
Page 1 of 11

TITLE: DMA driven video, ADC and DAC on PIC32:

Real time instrumentation on microcontroller

AUTHORS: Syed Tahmid Mahbub and Bruce R Land

Real time data acquisition systems often need to move a lot of data quickly. The PIC32

microcontroller makes moving data easy because it has four, very flexible, direct memory

access (DMA) channels. The DMA frees the CPU to do computational work, while maintaining

high data rates. Additionally, the powerful peripherals of the PIC32 allow As an example, we

built a device which samples the onboard ADC at 900,000 samples/second, produces a NTSC

video signal at 5 megabits/second, feeds a 8 megabit/second SPI DAC (500,000

samples/sec), and still only uses about 8% of the CPU.

PIC32 programming environment

All programming was done using the MPLABX/XC32 environment from Microchip. It

is essential to read the PIC32MX Peripheral Reference Manuals [4-11] and the associated

C32 Peripheral Library Guide [1]. All coding was done using the register abstractions found

in the Peripheral Libraries description. For instance, setting up Timer 2 to interrupt once per

video line was done using macros from the library:

OpenTimer2(T2_ON | T2_SOURCE_INT | T2_PS_1_1, line_cycles);

ConfigIntTimer2(T2_INT_ON | T2_INT_PRIOR_2);

mT2ClearIntFlag();

The first statement specifies: turn on the timer; use the internal clock for a time base;

set the timer prescalar to 1:1; set the time-out to line_cycles. The second specifies: turn the

interrupt on and set the priority to two. The third just clears the interrupt flag.

One aspect of the PIC32 which makes it very flexible is the ability to remap peripheral

units to different physical I/O pins. This is called Peripheral Pin Select (PPS). Groups of eight

peripherals are muxed to different I/O pins. For example, the SPI Master Out Slave In/ Serial

Data Out (SDO1) signal is muxed in PPS I/O group 2. Mapping the signal to port pin A1,

physical pin 2 on the PDIP package, is done by:

PPSOutput(2, RPA1, SDO1);

Once the pin is attached the peripheral may be opened using

SpiChnOpen(spiChn, SPI_OPEN_ON | SPI_OPEN_MODE32 | SPI_OPEN_MSTEN ,

spiClkDiv);

Page 2 of 11

Which says to open channel spiChn in 32 bit mode, as a master, with clock divider

spiClkDiv. This command automatically configures the I/O directions for the pins

associated with the SPI Module: SDO, SDI and SS. When setting up a PPS assignment, we

found it necessary to cycle between three sections in the device datasheet [4]:

(1) Table 11-1 which gives PPS input pin mapping, and Table 11.2 which gives PPS

output pin mapping.

(2) The pinout of the actual device we were using.

(3) Table 1.1 which connects the logical pin names to the physical pin numbers for

each package.

PIC32 DMA channels

Direct Memory Access (DMA) is a scheme which uses a memory address generator

and logic separate from the CPU to access memory. For instance, a DMA channel can move

data from the ADC to data memory without CPU intervention. Experiments show that you

can push at least four megabytes/sec through the PIC32 DMA subsystem and not affect CPU

execution. The application we described here is just under the limit. The PIC32 DMA

channels have a number of features. The most interesting is that any hardware event

(interrupt) can trigger a DMA transfer, with no associated ISR. The DMA module maintains

its own flags for detecting interrupt requests for data transfer start/abort requests. This is

completely independent of the interrupt controller. Transfers can be of fixed length, or stop

on a specific bit pattern match in the data. Transfers can be from any memory location to any

other, which includes every memory mapped peripheral, and can be one-shot or repeating.

The channel handles memory wrapping so that one address, for instance the ADC data

register, can fill an entire array. The maximum source size, destination size and cell size are

all 65,535 bytes which means that up to that many bytes can be transferred on an event. The

DMA subsystem can also generate interrupts to signal DMA events, such as completion or

transfer abort.

