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ABSTRACT 
In this paper the development of an electromyogram (EMG) 
based interface for hand gesture recognition is presented. 
To recognize control signs in the gestures, we used a single 
channel EMG sensor positioned on the inside of the 
forearm. In addition to common statistical features such as 
variance, mean value, and standard deviation, we also 
calculated features from the time and frequency domain 
including Fourier variance, region length, zerocrosses, 
occurrences, etc. For realizing real-time classification 
assuring acceptable recognition accuracy, we combined two 
simple linear classifiers (k-NN and Bayes) in decision level 
fusion. Overall, a recognition accuracy of 94% was 
achieved by using the combined classifier with a selected 
feature set. The performance of the interfacing system was 
evaluated through 40 test sessions with 30 subjects using an 
RC Car.  Instead of using a remote control unit, the car was 
controlled by four different gestures performed with one 
hand. In addition, we conducted a study to investigate the 
controllability and ease of use of the interface and the 
employed gestures. 
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INTRODUCTION 
Recently, a significant amount of effort in human-computer 
interaction (HCI) has been dedicated to the development of 
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user-friendly interfaces employing voice, vision, gesture, 
and other innovative I/O channels. One of the most 
challenging approaches in this research field is to link a 
human's neural signals with computers by exploiting the 
electrical nature of the human nervous system. For the 
neural linkage with computers, various biomedical signals 
(biosignals) can be used, which can be acquired from a 
specialized tissue, organ, or cell system like the nervous 
system. Examples include electro-encephalogram (EEG), 
electrooculogram (EOG), and electromyogram (EMG). 
Such approaches are extremely valuable to physically 
disabled persons, as, for instance, unvoiced speech 
recognition and the hands-free EMG mouse [1]. 

EMG measures electrical currents that are generated in a 
muscle during its contraction and represent neuromuscular 
activities. EMG signals can be used for a variety of 
applications including clinical applications, human-
computer interaction and interactive computer gaming [2, 
3]. Moreover, EMG can be used to sense isometric 
muscular activity which does not translate into movement. 
This makes it possible to classify subtle motionless gestures 
and to control interfaces without being noticed and without 
disrupting the surrounding environment. On the other hand, 
one of the main difficulties in analyzing the EMG signal is 
due to its noisy characteristics. Compared to other 
biosignals, EMG contains complicated types of noise that 
are caused by, for example, inherent equipment noise, 
electromagnetic radiation, motion artifacts, and the 
interaction of different tissues. Hence, preprocessing is 
needed to filter out the unwanted noises in EMG. This 
difficulty becomes more critical when resolving a 
multiclass classifying problem. In most previous works, 
therefore, multi-channel EMG sensors are used at the same 
time to detect relevant EMG patterns by a combined signal 
analysis. In this case, however, users suffer from the 
inconvenience of carrying many cabled electrodes. 

In this work we therefore present an EMG-based 
controlling interface using a single channel EMG sensor 
positioned on the inside of the forearm. As a sample 
application we modified an RC car so that it could be 
controlled by a user’s hand signs, instead of using a remote 
control unit. The interfacing system first calculates relevant 
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features in the EMG signal of four hand signs, classifies the 
hand signs into the four classes, and assigns the result to 
certain steering commands for the RC car. To be usable, all 
processing stages must run in real-time without perceptible 
latency time. At the beginning of this paper, a short 
overview of existing biosignal based controlling interfaces 
is given. In the subsequent part, the setup of the developed 
system including the selection of suitable gestures, features 
and classification algorithms is described, followed by an 
evaluation and a discussion of the system. 

RELATED WORK 
Nowadays many different types of biosignals, such as skin 
conductance or electrocardiogram, can be measured with 
many differing procedures. Depending on the respective 
signal, these biosignals are utilized in industrial 
applications, such as medicine or entertainment [4]. Some 
biosignals have also been shown to be suited for the 
creation of a new communication interface between humans 
and computers. In this area the use of biosignals offers 
brand new possibilities when compared to the conventional, 
mostly audio-visually based human-computer interfaces. 
Thus, with the help of biosignals, it is today possible to 
detect emotions [5], make music [6] or develop smart 
clothes [7]. The famous polygraph is also based on 
biosignals. 

