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Abstract
As the complexity of neural models continues to increase (larger populations, varied ionic
conductances, more detailed morphologies, etc) traditional software-based models have
difficulty scaling to reach the performance levels desired. This paper describes the use of
FPGAs, or field programmable gate arrays, to easily implement a wide variety of neural models
with the performance of custom analogue circuits or computer clusters, the reconfigurability of
software, and at a cost rivalling personal computers. FPGAs reach this level of performance by
enabling the design of neural models as parallel processed data paths. These architectures
provide for a wide range of single-compartment, multi-compartment and population models to
be readily converted to FPGA implementations. Generalized architectures are described for
the efficient modelling of a first-order, nonlinear differential equation in throughput
maximizing or latency minimizing data-path configurations. The homogeneity of population
and multicompartment models is exploited to form deep pipelines for improved performance.
Limitations of FPGA architectures and future research areas are explored.

1. Introduction

Today’s neural circuit modeller is often constrained by the
limited performance of conventional personal computers.
While computing power might double every 18 months
according to Moore’s law, neural modellers often change
the computational requirements by orders of magnitude.
Population models can always simulate more neurons
or morphological models can always simulate more
compartments. The electrophysiologist can always simulate
additional conductances, while the systems biologist can add
additional cellular processes to a model. In general, current
neural circuit modellers make substantial tradeoffs by limiting
complexity to reduce processing requirements. FPGAs, or
field programmable gate arrays, offer a high performance,
configurable, scalable platform for enabling current and next
generation neural models.

FPGAs are specialized integrated circuits that are
designed with reconfigurable computational primitives
capable of implementing arbitrary calculations and logic.
They are widely used in consumer and industrial products

for accelerating processor intensive algorithms. Engineers
designing networking, radar, wireless communications, video
processing, aerospace, military, and test equipment, medical
imaging and other computationally intensive applications
often utilize FPGAs as hardware coprocessors (Pradeep et al
2005, Xiaoyang et al 2004), DSP processors (Kamalizad et al
2003, Walke et al 2000) or stream processors (Krishnamurthy
et al 2002, Lee et al 1999).

FPGAs have been less commonly used in bio-related
fields, with several exceptions. Protein (Oliver et al 2005) and
DNA (Brown et al 2004) sequencing are starting to use FPGAs
to reduce processing time. Real-time processing, registration
and other image analyses from confocal microscopy are
enabled by FPGAs (Budge et al 2004, Resat et al 2004).
Most modelling applications on FPGAs have been limited
to studying neural networks consisting of reduced neurons
(Blake et al 1997, Botros and Abdul-Aziz 1994, Changjian
and Hammerstrom 2003, Omondi and Rajapakse 2002). More
complex models have been implemented in analogue VLSI
(Bragg et al 2002, Jung et al 2001). Recently, in our laboratory,
several implementations of conductance-based neural models
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have emerged including Hodgkin and Huxley’s (1952) and
Booth and Rinzel’s (1995) models (Graas et al 2004), and a
ten-compartment motoneuron model (Weinstein and Lee
2005). However, each of these designs was somewhat specific
to the model being implemented. This paper expands on those
efforts by describing generalized algorithms and architectures
that provide a migration path for current software-based neural
models into FPGA-based implementations.

2. Methods

2.1. FPGA hardware

All designs were targeted towards a Xilinx XtremeDSP
Development Kit-II based on a Nallatech BenONE carrier
board consisting of one DIME-II module slot and populated
with a Nallatech BenADDA expansion board. The BenADDA
is preconfigured with a Xilinx Virtex-II FPGA (XC2V3000-
4fg676), two 14 bit 65 MS s−1 analogue-to-digital converters
(ADC), two 14 bit 160 MS s−1 digital-to-analogue converters
(DAC) and 1 megabyte of on board SRAM.

All model designs were constructed using System
Generator (ver. 6.3i), an add-on toolkit for Mathworks
Simulink (ver. 6.2). System Generator provides a library
of blocks that can be converted into an HDL (hardware
description language) for synthesis. For simple blocks such
as multiplexors, logic gates and registers, the tool does a
direct translation into the HDL. For more complex structures
such as memories, multipliers and adders, the tool relies on
the Xilinx CORE Generator (CoreGen). CoreGen combines
user specified design constraints (bit width, depth, etc) with
timing constraints (latency) and area constraints (parallel
versus serial). The Xilinx ISE Foundation 6.3i package was
utilized for synthesis, place and routing, and generation of a
bitstream for programming. For certain results, Synplicity’s
Simplify Pro (ver. 7.0), an alternative 3rd-party synthesis tool
was employed for comparison.

