
ISSN 0280–5316

ISRN LUTFD2/TFRT7608SE

TINYREALTIME—An EDF Kernel

for the Atmel ATmega8L AVR

Dan Henriksson

Anton Cervin

Department of Automatic Control

Lund Institute of Technology

February 2004

Department of Automatic Control

Lund Institute of Technology
Box 118

SE221 00 Lund Sweden

Document name

INTERNAL REPORT

Date of issue

February 2004

Document Number

ISRN LUTFD2/TFRT7608SE

Author(s)

Dan Henriksson, Anton Cervin

Supervisor

Sponsoring organisation

Title and subtitle

TINYREALTIME—An EDF Kernel for the Atmel ATmega8L AVR

Abstract

This report describes the design and implementation of TINYREALTIME, an eventbased realtime kernel

for the Atmel AVR ATmega8L 8bit microcontroller. The kernel is eventbased and supports fully preemp

tive earliestdeadlinefirst scheduling of tasks. Semaphores are provided to support task synchronization.

The focus of the report is on the memory management, timing, and internal workings of the kernel.

The flash memory footprint of the kernel is approximately 1200 bytes and it occupies 11 bytes of SRAM

memory for the kernel data structure plus an additional 11 bytes for each task and one byte for each

semaphore. An application example is described, where the realtime kernel is used to implement con

current control of two ball and beam laboratory processes using six application tasks.

Key words

Realtime kernel, Atmel AVR, Eventbased, Earliestdeadlinefirst, Synchronization, Memory manage

ment, Control system application.

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316

ISBN

Language

English

Number of pages

30

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:

University Library 2, Box 3, SE221 00 Lund, Sweden

Fax +46 46 222 4422 Email ub2@ub2.lu.se

Contents

1. Introduction . 5

2. The Atmel AVR 8bit RISC Processor 5

3. Kernel Implementation . 5

3.1 Memory Layout and Data Structures 6

3.2 Timing . 7

3.3 Kernel Internal Workings . 8

3.4 API and RealTime Primitives 9

4. An Application Example . 9

4.1 The Process . 10

4.2 The Controller . 10

4.3 The PWM Output Task . 11

4.4 Experiments . 11

5. Conclusions . 12

5.1 Lessons Learned . 13

6. References . 14

A. Code Listings . 15

B. Command Reference . 20

trtInitKernel . 20

trtCreateTask . 21

trtTerminate . 23

trtCurrentTime . 24

trtSleepUntil . 25

trtGetRelease . 26

trtGetDeadline . 27

trtCreateSemaphore . 28

trtWait . 29

trtSignal . 30

3

4

1. Introduction

This report describes the design and implementation of TINYREALTIME, a real

time kernel for the Atmel AVR ATmega8L 8bit microcontroller. The kernel

is eventbased and supports fully preemptive earliestdeadlinefirst scheduling

of tasks. Semaphores are provided to support task synchronization. The flash

memory footprint of the kernel is approximately 1200 bytes and it occupies 11

bytes of SRAM memory for the kernel data structure plus an additional 11 bytes

for each task and one byte for each semaphore.

To test the kernel, it was used to implement a control system for the ball and

beam laboratory process. Two ball and beam processes were controlled concur

rently using six application tasks. Each controller was implemented using a

cascaded structure with one task for each loop in the cascade. Two additional

tasks were used to implement a simple pulse width modulation of the output

signal.

2. The Atmel AVR 8bit RISC Processor

Below follows a summary of the features of the Atmel AVR RISC architecture

and the ATmega8L microcontroller that were relevant in the implementation of

the realtime kernel. The AVR has:

• 32 8bit working registers,

• 8K bytes of insystem programmable flash memory,

• 1024 bytes of internal SRAM memory,

• throughput of � 1 MIPS per MHz,

• 14.7456 MHz clock frequency,

• one 16bit and two 8bit timers/counters with separate prescalers, and
compare match modes,

• four 10bit resolution analog input channels,

• two analog output channels giving either +10 or −10 volt.

For a more detailed description on the Atmel AVR 8bit RISC architecture, see

[Atmel, 2003].

3. Kernel Implementation

The kernel implementation was divided into the solution of three main problems.