Many biosignal based interfaces are used for controlling 
and communication. For disabled people especially, they 
offer the possibility of making their lives easier. There have 
been some promising attempts for the development of a 
new generation of biosignal controlled prostheses [8], 
which are much more user-friendly and more easily 
accepted than customary prostheses. Even people with 
severe disabilities and whose normal communication 
channels do not work anymore may receive help by the 
creation of a new communication interface based on 
biosignals. This is one major aim of brain computer 
interface (BCI) research, where communication can take 
place simply by measuring thoughts. Besides BCIs, which 
mainly use electroencephalographic signal (EEG) [9], the 
most important biosignal for controlling interfaces have 
become the signals received from the EMG. This is due in 
great part to the fact that most bioelectric signals, such as 
the EMG or EEG, can be recorded in a comparatively 
simple and inexpensive manner thanks to the use of 
electrodes. As it is usually possible to receive the 
bioelectric signals free of pain by placing the electrodes on 
the surface of the skin, user acceptance compared to other 
biosignal measurement methods is also proportionally high. 
The EMG signal represents the natural electrical activity of 
the human body, which is used to control the skeletal 
muscles. Nowadays it is possible to control, in addition to 
the aforementioned prostheses, robots [10], mobile phones 
[11] and MP3 players [12] with the help of EMG signals. 
These systems are usually based on the performance of 

several gestures which are recognized through their EMG 
signal and in this vein trigger specific actions. The type of 
gesture depends on the number and the positioning of the 
measuring sensors and varies from nearly motionless arm 
gestures [13], to hand gestures [12, 14] and movements of 
single fingers, for example for virtual typing [15].  In 1999, 
NASA also successfully developed an EMG based 
controlling interface: It simulates the landing of an aircraft 
which is solely controlled by gestures resulting from the 
navigation of a virtual joystick [16]. 

In this work an EMG based real-time controlling interface 
was developed to navigate an RC car with the help of four 
different hand gestures only. Contrary to other existing 
gesture based controlling interfaces which often require 
many different EMG channels [10, 12, 14, 16] placed on 
multiple muscles to be able to distinguish the different 
gestures, there is only one single EMG channel used in the 
present case. 

METHODOLOGY 
Before explaining the setup of the developed system, we 
first describe the selection of suited gestures and a suited 
starting or home position: 

Gesture selection 
For controlling an RC car, four different gestures are 
required. These gestures should be equally easy to perform 
and form patterns in the EMG signal which are as 
discriminative as possible. Before the start and after the 
finish of each gesture, the hand should be situated in a 
posture called the home position, in which hardly any signal 
amplitude occurs. After testing over 20 different gestures 
the four gestures shown in Fig. 1 were selected as control 
signs since they seemed to fulfill the mentioned 
requirements best. The first gesture, Press (gesture 1), is a 
short and very light pressing of the fist. Gesture Left 
(gesture 2) is performed by a quick left motion of the wrist 
towards the inside of the forearm, followed by a straight 
return into the home position. The motion directed towards 
the outside of the arm is called gesture Right (gesture 3) and 
is supposed to be slow and smooth. A fist should be formed 
in this case. The fourth gesture, Circling (gesture 4), is a 
smooth circling movement of the wrist starting with a 
swinging movement into the direction of the inside arm. 
Depending on the way the executive user performs the 
motion, either a single or two consecutive circle movements 
are possible. For the home position, a loose, relaxed fist has 
been proven to be the best suited position.  

The choice of the performing hand is not an issue since our 
experiments showed that both hands generate extremely 
similar EMG waveforms, except for unremarkable 
differences in overall amplitude. As most users opt for the 
right hand, the names and descriptions of the gestures refer 
to the right hand and have to be mirror-inverted for a left 
handed usage. 
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Figure 1. Gesture performance and resulting patterns 

System structure 
In this section the single processing steps of the system, 
from the recording of a gesture to the movement of the RC 
car, are described. An overview is given in Fig. 2. 