The source and destination addresses are physical addresses, not virtual addresses

used by the MIPS core. The reference manual mentions the easy translation between physical

and virtual addresses: (Physical address) = (Virtual address) & 0x1FFFFFFF. The PLIB

function DmaChnSetTxfer() takes in the virtual addresses of the source and destination and

does the required virtual-to-physical address conversion as opposed to it being required

manually when doing register level operations.

Page 3 of 11

Video generator

We tend to use NTSC video monitors for graphics because they are cheap, rugged, and

easy to connect. They are, however, data hungry, requiring constant refresh. The flexible

hardware event trigger modes of the DMA make it possible to build a NTSC video driver

which uses only a few percent of the CPU. We based the NTSC driver on the approach

explained in Programming 32-bit Microcontrollers in C: Exploring the PIC32 by Lucio Di Jasio,

chapter 9 [2], but with more flexibility in video line timing and our own video content

drawing utilities. Since video needs accurate timing at the nanosecond scale, it is important

that software is never required for critical timing events. All video timing is performed by

hardware, with small, interrupt-driven, state machines executing in non-time-critical gaps.

Figure 1 shows the hardware/software required. Everything starts when timer 2 times out

to signal the start of a new video line. The ISR flag triggers three events: (1) It starts output

compare unit 2 to generate a sync pulse on every line (2) It starts output compare unit 3

(OCU3) which starts actual video content seven microseconds later. (3) It triggers an ISR

which updates the sync generator state machine and enables a DMA burst when OCU3 times

out. The OCU2 sync generator needs input from the ISR before 5 microseconds passes to

determine pulse length. The DMA enable must happen within 7 microseconds. The ISR takes

around a microsecond to execute. OCU2 then times out and produces a sync pulse at an I/O

pin. When OCU3 times out, a DMA burst to the SPI video data port starts, and the OCU3 ISR

is triggered to convert the DMA trigger to the SPI done flag. There is a 6 microsecond window

to do this and the ISR takes about 500 nanoseconds. The SPI done flag then causes the

remainder of the video line to be drawn.

On top of the video data generator we wrote point, line and text drawing routines to

fill the display memory and raster (256 wide x 200 tall) with useful graphics. The line

drawing algorithm is a standard Bresenham scheme from David Rodgers, Procedural

Elements of Computer Graphics, 1985 [12]. The text generator uses a bit font identical to the

standard 5x7 LCD display font. Figure 2 shows the simple, two-bit, video DAC used. Figure

3 shows some video output.

In the program, main initializes the timers, DMA channels, and output compare units,

draws a few strings and lines, then falls into a loop. The loop does a primitive trigger function

by waiting until the input ADC conversions pass through zero in the positive direction, then

enable the ADC DMA channel, and wait for a screen full of samples. The samples are drawn

and the loop starts again.

Page 4 of 11

Fig. 1: The logical flow of the video generator. Note that all time-critical events are hardware

triggered.

Timer2 interval set to

one video line time –

sets flag at beginning

of line

Output Compare 2

starts (sync gen)

Timer2 flag

Timer 2 ISR:

--updates video line

sync state timeout

--Enable DMA to SPI

by OCU3 timeout

OCU 2 timeout

flag set

Sync pulse toggle at

I/O pin

Constraint: Set

timeout in <5 µs

Output Compare 3

starts (video timing)

OCU3 timeout

flag set

DMA burst video to

SPI out

OCU3 ISR:

--Enable DMA to SPI

by SPI ready

Constraint: Set DMA

enable to OCU3

timeout in < 7 µs

SPI ready

flag set

DMA burst video to

SPI out (7 more times)

Constraint:

Enable <6 µs

Video

output

Sync

output

Page 5 of 11

Fig. 2: Video DAC for two-level video (from Di Jasio)

Fig. 3: Video output of the oscilloscope application

Real time ADC

The DMA systems on a PIC32 can move data from the ADC using the ADC done

interrupt flag, but without wasting time in an ISR. The ADC can be triggered by a timer period

(compare) match, again without software intervention. Doing this means that you can blast

ADC into memory at about 900 kilosamples/sec with NO software overhead (except for

initial setup)!