The first problem was the memory management, since the AVR only has 1024

bytes of internal SRAM. The second area was timing and how to obtain event

based execution of the kernel. This area also included an interesting tradeoff

between the clock resolution and the system lifetime. The last area was the

internal workings of the kernel, and included issues such as context switching,

and the representation of the ready queue and time queue of the kernel.

5

Kernel struct

Task[1] struct

Task[0] struct

Task[1] stack

Task[0] stack

sp

sp

App. global/static vars

0x0060

0x045F

memptr

Figure 1 Memory layout of the realtime kernel.

3.1 Memory Layout and Data Structures

The AVR has 1120 memory locations of which the first 96 are used for the register

file and the I/O memory, and the following 1024 (addresses 0x0060 to 0x045F)
represent the internal SRAM.

In the kernel implementation, the 1024 bytes of SRAM are utilized according to

the memory layout in Figure 1, showing the location of the kernel and task data

structures and the individual stack memories. The data structures of the kernel

are given by Listings 1 and 2.

As seen in Figure 1, the kernel data structure and the task data structures are

allocated staticly from low addresses upwards followed by possible global and

static variables for the particular application. Each task has an associated stack,

and the stacks are allocated from the maximum address downwards. The stack

sizes are specified by the user upon task creation, and it is the responsibility of

the user not to exhaust the available memory.

A task occupies 11 bytes of memory, where 2 bytes are used to store the stack

pointer of the task, 4 bytes each to represent the release time and absolute

deadline of the task, and one byte to represent the state of the task. The kernel

data structure occupies a total of 11 bytes of memory to represent; the number of

tasks in the system, the currently running task, pointers to task and semaphore

vectors, pointer to next available stack memory address (see Figure 1), number
of major timer cycles (see Section 3.2), and the next wakeup time of the kernel.

Listing 1 The task data structure.

struct task {

uint16_t sp; // stack pointer

uint32_t release; // current/next release time

uint32_t deadline; // absolute deadline

uint8_t state; // terminated=0, readyQ=1, timeQ=2, semQ[]=3..

};

6

Listing 2 The kernel data structure. No dynamic memory allocation is allowed, so the

task and semaphore vectors are allocated staticly depending on the userspecified con

stants MAXNBRTASKS and MAXNBRSEMAPHORES.

#define MAXNBRTASKS 6

#define MAXNBRSEMAPHORES 6

struct kernel {

uint8_t nbrOfTasks;

uint8_t running;

struct task tasks[MAXNBRTASKS+1]; // +1 for the idle task

uint8_t semaphores[MAXNBRSEMAPHORES];

uint8_t *memptr; // pointer to free memory

uint16_t cycles; // number of major cycles

uint32_t nextHit; // next kernel wake-up time

};

In order to reduce the RAM memory requirement of the kernel, no queues or

sorted list functionality is implemented for the time queue, ready queue, and

semaphore waiting queues. Instead, each task has an associated state, and linear

search is performed in the task vector each time a task should be moved from

the time queue to the ready queue, etc. The state will be any of: terminated

(state = 0), ready (state = 1), sleeping (state = 2), or waiting on semaphore
i (state = 2+i).

Depending of the maximum number of tasks and semaphores allowed (as speci
fied by the user in the constants MAXNBRTASKS and MAXNBRSEMAPHORES) the total
memory requirement of the kernel becomes

11+ 11 ⋅MAXNBRTASKS+MAXNBRSEMAPHORES

3.2 Timing

The output compare match mode of the 16bit Timer/Counter 1 of the AVR is used
to generate clock interrupts. Each time the timer value matches the compare

match value, an interrupt is generated. The associated interrupt handler then

contains the main functionality of the realtime kernel, such as releasing tasks,

determining which ready task to run, and to perform context switches. This is

detailed in Section 3.3.

Each time the kernel has executed, i.e., at the end of the output compare match

interrupt routine, the output compare value is updated to generate a new inter

rupt at the next time the kernel needs to run. If this next wakeup time is located

in a later major cycle (each timer cycle corresponds to 216 timer ticks), the out
put compare value is set to zero. This way we make sure to get an interrupt at

timer overflow to increase the cycles variable of the kernel data structure.

The timer uses a 16bit representation and, as seen in the kernel data structure

in Listing 2, an additional 16 clock bits are used to store major cycles. The time

associated with each timer tick depends on the chosen prescaler factor of the

timer (1, 8, 64, 256, or 1024).