 
Figure 2. General procedure of a biosignal based recognition 

system 

The EMG signal of the performing arm muscles is detected 
by electrodes connected to a sensor. In order to qualify the 
incoming raw signal for further processing the signal is 

preprocessed first. Next, the incoming patterns, which 
represent a gesture movement in the signal, are matched. To 
be able to distinguish patterns, the significant features of 
each pattern are first extracted. The resulting feature vector 
is used for the classification of the movement order. 
Finally, the control command briefed through the 
performed gesture is executed by the RC car.  

Signal acquisition 
We used NeXus-10™ with Myoscan-Pro™ EMG sensor 
which enables to record EMG signals of up to 1600 µV in 
an active range of 20 to 500Hz. For the recording of the 
EMG signal, only one pair of pre-gelled single Ag/AgCl 
electrodes was fixed on the skin of the system user’s inside 
forearm (Fig. 3). Usually, each pair of electrodes is used to 
examine mainly one single muscle. Signal interferences of 
adjacent muscles, known as crosstalk, are normally 
undesirable. Since we used only one channel sensor for 
signal acquisition it was necessary to examine several 
muscles simultaneously with one pair of electrodes. These 
observed muscles were mainly the flexor carpi radialis and 
the palmaris longus, both of which are responsible for wrist 
movements, as well as the flexor digitorum superficialis, 
which is used for finger movements [17]. 

All three electrodes are situated in a line in the middle of 
the forearm parallel to the length of the forearm muscle 
fibers. By placing the first electrode near the wrist, it is 
possible to examine the muscles of the forearm between 
their tendon insertions and their motor points, which seems 
to be the best location for a constant measurement [18]. The 
reference electrode is placed in the middle. The sampling 
rate of the EMG signal in the system was set at 125 samples 
per second.  

 

Figure 3. Position of the electrodes according to the muscle 
structure 

Preprocessing 
Fortunately, in our experiment, the common noises found in 
EMG signals, such as inherent equipment noise, 
electromagnetic radiation, or moving artifacts, were hard to 
find. However there was another problem hindering the raw 
signal from being subsequently processed. The incoming 
signal exhibited an extremely unstable baseline which made 
it difficult to calculate reasonable values for statistical and 
frequency features. As a consequence, the signal had to be 
preprocessed first to be suitable for further processing. For 
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this purpose, the raw signal values x were detrended with 
the following simple detrending function D: 

 
Pattern extraction 
To capture only relevant patterns in EMG waveforms, we 
needed to design an adaptive thresholding. Although the 
system provided a default setting for the concrete threshold 
values which normally provides comparatively accurate 
pattern boundaries, the best results were achieved when the 
threshold values were individually adjusted to the user of 
the system. This is due to the fact that the EMG signal of 
each person is slightly different.  

An incoming preprocessed value was marked as the 
beginning of a pattern if a certain defined threshold value 
was reached. This boundary was found to be quite 
unproblematic, as there exists a considerable difference in 
the signal amplitude between staying in the home position 
and starting to perform a gesture. The upper bound was 
limited by the Press gesture which generally generated the 
lowest amplitude and absolutely needed to be identified, 
while the lower bound was limited by noise, for example 
resulting from small unintended movements which must not 
be recognized as patterns. 

Detecting the ending of a pattern turned out to be more 
complicated. Here, a trade-off between two different 
problems had to be found: First, the ending boundary 
should not be too high, otherwise the pattern might not be 
caught completely. Second, the ending boundary should not 
be too low, otherwise the end of a pattern might be detected 
much too late. A further complication resulted from the fact 
that some gestures caused a reverberation effect in the 
signal amplitude, long after the motion had already stopped. 

If, because of the characteristic zigzag form of an EMG 
signal, the examination of an incoming value does not make 
any sense, a couple of consecutive values have to be 
observed. The best results for the detection of a pattern 
ending in the system were achieved by observing the root 
mean square (RMS) of the last 16 incoming values. If this 
RMS value fell twice in a row below two (possibly 
different) boundary values, it was considered as being the 
end of a pattern. 

