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Abstract— It is well-known that some form of op-
timization takes place in skilled human tasks. Using
largely numerical techniques researchers in the field of
biomechanics have optimized different cost functions to
predict human motion for tasks like walking and rowing.
In a similar vein in this paper we show, using Pontryagin’s
Minimum Principle and after some simplification, that
the typical pumping strategy used by children on a swing
is time-optimal. We present results for the two special
cases: When the swing is to be taken from small initial
oscillations to a specific final angle in minimum time,
and when it is to be brought from an initial angle to rest
in minimum time. The method outlined is extendable
to other initial and final conditions, though the results
obtained for other boundary conditions are not as elegant
and intuitive as in the cases discussed.

I. INTRODUCTION

The idea that skilled human motion entails
optimization of some cost function with certain
constraints on the control inputs and the phase-
space, has become well-entrenched in the field of
biomechanics. Several researchers have attempted
to predict human motion using the optimization
approach for tasks ranging from locomotion to
jumping (Bertram and Ruina 2001, Pandy and
Anderson 1991). Most of these approaches have
been largely numerical in nature. In this paper
we obtain analytical results using Pontryagin’s
Minimum Principle to the time-optimal problem
of pumping a swing.

The problem of pumping a swing is a classical
one and has been addressed by several researchers
from different perspectives. Tea and Falk (1968)
show how the elementary concepts of angular mo-
mentum and work-energy can be used to explain
why the amplitude of a swing increases when it is
pumped. Burns (1969) has shown how the problem
exhibits a resonance like phenomenon and Wirkus,

Ruina and Rand (1998) compare the two different
pumping strategies: When the rider is standing, and
when the rider is seated.

The objective of this paper is considerably
different from the work cited above. Here we
analytically determine the time-optimal pumping
strategy for a swing. To do this we first derive
the equations of motion for an idealized swing
and then apply Pontryagin’s Minimum Principle
to obtain the necessary conditions for optimality.
We then determine the equations for the state and
costate vector that satisfy the necessary conditions
and subsequently obtain the optimal control law.
We shall see that this optimal control law has a
very intuitive form.

II. THE PHYSICS OF PUMPING A SWING

Observations of children playing on swings
show that children who are good at this task all
follow a similar strategy. Making the reasonable
assumption that the objective is to get as high as
possible as quickly as possible, the strategy used
by children is to crouch when the swing is at
its highest point and to stand-up when the swing
passes its lowest point. This is done both on the
forward and return cycle. We shall show that this
is time-optimal.

To understand the physics behind this pumping
we shall make some simplifying assumptions. The
swing is ideally modelled as a pendulum. The rider
is modelled as a point mass, m, and the variable
distance of the center of mass of the rider from
the fixed support is denoted by l(t). The angle
that the swing makes with the vertical is denoted
by θ(t). Conservation of angular momentum for a
point mass undergoing planar motion gives,
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Fig. 1. Pumping strategy to increase the amplitude

dH

dt
= τ, (1)

where H is the angular momentum of the point
mass about the fixed support and τ is the net torque
about the fixed support due to all the forces acting
on the point mass. Therefore,

d

dt
(l(t)2 ˙θ(t)) = −gl(t) sin(θ(t)). (2)

After differentiating and rearranging the terms
we get,

θ̈ +
2l̇θ̇

l
+

g sin θ

l
= 0, (3)

where we have dropped the dependence of l and θ

on time so as to be succinct.
To understand how changing the length of the

pendulum can result in an increase or decrease in
the amplitude of oscillations, consider first the case
when the rider is sitting and is moving towards the
origin (Fig. 1). When the rider reaches the origin
she instantaneously stand up. In this case, using
the fact that, the change in angular momentum is
obtained by integrating the torque with respect to
time,

l2standθ̇stand − l2squatθ̇squat = −
∫ t0+δt

t0

gl sin(θ)dt.