7

Prescaler Clock resolution Life time

1 68 ns 5 min

8 543 ns 39 min

64 4.3 µs 5 h

256 17.4 µs 21 h

1024 69.4 µs 83 h

Table 1 Tradeoff between clock resolution and system life time.

The choice of prescaler factor of the timer determines both the clock resolution

and the system life time. No cyclic time is implemented, and thus the system life

time is limited by the time it takes to fill all 32 clock bits in the time representa

tion. The higher clock resolution (i.e., the smaller time between each timer tick),
the shorter time before all 32 clock bits are filled. The life time and resolution

for the different prescaler factors of the AVR are shown in Table 1.

The problem with limited life time versus high timing resolution can be avoided

by using an implementation that uses a circular clock [Carlini and Buttazzo,
2003]. The extra cost introduced by this approach is that the clock needs to be
checked for overrun at each invocation of the kernel, whereas an added advan

tage is that a fewer number of bits can be used for the clock representation (thus
giving less computational overhead in every timing operation).

3.3 Kernel Internal Workings

As mentioned above, the main functionality of the kernel is implemented in

the interrupt handler associated with the output compare match interrupt of

the timer. The code that is executed in this handler is given in Listing 3 in

Appendix A.

When the interrupt handler is entered, the stack pointer is having the address

of the stack associated with the currently running task. The first step is then to

store the status register and the 32 working registers on the stack. The code for

this is automatically generated by the compiler. Next it is checked if there has

been an overflow of the timer counter, in which case the number of major cycles

is increased.

Thereafter, the task vector is gone through in order to determine if any tasks

should be released at the current time, and to compute the closest release time of

the remaining sleeping tasks. The ready task with the closest absolute deadline

is then made the running task, and if this is not the same task that was executing

at the start of the interrupt handler a context switch is performed. The context

switch is done by saving the current address of the stack pointer in the task

struct associated with the preempted task, and to update the stack pointer with

the corresponding value of the new running task.

Finally, a new clock interrupt is set up, by updating the output compare match

register. If the next clock interrupt will take place in a later major cycle, the

output compare register is given the value zero. As seen in the code listing,

some special care needed to be taken to not miss the overflow in the case that

the current time is close to the beginning of the next major cycle.

8

Command Description

trtInitKernel Initialize the kernel.

trtCreateTask Create a task.

trtTerminate Terminate the execution of the current task.

trtCurrentTime Get the current global time.

trtSleepUntil Put a task to sleep until a certain time.

trtGetRelease Retrieve the release time of the running task.

trtGetDeadline Retrieve the absolute deadline of the running task.

trtCreateSemaphore Create a semaphore.

trtWait Wait on a semaphore.

trtSignal Signal a semaphore.

Table 2 The API of the realtime kernel.

3.4 API and RealTime Primitives

The API of the realtime kernel is shown in Table 2. In addition to the initializa

tion function and the function used to create tasks, the kernel supports a number

of realtime primitives that may be called from the application programs. These

include functions to retrieve the current global time, set and get the release

and absolute deadline of a task, put a task to sleep until a certain time, and to

terminate a task.

The trtSleepUntil call involves both setting the new release time and the new

absolute deadline the task will have when it is awakened. This needs to be done

in a single function, since these calls would otherwise individually change the

state of the task and possibly cause context switches.

Counting semaphores has also been implemented in order to support task syn

chronization and communicating under mutual exclusion. A semaphore is rep

resented by an 8bit unsigned integer (see Listing 2), and the signal and wait
operations basically correspond to incrementing and decrementing this counter.

If a task does a wait on semaphore i with the counter being zero, the task is

suspended and its state is set to i+ 1, as described in Section 3.1. When a task
does a signal on a semaphore, the task vector of the kernel is scanned for tasks

waiting for this semaphore. Of these tasks, if any, the one with the shortest time

to its deadline is made ready.

For the complete description and implementation of the various realtime prim

itives and the kernel initialization and task creation functions, see Appendix B.

4. An Application Example

The realtime kernel was used to implement concurrent control of two ball and

beam laboratory processes. Three tasks were used to control each process, for a

total of seven tasks (including the idle task). The controller was implemented
using a cascaded structure with one task for the inner and one task for the outer

loop of the cascade. Since the AVR only supported +10 or −10 analog output
voltage, pulse width modulation was necessary to generate the desired control

signal. This was implemented in software as two separate tasks.