System Generator provides a unique interface for FPGA
digital design through its rich library of synthesizable blocks.
Clocking is implicitly defined through the setting of sample
periods (of arbitrary units) for each block. Reset states are
easily defined through the interface. Additionally, automated
support for buses and explicit declaration of fixed-point type
format simplify what would take a considerable amount
of effort when programming in a traditional HDL. System
Generator combines both an interface helpful to the traditional
hardware designer while hiding underlying details to the neural
modeller.

2.2. FPGA building blocks

The vast majority of processing within the data path involves
four blocks: addsub, mult, cmult and lookup tables. The
former three encompass the arithmetic operations (addition,
subtraction, multiplication, multiplication by a constant) and
the latter is for all other operations. Division is absent
from this list as there is yet to be a high-speed, low latency
implementation. The disadvantage is minimal as divisions
can generally be mapped to a multiplication of the inverse

of the denominator. (The denominator is very often a
constant or parameter in neural models, making for a trivial
implementation.)

Each block, when mapped into the FPGA, can take on a
number of different forms, each with its own tradeoffs. Each
block can be characterized by its throughput, latency, area,
bit width and sign format. The throughput is a measure of
the number of operations that can be performed by the unit
in a given amount of time. The latency of an operation is the
delay represented as a maximum number of cycles the block
requires to propagate an input to an output. When a block
is pipelined (i.e. broken into multiple suboperations each of
one cycle duration) or capable of completing one operation per
cycle regardless of latency, there is often a negative correlation
between throughput and latency. Resources within an FPGA
are utilized in varying ways depending on the parameters
of the block. Additional pipeline stages require additional
registers per block, while a wider data path requires more
logic. Different architectures can save area while sacrificing
performance, such as in the case of a sequential multiplier
using a single accumulator to sum partial products (Yao and
Swartzlander 1993).

Optimally, the data path will exploit as much parallelism
in the model as possible. In the simple equation ab + cd,
the multiplication of a and b can occur in parallel to the
multiplication of c and d. Then the addition of the two terms
can follow. The metric used for determining parallelism is
not simply the number of operations. Instead, the latency of
the operation has to be considered. In the equation y = a +
bc + d + ke + f where k is a constant, the multiplication of
b and c, the constant multiplication, and a pairwise sum are
done in parallel (see figure 1). Additional arithmetic steps
are done biased towards the paths of lesser latency. If each
of the addition operations has a latency of one cycle, then
the skewing of the addition steps away from the multipliers
enables a balanced tree of three to five cycles of latency per
path. If the number of operations was the metric for balancing
expression trees, the additions can be rebalanced shifting the
latency per path range to between 2 cycles (a → y) and
6 cycles (k, e → y).

2.3. Lookup tables

Often, the neural models require computations that are
difficult, either resource heavy or too slow, for use in a neural
model simulation. These can be trigonometric functions,
exponentials, square roots or any other expression with a
difficult-to-evaluate closed-form solution. When the difficult-
to-evaluate expression is a function of a single input, a lookup
table provides an area efficient and high performance way to
estimate the output of the function. For an example, the steady
state of a gating variable can be estimated via a sigmoid or
Boltzmann’s equation as defined by:

m∞ = 1

1 + exp
(

V −θ
σ

) (1)

where θ is the half activation voltage of the gate, σ is a measure
of the slope of the sigmoid and V is the membrane potential.
This equation is difficult to solve directly for two reasons.

22



FPGA neural model architectures

(b)(a)

Figure 1. Example expression trees for the equation a + bc + d + ke + f where k is a constant. Two operand multiply operations are shown
with two units of delay while constant multiplies have four units of delay. All adders are given one unit delay. Additional pipeline registers
can be added arbitrarily to each operation. (a) The tree is balanced with respect to the number of operations per path. (b) The tree is
balanced with respect to the number of cycles of latency per path.