The microcontroller has a 10-bit ADC with a bewildering set of options, but we chose

a simple mode with options such as channel scanning, alternate buffer and offset calibration

disabled. It was set to use AVDD and AVSS as the +V and –V voltage references. The analog

input selected was AN11, which is RB13. The ADC was triggered off the Timer 3 period match

Page 6 of 11

which would end sampling and begin the analog to digital conversion. No Timer 3 ISR was

required. The 30 MHz peripheral bus clock was used as the ADC’s clock. This allows the use

of an ADC conversion clock period TAD to be 66.7ns which is slightly higher than the

minimum specified 65ns. Thus, running the ADC at 30MHz allows the maximizing the ADC

clock speed. If the peripheral bus clock was 40MHz instead, the minimum valid ADC

conversion clock period is 100ns.

Running at top speed, the ADC can perform about 900 kilosamples per second from

one input. The DMA channel was configured to move data from the ADC data register to an

array in memory, triggered by the ADC done interrupt, again, with no ISR. The ADC output

can be stored in multiple formats. We chose to store it as 16-bit (unsigned) integer. The DMA

module transfers 2 bytes (16-bit ADC result) per transaction. The DMA burst terminates

after 256 samples. The display code polls the DMA channel-done bit to find out when all the

data is available to display.

The ADC and DMA setup were performed using peripheral library functions:

SetChanADC10(ADC_CH0_NEG_SAMPLEA_NVREF | ADC_CH0_POS_SAMPLEA_AN11);
// configure to sample AN11

OpenADC10(PARAM1, PARAM2, PARAM3, PARAM4, PARAM5);
// configure ADC using the parameters defined above

#define PARAM1 ADC_FORMAT_INTG16 | ADC_CLK_TMR | ADC_AUTO_SAMPLING_ON
//ADC_CLK_TMR ADC_CLK_AUTO

#define PARAM2 ADC_VREF_AVDD_AVSS | ADC_OFFSET_CAL_DISABLE | ADC_SCAN_OFF |
ADC_SAMPLES_PER_INT_1 | ADC_ALT_BUF_OFF | ADC_ALT_INPUT_OFF

#define PARAM3 ADC_CONV_CLK_PB | ADC_SAMPLE_TIME_5 | ADC_CONV_CLK_Tcy2
//ADC_SAMPLE_TIME_15| ADC_CONV_CLK_Tcy2

#define PARAM4 ENABLE_AN11_ANA
#define PARAM5 SKIP_SCAN_ALL

DmaChnOpen(DMAchan0, DMApri0, DMA_OPEN_DEFAULT);
// channel, channel priority, mode

DmaChnSetTxfer(DMAchan0, (void*) &ADC1BUF0, (void*) v_in, 2, 512, 2);
// (ch, start virtual addr, dest virtual addr, source size,
// dest size, cell size)
// 256 16-bit integers

DmaChnSetEventControl(DMAchan0, DMA_EV_START_IRQ(_ADC_IRQ));
// channel, trigger IRQ - Trigger on ADC conversion done

Page 7 of 11

DMA+SPI to Use External DAC without CPU Intervention

Fig. 4: MCP 4822 pin out (taken from MCP 4822 datasheet [3])

The MCP 4822 is a 2-channel 12-bit DAC with an internal 2.048V reference. It can be

supplied a voltage in the range of 2.7V to 5.5V. Since we used 3.3V for the PIC32, we used the

same 3.3V supply for the VDD for the MCP 4822. Pin 5 is the active low signal LDAC that is

used to synchronize the two DAC channels. When this pin is brought low, the data in the

DAC's input register is copied to the output and both outputs are updated at the same time.