9

Figure 2 The ball and beam laboratory process.

4.1 The Process

The ball and beam laboratory process is shown in Figure 2. The horizontal beam

is controlled by a motor, and the objective is to balance the ball along the beam.

The measurement signals from the system are the beam angle, denoted by φ ,
and the ball position on the beam, denoted by x. A linearized model of the system

is given by

G(s) = Gφ (s)Gx(s) (1)

where

Gφ (s) =
kφ
s

(2)

is the transfer function between the motor input and the beam angle, and

Gx(s) = −
kx

s2
(3)

is the transfer function between the beam angle and the ball position. The gains

of the systems are given by kφ � 4.4 and kx � 9.

4.2 The Controller

The cascaded controller is shown in Figure 3. The outer controller is a PID

controller and the inner controller is a simple Pcontroller. The outer controller

was implemented according to the equations

D(k) = ad ⋅ D(k− 1) − bd ⋅ (y(k) − y(k− 1))

u(k) = K ⋅ (yr − y(k)) + I(k) + D(k)

I(k+ 1) = I(k) + ai ⋅ (yr − y(k))

(4)

with the input signal, y, being the measured ball position and the output, u, being

the reference angle for the inner Pcontroller. The ad, bd, and ai parameters are

given by ad = Td
Td+Nh , bd = KTDN

Td+Nh , and ai = Kh
Ti
.

10

position
referencereference
angle

PIDctrl Pctrl Gφ (s) Gx(s)
xφu

Figure 3 The cascaded controller structure for the ball and beam process.

The controller was implemented as a multirate controller, where one task was

used for the inner loop and another task for the outer loop. The inner controller

was running with a 20 ms sampling interval, whereas the outer controller used

a 40 ms sampling interval. The controller parameters were chosen to Kinner = 2,
Kouter = −0.25, Ti = 10, Td = 0.9, and N = 10.

The controllers were implemented using fixedpoint arithmetics with a represen

tation using 5 integer bits and 11 fractional bits. The code executed by the two

controller tasks are given by Listings 4 and 5 in Appendix A.

Since the angle reference is communicated between the outer and inner controller

tasks, and the control signal is communicated between the inner controller and

the PWM task, semaphores were used to guarantee mutual exclusion when ac

cessing these variables.

4.3 The PWM Output Task

As seen in Listing 5, the control signal generated by the inner Pcontroller is

an integer number in the interval [−512, 511]. This signal needs to be converted
to an output in the interval [−10, 10]. However, the analog output channels can
only generate +10 or −10 volt, depending on the value of the corresponding bit
in the PORTB register. Therefore, a pulse width modulation was implemented

as given by Listing 6 in Appendix A.

The PWM task runs with a 128 tick cycle time (corresponding to 22 ms with the
prescaler set to 256), outputting +10 volt in x ticks and −10 volt in (128− x)
ticks. The x is determined from the desired control signal. E.g., to output 0 volt,

x is chosen to 64.

4.4 Experiments

In the experiments six tasks were used to control two ball and beam processes.

The main program for the experiment, were the tasks are created, is given by

Listing 7 in Appendix A. Results of the experiments are shown in Figures 4–6

for one of the processes.

Two things can be noted from the plots. First, the integral action is quite slow,

which is mainly due to the quantization in the control signal relative the in

crements of the Ipart. Because of the large relative roundoff error in the ai

parameter of Equation 4, it was not possible to increase the integral further

without jeopardizing the stability of the system during the transients.

Second, it can also be seen that the control signal is quite noisy. This is due to

our implementation of the PWM, which is switching between +10 and −10 volts

11

0 10 20 30 40 50 60 70 80 90 100
−6

−4

−2

0

2

4

6

Time [s]

B
al

l P
os

iti
on

 [v
ol

t]

Figure 4 Ball position and reference during the experiment.

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [s]

B
ea

m
 A

ng
le

 [v
ol

t]

Figure 5 Beam angle during the experiment. Controlled by the inner Pcontroller.

with a quite slow frequency. The software implementation of the PWM output

was done only to include more tasks, and to test the realtime kernel. Otherwise,

a far superior option would have been to use the PWM functionality of the AVR

hardware.

The serial communication device was used to monitor the kernel to find out how

loaded the system is. The currently running task was written at a 115.2k Baud

rate to sample the execution trace. The result is shown in Figure 7, and it can

be seen that the load of the system is quite low. The approximate utilization was

calculated to 10 per cent.