First, the exponential has no simple closed-form solution that
is efficient in an FPGA. Second, the inverse function is as
difficult as a division, which is generally solved iteratively,
not directly like a multiplication. Division by σ can be
simplified by reframing the expression as multiplication by
a new parameter, 1/σ .

Since equation (2) is difficult to evaluate directly in
hardware, it is a good candidate for a lookup table. A ROM
indexed by V can produce a suitable estimation of m∞, thus
removing the need for any of the arithmetic operations within
the equation. A simple mapping is required to convert the V
input to an address for the ROM. For the general case:

adder(x) = (x − min(x)) · 2n − 1

min(x) + max(x)
(2)

where n is the number of bits of addressability in the lookup
table. The implementation requires a subtraction block and a
multiplication by a constant to perform the linear transform.
The output of this multiplication should be set to saturate to
avoid overflows when addressing the table. This mapping can
be shared for multiple lookup tables that use the same input.

In a Virtex-II FPGA, lookup tables are chosen to utilize
SelectRAM, or block RAM within System Generator. A
XC2V3000 FPGA contains 96 SelectRAM of which each
contains 18 kbits of configurable RAM. Each SelectRAM can
be configured as 512 × 36 bits, 1k × 18 bits, 2k × 9 bits,
4k × 4 bits, 8k × 2 bits or 16k × 1 bit. Partial SelectRAMs
are wasted, so each lookup table can expand to fill the full
RAM. In general, lookup tables fit within the 1k × 18 bit
configuration.

2.4. Arithmetic performance

Generating optimal models often requires tradeoffs between
pipeline depth and clock rate. In general, a deeper pipeline
enables high clock rates. In cases where the logic is fully
utilizing the pipeline, a deeper pipeline should translate to
higher performance, up until the point area on the FPGA
becomes limited. In the case where the overall execution
latency is to be minimized independent of the number of
clock cycles, the clock rate is no longer the determinate of
performance, but rather the timing delays through the pipeline.
This delay is calculated as the product of the clock period (T )

and one plus the pipeline depth (1 + d). This is a conservative
estimate as it assumes that the operation uses the entirety of
the clock period prior to and after the internal pipeline.

In order to determine the influence of latency on operation
throughput and area, each operation was synthesized and
mapped in the target Xilinx FPGA, and is shown in figure 2.
Daisy chained logic blocks (arbitrary length chain of six
blocks) were utilized to obtain average performance results
per operation. To mitigate any performance hit (by wire or
logic delay) caused by interfacing the inputs and outputs of
the operations, double-buffered registers were used to map
directly to input and output pins. All operations were set at
14 bit 2’s complement signed numbers with the fixed point set
at the 13th bit. This allows a range of ±1 with approximately
four decimal places of accuracy. Synthesis was performed with
the standard Xilinx Synthesis Technology (XST) built into ISE.
Following place and route and generation of a bitstream, area
utilization was assessed and the critical path from the log files
was noted. The inverse of the critical path period was used
as the peak clock frequency and is shown in figure 2(a). The
area per operation was split into two components, registers,
or flip-flops, and look-up tables (LUTs). Each value plotted
(see figure 2(b)) is the average area per operation; the base
overhead (from the double-buffering of data converters) was
subtracted from total utilization of registers and LUTs and the
result divided by six to obtain the average.

System Generator provides an optimization flag, ‘Pipeline
to Greatest Extent Possible’ which was set for the adder
operations but not set for the constant multiplier and standard
multiplier tests. We did performance comparisons for each
operation with this flag set and unset and found negligible
differences. When set, however, the tool restricts the range of
latencies that are programmable, in this case, limiting to at least
three cycles for multiplications and one cycle for additions.