Feature extraction 
To be able to classify a performed gesture some distinctive 
features have to be found and taken from each matched 
pattern [19, 20]. Therefore several features were extracted, 
including common statistical features like maximum, 
minimum, mean value, variance, signal length and root 
mean square.  

In the frequency domain obtained by using typical fast 
Fourier transform (FFT), we calculated fundamental 

frequency (F0) and Fourier variance of the spectrum. 
Given the spectrum of signal we also extracted the region 
length which is defined as a partial length of the spectrum 
containing greater magnitude than the mean value of total 
Fourier coefficients. This feature should be an indicator for 
how periodic a signal is: the smaller the region the more 
periodic the signal. In the cases where there is more than 
one region in the spectrum, the lengths of these regions are 
added.  

Furthermore we attached some particular features which 
appeared to be suited for the distinction of the four gestures 
through their EMG signals. First, we added the positions of 
the maximum and the minimum which are defined by the 
relative position (as a percentage) of the max. and min. 
values within the length of the entire pattern. Next, we 
calculated the zerocrosses, which are defined by the 
number of times the zero line is crossed or touched in 
relation to the length of the signal. The feature number of 
occurrences results from the number of vertices existing in 
the pattern graph.  

Classification using decision-level classifier fusion 
In general, for classification, feature vectors, which 
represent a pattern, are assigned to specific classes. For 
solving this task various classification algorithms exist [21, 
22]. Many of these supervised classifiers have to be trained 
at first. During training, the classifier learns to arrange the 
patterns. Training results can be very different, with 
variations ranging from the setting of some parameters or 
weights to the creation of a new grammar. 

As the duration of the classification process is an essential 
factor for the efficiency of a realtime system, we decided to 
apply two comparatively simple and thus fast algorithms: 
the K-nearest neighbor (KNN) classifier and the Bayes 
classifier. Despite their simplicity these algorithms 
generally provide proportionally good results.  

The K-Nearest Neighbor classifier, which belongs to the 
non-parametric statistical classifiers, rates a pattern by 
regarding the most similar labeled training samples. For this 
purpose, the distances (e.g. Euclidean distance) between the 
feature vector of the current pattern and the feature vectors 
of each training sample are calculated. Beforehand, all 
vectors are generally normalized. The number of adjacent 
samples which are taken into account is defined by the 
parameter k. In our pattern recognition system, we 
considered the five nearest neighbors. 

The parametric statistical Bayes classifier decides based on 
probabilities. Each pattern is attached to the class to which 
it belongs to through the highest probability. The 
calculation of the probabilities is derived from the Bayes 
theorem. A cost function is required first for the 
classification. This function calculates the costs of all 
possible classification decisions, whereas the decision is 
made in favour of the class that produces the lowest costs. 
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Thus, the possibility of a wrong decision is minimized, if 
wrong decisions produce high costs. A precondition for a 
classification with the Bayes algorithm is that the 
probabilities for all possible feature vectors have to be 
known a priori. As in practice not all possibilities are 
normally known, they are usually estimated with a 
Gaussian distribution or a Gaussian mixture model. 

In addition to using the single classifiers separately, we 
designed two novel combination methods using both 
classifiers. Both methods are based on a decision tree 
structure as illustrated in Fig. 4 and 5. As splitting attribute 
we defined a prediction rate (PR) in per cent, the ratio of 
the number of predicted neighbors to the number of all 
considered neighbors (corresponding to the parameter k of 
the KNN classifier). For example, PR of KNN in Fig. 4 
means the ratio of the number of considered neighbors in 
the KNN algorithm which are labeled as predicted by the 
KNN classifier to the number of all considered neighbors, 
while the PR of Bayes in Fig. 5 denotes the number of 
considered neighbors in the KNN algorithm which are 
labeled as predicted by the Bayes classifier to the number of 
all considered neighbors. This means that both combination 
methods are designed based on the assumption that the 
KNN algorithm only delivers reliable results when the PR 
of KNN is high enough. 