(4)

Since the process of standing up is carried out
instantaneously at θ = 0, the right-hand side of (4)
evaluates to zero and we have,

θ̇stand =
( lsquat

lstand

)2

θ̇squat. (5)

As lsquat > lstand the angular velocity of the
rider increases by this action and she can attain
a larger amplitude of oscillation. Now when the
rider reaches the highest point, where the angular
velocity is zero, she can again return to the crouch-
ing position without losing any angular velocity,
as in the ideal case the process is carried out
instantaneously. The angle also remains unaffected
during this maneuver. The rider is now again in a
position to impart another pump to the swing when
the swing passes through its lowest point.

The process can be carried out in reverse in-
terchanging the sitting and standing maneuvers
and the amplitude of oscillations of the pendulum
can be decreased. We thus see how the amplitude
of oscillations can be increased or decreased by
suitably altering the length of the pendulum.

III. SYSTEM EQUATIONS

Let us now by application of a suitable transfor-
mation law convert (3) into a form convenient for
the application of Pontryagin’s Minimum Princi-
ple. We first rewrite (3) as two ordinary differential
equations.

ż1 = z2

ż2 = −2l̇ż1

l
− g sin(z1)

l
(6)

Now by making the substitution x2 = z2l
2, we

have,
ẋ2 = −gl sin(z1). (7)

Rewriting z1 by x1 in (6) we have a set of
equations in the variables, x1 and x2, that capture
the dynamics of our system.

ẋ1 =
x2

l2

ẋ2 = −gl sin(x1). (8)

Let us now make the approximation that, l(t) =
L(1 + εu(t)), where we have 0 < ε � 1 and



|u(t)| = 1. We then have after expanding and
retaining only the first order terms,

ẋ1 =
x2

L2
− 2x2εu(t)

L2

ẋ2 = −gl sin(x1) − gl sin(x1)εu(t). (9)

Linearizing about the origin and without any
loss of generality setting L = 1 and g = 1, we
have,

[

ẋ1

ẋ2

]

=

[

0 1
−1 0

] [

x1

x2

]

−
[

2x2ε

x1ε

]

u(t). (10)

Or in matrix notational form we have,

ẋ(t) = Ax(t) + B(x(t))u(t). (11)

IV. MINIMUM TIME OPTIMAL CONTROL

A. Statement of Problem

We shall consider first the problem of bringing
a swing from an initial angle to rest in minimum
time.

xini =

[

x1

0

]

xfin =

[

0
0

]

(12)

The control input is bounded in magnitude,
|u(t)| ≤ 1.

The problem then, is to determine an optimal
input u∗(t), such that it satisfies the magnitude
bound on the input and takes the state from xini to
xfin in minimum time.

We will not go into the theory of optimal control
in any great detail other that to state the main
result and to apply it to our problem. The interested
reader is guided to the excellent reference Athans
and Falb (1966). Let us however make a few
comments about the problem. First, the system is
linear time varying, as can be seen after a slight
rearrangement. Also the system is reachable and
controllable. The time-optimal control problem is
normal, and therefore we can conclude that if a
time-optimal control exists for our problem then
it is unique. The proofs to support some of our
claims can be found in the reference.

B. Pontryagin’s Minimum Principle

Let u∗(t) be the time-optimal input and let x∗(t)
be the corresponding trajectory which satisfies
the boundary conditions, i.e. x∗(0) = xini and
x∗(T ∗) = xfin. Let us define the Hamiltonian H
by the relation,

H(x(t), p(t), u(t)) = λ0

+ 〈p(t),Ax(t) + B(x(t))u(t)〉.
(13)

where λ0 ≥ 0 and 〈·, ·〉, indicates the usual inner-
product.

Then there exists a corresponding costate vector
p∗(t) such that,

1)

ẋ∗(t) =
∂H(x∗(t), p∗(t), u∗(t))

∂p∗(t)
, (14)

ṗ∗(t) = −∂H(x∗(t), p∗(t), u∗(t))

∂x∗(t)
, (15)

with boundary conditions x∗(0) = xini and
x∗(T ∗) = xfin.