Table 1 summarizes the results for optimizing to two
different design goals (peak throughput and minimum latency)
post synthesis and place & route. Area is depicted as
the number of slices utilized. In the Virtex-II architecture,
the logic fabric is broken up into CLBs, or Configurable
Logic Blocks. Essentially, each CLB can output 8 bits of
information. Within each CLB, there exist four slices and two
tristate buffers. Each slice contains two 1 bit registers, two 1 bit
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Figure 2. Area versus performance tradeoff. (a), (b) Performance and (c), (d) area utilization of basic arithmetic operations. The
benchmarks were performed with 14 bit operands and 14 bit output. The inputs and outputs were double buffered and assigned to external
pins on the FPGA. All performance results are derived post synthesis and place & route. (a) Clock frequency is found as the maximum
operating frequency when synthesized at for each cycle latency and operation. (b) The operation delay here is shown as the delay (in ns) for
an output to adjust following a change in an input. (c), (d) Area utilization is split between flip-flops and lookup tables, whereby two of each
make a slice. The enlarged markers designate the proposed delays for each block to minimize the area versus performance tradeoff. These
plots also demonstrate the performance and area advantage of using adders and hardware embedded multipliers versus constant multipliers
and logic-based multipliers. When throughput is to be maximized above all else, then adders and logic-based multipliers are preferred.

Table 1. Peak performance of operations.

Target Max throughput Min latency

Adder
Depth 2 cycles 0 cycles
Frequency 211.2 MHz –
Delay 9.5 ns 2.9 ns
Area 14 slices 6 slices

Cmult
Depth 4 cycles 0 cycles
Frequency 120.9 MHz –
Delay 33.1 ns 12.4 ns
Area 98 slices 59 slices

Mult
Depth 5 cycles 0 cycles
Frequency 169.7 MHz –
Delay 29.5 ns 10.5 ns
Areaa 135 slices 0 slices

a The peak throughput of the multiplier is
achieved when implementing in logic while the
minimum latency is achieved using an
embedded multiplier block.

lookup tables (LUTs), and dedicated arithmetic carry chains
and SOP (sum of products) logic. Each LUT can be configured
as one 4 bit addressable lookup table, one 16 bit RAM or
16 bit shift register. (The XC2V3000 has 3584 CLB’s.)
These slices may be partially utilized in this design but may be
shared between multiple operations in a resource-constrained
design. The slice count in table 1 shows the sum of all
fully and partially utilized slices. These data show that
performance can be optimized for either throughput or latency
depending upon the requirements, and that different design
choices will have a large impact on overall model performance.
When the resources and model architecture allow for a deep
pipeline, each operation can be heavily pipelined maximizing

throughput, where the frequency is the maximum operating
frequency based on the critical path period. When pipelining is
not desired (see Single-Cycle Architecture), peak performance
is achieved with no cycle latency and minimal delay per
operation. The block option flag ‘Pipeline to Greatest Extent
Possible’ had no noticeable effect on performance under these
conditions and was disabled.

While we have not repeated this study for data widths
greater than 14 bits, it is expected that similar trends will
follow. Throughput performance is generally maximized
when using larger pipelines. It is expected that the optimal
throughput would be found when latency is set to higher
values as the bit width increases. Area becomes especially
constrained when data paths become wider. The Resources
Estimation Tool, included as part of System Generator
is an invaluable resource for the FPGA modeller when
implementing area-constrained designs (Shi et al 2004).

We can utilize a formal approach for defining each
operation as a discrete-time transfer function based on the
cycle latency from input to output. Based on the timing results
depicted in figure 2, each operation can be represented by
the following expressions, where x, y are intermediate values,
states or parameters, k is a constant, and p is the stage in the
execution pipeline.

Add(x[p], y[p]) = x[p − 1] + y[p − 1]

Sub(x[p], y[p]) = x[p − 1] − y[p − 1]

CMult(k, x[p]) = kx[p − 4]

Mult(x[p], y[p]) = x[p − 2] · y[p − 2].

(3)

These mappings redefine arithmetic operations for an FPGA
implementation taking into account operational delay. The
multiplier delays are valid for bit widths �18 (the size of the
built in multipliers). Alternative mappings are defined for
addition and subtraction based on particular architecture and
design constraints.
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2.5. External interfacing and data collection

FPGA models execute at extremely high throughputs.
Roughly speaking, the performance level (defined as simulated
time/execution time) is the time step multiplied by the number
of models and the FPGA clock frequency then divided by the
pipeline depth. This number is maximized only when the
FPGA is completely utilized.

All of the models presented here are intended as examples
and as such are not very complex. Consequently, they all have
on-chip execution times of less than 1 ms (even if they were
all placed on the chip simultaneously). Thus, for the sake
of convenience, the data presented here are generally from
emulation of the FPGA directly in Simulink.