The first method (Fig. 4) first checks whether the PR of 
Bayes is at least 40%. In this case, the Bayes classification 
result is immediately taken. Otherwise, if the PR of KNN is 
at least 60%, the KNN classification result is chosen. When 
both PRs are too small, the Bayes classification result is 
preferred. 

The second method (Fig. 5) is less complicated. It simply 
depends on the PR of KNN. If the PR is at least 60%, the 
KNN classification result is taken, otherwise the Bayes 
result is selected. 

 

 
Figure 4. Decision tree of classifier combination 1 

 

 
Figure 5. Decision tree of classifier combination 2 

Classifiers usually need a certain number of features to 
possess enough information for a reliable classification. 
Due to the curse of dimensionality, however, an increase of 
the number of features does not always produce better 
results. Thus, a feature selection has to take place before 
classification. In the section below on offline analysis, we 
discuss the effectiveness of feature selection. 

Controlling the RC  car 
The purpose of the developed interface is to control an RC 
car. To be able to control the car via a PC, the remote 
control of the RC car was connected with a computer in the 
following way (see also [22]): First, we opened the remote 
control unit and removed the old board by cutting off the 
wires. To insert a new board, we soldered four wires onto 
the control points and a further wire onto the negative pole 
of the board. We then fixed four transistors on the new 
board and connected them with the four wires soldered onto 
the control points. Another wire was set from the transistor 
to the grounding. The remaining transistor base was 
connected with a male parallel port connector. Finally the 
board was reconnected with the cut wires. After attaching a 
9-volt-battery and connecting the remote control and a PC 
by attaching a common printer cable to the parallel port 
connector, the RC car could be controlled based on the 
classification result by directly addressing the ports through 
the software. 

 

Figure 6. RC Car and modified remote control  

The control of the car with the four gestures works as 
follows: When a control command has been given by 
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performing a gesture, this command is executed by the car 
as long as the next control command is provided. A control 
command can be canceled by giving the opposite 
command. Thus, for example, if the car is moving forwards 
and towards the left and a backward control command is 
given, the car will first stop. With a further backward 
command the car will move backwards and left. As the left 
movement order has not been canceled, it is still activated. 
The control of the left, straight and right movements works 
in an analogous way. 

Calibration 
e system to the current user at the beginning of 

ssary since the EMG signal is 

e signal 

f these differences in the EMG signal, our long-

Evaluation of the system 

feedback from users, we presented our 

h features 

Experimental setting 
g tests, we conducted a more 

ubjects 

 demographic 

 subjects got an individual introduction to the EMG-

 was disinfected and electrodes were 

 single gestures until they 

To adjust th
each driving session a calibration had to be performed. 
Here, training samples of the user are taken for each 
gesture. These samples are used for the training of the 
classifiers. Usually we recorded 10 or 20 samples of each 
gesture per user, as the recording of more samples is very 
time-consuming and uncomfortable for a user. Furthermore 
no significant improvement of the classification rate was 
obtained by training the classifiers with more samples. 
Although it is possible to use an old, previously recorded 
training dataset when the user is not dealing with the 
interface for the first time, it is recommendable to perform a 
new calibration for each session. The threshold values for 
the pattern extraction should also be adapted to the user at 
the beginning of a session. 

A calibration phase is nece
very sensible. First, the EMG signal of every user is 
naturally slightly different, as all humans are different. A 
different muscle mass for example is one reason for the 
influencing differences. But the signal does not only vary 
between different users. There are also variations for single 
users, since the signal depends on the current condition of 
the user. Even during one session, sometimes, a noticeable 
alteration of the EMG could be observed as a result of 
increasing muscle exhaustion. In addition, many users have 
individually slight differences in the performance of the 
gestures and it was noticed that even small variations in 
gesture performance could cause quite diverse signal 
shapes. That is the reason why an exact performance of the 
gestures became an important factor for a successful system 
run. Furthermore it was observed that other conditions such 
as the temperature can influence the EMG signal. 

