This function can be made odd by adjusting approximations generated
SAL(k) where k is an odd number the baseline, so by rule 5 it is seen that only by the Walsh (function
will be zero. - SAL coefficients need be calculated and no method. The smooth curve

In the calculations that follow it will also CAL functions need be generated. is the desired one in each
be observed that if a wave form is even or The best way to get your mind right in case, obtained by filtering
odd, the signed sums of the step values need calculating coefficients is to make a table as the output of the summing
only be calculated for the first half of the shown in table 2. The value desired for each amplifier.

+15

+5

Two Examples
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SIGN OF WALSH FUNCTIONS
P = positive N = negative

weighting constants needed for a given wave form. Here are illustrations of
six different special cases of symmetry which give zero terms in the Walsh Normalized Ratio

function sum.
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SAL(1)=-1=-1
SAL(2) = -05=-1/2
SAL(4) = —0.25=-1/4
SAL(8) = —0.125=-1/8

step comprising the output function is writ-
ten in order along the top of the table, Since
we are attempting to produce a linear ramp,
our output will be a rising staircase with a
fixed increase with each step (we used two
units per step). This staircase will eventually
be filtered to remove the jogs and give a
linear ramp.

The body of the table shows the sign
(positive or negative) each particular Walsh
function takes in each of the 16 time
intervals into which one period of the
output wave form has been divided. As
indicated earlier, we need not go past
WAL(15) in this case. The Walsh sign values
can be taken from the wave forms of figure
1 or from table 3 which is good for up to 32
segment approximations.

The numbers to the far right are the sums



of the upper values when all signs are taken
into account. Thus, for WAL(1) we see that
it is positive in the first half period, but the
step values are negative, so we get:

(=15) + (=13) + (=11) + (-9) + (=7) +
(=5) + (=3) + (—1) = —64 and in the second
half period where WAL(1) is negative and
the values positive we get:

—(+1) — (+3) — (+5) — (+7) — (+9) -
(+11) — (+13) — (+15) = —64 or a total of
—128. This number gives the relative
strength of WAL(1) in the output summa-
tion. We repeat the process for each Walsh
function.

If we divide all nonzero values by the
largest ( WAL(1)), it is observed that the
weighting is binary and further it is seen that
only the square wave Rademacher functions
are nonzero. Thus, it is seen that the way to
generate a ramp is with a counter feeding a
standard digital to analog converter. (So here
we have a long, complicated way of arriving
at an “obvious” result, but it also should be
noted that D to A binary weighting is only
“matched” to a ramp output.)

If another wave form such as a sinewave
is desired, a D to A converter could be used,
but a more accurate method would be to
switch between 16 voltages of appropriate
values. The Walsh system is just as accurate
and is simpler for the more general case.

If we divide a sinewave into 16 portions,
the value at the center of the first interval
will be Sin (11.25°) = 0.19509 and the next
will be Sin (33.75°) = 0.55557 and the next
Sin (56.25°) = 0.83147, etc. This produces
the top row of our table. Since Sin(x) is an
odd function, even about the 1/4 point,
only SAL(1), SAL(3), SAL(5) and SAL(7)
are calculated over the first half period. Our
chart with the calculated coefficient values is
shown in table 4. Since in a standard opera-
tional amplifier summing circuit (we won’t
go into details here as they can be found in
any book on operational amplifiers), the
relative summing ratios are related to the in-
verse of the summing resistor values, we
divide each normalized value into 1 and mul-
tiply by the feedback resistor value to obtain

A, x 1k 1% 5% EIA
10.00k 10.0k 10k
24 14k 24.3k 24k
1214 k 121 & 120k
50.27k 49.9k 51k

Table 5: The EIA resistor equivalents for
the calculated values of table 4. The 5%
tolerance resistance values shown at the right
were used in the circuit of figure 6.