5. Conclusions

This report has described the design and implementation of an eventbased real

time kernel for the Atmel ATmega8L AVR. The kernel uses earliestdeadlinefirst

scheduling and supports ordinary counting semaphores for task synchronization.

The focus of the report has been on the memory management, timing, and in

ternal workings of the kernel. An application example was also described, where

12

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time [s]

C
on

tr
ol

 S
ig

na
l [

vo
lt]

Figure 6 Control signal during the experiment. The high noise level is due to our slow

realization of the PWM output. The desired output is generated by switching between

−10 and +10 volt at a 1 kHz frequency.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

1

2

3

4

5

6

Sample

T
as

k
ID

Sample (baud rate 115.2k bps) of execution trace (0: idle, 1−2: PWM tasks, 3−4: Inner Ctrl, 5−6: Outer Ctrl

Figure 7 Sample of the execution trace during the experiment. The system utilization

was calculated to around 10 per cent.

the realtime kernel was used to implement concurrent control of two ball and

beam laboratory processes using six application tasks.

5.1 Lessons Learned

It turned out to be possible to implement an eventbased EDF kernel with high

timing resolution on a small embedded system such as the Atmel AVR. The

kernel also has a relatively small memory footprint, occupying approximately

1200 bytes of flash memory. The RAM memory requirement depends on the

number of tasks and semaphores in the system, and became around 100 bytes

for the ball and beam application.

However, the kernel has its limitations, which was most clearly visible in the

implementation of the PWM output in the ball and beam experiment. It turned

out that the PWM operation was extremely jitter sensitive and could not be

performed satisfactory with a high time resolution. This gave an indication of

timing problems introduced by the kernel when running with high resolution.

The kernel also does not implement cyclic timing and, thus, has a finite life time.

13

6. References

Atmel (2003): “Atmel AVR 8bit RISC.” Home page, http://www.atmel.com/pro
ducts/AVR/.

Carlini, A. and G. Buttazzo (2003): “An efficient time representation for real
time embedded systems.” In Proceedings of the 2003 ACM Symposium on

Applied Computing, pp. 705–712. Melbourne, Florida.

14

A. Code Listings

Listing 3 The clock interrupt handler of the kernel.

SIGNAL(SIG_OUTPUT_COMPARE1A) {

// Store r0-r31,SREG on the stack, done by the compiler

if (TIFR & 0x04) { ++kernel.cycles; TIFR |= 0x04; }

now = (kernel.cycles << 16) + TCNT1;

// Release tasks from TimeQ and determine new running task

for (i=1; i <= kernel.nbrOfTasks; i++) {

t = &kernel.tasks[i];

if (t->state == TIMEQ) {

if (t->release <= now)

t->state = READYQ;

else if (t->release < nextHit)

nextHit = t->release;

}

if (t->state == READYQ)

if (t->deadline < kernel.tasks[running].deadline)

running = i;

}

if (running != oldrunning) {

// store old context

t = &kernel.tasks[oldrunning];

t->sp = SP;

// load new context

t = &kernel.tasks[running];

SP = t->sp;

kernel.running = running;

}

now = (kernel.cycles << 16) + TCNT1;

timeleft = (int32_t)nextHit - (int32_t)now;

if (timeleft < 4) {

timeleft = 4;

}

if ((unsigned long)TCNT1 + timeleft < 65536) {

OCR1A = TCNT1 + timeleft;

} else if (TCNT1 < 65536 - 4) {

OCR1A = 0x0000;

} else {

OCR1A = 4;

}

// Restore r0-r31,SREG from the stack;

}

15

Listing 4 Generic code executed by the two tasks implementing the outer PID

controllers. args->angleRefPtr is a pointer to a global variable for the angle reference,

that is communicated between the outer and inner controller tasks. This global variable

is protected by a semaphore.

void OuterCtrl(void *args) {

/* Variable declarations omitted */

args->t = trtGetRelease();

args->d = trtGetDeadline();

while(1) {

// Set AnalogIn channel for position measurement

ADMUX = args->pos_channel;

// Read position sensor

ADCSRA |= 0x40; // start conversion

while (ADCSRA & 0x40); // wait for conversion to finish

args->value = ADC; // read value from A/D converter

args->pos = (args->value - 512) << 5;

// Calculate Output

args->D = ((long)args->ad*(long)args->D - ...