The major difference was often found in th
amplitude, but there were also variations in the shape and 
length of the extracted patterns. Moreover, the amplitude of 
the dithering of the signal while the user was in the home 
position was sometimes quite diverse. For a few users, a 
delayed dithering after the performance of a gesture could 
also be perceived, which was probably due to the operating 
muscles. 

In spite o
term goal is to build up a user-independent system beside 

the user dependent usage. To achieve this goal, we decided 
to train the classifiers with a huge sample dataset consisting 
of the samples of many different users. Furthermore the 
threshold values have to be set in such a way that all users 
perform well. The required samples for the creation of the 
user-independent training dataset were collected during an 
evaluation after the completion of the controlling interface. 

Preceding tests 
To collect first 
interface to the RC car to school girls during an annual 
information day called “Girls Day” at our university. In 
general, the school girls did well with the EMG-based 
interface even though some training was required until they 
were able to perform gestures in a sufficiently constant 
manner. Fortunately, this problem could be resolved by 
using electrodes with better adhesive properties.  

Furthermore, we used this first test to decide whic
should be selected as input for the classification algorithms. 
For this purpose, we performed a sequential backward 
search (SBS) with one dataset consisting of 10 samples per 
class, i.e. altogether 40 samples. Based on this result the 
features number of occurrences, root mean square, signal 
length, region length and zero crosses were selected. Based 
on several preceding tests the threshold value for the 
beginning of a pattern was set at 90 mV as default value, 
while the two values for pattern ending were set at 30 mV.  

After the precedin
comprehensive experiment with a total of 30 subjects at an 
Open Lab Party at our University. First of all, we collected 
personal information about the subjects, including age 
(average: 25.63 years), gender (16 females and 14 males), 
size (average: 1.75 m), weight (average: 72.3 kg) and 
performing hand (28 right handers, 2 left handers).  

The experiment consisted of two phases. Twenty s
participated in the first phase. Ten of them also took part in 
the second phase, in addition to ten new subjects. That is, 
altogether, we obtained 40 test sets. For each subject, we 
recorded 20 training samples and 20 test samples. The 
experiment consisted of the following steps: 

1) The subjects were asked to provide us with
data.  

2) The
based interface. 

3) The performed arm
attached to it as shown in Fig. 3. 

4) The participants practiced the
succeeded in performing them with sufficiently little 
variation. If necessary, the single thresholds were adjusted 
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to the participants.  

5) For each participant, 20 training samples were recorded 

participant, 20 test samples were taken to test 

ures was repeated after 

 twice, the second 

Results 
wing table shows the average classification rates 

 

mong the four classification methods, the more complex 

separately, it 

The classification rates obtained in phase 1 and phase 2 for 
the ten subjects who participated in both phases were quite 
similar, while the result of the best classification method, 
i.e. classifier combination 1, was slightly improved (Table 
3). 

Whe t of 
all 30 subjects according to gender (Table 4), size (Table 5) 
and weight (Table 6), we found that taller than average 
participants had better rates than shorter subjects. 

 

 

Although nearly all subjects did quite well with the default 
setting of the threshold values, the value for the detection of 
the beginning of a pattern was increased to 110 mV during 

per gesture. 

6) For each 
the online behavior of the system. 

If necessary, practice of the gest
recording the training and test samples. 
For the 10 participants who were tested
phase was identical except for the explanations that were no 
longer needed. Furthermore, training times were 
significantly shorter.  

The follo
of the classifiers and classifier combinations for all 40 test 
sets (Table 1). 

A
classifier combination 1 achieved the best result with a 
classification rate of 94.38%, followed by the classifier 
combination 2 and the KNN classifier. The Bayes 
classification result on its own achieved with a 
classification rate of 91.84%, the worst result. 

When regarding the gesture classification rates 
appears that the gestures Press (gesture 1) and Circling 
(gesture 4) could be identified best (Table 2). 

