
The Principles of
Software QRS Detection
Reviewing and Comparing Algorithms for
Detecting this Important ECG Waveform

The QRS complex is the most striking
waveform within the electrocardio-

gram (ECG). Since it reflects the electri-
cal activity within the heart during the
ventricular contraction, the time of its
occurrence as well as its shape provide
much information about the current state
of the heart. Due to its characteristic
shape (see Fig. 1) it serves as the basis for
the automated determination of the heart
rate, as an entry point for classification
schemes of the cardiac cycle, and often it
is also used in ECG data compression al-
gorithms. In that sense, QRS detection
provides the fundamentals for almost all
automated ECG analysis algorithms.

Software QRS detection has been a re-
search topic for more than 30 years. The
evolution of these algorithms clearly re-
flects the great advances in computer
technology. Whereas in the early years
the computational load determined the
complexity and therefore the perfor-
mance of the algorithms, nowadays the
detection performance is the major devel-
opment objective. The computational
load becomes less and less important.
The only exception from this trend is
probably the development of QRS detec-
tion algorithms for battery-driven de-
vices.

Within the last decade many new ap-
proaches to QRS detection have been
proposed; for example, algorithms from
the field of artificial neural networks [47,
105, 119, 122], genetic algorithms [91],
wavelet transforms, filter banks [2, 54,
66] as well as heuristic methods mostly
based on nonlinear transforms [59, 107,
114]. It is the intention of the authors to
provide an overview of these recent de-
velopments as well as of formerly pro-
posed algorithms that were already
reviewed in [34, 51, 84]. The overview is
focused on the description of the princi-
ples. Algorithmic details can be found in

the original papers that are referenced at
the end of this article.

Beyond QRS detection, many papers
have been published in related fields; e.g.,
ECG signal enhancement [15, 17, 23, 28,
90, 99] or pattern classification [8, 26, 31,
40, 62, 63, 70, 71, 72, 108, 113, 119]. The
algorithms described in these papers are
not the topic of this article. However, al-
though not directly applied to QRS detec-
tion, many of these algorithms may be
useful in processing stages prior to QRS
detection.

Overview
The rapid development of powerful

microcomputers promoted the wide-
spread application of software QRS de-
tection algorithms in cardiological
devices. Beginning about 30 years ago,
software QRS detection has replaced
more and more hardware QRS detectors.

Already in the early years of auto-
mated QRS detection, an algorithmic
structure was developed that is now
shared by many algorithms. As shown in
Fig. 2 it is divided into a preprocessing or
feature extraction stage including linear
and nonlinear filtering and a decision
stage including peak detection and deci-
sion logic. Often an extra processing
block is used for the exact determination
of the temporal location of the assumed
QRS candidate. In this article the different
algorithms are discriminated with respect
to their preprocessing stages, because
most of the decision stages are rather heu-
ristic and dependent on the preprocessing
results.

Approaches Based on Signal
Derivatives and Digital Filters
Typical frequency components of a

QRS complex range from about 10 Hz to
about 25 Hz. Therefore, almost all QRS de-
tection algorithms use a filter stage prior to
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the actual detection in order to attenuate
other signal components and artifacts, such
as P-wave, T-wave, baseline drift, and
incoupling noise. Whereas the attenuation
of the P- and T-wave as well as baseline
drift requires high-pass filtering, the sup-
pression of incoupling noise is usually ac-
complished by a low-pass filter. The
combination of low and high pass means
effectively the application of a bandpass
filter, in this case with cut-off frequencies
at about 10 Hz and 25 Hz.

In many algorithms, high- and low-pass
filtering are carried out separately. Some
algorithms, such as [3, 7, 33, 38, 45, 78,
83], use only the high-pass filter part. The
filtered signals are then used for the gener-
ation of a feature signal in which the occur-
rence of a QRS complex is detected by
comparing the feature against fixed or
adaptive thresholds. Almost all algorithms
use additional decision rules for the reduc-
tion of false-positive detections.

Derivative-Based Algorithms
The high-pass filter is often, in particu-

lar in the older algorithms, realized as a
differentiator. This points out the usage of
the characteristic steep slope of the QRS
complex for its detection. Difference
equations of possible differentiator filters
are [3, 7, 33, 38, 45, 78, 83]
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and Θ is an amplitude threshold deter-
mined from the measured ECG signal
x n( ). In most cases, the differentiator from
Eq. (1) is used. Some algorithms also
compute the second derivative. It can be
estimated by [3, 7]

y n x n x n x n2 2 2 2( ) ( ) ( ) ( )= + − + − . (6)

Typical features z n( ) of such algo-
rithms are the differentiated signal itself
[33, 38, 78]

z n y n( ) ( )= 1 , (7)

a linear combination of the magnitudes of
the first and the second derivative [7]

z n y n y n( ) . | ( )| . | ( )|= +13 111 2 , (8)

or a linear combination of the smoothed
first derivative magnitude and the magni-
tude of the second derivative [3]

z n y n y n( ) ~ ( ) | ( )|= +1 2 (9)

where ~ ( ) { . , . , . }*| ( )|y n y n1 10 25 0 5 0 25= and
*denotes the linear convolution operator.

The detection of a QRS complex is ac-
complished by comparing the feature
against a threshold. Usually the threshold
levels are computed signal dependent
such that an adaption to changing signal
characteristics is possible. For the feature
in Eq. (7), the threshold [33, 38, 78]

Θx x= ⋅0 3 0 4. . max[ ]K (10)

is proposed, where the maximum is deter-
mined online or from the current signal
segment. Most QRS detectors use this or a
similar method to determine the threshold.

The peak detection logic is frequently
completed by further decision rules that
are applied in order to reduce the number
of false-positive detections. Such rules
usually put heuristically found constraints
on the timing and the sign of the features
or introduce secondary thresholds to ex-
clude non-QRS segments of the ECG with

QRS-like feature values [3, 7, 33, 38, 45,
78, 81, 103].

Algorithms Based on Digital Filters
Algorithms based on more sophisti-

cated digital filters were published in [12,
26, 29, 30, 41, 55, 65, 67, 81, 83, 85, 101,
106, 107, 123].