3. The base architecture

3.1. FitzHugh–Nagumo

For the ease of presentation we will present the architecture
as an example implementation of a simple neuron model.
However, the ideas can be applied to any neuron model.
The FitzHugh–Nagumo model (FitzHugh 1961, Nagumo et al
1962) is a reduced, dimensionless representation of the
Hodgkin and Huxley model (Hodgkin and Huxley 1952). This
model makes the following assumptions: (1) the activation gate
of the sodium channel has extremely fast kinetics and therefore
reaches the steady-state value instantaneously, and (2) the
potassium channel gate has similar, but reverse kinetics (time-
scale and gate characteristics) to the inactivating gate of the
sodium channel. The Hodgkin and Huxley equations centred
around four ordinary differential equations of voltage (Vm),
sodium activation (m), sodium inactivation (h) and potassium
activation (n) can be reduced to a simple potential state and
a recovery state. When non-dimensionalized, the following
coupled differential equations emerge:

du

dt
= u − 1

3
u3 − w + I (4)

dw

dt
= ε(b0 + b1u − w) (5)

where u is the potential of the system and w is the recovery
state. The parameters ε, b0 and b1 modulate the shape of the
spike and I is the input (in a dimensionless current) to the
system.

This model, despite being drastically simplified, has
characteristics that make it stereotypical of neural circuit
models. Each equation is a first-order ordinary differential
equation with equation (4) having a nonlinear term. The
equations are coupled and cannot be solved analytically. This
system enables a demonstration of our techniques for FPGA
model development in an easy-to-understand example.

3.2. Generating the data path

Differential equations of the standard form can be split into two
terms: the differential term or the time varying state variable,
and the intermediate calculation, or equation for the rate of
change of the state variable. In equations (4) and (5), the

left-hand side is the differential term and the right-hand side is
denoted by the intermediate term. It is the intermediate term
that will be converted into a data path for calculation. Defining
the functions f and g from equations (4) and (5), respectively,
as follows:

f (u,w) = u − 1
3u3 − w + I

g(u,w) = ε(b0 + b1u − w)

makes clear the delineation between the state and the
intermediate; the generated data path becomes independent of
any particular numerical solving techniques. First- and higher
order, fixed time step and variable time step solvers can be
implemented around the data path without any modification
to the design. Additionally this isolates the data path from
any particular simulation or protocol requirements, such as
starting, stopping and resetting. As will be described later in
this paper, this separated data path provides a general case for
rapid mapping into various architectures including population
and multicompartment modelling.

3.3. ODE to difference equation

Each equation defined in the continuous time domain must be
mapped to discrete time for numerical analysis. Simulation on
a general-purpose computer can utilize the following discrete
time representation by means of forward-Euler integration,
where n is the iteration step:

u[n + 1] = u[n] + �t
(
u[n] − 1

3u[n]3 − w[n] + I
)

w[n + 1] = w[n] + �t · ε(b0 + b1u − w).

The above equations can readily be calculated in a general-
purpose processor where instructions are executed sequentially
for each iteration of the loop. These equations are not
explicit with respect to processing in an FPGA, where each
operation has timing requirements that must be considered.
Additionally, there is no explicit parallelism defined. Utilizing
the commutative and associative property of addition and
subtraction, we reorder the arithmetic operations to enable
parallelism based on operation latency as described in the
expression tree in figure 1.

f (u,w) = [
((u − w) + I ) − (

(u · u) · (
1
3u

))]
g(u,w) = [ε · ((b0 − w) + (b1 · u))].

In general, multiplications should be performed as early as
possible in the calculation as the latency is greatest. This will
skew the resulting expression tree to force faster additions and
constant multiplications outside the maximum latency path,
when possible. To formally define the above expressions in
the operation space of the FPGA, we can use the mappings
defined in equation (3) to the redefined functions f and g and
obtain:

f (u[p], w[p]) = Sub(Add(Sub(u[p], w[p]), I [p]), . . . ,
Mult(Mult(u[p], w[p]), CMult(1/3, u[p])))

g(u[p], w[p]) = Mult(ε[p], Add(Sub(b0[p], w[p]), . . . ,

Mult(b1[p], u[p]))).
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Figure 3. Simulink block diagram of intermediate calculations (a) f (u, w) and (b) g(u,w). Each operation is identified by the label on the
block. All fixed-point data types are labelled on the wires interconnecting the blocks, where the first portion (Fix/UFix) defines the value to
be signed or unsigned, respectively. The second term is the number of total bits in the representation and the last term defines the number of
fractional bits, or the number of bits to the left of the decimal place. Data ports for the subsystem are the numbered oval blocks, where the
inputs are parameters or states and the output is the intermediate calculation. Delays through the system are expressed in the z domain
where the superscript is the latency in cycles from output back to input.