The Sign of CAL and SAL in Each 1/32 Interval

of Their Period

WAL(O) PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP
SAL(1) PPPP  PPPP PPPP PPPP NNNN NNNN NNNN NNNN
CALI(1) PPPP PPPP NNNN  NNNN NNNN NNNN - PPPP PPPP
SALI(2) PPPP  PPPP NNNN  NNNN  PPPP PPPP NNNN  NNNN
CAL(2) PPPP NNNN NNNN PPPP PPPP NNNN NMNNN PPPP
SAL(3) PPPP NNNN NNNN PPPP NNNN  PPPP PPPP NNNN
CALI(3) PPPP NNNN  PPPP NNNN NNNN  PPPP NNNN  PPPP
SALI(4) PPPP NNNN  PPPP NNNN  PPPP NNNN  PPPP NNNN
CALI(4) PPNN NNPP PPNN  NNPP PPNN NNPP PPNN NNPP
SAL(5) PPNN NNPP PPNN NNPP NNPP PPNN NNPP PPNN
CAL(5) PPNN NNPP NNPP PPNN NNPP PPNN PPNN NNPP
SALI(B) PPNN NNPP NNPP PPNN PPNN NNPP NNPP PPNN
CAL(B) PPNN PPNN NNPP NNPP PPNN PPNN NNPP NNPP
SALI(7) PPNN PPNN NNPP NNPP NNPP NNPP PPNN PPNN
CAL(7) PPNN PPNN PPNN PPNN NNPP NNPP NNPP NNPP
SALI8B) PPNN PPNN PPNN PPNN PPNN PPNN PPNN PPNN
CALI(8) PNNP PNNP PNNP PNNP PNNP PNNP PNNP PNNP
SALI(9) PNNP PNNP PNNP PNNP NPPN NPPN NPPN NPPN
CAL(9) PNNP PNNP NPPN NPPN NPPN NPPN PNNP PNNP
SAL(10) PNNP  PNNP NPPN NPPN PNNP PNNP NPPN NPPN
CAL(10) PNNP NPPN NPPN PNNP PNNP NPPN NPPN PNNP
SAL(11) PNNP NPPN NPPN PNNP NPPN PNNP PNNP NPPN
cCAL(11) PNNP NPPN PNNP NPPN NPPN PNNP NPPMN PNNP
SAL(12) PNNP NPPN PNNP NPPN PNNP NPPN PNNP NPPN
CAL(12) PNPN NPNP  PNPN NPNP  PNPN NPNP  PNPN  NPNP
SAL(13) PNPN NPNP PNPN NPNP NPNP PNPN NPNP PNPN
CAL(13) PNPN NPNP NPNP PNPN NPNP PNPN PNPN NPNP
SAL(14) PNPN NPNP NPNP PNPN PNPN NPNP NPNP PNPN
CAL(14) PNPN PNPN NPNP NPNP PNPN PNPN NPNP NPNP
SAL(15) PNPN  PNPN NPNP NPNP NPNP NPNP PNPN PNPN
CAL(15) PNPN PNPN PNPN PNPN NPNP NPNP NPNP NPNP
SAL(16) PNPN PNPN PNPN PNPN PNPN PNPN PNPN PNPN

|< 1 Period D-I

P = Positive N = Negative

(Columns only for ease of reading.)

Table 3: A larger computational table giving 32 Walsh function components
and their signs during a 32 interval period.
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INPUT AT 16 TIMES
QUTPUT FREQUENCY

PHASE REVERSING
CONTROL INPUT
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o +5Y 3 10K
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-2V
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OMITTED FOR 8 STEP SINEWAVE
= l K
POWER CONNECTIONS - 3
+5V GND
ICI 7486 14 7
IC2 7486 14 7
IC3 7493 5 |0

10
6 8
9

Figure 6: Applyving Walsh
Functions. Here is the cir-
cuit of a sine wave genera-
tor which produces a
Walsh function approxima-
tion of the sine function.
The frequency of the sine
wave is set by the input to
pin 14 of the 7493. Filter-
ing components of the op-
erational amplifier help
smooth out the staircase
wave form generated by
summing the Walsh func-
tion components as
weighted by resistors.

each summing resistor value in ohms. Table
5 shows the calculated values compared to

1% and 5% EI1A resistor standard values.

The total sinewave converter circuit is
shown in figure 6. While three of the co-
efficients were negative, a single inverter was
used on the lone positive Walsh output since
the op amp Iinverts the wave form. In addi-
tion, a gate has been added by which the
phase of the entire output wave form can be
inverted by simultaneously inverting all
Walsh components. It is interesting to also
note that It the components below the
dotted line are removed, an 8 step sinewave
approximation results. The feedback capaci-
tor and output low pass filter can be added
to smooth up the wave form to give a nearly
perfect sinewave.

The Walsh methods presented here would
seem to have wide application for experi-
mentation and engineering. Although these
concepts are based on advanced mathe-
matics, nevertheless, as the philosopher

Seneca observed so many years ago, ‘‘The
language of truth is simple.”

Walsh Functions for Music Synthesis?