In [83] an algorithm is proposed where
the ECG is filtered in parallel by two dif-
ferent low-pass filters with different
cut-off frequencies. The difference be-
tween the filter outputs is effectively the
bandpass filtered ECG y n1( ), which is af-
terwards further processed by

y n y n y n k
k m

m

2 1 1
2

2

( ) ( ) ( )= +




= −

∑ .
(11)

This nonlinear operation leads to a rel-
ative suppression of small values and a
slight smoothing of the peaks. The feature
signal z n( ) is formed out of y n2( ) by putt-
ing additional sign constraints on the out-
put signal of the low pass with the higher
cut-off frequency. The threshold is com-
puted adaptively by Θ = max[ ( )] /z n 8.

In [106] and [107] the MOBD (multi-
plication of backward difference) algo-
rithm is proposed. It is essentially an
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AND-combination of adjacent magnitude
values of the derivative. The MOBD of
the order N is then defined by

z n x n k x n k
k

N

( ) | ( ) ( )|= − − − −
=

−

∏
0

1

1 .
(12)

In order to avoid a high feature signal
during noisy segments, an additional sign
consistency constraint is imposed; i.e.,

z n

x n k x n k

( )

[ ( )] [ ( )],

=
− ≠ − −

0

1if sign sign
(13)

where k N= −0 1 2, , ,K . A proposed value
for the order of MOBD is N = 4 [107].
The threshold Θ is set to the feature maxi-
mum zmax after the refractory period and
then halved whenever a fixed time period
is elapsed. The threshold is bounded by a
lower limit that is also adaptive.

The algorithms described in [41] and
[85] use basically the same preprocessor.
The ECG is bandpass filtered and after-

wards differentiated. The feature signal z n( )
is computed by squaring and averaging the
output of the differentiator. The bandpass
and differentiator use filter coefficients that
are particularly suited for an implementa-
tion on fixed-point processors with a short
word length. For the peak detection, a vari-
able v is introduced that contains the value
of the most recent feature maximum. Peaks
in the feature signal are detected by compar-
ing the feature againstv. If the feature drops
below v 2 a peak is detected. Then the cur-
rent value of v is taken as the peak height
andv is reset to the current value of the fea-
ture signal; i.e., v z n= ( ). The principle of
the peak detection is shown in Fig. 3. The
fiducial mark is set to the location of the
largest peak in the bandpass-filtered signal
in an interval from 225 ms to 125 ms pre-
ceding a peak detection. The fiducial mark
and the height of the peak are put into an
event vector that is further processed by the
decision stage. In the decision stage, a QRS
peak level LP and a noise level LN are esti-
mated recursively by

L n L n AP P P P P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1

(14)

L n L n AN N N N P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1 ,

(15)

where λN and λP are forgetting factors
(e.g., λ ≈ 0 98. ) and AP is the peak ampli-
tude. Depending on whether a peak is
classified as QRS complex or as a noise
peak, either the QRS peak level LP or the
noise level LN is updated using Eq. (14) or
Eq. (15), respectively. Eventually, the de-
tection threshold is determined from

Θ = + ⋅ −L L LN P Nτ ( ), (16)

where the positive threshold coefficient
τ <1 is a design parameter.

In [67] the feature signal z n( ) is com-
puted in a way similar to [41] and [85] but
using different filters. In contrast to [41]
and [85], the feature signal is divided into
segments of 15 points. The maximum of
each segment is compared to an adaptive
noise level and an adaptive peak level esti-
mate and classified depending on the dis-
tance to each of the estimates. The fiducial
point of the QRS complex is set to the loca-
tion within the QRS segment where the
maximum of the ECG and a zero crossing
in its first derivative occur at the same time.

Although [26] describes an ECG
waveform detection by neural networks,
the QRS detection is accomplished using
a feature extractor based on digital filter-
ing. The feature signal z n( ) is generated by
filtering the ECG with two different
bandpass filters and afterwards multiply-
ing the filter outputs w n( ) and f n( ); i.e.,

z n w n f n( ) ( ) ( )= ⋅ . (17)

This procedure is based on the assump-
tion that a QRS complex is characterized
by simultaneously occurring frequency
components within the passbands of the
two bandpass filters. The multiplication
operation performs the AND-combina-
tion. That is, only if both filter outputs are
high then the feature is high and indicates
a QRS complex. The location of the maxi-
mum amplitude in the feature is taken as
the location of the R-wave.

The use of recursive and nonrecursive
median filters, i.e.

y n y n m y n

x n x n x n m

( ) [ ( ), , ( ),

( ), ( ), , ( )]

= − −
+ +

median

a

K

K

1

1 nd (18)

y n x n m x n

x n x n x n m

( ) [ ( ), , ( ),

( ), ( ), , ( )],

= − −
+ +

median K

K

1

1 (19)

is proposed, for example, in [123]. The
median operator applied to a vector
x = [ , , ]x xN1 K means sorting the ele-
ments of the vector according to their val-
ues and then taking the midpoint
y N= xsorted ( / )2 as the filter output. In
[123] a combination of two median filters
and one smoothing filter is used to form a
bandpass filter. The additional signal pro-
cessing steps are similar to [41, 85].

Generalized digital filters for ECG
processing with the transfer function

H z z z K LK L( ) ( )( ) ,= − + >− −1 1 01

(20)
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are proposed in [12, 100]. Such filters
have a linear phase response and are
computationally highly efficient. They
were applied, for example, in [101] where
( , ) ( , )K L = 1 2 at a sampling rate fT =100
Hz and in [29] where ( , ) ( , )K L = 5 4 at a
sampling frequency fT = 250 Hz. Other
reported applications of these filters can
be found in [30, 81].

Digital filters have been widely ap-
plied to QRS detection. However, having
described the major principles, we con-
clude this section here. Further articles on
filter-based QRS detection methods in-
clude [5, 32, 48, 55, 58, 65, 79, 110, 111,
112, 102, 121].

Wavelet-Based QRS Detection
Wavelet Transform and

Singularity Detection
The wavelet transform (WT) of a func-

tion f t( ) is an integral transform defined
by

Wf a b f t t dta b( , ) ( ) ( ),
*=

−∞

∞

∫ ψ .
(21)

where ψ*( )t denotes the complex conju-
gate of the wavelet function ψ( )t . The
transform yields a time-scale representa-
tion similar to the time-frequency repre-
sentation of the short-time Fourier
transform (STFT). In contrast to the
STFT, the WT uses a set of analyzing
functions that allows a variable time and
frequency resolution for different fre-
quency bands. The set of analyzing func-
tions, the wavelet family ψa b, , is deduced
from a mother wavelet ψ( )t by

ψ ψa b t
t b

a, ( ) = ⋅
−


 


1

2 (22)

where a and b are the dilation (scale) and
translation parameter, respectively. The
scale parameter a of the WT is compara-
ble to the frequency parameter of the
STFT. The mother wavelet is a short os-
cillation with zero mean. An example is
depicted in Fig. 4.