Evaluating these mappings yields equations (6) and (7). This
representation is useful to describe the overall delay through
the data path, in this example, six cycles. Since there is a skew
between the shortest latency paths and the longest latency paths
(from one cycle to six cycles), additional pipeline registers can
be added in the shorter delays without increasing the pipeline
depth, possibly enabling increased throughput with a faster
clock rate. Additions and subtractions are set to have no
latency, but this can be readily changed by reindexing the
parameters and states by the additional delay.

f (u[p], w[p]) =
[
((u[p − 1] − w[p − 1]) + I [p − 1]) · · ·
((u[p − 6] · u[p − 6]) · (1/3u[p − 4]))

]

(6)

g(u[p], w[p])

=
[
ε[p − 3] ·

(
(b0[p − 3] − w[p − 3]) + · · ·
(b1[p − 6] · u[p − 6])

)]
. (7)

These equations define the required cycle latency for the input
to reach the output synchronously. Once implemented, this
data path can be used for well-performing implementations
of single-compartment models, multi-compartment models,
population models, etc. The data path can be constructed
identically in all of the above cases. Figure 3 shows the System
Generator data path corresponding to equations (6) and (7).
For these different architectures, only the implementation of
the state variables will change as is expounded upon in the
following sections.

4. Single model, single unit case

4.1. Multi-cycle architecture

The general model simulator will execute a single version
of a model according to a set protocol. The modeller will
often run simulations to manually tune parameters, trying
to replicate a particular behaviour. Sometimes this model
will have particular performance requirements such as real-
time execution. For these cases, we developed a general
architecture for running a series of differential equations with
arbitrary delay as a multi-cycle processor. We employed two
synchronous clock domains, one providing a slower outer loop
to interface with the outside world and a faster inner loop for
the data path processing. In this way, it is very much like a
multi-cycle computer architecture, overclocking the internal
pipeline in a hidden fashion from the outside.

The original equations for the state variables, u and w

can be expressed as difference equations around the functions
f and g. We use forward-Euler integration as a numerical
solver due to its ease of implementation. Additionally,
numerical accuracy can be improved with smaller step sizes, a
reasonable tradeoff given the high performance of an FPGA.
This architecture is easily extendable to higher order ODE
solvers including Runga–Kutta, predictor–corrector, or even
variable time-step solvers if desired.

du

dt
= f (u,w) → u[n + 1] = u[n] + �t · f (u[n], w[n]) (8)
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Figure 4. Simulink block diagram of state calculations for single unit models. (a) The multi-cycle approach to single unit forward-Euler
integration. The intermediate calculation is scaled by the time constant and added to the previous state. The output of the state, u[n], is
clocked once for every seven cycles of u[p]. The Up Sample block is set to copy the slower clocked samples across all seven fast clock
cycles while the Down Sample block is implemented as a register at the slower rate. (b) By removing the delays within the pipeline, up and
down sampling becomes unnecessary, requiring only a register to store state between iterations. There is only one clock rate in this scenario.

dw

dt
= g(u,w) → w[n + 1] = w[n] + �t · g(u[n], w[n]).

(9)

Equations (8) and (9) representing the state calculation can be
combined with the data path formulation in equations (6) and
(7) to generate the full expression for the model. The data path
needs to be modified to include the time-step multiplication
adding another two to four delays to the data path. The total
delay for the data path is increased to seven clock cycles. The
translation of the state equation into hardware is only a single
register clocked at the slower clock rate. Equations (10) and
(11) are the combined data path and state expression where n
is the iteration of the outer, slower clock and p is the iteration
of the pipeline, or faster clock.

u[n + 1, p] = u[n, p] + · · ·
�t ·

[
((u[n, p − 2] − w[n, p − 2]) + I [n, p − 2]) − · · ·
((u[n, p − 7] · u[n, p − 7]) · (1/3u[n, p − 5]))

]
(10)

w[n + 1, p] = w[n, p] + · · ·
�t ·

[
ε[n, p − 3] ·

(
(b0[n, p − 3] − w[n, p − 3]) + · · ·
(b1[n, p − 6] · u[n, p − 6])

)]
.