We just had this tied to ground. VOUTA and VOUTB are the two output pins. The other pins

are the regular pins for SPI communication - CS (active low) chip select, SCK serial clock, SDI

serial data in.

Fig. 5: MCP 4822 Timing Diagram (taken from MCP 4822 datasheet [3])

The MCP 4822 communicates over SPI and is a slave-only device. The write command

to the MCP 4822 is a 16-bit command sent over SPI. Bit 15 (A/B) selects which channel data

is being sent to: 1 for channel B, 0 for channel A. Bit 13 (GA) selects the gain. When GA = 1,

gain = 1; when GA = 0, gain = 2. Bit 12 SHDN is the shutdown signal. When SHDN is low, the

Page 8 of 11

output of the DAC is shut down. The 12 data bits from there on: [bit11:bit0] are the 12 data

bits for the digital to analog conversion.

In an attempt to make the peripherals and the DAC go as fast as possible, the DAC

update frequency was turned up to 500 kHz. This had the advantage of being driven off the

same timer as the ADC. While this was beyond spec, the DAC still gave decent output as

shown by the output sine wave obtained using an update rate of 737 kHz in a standalone

experiment. The update frequency can be easily changed.

Fig. 6: DAC sample output

The simple way of offloading the SPI update to the DMA module would be to let the

DMA channel transfer data to the SPI buffer. The SPI module is configured for 16-bit data

transfer (since the MCP 4822 write command requires 2 bytes). This means that the cell size

for the DMA channel has been set to 2 (2 bytes to transfer once triggered). The DMA transfer

is triggered by a timer interrupt. If we want the entire process to be offloaded from the CPU,

the CS (Chip Select) also has to be handled entirely in hardware. For that we used the Output

Compare 1 module. To use the OC1 module, either Timer 2 or Timer 3 (or the combined 32-

bit timer) has to be used. We used Timer 3 since this was already driving the ADC at 500 kHz.

The idea here was to use the OC module in "dual compare mode continuous output

pulses" mode. The OC module in this mode generates continuous pulses: the output pin OC1

Page 9 of 11

- which we used as CS - is set high one PBCLK (peripheral bus clock) after the Timer value

reaches OC1R; the OC1 pin is cleared one PBCLK after the Timer value reaches OC1RS. Since

CS is active low, we set (PR- 4) [PR=period register] to be OC1RS and a variable CSlength to

be OC1R. CSlength was chosen to be 70% of the period register. What this meant was that

one PBCLK after the Timer reached the (PR - 4), the OC1 pin went low (CS went low) selecting

the DAC. After about 0.70*PR from there, the OC1 pin went high. This means that the CS pin

is low for 70% of the period - it goes low a small time right before the DMA transfer happens

and is raised high late enough, after the DMA transfer occurs. We determined that 70% of

the period (1.4 microseconds) was enough time since that is higher than the time required

to shift out 16 bits of data (1.1 microseconds) at 15MHz SPI clock.

The DMA configuration is:

DmaChnOpen(0, 3, DMA_OPEN_AUTO);
// (ch, ch priority, mode)

DmaChnSetTxfer(0, source, &SPI1BUF, TABLE_SIZE*2, 2, 2
// assuming 16-bit source entries
// (ch, start virtual addr, dest virtual addr, source size,
// dest size, cell size)

DmaChnSetEventControl(0, DMA_EV_START_IRQ(_TIMER_2_IRQ));
// (ch, trigger irq)

DmaChnEnable(0);

The SPI configuration is:

SpiChnOpen(1, SPI_OPEN_MSTEN | SPI_OPEN_MODE16 | SPI_OPEN_ON |
SPI_OPEN_DISSDI | SPI_OPEN_CKE_REV , 2);

This enables channel 1 as a master, configured for 16-bit data transmission, disabled

SDI pin, configured serial output change from active high (1) to active low (0) as required by

the MCP 4822 (see Fig. 5) and set the clock divisor to 2 so that SPI clock = 15 MHz.