The discrete wavelet transform
(DWT) results from discretized scale and
translation parameters; e.g., a j= 2 and
b n j= ⋅ 2 where j and n are integer num-
bers. This choice of a and b leads to the
dyadic DWT (DyWT)

Wf b f t t dtj
j b

( , ) ( ) ( )
,

*2
2
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−∞

∞

∫ ψ
(23)
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and

,n ∈ Z.

.

(24)

Although defined as an integral trans-
form, the DyWT is usually implemented
using a dyadic filter bank where the filter
coefficients are directly derived from the
wavelet function used in the analysis
[14,104]. The input signal to the filter
bank is the sampled ECG signal.

Except for [2] and [39] all wave-
let-based peak detection methods men-
tioned in this review [6, 24, 54, 66, 93] are
based on Mallat’s and Hwang’s approach
for singularity detection and classification
using local maxima of the wavelet coeffi-
cient signals [74]. Therein the correspon-
dence between singularities of a function
f t( ) and local maxima in its wavelet
transform Wf a t( , ) is investigated. It is
shown that singularities correspond to
pairs of modulus maxima across several
scales (see Fig. 12). Figure 5 clarifies the
correspondence between a signal with
singularities and its wavelet coefficients.
Peak classification is accomplished by the
computation of the singularity degree
(peakiness); i.e., the local Lipschitz regu-
larity α , which is estimated from the de-
cay of the wavelet coefficients by [74]

α j
j j

j j

Wf n

Wf n

=

−

+ +log ( , )

log ( , )

2
1 1

2

2

2 (25)

and

α
α α

=
+1 2

2
.

(26)

Singularity
Detection-Based Approaches

The algorithm proposed by Mallat and
Hwang [74] was first applied to QRS de-
tection in [66]. R-peaks are found by scan-
ning for simultaneous modulus maxima in
the relevant scales of the WT. For a valid
R-peak the estimated Lipschitz regularity
must be greater than zero; i.e., α > 0 [66].
Besides the condition on the Lipschitz
regularity, the algorithm in [66] applies
further heuristic decision rules such as
conditions on the sign and the timing of
the peak occurrence within the different
scales.

The methods in [6] and [50] are di-
rectly derived from [66]. Although both
detection methods are extensively simpli-
fied compared to the original algorithm,
the reported results are still very good.
Descriptions of two implementations of
the algorithm from [66] on digital signal
processors can be found in [57] and [95].

Further QRS detection algorithms
based on local maxima are presented in
[24], [93], and [54]. In [24], characteris-
tic points are detected by comparing the
coefficients of the discrete WT on se-
lected scales against fixed thresholds.
The algorithm described in [93] divides
the ECG into segments of a fixed length.
R-peaks are detected when the locations
of modulus maxima of adjacent scales
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exceed a threshold that is calculated for
every segment.

In [39], the wavelet-based zero cross-
ing representation from [73] is used for
pattern recognition. This pattern recogni-
tion method consists of a learning and a
recognition phase. In the learning phase, a
set of generalized feature vectors is gener-
ated from a set of example patterns, using
the zero crossing representation of the ex-
ample. In the recognition phase, the fea-
ture vectors are computed for fixed-length
segments of the ECG and compared
against the generalized feature vectors. If
a percentage match criterion exceeds the
threshold, an R-peak is detected.

Filter-Bank Methods
Filter banks are closely related to

wavelets. Their application to QRS detec-
tion is reported in [2]. Therein a 32-band
fi l ter bank is used to generate
downsampled subband signals. Similar to
[26], it is assumed that the QRS complex
is characterized by a simultaneous
occurrence of ECG frequency compo-
nents in the subbands wl, l =1 4, ,K . From
these subbands three features, p p1 2, , and
p3, are derived; i.e.,

p n w n
l

l1
1

3

( ) ( )=
=
∑

(27)

p n w n
l

l2
1

4

( ) ( )=
=
∑

(28)

p n w n
l

l3
2

4

( ) ( )=
=
∑ .

(29)

Finally, the actual QRS detection is ac-
complished by a sophisticated combina-
tion of the features in the following
five-stage detection logic.

Related Methods
The wavelet transform has also been

used for classification; e.g., in [16, 21, 56,
96]. In [116] the WT was applied to the
detection of ventricular late potentials
(VLPs) in manually segmented ECG sig-
nals. The authors of [21] give a brief sur-
vey of the continuous WT (CWT) of ECG
and heart rate variability (HRV) signals
and demonstrate the possibility of data
compression by thresholding of wavelet
coefficients. In [16] the application of the
CWT to ECG signals of healthy subjects
and patients with cardiac diseases is re-
ported and compared to the short-time
Fourier transform. In [56] energy parame-
ters are derived from the CWT to discrim-
inate between normal sine rhythm and
cardiac arrythmias like ventricular fibril-
lation, ventricular tachycardia, and atrial
fibrillation.

Wavelet-based filtering and noise re-
duction methods with applications to
ECG signal processing are published in
[49, 60] and [77].

Neural Network Approaches
Neural Networks

Artificial neural networks have been
widely applied in nonlinear signal pro-
cessing, classification, and optimization.
In many applications their performance
was shown to be superior to classical lin-
ear approaches.

In ECG signal processing, mostly the
multilayer perceptron (MLP), radial basis
function (RBF) networks, and learning
vector quantization (LVQ) networks are
used. As depicted in Fig. 6, the MLP net-
work consists of several layers of inter-
connected neurons where each neuron
represents a processing function

y f w wi
i

N

i= +








=
∑0

1
x

(30)

with wi as the weight assigned to input xi
and f ( )⋅ as a linear or nonlinear function.
In the nonlinear case, f ( )⋅ is frequently de-
f ined as the logis t ic funct ion
f u e u( ) / ( )= + −1 1 or f u u( ) ( )= tanh . RBF
networks are an implementation of the
functional

y n w
n

i

N

i
i

i
( ) exp

( )
= −

−







=
∑

1

x c
σ

(31)

where x( )n denotes some input data vec-
tor. The number N of neurons, the coeffi-
cients wi, the center vectors c i, and the
standard deviations σi are the parameters
of the network. The exponentials may also
be replaced by other functions; e.g., wave-
lets. RBF networks are closely related to
fuzzy logic methods [13]. The advantage
of RBF networks over MLP networks is,
similar to fuzzy-logic methods, the possi-
bility to interpret the parameters. This
makes the results more predictable and
hence reliable.