(11)

In this architecture, a simplification emerges enabled by the
slower clocked state. All execution paths within the data path
must settle by the time the next value is clocked into the state
register. Therefore, for paths of fewer cycles than the critical
path (in this case, the path with the longest latency), there is no
difference if the inputs arrive earlier than required. Therefore,
all paths can receive their input on the previous outer cycle and
latch the new value at the following outer cycle. All timing
requirements of the pipeline with respect to insertion delay in
the pipeline become unnecessary. The new equations follow
from the simplification:

u[n + 1] = u[n] + �t

[
((u[n] − w[n]) + I [n]) − · · ·
((u[n] · u[n]) · (1/3u[n]))

]

w[n + 1] = w[n] + �t ·
[
ε[n] ·

(
(b0[n] − w[n]) + · · ·
(b1[n] · u[n])

)]
.

The forward-Euler method is relatively simple to implement
within System Generator, taking only four blocks as shown
in figure 4(a). The state at each iteration is stored in
a single register clocked at the output rate. We use a
combination of an up sample and down sample block (the
clock multiplier/divider is set to the maximum delay through
the data path, including any calculation within the state). The
up sample block is configured to copy the value from each
input period to all corresponding output periods. This is not
necessary for hardware generation, i.e. it does not translate
directly to hardware, but does allow the software to verify
correct clocking of data through the system. The down sample
block is configured to copy the last frame of the input to
the output, which in hardware is a register clocked at the
output rate.

The remainder of the state consists of a multiplier block
at the output of the data path to scale the function by the
time step and an adder to add to the previous value. The
previous value is at the output of the up sample block. More
complex integration algorithms can be implemented as an
extension to this base case. The multiplication by the time
step can also be incorporated within the data path depending
on the particular integration algorithm possibly saving a
multiplication step. This can be shown for the function g(u,w)

where the constant multiplication of ε can be substituted by
the constant multiplication of the product ε · �t. This is only
possible in the trivial case of Euler integration with fixed step
sizes.

27



R K Weinstein and R H Lee

Table 2. Single model architecture design comparison.

Frequency Output frequency Latency Area
(MHz) (MHz) (ns) (slices)

Single-cycle 58.9 58.9 17.0 94
Multi-cycle 143.6 20.5 48.7 143

4.2. Single-cycle architecture

The multi-cycle architecture enables a reduction in state
registers while still utilizing a fully-pipelined data path.
It provides a means of integrating a pipeline of arbitrary
depth into an integration state subsystem producing only one
output per time step. There are three drawbacks with this
approach: wasted area, reduced performance and high power
consumption.

First, area is not utilized efficiently as pipeline delays
within the intermediate calculations use registers that could
be used for additional logic or extra data storage. Each
delay requires a number of registers equal to the bit width
of that calculation. Significant area savings can be realized by
removing those extra delays.

Second, performance is reduced for two reasons: (1) extra
delays contribute an additional time delay in the form of a
setup and hold time. The register setup time, or the minimum
amount of delay between the data becoming stable prior to the
edge of the clock signal, for an XC2V3000 speed grade −4
FPGA is 370 ps. The hold time, or the minimum duration
following the clock edge for the data to be ready to read
is 90 ps. The sum of those values constitutes a window
around the clock edge where data must be stable and is wasted
within the sample period. Long pipelines can accumulate
this 460 ps dead-time in the period for each delay in the
path. (2) The overall delay through the pipeline is equal to
the product of the depth and cycle period. Ignoring setup
and hold times, the delay through the pipeline is ideally the
sum of all the arithmetic combinatorial logic delays. If the
total logic can be equally distributed (delay-wise) between
an arbitrary number of registers, then latency/throughput is
independent of the pipeline depth. Practically, the period is a
function of the longest combinatorial path between registers.
Therefore, shorter combinational paths must execute within
larger clock periods, reducing efficiency. As the number of
pipeline registers increases, the more difficult it is to maintain
symmetry between combinatorial path delays.