 

n analyzing the classification results of the first tes

Classifier G 1 G 2 G 3 G 4 

C 1 9  9  9  9  ombination 6.88% 2.63% 2.75% 5.25%

Combination 2 96.75% 91.75% 91.88% 95.38% 

KNN 96.75% 91.63% 91.75% 95.25% 

Bayes 93.38% 90% 87.88% 96.13% 

Table 2. Average classification rates for each gesture 

Classifier Phase 1 Phase 2 

C 1 ombination 95.25% 95.63% 

Combination 2 95.13% 94.88% 

KNN 95.13% 94.63% 

Bayes 92% 93.75% 

Table 3. Comparison of phase 1 and phase 2 

Classifier Taller Smaller 

C 1 ombination 95.73% 92.71% 

Combination 2 95.42% 92.29% 

KNN 95.42% 92.22% 

Bayes 93.02% 90.21% 

Table ison of subje  than the ave   5. Compar cts taller rage height 
versus smaller subjects

Classifier More Heavy Lighter 

Combination 1 92.73% 94.51% 

Combination 2 92.39% 94.03% 

KNN 92.39% 93.96% 

Bayes 89.32% 92.08% 

Table 6. Comparison of subjects which are heavier than the 
average weight versus lighter subjects 

Classifier Males Females 

C 1 ombination 94.20% 93.67% 

Combination 2 93.84% 93.28% 

KNN 93.84% 93.20% 

Bayes 91.07% 88.56% Classifier Average classification rate 

C 1 Table ison of male versus female subombination 94.38% 

Combination 2 93.94% 

KNN 93.84% 

Bayes 91.84% 

 4. Compar jects 

Table 1. Average classification rates of all test sets 
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the evaluation. The reason for this change was that we 
wan d sm plitudes mple 
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s mentioned earlier, not all features we calculated are 

, position of minimum, Fourier variance (in 
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e of 93.17% could be achieved. 

controllability) and towards the single gestures (2 questions 
for  four res ing t raln d 
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To show that the m ntly 
abov for 

ce was perceived as 

difficult to use. The best results were 

e 4 achieved the highest recognition 

chieved a rather good controllability of the interface 

 major differences in the EMG 
signal. Therefore, one possible approach for improving the 

uld be to find more amenable command 

each of the  gestu referr o natu ess an
fficulty of use). 

ean value of a rating was significa
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ightly adju
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ed dither e signal ure had 

ysis  
A
relevant for the 4-class gesture classification. To improve 
classification accuracy, we performed an offline analysis 
focusing on feature selection. The phase 1 training samples 
of every subject in the evaluation were taken for the 
significance analysis of features. The sequential backward 
search (SBS) method was performed to select significant 
features by using Leave-One-Out cross validation based on 
classifier combination 1. 

As a result of the SBS feature selection, the following 
significance rating of features was obtained: signal length, 
root mean square, mean value, fundamental frequency, 
zerocrosses, number of occurrences, region length, position 
of maximum
downward rating

In the case of user-dependent classification, when 
considering only phase 1 for each participant, the average 
classification rate of 93.92% achieved in online 
classification was improved to an average rate of 94.46% 
by using the new set of features in offline classification. For 
user-independent offline classification, the training datasets 
of all 30 subjects were mixed together and the same 
classification was performed. In this case, a remarkable 
average classification rat
When looking at the gestures separately (Table 7), the 
classification rate of gesture 1 even reached 98%, even 
though this was at the expense of the classification rate of 
gesture 2. 

Subjective evaluation of the system 
We did not only evaluate the robustness of the system; we 
were also interested in the users’ subjective assessment of 
the interface. We therefore asked twenty persons that had 
used our system to fill in a questionnaire. The questionnaire 
used 11 attitude statements with a 5-ary rating scale ranging 
from “do not agree at all” to “completely agree” in order to 
evaluate the user’s attitude towards the system as a whole 
(3 questions addressing fun, effort of use and 

one sample. Overall, the interfa
positive. The users thought it was fun to use the interface 
with a mean value of 4.10 (t(19)=6.85, p<0.001) and they 
had the feeling that the interface was responding in the 
intended manner with a mean value of 3.85 (t(19)=4.344, 
p<0.001). Nevertheless, the gesture-based interface was 
also perceived by a few subjects as tiring. For the 
corresponding attitude statement, we obtained a mean value 
of 2.9 only, which did not significantly deviate from the 
neutral value of 3.0. 