The LVQ network consists of an input
layer, a competitive layer, and a linear
layer. The competitive layer automati-
cally learns to classify input vectors into
subclasses, where the maximum number
of subclasses N equals the number of
competitive neurons. In this layer, a clas-
sification is accomplished on the basis of
the Euclidian distance between the input
vector and the weight vector of each of the
competitive neurons. Finally, the linear
layer combines the subclasses of the first
layer to the user-defined target classes.
The structure of the LVQ network is
shown in Fig. 7.

In order to accomplish the applica-
tion-dependent task (e.g. approximation
or classification), the parameters of the
network need to be trained. Whereas the
MLP and RBF networks are trained by su-
pervised learning algorithms, the LVQ
network is adjusted in an unsupervised
manner. Appropriate training algorithms
are described in the literature; for exam-
ple, in [11, 44].
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The application of neural networks in
the field of ECG waveform classification
is reported in [8, 26, 31, 40, 47, 62, 63, 70,
71, 72, 105, 108, 113, 119, 122]. Some of
these algorithms [47, 105, 119, 122], are
also concerned with the QRS detection
problem.

Neural Networks as Adaptive
Nonlinear Predictors

In the context of QRS detection, neural
networks have been used as adaptive
nonlinear predictors [47, 119, 122]. The
objective is to predict the current signal
value x n( ) from its past values x n i( )− ,
i > 0.

Because the ECG consists almost
solely of non-QRS segments, the neural
network converges to a point where sam-
ples from non-QRS segments are well
predicted. Segments with sudden changes
(i.e., QRS segments) follow a different
statistics and lead to a sudden increase in
the prediction error. It follows that the
prediction error e n( ) can be used as a fea-
ture signal for QRS detection.

Due to the nonlinear behavior of the
background noise as described in [122], a
nonlinear prediction filter may show
better performance than its linear counter-
part. In [122, 47, 119] the neural network
is an MLP network with a three-layer
structure. The input layer consists of eight
to ten linear neurons with the time-de-
layed signal samples as inputs; the hidden
layer has three to five nonlinear (logistic
nonlinearity) neurons and the output layer
contains one, again a linear neuron. In
[119] the network is trained prior to the
detection on carefully selected samples.
In contrast to prior learning in [122] the
network is trained online and hence able
to adopt to changing signal statistics. In
[122] the output of the nonlinear predic-
tion filter is further processed by a
matched filter, providing a better attenua-
tion of the residual noise.

Learning Vector Quantization for
QRS Detection

In [105] the authors propose the appli-
cation of a two-layer LVQ network for
QRS detection and the discrimination of
premature ventricular contractions
(PVC). The input and the competitive
layer consist of 20-40 neurons, whereas
in the linear layer there are two neurons
corresponding to the number of output
classes. The input are adjacent samples
of the ECG. Training data were taken
from several records of the MIT/BIH da-

tabase. The classification is carried out
with an overlap of 10-30 samples. As re-
ported in [105], the results do not reach
the results of classical approaches, such
as [85]. However, once trained the LVQ
network offers fast computations and
furthermore a discrimination between
QRS and PVC contractions.

Additional Approaches
Adaptive Filters

The application of adaptive prediction
filters to QRS detection has been investi-
gated (e.g., in [61,42]). Figure 8 shows the
structure of an FIR prediction filter. Simi-
lar to the nonlinear case (see the previous
section) the objective of the filter is to gain
an estimate $( )x n for the current signal
sample x n( ) from the past signal values by
means of a weighted superposition; that
is,

$( ) ( ) ( )x n a n x n i
i

P

i= −
=
∑

1 (32)

with the time-variant coefficients a ni( ),
i P=1K . They are adaptively adjusted ac-
cording to the changing signal statistics.
From the literature several adaption rules
for the coefficients are known; e.g., the
least mean square (LMS) algorithm

a a x( ) ( ) ( ) ( )n n e n n+ = +1 λ (33)

where a( ) [ ( ), ( ), , ( )]n a n a n a nP
T= 1 2 K

denotes the coefficient vector at time n, λ
is the step size parameter ,
e n x n x n( ) ( ) $( )= − denotes the prediction
error , and x( ) [ ( ), ( ),n x n x n= − −1 2
x n x n P T( ), , ( )]− −2 K is the vector of the
time-delayed ECG signal samples. For a
detailed description of the adaptive filter-
ing methods, see [43].

The authors of [61] propose features
on the basis of adaptive filtering. They
suggest to use the differences between the
coefficient vectors a at time n and time
n −1; i.e,

D n a n a n
i

P

i i( ) | ( ) ( )|= − −
=
∑

1

21 ,
(34)
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Output Layer
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6. Multilayer perceptron.
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and a combination of the difference be-
tween the short time energies of the resid-
ual error of two consecutive segments

D n e i e ie
i n

n m

i n m

n

( ) ( ) ( )= −
=

+

= −
∑ ∑2 2 .

(35)

Further applications of adaptive filters
to QRS detection are reported in [68] and
[22]. In [68] it was shown that at a sam-
pling frequency of fT = 500 Hz two tap
filters are sufficient for a good prediction
performance. In [22] the application of a
midprediction filter

$( ) ( )x n a x n i
k P

P

i= −
= −
∑

(36)

is proposed.

Hidden Markov Models
In [20] the application of hidden

Markov models (HMM) to QRS and ECG
waveform detection is investigated.
HMMs model the observed data sequence
by a probability function that varies ac-
cording to the state of an underlying (hid-
den) Markov chain. By means of the
Markov chain the global structural char-
acteristics of the process are preserved
while the parameters of the probability
density function account for the varying
statistical properties of the observed data.
The objective of the algorithm is to infer
the underlying state sequence from the
observed signal. In the case of ECG sig-
nals, possible states are P-wave, QRS, and
T-wave. The advantage of this detection
method is that not only the QRS complex
is determined but also P- and T-waves.
Problems of the method include a neces-

sary manual segmentation for training
prior to the analysis of a record, its patient
dependence, and the considerable compu-
tational complexity even when the
computationally efficient Viterby algo-
rithm [20] is applied. For further details
about HMMs, see e.g. [92,118].