... - (long)args->bd*(long)(args->pos - args->yold)) >> 11;

ref = *(args->ref); // pointer to global variable for ball reference

args->P = ((long)args->K*(long)(ref - args->pos)) >> 11;

trtWait(args->mutex); // Semaphore protecting global variable

*(args->angleRefPtr) = args->P + args->I + args->D;

trtSignal(args->mutex);

// Update State

args->I = args->I + (int)(((long)args->ai*(long)(ref - args->pos)) >> 11);

args->yold = args->pos;

// Sleep, 40 ms sampling interval

args->t += SECONDS2TICKS(0.04);

args->d += SECONDS2TICKS(0.04);

trtSleepUntil(args->t, args->d);

}

}

16

Listing 5 Generic code executed by the two tasks implementing the inner Pcontrollers.

args->angleRefPtrand args->uPtrare pointers to global variables for the angle reference

and the control signal, that are communicated between the outer and inner controller and

the inner controller and the PWM task, respectively. These global variables are protected

by semaphores.

void InnerCtrl(void *args) {

/* Variable declarations omitted */

args->t = trtGetRelease();

args->d = trtGetDeadline();

while(1) {

// Set AnalogIn channel for angle measurement

ADMUX = args->ang_channel;

// Read angle sensor

ADCSRA |= 0x40; // start conversion

while (ADCSRA & 0x40); // wait for conversion to finish

args->value = ADC; // read value from A/D converter

args->angle = (args->value - 512) << 5;

trtWait(args->mutex1); // Semaphore protecting global variable

angleRef = *(args->angleRefPtr);

trtSignal(args->mutex1);

args->u = (-args->K*(angleRef - args->angle)) >> 5;

trtWait(args->mutex2); // Semaphore protecting global variable

*(args->uPtr) = args->u;

// limit control

if (args->u > 511) {

*(args->uPtr) = 511;

} else if (args->u < -512) {

*(args->uPtr) = -512;

}

trtSignal(args->mutex2);

// Sleep, 20 ms sampling interval

args->t += SECONDS2TICKS(0.02);

args->d += SECONDS2TICKS(0.02);

trtSleepUntil(args->t, args->d);

}

}

17

Listing 6 Generic PWM code used to generate the desired output signals for the two

ball and beam processes. args->uPtr is a pointer to a global variable for the control signal,

that is communicated between the inner controller task and the PWM task. This global

variable is protected by a semaphore.

void PWMtask(void* args) {

/* Variable declarations omitted */

args->t = trtGetRelease();

while (1) {

PORTB |= args->channel; // Output +10 volt

trtWait(args->mutex); // Semaphore protecting global variable

// Sleep for x ticks

args->t += ((uint16_t) (*(args->uPtr) + 512)) >> 3;

trtSignal(args->mutex);

trtSleepUntil(args->t, 0);

PORTB &= ~args->channel; // Output -10 volt

trtWait(args->mutex); // Semaphore protecting global variable

// Sleep for (128-x) ticks

args->t += 128 - (((uint16_t) (*(args->uPtr) + 512)) >> 3);

trtSignal(args->mutex);

trtSleepUntil(args->t, 0);

}

}

18

Listing 7 The main program for the ball and beam application.

int main(void) {

uint8_t i;

ADCSRA = 0xc7; // ADC enable

// Initialize kernel

trtInitKernel(80);

// 4 semaphores to protect common variables

for (i=1; i <= 4; i++) {

trtCreateSemaphore(i, 1); // Semnbr i, Initval 1

}

// BaB System 1, inner and outer ctrl released with offset of 10 ms

trtCreateTask(PWMtask, 100, SECONDS2TICKS(0.0), SECONDS2TICKS(0));

trtCreateTask(InnerCtrl, 100, SECONDS2TICKS(0.01), SECONDS2TICKS(0.02));

trtCreateTask(OuterCtrl, 150, SECONDS2TICKS(0.0), SECONDS2TICKS(0.04));

// BaB System 2, released with an offset of 5 ms to controller 1

trtCreateTask(PWMtask, 100, SECONDS2TICKS(0.0), SECONDS2TICKS(0));

trtCreateTask(InnerCtrl, 100, SECONDS2TICKS(0.015), SECONDS2TICKS(0.02));

trtCreateTask(OuterCtrl, 150, SECONDS2TICKS(0.005), SECONDS2TICKS(0.04));

// Idle task

while (1);

}

19

B. Command Reference

trtInitKernel

Purpose

Initialize the realtime kernel.