Apart from Circle (gesture 4), all gestures were perceived 
as natural and not 
achieved for Press (gesture 1) with a mean value of 4.65 
(t(19)=11.0, p<0.001) for naturalness and a mean value of 
1.45 (t(19)=-7.815, p<0.001) for difficulty of use. In 
comparison, we only obtained a mean value of 3.35 for 
naturalness and a mean value of 2.45 for difficulty of use 
when evaluating gesture 4. None of the mean values for 
gesture 4 significantly deviated from the neutral value of 
3.0.  

Interestingly, the fact that a gesture is recognized more 
easily does not necessarily mean that users also perceive it 
more positively. As we have shown in the previous section, 
gesture 1 and gestur
rates. Nevertheless, gesture 4 scored worst than any other 
gesture in the subjective evaluation, while gesture 1 got the 
best subjective rating.  

Discussion 
Although the classification rates achieved by the system are   
comparatively high, and it was observed that nearly all 
participating subjects could familiarize themselves quite 
fast with the controlling interface, the developed controlling 
interface is still more of a prototype than a finalized system. 
We a
with the four selected gestures. Yet this is conditioned on a 
precise performance of the gestures. Hence, before a user is 
able to handle the interface, he first has to practice the 
performance of each gesture in a constant manner. Of 
course the interface would be more user-friendly if no 
gesture training was required, but unfortunately even small 
discrepancies can result in

interface wo
gestures that make the system less sensitive to user- and 
time-dependent performance variations. With gesture Right 
such an improvement could already be made by having the 
subjects to form loose fist during the motion. 

Overall, it should be kept in mind that the gestures should 

Classifier G 1 G 2 G 3 G 4 

Combination 1 98% 87% 93.34% 94.34% 

Table 7. User independent gesture classification rates 
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be as fast, easy and natural to perform as possible. Indeed, it 
turned out that a rather anticipatory driving style was 
necessary to control the RC efficiently, as the time that is 
needed to perform the gestures has to be taken into account.  

Another approach to improve the system might be an EMG-
specific analysis for extracting more relevant features. The 
quality of the system may also be improved by capturing 
the pattern boundaries more precisely. One way to achieve 
this is to very precisely adjust the threshold value to the 
user. Unfortunately this procedure runs counter to another 
desirable development goal, i.e. the advancement to a 
completely user-independent interface. The performed 
offline test has already created promising expectations in 
relation to such a development. 

Conclusion 
This paper has shown that an EMG signal can be effectively 
employed in human-machine neural interface. The 
presented EMG-based controlling interface is able to 
reliably recognize various hand gestures with a positive 
classification rate of over 94% even though we used only 
one single EMG sensor, in contrast to related work which is 
based on multiple EMG sensors. For real-time condition, 
different decision tree approaches were proposed to 
combine several classifiers at the decision level by 
employing an empirical splitting attribute. Despite its 
simple structure, classifier fusion was shown to improve the 
accuracy of single classification. The good performance of 
the system was also reflected by the users’ subjective 
ratings of the system’s usability.  

 HC. Muscleman: Wireless input 
n game based on the EMG signal 

4. Sakurazawa, S., Yoshida, N., and Munekata, N. 
ature of a game using skin conductance 

m, J., and André, E. From Physiological 

o 

. The agenda of wearable healthcare, in IMIA 

 
The EMG signal carries valuable information regarding the 
nerve system. It would be quite easy to transfer its use to 
applications other than the RC car. Moreover, since the 
EMG signal can be used to sense isometric muscular 
activity, it is possible to detect motionless gesture or 
intention in the EMG signal. Consequently, there is a wide 
range of potential applications using EMG signal in human-
machine interfacing. However, to realize advanced 
applications, many issues still need to be resolved, 
including the development of algorithms for EMG-specific 
analysis, the extraction of relevant features, and the design 
of real-time classifiers with guaranteed accuracy, as 
discussed in this paper. 
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