Mathematical Morphology
The use of mathematical morphology

operators for QRS detection was de-
scribed in [114]. Mathematical morphol-
ogy originates from image processing and
was proposed for ECG signal enhance-
ment in [18]. Therein the successful re-
moval of impulsive noise from the ECG is
reported.

Mathematical morphology is based on
the terms erosion and dilation. Let
f F I: → and k K I: → denote discrete
functions, where the sets F and K are
given by F N= −{ , , , }0 1 1K and
K M= −{ , , , }0 1 1K . I is the set of integer
numbers. The erosion of the function f by
the function k is defined as [18]

( )( ) min ( ) ( )

,...,

, ,
f k m f m n k n

N M m N

n M
� = + −

> =
= −0 1

0

K

for and − M (37)

k is also referred to as the structuring ele-
ment. The values of ( )f k� are always
less than those of f .

The dilation of the function f by the
function k is defined as [18]

( )( ) max ( ) ( )

, ,
, ,

f k m f n k m n

N M m M N
n M

⊕ = + −

> = −
= −0 1

1
K

Kfor and −1.

(38)
The values of f k⊕ are always greater

than those of f .
Erosion and dilation are combined for

additional operations. Opening, denoted
by °, is defined as erosion followed by a
dilation. Closing, denoted by •, is defined
as dilation followed by an erosion. Both
operators manipulate signals in a compa-
rable way. That is, to open a sequence f
with a flat structuring element k will re-
move all peaks. To close the sequence

with the same structuring element will re-
move all pits (negative peaks).

In [114], opening and closing opera-
tions are used for noise suppression as
proposed in [18]; i.e.,

~ [( ) ] [( ) ]
x

x k k x k k
=

• + •o o

2 (39)

where k is a flat structuring element (zero
line). The generation of a feature signal
for the QRS complexes is accomplished
by the operation

z x x B B= − •~ [(~ ) ]o (40)

where B is now a peaky structuring ele-
ment as shown in Fig. 9. In [114] B has a
length of 13 samples. A QRS complex is
eventually found by comparing the fea-
ture signal against an adaptive threshold.

Matched Filters
Besides the neural-network-based

matched filtering approach in [122], there
are linear matched filtering approaches as,
for example, reported in [94, 27, 69, 25].
In [94], after some analog preprocessing
steps such as an automatic gain control,
the ECG signal is digitized and further
processed by a comb filter (low pass) with
a notch at 50 Hz and a bandpass filter with
cut-off frequencies at 15 Hz and 40 Hz.
This digital filter stage is followed by a
matched filter for further improvement of
the signal-to-noise ratio (SNR). The
matched filtering is accomplished by

y n h i x n i
i

N

( ) ( ) ( )= −
=

−

∑
0

1

(41)

where the impulse response h n( ) is the
time-reversed template of the waveform
to be detected. The impulse response of
the matched filter h n( ) is manually taken
from the first cardiac cycles of the current
measurements; i.e., it needs to be deter-
mined interactively. For further enhance-
ment of the timing accuracy, the output of
the matched filter is interpolated up to
four times the original sampling fre-
quency. The final decision about a QRS
complex is taken by comparing the fil-
tered signal against a fixed threshold. It is
reported in [94] that the matched filter
also improves the timing accuracy of the
detected R-wave.

A similar approach is proposed in [69].
Instead of computing the cross correlation
between the template and the signal as in
Eq. (41), the algorithm searches for the
minimum of the average magnitude cross
difference (AMCD)
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AMCD = − −
=
∑
i

N

x n i h i
1

| ( ) ( )|
(42)

where x n( ) is the ECG signal and h i( ) is
the time-reversed template. This algo-
rithm does not need multiplications and is
therefore computationally inexpensive. In
[69], templates of length N =10 and
N = 20 at a sampling frequency of 500 Hz
are used. The ECG signal as well as the
template need to be detrended before the
calculation of the AMCD.

Further applications of matched filters
are reported in [25] and [27], where inte-
grated circuits are used for the real-time
computation of the correlation coefficient
and a wave digital filter realization is
shown, respectively.

Genetic Algorithms
In [91], genetic algorithms have been

applied to a combined design of optimal
polynomial filters for the preprocessing of
the ECG and the parameters of a decision
stage.

Polynomial filters are defined by [91]
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(43)

where the d j are delays with respect to the
time n. Three different special cases of a
polynomial filter are investigated:
quasi-linear filters with consecutive sam-
ples (M =1 and N =10), quasi-linear fil-
ters with selected samples (M =1 and

N = 5), and quadratic filters with selected
samples (M = 2 and N = 3).

The decision stage consists mainly of
an adaptive threshold that is compared
against the filtered ECG signal. The
threshold adaption parameters are opti-
mized in conjunction with the polynomial
filter via a genetic optimization algorithm.

Hilbert Transform-Based
QRS Detection

In [124, 82] the use of the Hilbert trans-
form for QRS detection is proposed. The
Hilbert transform of a real signal x is de-
fined by

x t x
x

t
d

x t x t
t

H

H

( ) { }
( )

( ) ( ) *

= = −

= =

−∞

∞

∫�
1

1

π
τ
τ τ

π (44)

and may be computed in the frequency do-
main as

X j X j j

X j H j
H ( ) ( ) [ ( )]

( ) ( )

ω ω ω
ω ω

= ⋅ − ⋅
= ⋅

sgn

(45)

where the transfer function of the Hilbert
transform H j( )ω is given by

H j
j

j
( )

.
ω

ω π
π ω=

− ≤ <
− ≤ <





0

0 (46)

Using the fast Fourier transform
(FFT), the Hilbert transform can easily be
computed. In [82] the ideal Hilbert
transformator is approximated by a
bandlimited ( )2 1N + -tap FIR filter with
the impulse response h n( ). For example,
the impulse response for the filter of the
order N =11 is given by [82]

h n( ) { . , , . , , . , ,

. , , . , ,

= − − −0 038 0 0143 0 0 610 0

0 610 0 0143 0 0. }.038 (47)

Impulse responses for other filter orders
are listed in [82].

The Hilbert transform x nH ( ) of the
ECG signal x n( ) is used for the computa-
tion of the signal envelope [82], which is
given for bandlimited signals by

x n x n x ne H( ) ( ) ( )= +2 2 . (48)

A computationally less expensive ap-
proximation to the envelope can be made
by [82]

x n x n x ne H( ) | ( )| | ( )|≈ + . (49)

In order to remove ripples from the en-
velope and to avoid ambiguities in the
peak level detection, in [82] the envelope
is low-pass filtered. Additionally, in [82]
a waveform adaptive scheme for the re-
moval of low frequency ECG components
is proposed.