Combined Circuit

The combined circuit is a combination of the several different modules mentioned

here. It is intended to be a self-contained application to demonstrate the ability to use the

PIC32 peripherals in a high data-transfer real-time instrumentation application. The PIC32

drives the DAC with no CPU overhead. It samples this DAC output with the onboard ADC at

500 kHz and transfers the data to an internal buffer, again with no CPU overhead. Then, the

corresponding value is displayed on the TV screen in the form of an oscilloscope. The video

Page 10 of 11

driver itself does not require much CPU usage. These are made possible by the powerful yet

simple DMA modules in the PIC32 as well as the flexible peripherals.

Fig. 7: Complete external circuitry for combination of TV + DAC + ADC

Conclusion

As demonstrated above, the flexible peripherals and the powerful DMA channels of

the PIC32 make it possible to use them to create low-cost high-performance systems. With a

total cost of under $10, it is possible to create a small lab tool that is capable of generating

analog signals, and is capable of sampling inputs to display onto an NTSC television as a small

oscilloscope. With only 8% CPU usage, this has plenty of headroom to incorporate other

functionality. For example, a simple FFT application may be developed.

There is currently at least one student using the PIC32 in a Masters of Engineering

project. The PIC32 will be the microcontroller of choice for the ECE 4760 course (Designing

with Microcontrollers) at Cornell starting Fall 2015. We look forward to using it there.

Author Bios

A native of Dhaka, Bangladesh, Syed Tahmid Mahbub is currently an undergraduate

student at Cornell University, majoring in Electrical and Computer Engineering. His primary

interests in electronics are embedded systems, power systems and analog circuits. Outside

of classes, he keeps himself busy with projects involving microcontrollers, robotics and

power systems, and writing on his blog. Beyond electronics, he loves watching soccer and

cricket. He also plays cricket for the Cornell University club cricket team.

Page 11 of 11

Reference List

[1] Microchip Technology Inc., “PIC32 Peripheral Libraries for MPLAB C32 Compiler”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf>

[2] Jasio, Lucio Di. Chapter 9. Programming 32-bit Microcontrollers in C: Exploring the PIC32.

Elsevier, 2008. Print.

[3] Microchip Technology Inc., “8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with

Internal VREF and SPI Interface”, MCP4822 Datasheet.

<http://ww1.microchip.com/downloads/en/DeviceDoc/22249A.pdf>

[4] Microchip Technology Inc., “32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with

Audio and Graphics Interfaces, USB, and Advanced Analog”, PIC32MX250F128B Datasheet.

<http://ww1.microchip.com/downloads/en/DeviceDoc/60001168F.pdf>

[5] Microchip Technology Inc., Reference Manual, “Section 17. 10-bit Analog-to-Digital Converter

(ADC)”. <http://ww1.microchip.com/downloads/en/DeviceDoc/61104E.pdf>

[6] Microchip Technology Inc., Reference Manual, “Section 31. DMA Controller”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/60001117H.pdf>

[7] Microchip Technology Inc., Reference Manual, “Section 8. Interrupts”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/61108G.pdf>

[8] Microchip Technology Inc., Reference Manual, “Section 12. I/O Ports”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/61120E.pdf>

[9] Microchip Technology Inc., Reference Manual, “Section 16. Output Compare”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/61111E.pdf>

[10] Microchip Technology Inc., Reference Manual, “Section 23. Serial Peripheral Interface (SPI)”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/61106G.pdf>

[11] Microchip Technology Inc., Reference Manual, “Section 14. Timers”.

<http://ww1.microchip.com/downloads/en/DeviceDoc/61105F.pdf>

[12] Rogers, David F. Procedural Elements for Computer Graphics. New York: McGraw-Hill, 1985.

Print.

http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22249A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001168F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61104E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001117H.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61108G.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61120E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61111E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61106G.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61105F.pdf