2) We have ∀ t ∈ [0, T ∗],

H(x∗(t),p∗(t), u∗(t))

= min
|u(t)|≤1

H(x∗(t), p∗(t), u(t))

(16)

3) Also ∀ t ∈ [0, T ∗] we have,

H(x∗(t), p∗(t), u∗(t)) = 0. (17)

C. Bang-Bang Control

From (16) we obtain for our problem that the
optimal control, u∗(t), is bang-bang. The optimal
control is given by,

u∗(t) = sgn[2p1(t)x2(t) + p2(t)x1(t)] (18)

Let ∆ = ±1. Therefore we have,

u∗(t) = ∆ = ±1 (19)



D. State and Costate vectors
We have from (14),
[

ẋ∗
1

ẋ∗
2

]

=

[

0 (1 − 2ε∆)
−(1 + ε∆) 0

] [

x∗
1

x∗
2

]

(20)

with the boundary conditions x∗(0) = xini and
x∗(T ∗) = xfin.

This can be rewritten as a single second-order
differential equation,

ẋ(t) + ω2x(t) = 0, (21)

where ω =
√

1 − ε∆ − 2ε2∆2.
Now as ε � 1 we can make the approximation,

ω = 1 − ε∆

2
. (22)

With this approximation we obtain,

x∗
1(t) = xi cos(ωt),

x∗
2(t) = − ωxi

1 − 2ε∆
sin(ωt). (23)

Let us now turn our attention to the costate
vector. From (15) we have,

[

ṗ∗1
ṗ∗2

]

=

[

0 (1 + ε∆)
−(1 − 2ε∆) 0

] [

p∗1
p∗2

]

. (24)

While we do not have boundary conditions for
p∗(t) we have from (17),

λ0 + x∗
2(t)p

∗
1(1 − 2εu∗(t)) − x∗

1(t)p
∗
2(1 + εu∗(t)) = 0.

(25)

After eye-balling (24) and (25), we obtain the
following equation for p∗(t) that will satisfy (25)
under certain conditions.

p∗1(t) =
1

xiω
cos(ωt + φ)

p∗2(t) = − 1

xi(1 + ε∆)
sin(ωt + φ) (26)

We now need to determine the condition on φ

so that equations for the state and costate vector
satisfy the necessary conditions for optimality. We
have using (17),

λ0 = − sin(φ) (27)

As λ0 ≥ 0, we have, −π ≤ φ ≤ 0
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Fig. 2. Inward Spiral

E. Solution to the time-optimal control problem

We are now finally in a position to obtain the
solution to the optimal control problem. The opti-
mal control input, u∗(t), is determined by suitably
choosing φ depending on the boundary conditions
on the optimal trajectory, x∗(t).

For our problem, with the previously stated
boundary conditions, which we repeat here for
convenience,

xini =

[

x1

0

]

xfin =

[

0
0

]

, (28)

a choice of φ = 0 gives us u∗(t). We therefore
have from (18),

u∗(t) = sgn[2p1(t)x2(t) + p2(t)x1(t)]

= sgn
[

− 2

1 − 2ε∆
sin(ωt) cos(ωt)

− 1

1 + ε∆
sin(ωt) cos(ωt)

]

= −sgn[sin(ωt) cos(ωt)]

= sgn[x∗
1(t)x

∗
2(t)] (29)

We have finally obtained after the applica-
tion of Pontryagin’s Minimum Principle the time-
optimal control law, which states that the controller
switches between +1 and -1 when one of the
states goes to zero. This corresponds to our initial
observation regarding the pumping of a swing.
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The case when we start with small initial os-
cillations and try to move away from the origin
in minimal time mimics the development above
with the difference being that we obtain, u∗(t) =
−sgn[x∗

1(t)x
∗
2(t)]. Fig. 2 and Fig. 3 show the

trajectories in the phase space for the two cases
discussed.

V. CONCLUSION

Using the Minimum Principle and after some
simplifications we have proved that the pump-
ing strategy used by children on swings is time-
optimal. The observation that it is time-optimal
appeals to our intuition, as children playing on
a swing would not try to optimize criterion like
energy, but rather would try to have as much fun as
possible, which would in general mean that they try
to get as high as possible as quickly as possible. We
should point out that the result has been obtained
after making linearizing assumptions and as such is
valid as long as that the assumptions are valid. We
should also note that, while we have considered the
cases φ = −π and φ = 0, other values for φ have
to be chosen for different boundary conditions.
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