The method published in [124] is re-
lated to the algorithms based on the
Hilbert transform. In [124] the envelope
of the signal is approximated by

x n x n x ne( ) | ( )| | ( )|≈ +1 2 (50)

where x n1( ) and x n2( ) are the outputs of
two orthogonal digital filters; i.e.,

x n x n x n1 6( ) ( ) ( )= − − and (51)

x n x n x n

x n x n
2 2

6 8

( ) ( ) ( )

( ) ( ).

= − −
− − − − (52)

In order to remove noise, the envelope
signal x ne( ) is smoothed by a four-tap
moving average filter.
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Table 1. Sets Used in Syntactic Approaches for ECG Event Detection.

Set (alphabet) Primitives Symbols Reference

(1) Σ = { , , }a b c square of the first
derivative y1

2
a b c, , depend on amplitude and duration of
peaks of y1

2
[9]

(2) Σ = ∈ ∈ + −{( , )| {/,\, }, { , ,*}}a b a b0 line segments a: slope of the line segment, i.e. positive slope
(/), negative slope (\) or zero slope (0). b: start
point of the line segment, i.e. above (+), below
(–) or on the baseline (*)

[46]

(3) Σ = { , , , , , , }h s s i i l ln n n line segments horizontal (h), small (s), negative small (sn ), in-
termediate (i), negative intermediate (i n ), large (l)
and negative large (l n ) slope

[117]

(4) Σ = {( , , ),( , , ),( , , ),( , , )}l i n s i n s i n l i nP P N N line segments { , , , }l s s lP P N N : slope of line segment; i n, : time
coordinate and duration of line segment
(attribute values)

[87]

(5) Σ Π= + −{ , , , }K K E peak, line and
parabolic segment

K + (positive peak), K − (negative peak), E (line
segment), Π (parabolic segment), and additional
attribute values describing the primitives.

[113]



Length and Energy Transforms
In [36, 37] the application of length

and energy transforms to QRS detection
is investigated. The transforms are de-
fined for multichannel ECG signals but
may also be used for single-channel ECG
analysis. They are given by

L n q i x
k i

i q

j

n

j k( , , ) ( ),=
=

+ −

=
∑ ∑

1

1

2∆

length transform (53)

E n q i x
k i

i q

j

n

j k( , , ) ( ),=
=

+ −

=
∑ ∑

1

1

2∆

energy transform (54)

where n is the number of ECG channels, i
is the time index, q denotes the window
length, and ∆x x xj k j k j k, , ,= − −1. These
formulas are based on the assumption that
the derivatives of the ECG channels can
be considered as the elements of a vector.
The length of the vector is determined

from the square root of the second sum in
Eq. (53). The length transform represents
a temporarily smoothed time course of the
vector length. A similar assumption leads
to the energy transform, which can be in-
terpreted as the short-term energy estima-
tion of the vector. The authors of [36, 37]
state that both transforms are superior to
conventional transforms for feature ex-
traction, whereas the length transform
works particularly good in cases of small
QRS complexes.

Syntactic Methods
Syntactic algorithms for ECG process-

ing have been proposed in [9, 19, 86, 97,
113]. A review of several algorithms is
given in [98]. The signal to be analyzed by
a syntactic method is assumed to be a con-
catenation of linguistically represented
primitive patterns; i.e., strings. Using a
grammar, this string representation is
parsed for strings coding a search pattern.
Therefore, a syntatic algorithm for pattern
recognition essentially requires the defi-
nition of primitive patterns, a suitable lin-
guistic representation (alphabet) of the
primitive patterns, and the formulation of
a pattern grammar.

In ECG processing the signal is split
into short segments of a variable or a fixed
length. Each segment is then represented
by a primitive and coded using the
predefined alphabet. Due to their compu-
tational efficiency, most algorithms use
line segments as primitives for the signal
representation [9, 46, 87, 117]. In [113]
the set of line primitives is extended by
peaks, parabolic curves, and additional at-
tributes. An overview of several primitive
patterns, alphabets, and attributes is given
in Table 1.

Various grammars for these alphabets
(i.e., rules describing the set of search pat-
terns) are proposed in [35, 46, 88, 87, 113,
115, 117].

QRS Detection Based
on MAP Estimation

Maximum a posteriori (MAP) estima-
tion can be considered as a special case
within the Bayesian framework, which
provides a very general basis for parame-
ter estimation including the incorporation
of prior knowledge. The MAP estimate
$θMAP of a parameter θ given the observa-
tion x is defined by

$ ( | )θ θ
θ

θMAP argmax= f x
(55)

where
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10. (a) ECG signal (top: from record 100; bottom: from record 108), (b) first deriva-
tive from Eq. (1), (c) first derivative from Eq. (4), (d) feature from Eq. (8), (e) fea-
ture from Eq. (9), (f) feature from [83], (g) MOBD feature signal.
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is the a posteriori probability density
function (pdf) of θ given x. The a priori
pdf fθ θ( ) of the parameter θ represents the
available prior knowledge.

In [12] a QRS detection method based
on MAP estimation is presented. The pro-
posed model for the N -dimensional vec-
tor x of ECG samples is given by

x n

B s n T w n q k

w n q
i

q

i i i

( )

( , ) ( ) :

( ) : .

=
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=






=
∑

1
1

0

θ

(57)
where q is the number of pulse-shaped
peaks s n T( , ) in the ECG segment and x and
k denote the number of all peaks in the same
segment. Bi, Ti, andθi,i k=1K give the am-
plitude, duration, and arrival time for thei-th
peak, respectively. w n( ) is additive white
Gaussian noise. For a given joint a priori pdf
f qq B T, , , ( , , , )θ θB T , the MAP estimate of
the model parameters is given by

( $, $ , $, $) ( , , , , )
, , ,

q V q
q

B T x B T
B T

θ θ
θ

= argmax
(58)

with V q( , , , , )x B T θ being the log-likeli-
hood funct ion with respect to
f qq B T, , , ( , , , )θ θB T . Detailed consider-
ations of the prior knowledge leading to a
joint a priori pdf f qq B T, , , ( , , , )θ θB T are
described in [12].

Since the maximization process is
computationally expensive, the authors
also present modifications for an approxi-
mate MAP estimation. Further simplifica-
tions are presented in [100].