Syntax

void trtInitKernel(uint16_t idletask_stack)

Arguments

idletask_stack Stack size to be reserved for the idle task.

Description

This function performs necessary initialization steps of the kernel data structure,

and must, therefore, be called first of all in the main program.

Implementation

void trtInitKernel(uint16_t idletask_stack) {

/* Set up timer 1 */

TCNT1 = 0x0000; /* reset counter 1 */

TCCR1A = 0x00; /* normal operation */

TCCR1B = 0x04; /* prescaler = 256 */

TIMSK = BV(OCIE1A); /* Enable compare match */

kernel.memptr = (void*)(RAMEND - idletask_stack);

kernel.nbrOfTasks = 0;

kernel.running = 0;

kernel.cycles = 0x0000;

kernel.nextHit = 0x7FFFFFFF;

// Initialize idle task (task 0)

kernel.tasks[0].deadline = 0x7FFFFFFF;

kernel.tasks[0].release = 0x00000000;

sei(); /* set enabled interrupts */

}

20

trtCreateTask

Purpose

Create a task.

Syntax

void trtCreateTask(void (*fun)(void*), uint16_t stacksize,

uint32_t release, uint32_t deadline, void *args)

Arguments

fun The address (function pointer) of the code function specifying
the execution of the task.

stacksize Stack size to be reserved for the task.

release The release offset of the task specified in timer ticks.

deadline The relative deadline of the task, specified in timer ticks.

args An arbitrary data structure for task specific arguments. Given

as input argument to the code function.

Description

This function is used to create a task to run in the realtime kernel. This function

may be called either at startup from the main program or during runtime

from the application to create new tasks dynamically. It is up to the application

programmer to specify sufficient stack memory and to make sure that the SRAM

memory is not used up. Only a limited number of tasks may be created, as

specified by the user in the predefined variable MAXNBRTASKS. The code function,

fun, is typically implemented as an infinite loop, and has a taskspecific input

argument args that facilitates using the same code function for several tasks

(see, e.g., the generic code functions in Listings 4–6 in Appendix A).

Implementation

void trtCreateTask(void (*fun)(void), uint16_t stacksize,

uint32_t release, uint32_t deadline, void *args) {

uint8_t *sp;

struct task *t;

uint8_t i;

cli(); // disable interrupts

++kernel.nbrOfTasks;

sp = kernel.memptr;

kernel.memptr -= stacksize; // decrease free mem ptr

// initialize stack

*sp-- = lo8(fun); // store PC(lo)

*sp-- = hi8(fun); // store PC(hi)

for (i=0; i<24; i++)

21

*sp-- = 0x00; // used to store SREG, r0-r23

// Save args in r24-25 (input arguments stored in these registers)

*sp-- = lo8(args);

*sp-- = hi8(args);

for (i=0; i<6; i++)

*sp-- = 0x00; // store r26-r31

// initialize task attributes

t = &kernel.tasks[kernel.nbrOfTasks];

t->release = release;

t->deadline = deadline;

t->state = TIMEQ; // put task in time queue

t->sp = sp; // store stack pointer

SIG_OUTPUT_COMPARE1A(); // Call interrupt handler to schedule task

// This is the clock interrupt handler that

// executes the kernel during run-time

}

22

trtTerminate

Purpose

Terminate the execution of the current task.

Syntax

void trtTerminate(void)

Description

This function terminates the execution of the currently running task, by setting

its state to TERMINATED.

Implementation

void trtTerminate(void) {

cli(); // disable interrupts

kernel.tasks[kernel.running].state = TERMINATED;

SIG_OUTPUT_COMPARE1A(); // call interrupt handler to schedule

}

23

trtCurrentTime

Purpose

Get the current system time.

Syntax

uint32_t trtCurrentTime(void)

Description

This function returns the current time since system start. The return value is

in timer ticks, where the time of each tick depends on the prescaler factor, N,

according to

T ICKT IME = N ⋅ 14.7456 ⋅ 10−6 seconds

Implementation

uint32_t trtCurrentTime() {

return (((uint32_t)kernel.cycles << 16) + (uint32_t)TCNT1);

}

24

trtSleepUntil

Purpose

Put a task to sleep until a certain time.

