ECE 4760: Digital Systems Design Using Microcontrollers

Author: Senior Lecturer, Bruce Land, ECE
Revision date: 6/19/2017
Credits: 4 hours

Catalog Description:
Design of real-time digital systems using microprocessor-based embedded controllers. Students working in pairs design, debug, and construct several small systems that illustrate and employ the techniques of digital system design acquired in previous courses. The content focuses on the laboratory work. The lectures are used primarily for the introduction of examples, description of specific modules to be designed, and instruction in the hardware and high-level design tools to be employed. This is a Culminating design experience (CDE) course.

Course Frequency:
Offered every Fall semester

Prerequisites:
ECE 3140/CS 3420 or permission of instructor

Corequisites:
NONE

Preparation Summary:
C programming: Students need to be comfortable with programming in the C language and understand the use and implications of software concurrency and interrupt handlers.

Electronic construction: Students should be familiar with construction of electronic circuitry on solderless breadboards, and will be required to learn to solder.

Textbook(s) and/or Other Required Materials:
Reading list is summarized for each lab assignment at http://people.ece.cornell.edu/land/courses/ece4760/#reading
The readings cover the peripherals required for each lab, as well as specific techniques necessary to implement the labs. The readings are a combination of vendor (Microchip) manuals, and instructor-generated web pages.
http://people.ece.cornell.edu/land/courses/ece4760/#links
The three main documents are PIC32MX250 datasheet, PIC32MX2xx hardware reference manual, and the PLIB software manual.

Class and Laboratory Schedule:
Lectures: 3 hrs/wk. Lectures from 2016 are online
https://www.youtube.com/playlist?list=PLKejQ_UFkrd4z2qoFuJ1jtVhCSuxxCTpk
Recitations: None
Labs: There are weekly lab sessions. There will be 4 lab assignments, each of which will be two weeks long. Current labs are at http://people.ece.cornell.edu/land/courses/ece4760/#labs
Since virtually all work for this course is lab work, you will be expected to be in lab approximately 6-9 hours/week. Each lab will have a formal write-up, as explained on http://people.ece.cornell.edu/land/courses/ece4760/EE4760_policy.html

Assignments, Exams and Projects:
Note: Syllabus subject to change prior to course start. Final syllabus posted on course Blackboard or website.
Homework: Approximately five assignments; collaboration within groups is required. Current homework: http://people.ece.cornell.edu/land/courses/ece4760/#homework

Exams: none.

Project: Extensive, 5 week, final project with full write-up. See also http://people.ece.cornell.edu/land/courses/ece4760/labs/f2016/lab5.html

Examples at: http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/

Video at: https://www.youtube.com/playlist?list=PLKcjQ_UFkrd7JYi9yO2zcU4sMUj3x_pOL

and https://www.youtube.com/playlist?list=PLEB09A7C8641987A8

Typical Topics Covered:

- Review software concurrency, interrupt service routines, and threads.
- Hardware concurrency: Getting good performance by using all of the concurrently executing co-processors available on the microcontroller chip. Including: DMA, five timers, SPI, USART, ADC subsystem, CTMU and others.
- Thread programming
- Precision time interval measurement/generation
- 2D graphics
- SPI DAC and noise considerations
- Scanning a keypad: connections, scan code, and state machine
- Fixed point arithmetic for speed
- Direct Memory Access (DMA) controller for fast i/o.
- Motor control: PWM, PID controllers, need for optoisolation
- Power saving modes
- Sound synthesis – Direct Digital Synthesis
- Specifying, planning, building, and testing of a project.
- Analog noise and circuit layout.
- Physical construction. Soldering, board layout.
- Debugging of mixed hardware/software systems.

Student Outcomes:

1. Be able to compute the performance of circuitry, including loading effects.
2. Be able to use a microcontroller development system and appropriate software tools (assembler and C compiler)
3. Be able to wire and debug analog and digital circuitry
4. Be able to specify a project and carry out a detailed design.
5. Be able to calculate error budgets for timing and performance
6. Understand human factors for interaction with embedded devices
7. Work as a team to produce timely solutions for projects.
8. Produce demonstrations and documentation.
9. Know the significance of microcontrollers in our technical infrastructure and the social, political, and ethical implications of automation and miniaturization.

Academic Integrity:

Students expected to abide by the Cornell University Code of Academic Integrity with work submitted for credit representing the student’s own work. Discussion and collaboration on homework and laboratory assignments is permitted and encouraged, but final work should

Note: Syllabus subject to change prior to course start. Final syllabus posted on course Blackboard or website.
represent the student’s own understanding. Specific examples of this policy implementation will be distributed in class and are given here:
http://people.ece.cornell.edu/land/courses/ece4760/EE4760_policy.html

Should copying occur, both the student who copied work from another student and the student who gave material to be copied will both automatically receive a zero for the assignment. Penalty for violation of this Code can also be extended to include failure of the course and University disciplinary action.

Accommodations for students with disabilities
In compliance with the Cornell University policy and equal access laws, the instructor is available to discuss appropriate academic accommodations that may be required for student with disabilities. Requests for academic accommodations are to be made during the first three weeks of the semester, except for unusual circumstances, so arrangements can be made. Students are encouraged to register with Student Disability Services to verify their eligibility for appropriate accommodations.

Inclusivity Statement
We understand that our members represent a rich variety of backgrounds and perspectives. Cornell is committed to providing an atmosphere for learning that respects diversity. While working together to build this community we ask all members to:

- share their unique experiences, values and beliefs
- be open to the views of others
- honor the uniqueness of their colleagues
- appreciate the opportunity that we have to learn from each other in this community
- value each other’s opinions and communicate in a respectful manner
- keep confidential discussions that the community has of a personal (or professional) nature
- use this opportunity together to discuss ways in which we can create an inclusive environment in this course and across the Cornell community

Note: Syllabus subject to change prior to course start. Final syllabus posted on course Blackboard or website.