Zero-Crossing-Based
QRS Detection

QRS detection based on zero crossing
counts is proposed in [59]. After bandpass
filtering, a high-frequency sequence
b n k n n( ) ( ) ( )= ⋅ −1 is added to the filtered
signal y n1( ); i.e.,

y n y n b n2 1( ) ( ) ( )= + . (59)

The amplitude of the high-frequency
sequence k n( ) is determined from a run-
ning average of the modulus of the
bandpass-filtered ECG | ( )|y n1 . Since the
amplitude of k n( ) is lower than the ampli-
tude of the QRS complex, the number of
zero crossings is large during non-QRS
segments and low during the QRS com-
plex. Computing a running average of the
number of zero crossings results in a ro-
bust feature z n( ) for the QRS complexes.

The feature signal z n( ) is compared
against an adaptive threshold for the de-
tection of QRS complexes. The temporal
location of the R-wave is found by a maxi-
mum search in the bandpass-filtered sig-
nal around a detected QRS candidate.

Benchmark Databases
Several standard ECG databases are

available for the evaluation of software
QRS detection algorithms. Tests on these

well-annotated and validated databases
provide reproducible and comparable re-
sults. Furthermore, these databases con-
tain a large number of selected signals
representative for the large variety of
ECGs as well as signals that are rarely ob-
served but clinically important.

Available standard databases include:
1) MIT-BIH Database
The MIT-BIH database [76] provided

by MIT and Boston’s Beth Israel Hospital
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11. (a) ECG signal (top: from record 100; bottom: from record 108), (b) Feature by
[41], (c) feature by [26], (d) LMS prediction error e n( ) (filter order 2, step size
λ = 0 03. ), (e) LMS feature from Eq. (34) (filter order 2, step size λ = 0 03. ), (f) LMS
feature from Eq. (35) (filter order 2, step size λ = 0 03. ), (g) matched filter feature.



consists of ten databases for various test
purposes; i.e., the Arrhythmia Database,
the Noise Stress Test Database, the Ven-
tricular Tachyarrhythmia Database from
Creighton University Cardiac Center, the
ST Change Database, the Malignant Ven-
tricular Arrhythmia Database, the Atrial
Fibrillation/Flutter Database, the ECG
Compression Test Database, the
Supraventricular Arrhythmia Database,
the Long-Term Database, and the Normal

Sinus Rhythm Database. In addition to the
AHA (see below) database and the Euro-
pean ST-T Database (see below), the first
three MIT-BIH databases are required by
the ANSI for testing ambulatory ECG de-
vices.

Most frequently the MIT-BIH Ar-
rhythmia Database is used. It contains 48
half-hour recordings of annotated ECG
with a sampling rate of 360 Hz and 11-bit
resolut ion over a 10-mV range.

Twenty-five recordings (records number
200 and above) with less common
arrhythmias were selected from over 4000
24-hour ambulatory ECG recordings, and
the rest was chosen randomly. Altogether
there are 116137 QRS complexes in this
database. While some records contain
clear R-peaks and few artifacts (e.g., re-
cords 100-107), for some records the de-
tection of QRS complexes is very difficult
due to abnormal shapes, noise, and arti-
facts (e.g., records 108 and 207).

2) AHA Database
The AHA Database for Evaluation of

Ventricular Arrhythmia Detectors [4] of
the American Heart Association contains
155 recordings of ambulatory ECG. The
signals have been digitized with a sam-
pling rate of 250 Hz and a resolution of 12
bits over 20 mV. Each record consists of
2.5 hours of unannotated signal followed
by 30 minutes of annotated ECG. The re-
cords are arranged into eight groups rep-
resenting different levels of ectopic
excitation. Records 1001 to 1020 of the
first group show no extra systoles,
whereas records 8001 to 8010 containing
ECGs with ventricular fibrillation show
the highest level of ventricular ectopy.

3) Ann Arbor Electrogram Libraries
The Ann Arbor Electrogram Libraries

[52] are a collection of more than 800
intracardiac electrograms and surface
ECGs. Each recording consists of
intracardiac unipolar and bipolar
electrocardiograms and a surface ECG.
This database is especially valuable for
the evaluat ion of algori thms for
implantable cardiac devices.

4) CSE Database
The Common Standards for Electro-

cardiography (CSE) Database [10] is fre-
quently used for the evaluation of
diagnostic ECG analyzers. The CSE Da-
tabase consists of about 1000 multilead
recordings (12 or 15 leads).

5) Other Standard Databases
More libraries available for evaluation

of detection and classification algorithms
are the European ST-T Database [80], the
QT Database [64], the MGH Database
[75], the IMPROVE Data Library [120],
and the ECG Reference Data Set [89] of
the Physikalisch-Technische Bunde-
sanstalt (PTB). The ST-T Database con-
tains 90 recordings of two hours of ECG
each, selected for the evaluation of ECG
devices that analyze ST levels and
T-waves. The QT Database was designed
for evaluation of algorithms that detect
waveform boundaries in the ECG. For this
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12. (a) ECG signal (top: from record 100; bottom: from record 108); wavelet
subband signals for the scales j = 1 (b) to j = 5 (f). For the wavelet transform the
spline wavelet proposed in [74] was used.



database, 105 records with a broad variety
of QRS and ST-T morphologies were se-
lected from other databases; e.g., the
MIT-BIH Arrhythmia Database and the
European ST-T Database. Each record
has a length of 15 minutes. The databases
of the Massachusetts General Hospital
and the IMPROVE database are multi-
channel recordings containing a
three-lead ECG and additional signals
such as systemic and pulmonary aterial
pressure (SAP, PAP), central venous
pressure (CVP),CO2,O2, and respiration.
The ECG Reference Data Set of the PTB
is not finished yet. Currently, this data-
base contains more than 500 records with
durations from 38 s to 120 s. The classifi-
cation follows the classification scheme
of the AHA.

Evaluation and Comparison
The usage of software QRS detection

algorithms in medical devices requires the
evaluation of the detection performance.
According to [1], essentially two parame-
ters should be used to evaluate the algo-
rithms; that is,

Se
TP

TP FN
= + sensitivity

(60)

+ = +P
TP

TP FP
positive predictivity

(61)

where TP denotes the number of true posi-
tive detections, FN the number of false
negatives, and FP the number of false
positives. Furthermore, to achieve com-
parable and reproducible results, the eval-
uation needs to be carried out on standard
databases.

Contrary to the requirements of com-
parability and reproducibility, in practice
there are many publications where no
evaluation is reported at all, the evaluation
has not been done using standard data-
bases, or the performance indices are not
compatible to the sensitivity and positive
predictivity parameters. This effectively
leads to incomparable results.