Some background information on the use
of orthogonal functions in music wave form
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synthesis has been generated by Hal
Chamberiin, and published in Electronotes
Newsletter, Volume 4, Number 25, July 20
1973. Hal also sent along a copy of a portion
of a report by B A Hutchins, 60 Sheraton
Dr, Ithaca NY 14850, on the use of Walsh
functions in wave form generation. Accord-
ing to Hal, there was considerable analysis of
Walsh functions in electronic music circles

during a period of time approximately cen-
tered on 1973, but complexities of con-
trolling the Walsh harmonic amplitudes
digitally led to the demise of that interest.
Hal's current approach i1s to employ a real
time Fourier series evaluation module which
digitatlly sums terms of the first 32 com-
ponents of a Fourier series, specified to 8 bit
accuracy both in amplitude and phase.

GLOSSARY

The following terms may be unfamiliar to some

readers and are highlighted with further
explanations.

Baseline: It is possible to add a fixed DC level to an
analog signal, which will not affect its wave form.
Using the O V and +5 V levels obtained with TTL
circuits {using pull up resistors) as ““Walsh func-
tions’’ corresponds to a baseline adjustment of
+2.5 volts to the ideal case of a symmetric positive



or negative voltage value.

CAL: An acronym derived from Cosine wALsh.
The CAL functions are the “even’’ Walsh func-
tions, analogous to the Fourier cosine functions.

Duty cycle: For a digital wave form, the duty cycle
is the percentage of time spent in the high state
relative to the full period of the wave form.

Even function: An even function (or wave form) is
one which is symmetric about the center point of
its period. This means that its value a certain dis-
tance to the left of center is the same as its vaiue
the same distance to the right of center.

Fundamental: The lowest frequency in a Fourier
or Walsh function summation.

Gray code: A binary code modified so that only
one bit changes when going to the next higher or
lower number. It is often used to deglitch position
encoders.

Harmonic: A frequency which is a multiple of the
fundamental frequency.

Integral calculus: The mathematical formalism
used to calculate the area under a curve. The inte-
gral calculus is used together with the theory of
orthogonal functions to evaluate analytically the
coefficients of Fourier and Walsh function expan-
sions. The example of Walsh function coefficient
calculation in this article uses properties of Walsh
functions to simplify the process of calculating
integrals required for the coefficients. There is no
such simplification for the Fourier coefficients of a
wave form, thus making the application of Fourier
analysis a more complicated problem,

Odd function: An odd function {or wave form) is
one which 15 antisymmetric with respect to the
center point of its period. This means that if at a
fixed interval before the center point its value is X,
then at the same interval past the centerpoint the
value will be —X.

Orthonormal functions: The mathematical theory
of orthonormal functions is one of the most
powerful tools used by physicists, theoretical
chemists and engineers. Among other applications,
It provides the tools needed to analyze complex
wave forms and synthesize such wave forms using
the principle of superposition: That the whole is
a linear sum of its parts. Fourier series and Walsh
function analysis mentioned here are two particu-
lar choices of a set of orthonormal functions which
have useful practical applications. {See also spec-
trum below.)

Periodic wave form: A periodic wave form is one
which has a fixed shape which is constantly re-

peated. A simple example would be the clock
oscillator signal of a typical home brew central
processor. A more complicated example (subject to
imperfections) would be a long steady tone played
on a musical instrument.

Rademacher functions: The subset of Walsh com-
ponents consisting of only the unmodified square
waves.

SAL: An acronym derived from Sine wALsh. The
SAL functions are the “odd”* Walsh functions,
analogous to the Fourter sine functions.

Sequency: Walsh function terminology referring
to the Walsh components of a8 wave form in exactly
the same way that frequency is used to refer to
the Fourier components. Example: Sequency
spectrum.

Spectrum: When orthonormal functions are used
to analyze a wave form, the result frequently is a
set of coefficients which weigh each of the basic
functions found in a (theoretically) infinite sum

which represents the wave form. Each coefficient

corresponds to some parameter of the orthonormal
functions, which might be, for example, a number
n.”” Whatever the parameter is, a spectrum for the
analysis 1s obtained by plotting the coefficient
values versus the parameter value for a large num-
ber of coefficients. For a Fourier analysis, the
result is a plot of coefficient versus frequency
(which at the low end corresponds to a small
integer value). A Walsh spectrum would plot the
coefficient of WAL (n) versus n.

Wave form: For the purposes of this article, a
signal’'s wave form is a value of (for example)
voltage as a function of time.®
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