Syntax

void trtSleepUntil(uint32_t release, uint32_t deadline)

Arguments

release The time when the task should wake up.

deadline The new absolute deadline of the task.

Description

This function is used to make a task sleep until a specified point in time. The

absolute deadline of the task is also updated using this function.

Implementation

void trtSleepUntil(uint32_t release, uint32_t deadline) {

struct task *t;

t = &kernel.tasks[kernel.running];

cli(); // turn off interrupts

t->state = TIMEQ;

t->release = release;

t->deadline = deadline;

SIG_OUTPUT_COMPARE1A(); // call interrupt handler to schedule

}

25

trtGetRelease

Purpose

Retrieve the latest release time of the calling task.

Syntax

uint32_t trtGetRelease()

Description

This primitive is used to retrieve the latest release time of the calling task. The

return value is given in timer ticks.

Implementation

uint32_t trtGetRelease() {

return kernel.tasks[kernel.running].release;

}

26

trtGetDeadline

Purpose

Retrieve the absolute deadline of the calling task.

Syntax

uint32_t trtGetDeadline()

Description

This primitive is used to retrieve the absolute deadline of the calling task. The

return value is given in timer ticks.

Implementation

uint32_t trtGetDeadline() {

return kernel.tasks[kernel.running].deadline;

}

27

trtCreateSemaphore

Purpose

Initialize a semaphore.

Syntax

void trtCreateSemaphore(uint8_t semnbr, uint8_t initval)

Arguments

semnbr The number used to identify the semaphore. Should be between 1

and MAXNBRSEMAPHORES.

initval The initial value of the semaphore counter.

Description

This primitive is used to initialize a semaphore, and must be called before any

corresponding trtWait or trtSignal calls.

Implementation

void trtCreateSemaphore(uint8_t semnbr, uint8_t initVal) {

cli(); // turn off interrupts

kernel.semaphores[semnbr-1] = initVal;

sei(); // set enabled interrupts;

}

28

trtWait

Purpose

Wait for a semaphore.

Syntax

void trtWait(uint8_t semnbr)

Arguments

semnbr The number used to identify the semaphore. Should be between 1

and MAXNBRSEMAPHORES.

Description

This primitive is used to attempt to take a semaphore. If no other task is hold

ing the semaphore, execution of the calling task continues and the semaphore

counter is decremented. Otherwise, the state of the calling task is set to WAIT_OFFSET

+ semnbr, and a context switch will take place.

Implementation

void trtWait(uint8_t semnbr) {

struct task *t;

unsigned char *s;

t = &kernel.tasks[kernel.running];

cli(); // disable interrupts

s = &kernel.semaphores[semnbr-1];

if ((*s) > 0) {

(*s)--;

} else {

t->state = semnbr + WAIT_OFFSET; // waiting for Sem #semnbr

SIG_OUTPUT_COMPARE1A(); // call interrupt handler to schedule

}

sei(); // reenable interrupts

}

29

trtSignal

Purpose

Signal a semaphore.

Syntax

void trtSignal(uint8_t semnbr)

Arguments

semnbr The number used to identify the semaphore. Should be between 1

and MAXNBRSEMAPHORES.

Description

This primitive is used to signal that a semaphore is released. The highestpriority

task with state equal to WAIT_OFFSET + semnbr will then be made ready and a

context switch may occur.

Implementation

void trtSignal(uint8_t semnbr) {

uint8_t i;

struct task *t;

uint32_t minDeadline = 0xFFFFFFFF;

uint8_t taskToReadyQ = 0;

cli(); // disable interrupts

for (i=1; i <= kernel.nbrOfTasks; i++) {

t = &kernel.tasks[i];

if (t->state == (semnbr + WAIT_OFFSET)) {

if (t->deadline <= minDeadline) {

taskToReadyQ = i;

minDeadline = t->deadline;

}

}

}

if (taskToReadyQ == 0) {

kernel.semaphores[semnbr-1]++;

} else {

kernel.tasks[taskToReadyQ].state = READYQ; // make task ready

SIG_OUTPUT_COMPARE1A(); // call interrupt handler to schedule

}

sei(); // reenable interrupts

}

30