In order to make a comparison possi-
ble, we rank the reported results with re-
spect to how they were obtained; i.e.,

� reliable results: the algorithm is
tested against a standard database,

� less reliable results; the algorithm is
tested against parts of a standard
database, and

� unreliable results: the algorithm is
tested against a nonstandard
database.

Publications without reported or with
incompatible results are not comparable
and are not considered further. Results
from the same reliability level are re-
garded as comparable. Within each reli-
ability level the algorithms are grouped
according to the reported performance.

The results of this comparison are
shown in Table 1. It provides a quick
overview of the achieved detection results
and gives a good impression on what algo-
rithms are potentially useful for an inte-
gration in larger ECG analysis systems.
However, it should be clear that some
simplifications have been made that need
to be discussed. First of all, although some
results are classified as less reliable or un-
reliable, nothing is said about the perfor-
mance of the algorithm. Despite this
reliability level, the actual algorithm may
perform very well. In particular, in the
case where only parts of a standard data-
base have been used, the intention of the
original authors frequently was to show
the performance of the algorithm on par-
ticularly difficult records, such as records
with pathological or very noisy signals.
However, from an objective point of
view, the reported results are not truly re-
liable, because the algorithm may have
been tuned to perform perfectly on such

pathological signals but not on the normal
ECG. A further simplification is made by
stating only the overall performance. That
is, no statement is given on the worst case
performance, which is also important. A
third simplification is the disregard of the
fact that the results may have been
achieved by an extreme fine tuning of the
parameters. In such cases the good re-
ported results might be difficult to repro-
duce. Final ly , this comparison
discriminates against older algorithms,
because in the early years of software
QRS detection there were no standard
databases available.

The algorithmic comparison with re-
spect to the computational load can be car-
ried out by grouping the algorithms into
the categories low, medium, and high
computational complexity. The compari-
son is shown in Table 2. Only the algo-
rithms from Table 1 are considered. Again
the grouping of the algorithms into these
simple categories provides a quick over-
view, which is gained at the expense of
lost information. In particular, for the
comparison only the generation of the fea-
ture signals is considered. However, this
limitation is reasonable since the feature
generation is carried out for each sample
of the ECG whereas the decision stage is
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13. Features of the filterbank approach [2], M = 32; (a) ECG signal (top: from re-
cord 100; bottom: from record 108), (b) feature signal p1 , (c) feature signal p2, (d)
feature signal p3 .



usually activated only a few times during
a cardiac cycle. Furthermore, since the ex-
act computational needs of these algo-
rithms are not available, the algorithms
are classified according to our experience.
This simplification is of course subjective
and not generally valid. However, in par-
ticular for researchers who are not famil-
iar with QRS detection, this classification
may give a general idea about the neces-
sary processing power.

In order to give an impression about
the difficulties in ECG analysis and QRS
detection, some features of the presented
algorithms are computed for two very dif-
ferent ECG segments. They are shown in
Fig. 10 to Fig. 13. The signals are taken
from records 100 and 108 of the MIT/BIH
arrhythmia database. Whereas R-peaks in
record 100 are very clear and easy to de-
termine, the detection of QRS complexes
is very difficult in record 108. Generally,
detection problems may occur in case of

� noisy signals, electrode artifacts,
baseline drift, power line interfer-
ence;

� pathological signals;
� small QRS complexes; and
� sudden level changes of the QRS

complex.

As can be seen from the figures, more
sophisticated algorithms tend to cope
better with these problems. Shortcomings
of these features may be partly compen-
sated for by suitable decision rules.

Conclusions
The great variety of QRS detection al-

gorithms presented in this review reflects
the need for a reliable QRS detection in
cardiac signal processing. Sensitivities
and specificities of about 99.5% are possi-
ble for online QRS detectors today with-
out much computational effort. These
detection rates may be sufficient for clini-
cal applications, whereas a higher perfor-
mance may be necessary for research
purposes. In that case, offline ECG analy-
sis, where, for example, backsearch meth-
ods can be applied, may provide higher
performance.

The currently achievable detection
rates reflect only the overall performance
of the detectors. These numbers hide the
problems that are still present in case of
noisy or pathological signals. A satisfying
solution to these problems is still not
found. However, recent advances in clas-
sification techniques such as novel
softcomputing techniques have not been

extensively transferred to the problem of
QRS detection so that there are still many
tools left for further improvements.

Many of the presented algorithms
were not tested against a standard data-
base or any database at all. This makes the
results difficult to compare and to evalu-
ate. With respect to the problems left in
QRS detection, in particular the algorith-
mic behavior in case of noisy and patho-
logical signals, only a comparable and
reproducible evaluation on a standard
database may show the progress achieved
by a novel method.
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Table 2. Comparison of the Results of Different Algorithms.

min[ , ]S P+ Standard Data Base Parts of Standard Data Base Nonstandard Data Base

> 99% Afonso et al. [2],
Bahoura et al. [6],
Hamilton & Tompkins [41],
Inoue & Miyazaki [50],
Kohler et al. [59],
Li et al. [66],
Poli et al. [91]

Gritzali [36],
Hu et al. [47],
Kohama et al. [58],
Ruha et al. [94],
Sahambi et al. [95],
Vijaya et al. [119],
Xue et al. [122]

Belforte et al. [9],
Dobbs et al. [25],
Fischer et al. [32],
Thakor & Webster [109],
Yu et al. [123]

95% - 99% Suppappola & Sun [106][107] Coast et al. [20],
Kadambe et al. [53][54]

Sörnmo et al. [100],
Udupa & Murthy [117]

90% - 95% Papakonstantinou et al. [87],
Trahanias [114]

< 90% Ligtenberg & Kunt [67]

Table 3. Subjective Comparison with Respect to the Computational Load.

Low Medium High
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Fischer et al. [32],
Köhler et al. [59],
Kohama et al. [58],
Suppappola & Sun [106][107],
Trahanias [114],
Yu et al. [123]

Bahoura et al. [6],
Dobbs et al. [25],
Gritzali [36],
Hamilton & Tompkins [41],
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Poli et al. [91],
Ruha et al. [94],
Vijaya et al. [119]
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Coast et al. [20],
Hu et al. [47],
Inoue & Miyazaki [50],
Li et al. [66],
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Sahambi et al. [95],
Sörnmo et al. [100],
Udupa & Murthy [117],
Xue et al. [122]
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