Third, power consumption and clock frequency are
directly proportional for a given model design. The power
consumption of a device is not generally an issue for the
modeller, but does constrain the design of the device itself; the
peak clock frequency of an FPGA is partially constrained by
the limits of heat dissipation as power consumption increases.
Achieving the same or increased throughput at a slower clock
rate is generally preferred.

Therefore, to utilize minimal area and power while
achieving peak performance requires the reduction of the
pipeline depth to the minimum achievable. The majority of
neural models can be modified to execute in a single cycle per
time step iteration by changing all latencies to zero. (Note

that one register always remains due to integration, resulting
in the ‘single-cycle’ designation.) For multiplier blocks, the
‘Pipeline to Greatest Extent Possible’ flag must be unchecked.
This change can be made to all arithmetic blocks. Then the
up-sample and down-sample blocks can be changed to a single
register to complete the single-cycle design approach.

The results of a comparison between the two design
approaches are shown in table 2 with the area utilization
and performance results determined post synthesis and place
& route targeting an XC2V3000-4fg676 FPGA. The top-
level design depicted in figure 5 was used for testing and
synthesizing the single-cycle and multi-cycle models. In the
single-cycle version, the entire data path is executed within
each clock cycle and requires only 17 ns to complete. When
delays are distributed in the multi-cycle, a total of 7 for the
longest paths, the latency is tripled. The maximum clock
frequency is increased by almost 2.5 times, not enough to
compensate for the additional cycles required per iteration.
The maximum frequency supported by the XtremeDSP-II
Development Board is 120 MHz capping the peak multi-cycle
model throughput.

In this example, the single-cycle model enables a 187%
improvement in performance with a 34% reduction in area over
the multi-cycle model. In general, the single-cycle method is
preferred over the multi-cycle method when all the blocks
within the data path can be set to zero latency. When that
is not the case, the multi-cycle method is a suitable fallback
technique.

5. Multiple model, single unit case

Deep pipelines allow for multiple simultaneous processes
executing within the data path, where the number of processes
equals the depth of the pipeline. In other words, if the data path
requires a latency of ten cycles until the first output appears,
ten simultaneous models can be executed without a loss of
performance. The data path would produce the ten models
interleaved at the inner, faster clock rate. In contrast, within the
single-model, multi-cycle architecture, the pipeline produces
an output at the outer, slower clock frequency. Ultimately, the
throughput of each model does not change, each output for the
same model will be at the slower frequency, but the aggregate
bandwidth of the system will substantially improve.

Two scenarios are common candidates for a multiple
model, single unit simulation: (1) there are a set number of
models you are interested in simulating, for example, all the
neurons in a particular nuclei or circuit or (2) when the number
of simultaneous simulations is flexible and more is better, such
as in automated parameter searching or population modelling.
The first scenario applies more constraints to the model and
produces a very deterministic output. Only the available
area on the FPGA limits the second scenario. Within these
architectures, a change in the number of models simulated
requires a straightforward modification to the model design.

5.1. Pipelining the data path

The structure of the arithmetic operations in the data path
in the multiple model case is identical to that of the single
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Figure 5. Top-level view of the FitzHugh–Nagumo model. Parameters are defined in Xilinx constant blocks (on the left) moving into the
intermediate calculation. The states are evaluated next, with feedback paths to the inputs of the intermediate calculations. The outputs, u
and w are double-buffered for performance and scaled for analogue output via the on-board data converters (on the right).

model case. The differences lie in distributing latencies and
managing the parameters in the pipeline.

Latencies, or additional clock cycle delays, are inserted
to maximize throughput of the system. As the longest
combinatorial path between any two registers is the
sole determinate of clock frequency and therefore model
throughput, care must be taken to distribute the delay as
uniform as possible throughout the pipeline. The following
algorithm describes an approach to distributing the latency
within the data path:

1. The target number of simultaneous models will set the
depth of the subsequent pipeline generated.

2. The longest, weighted arithmetic path is isolated and
delays are judiciously added such that the total delay
does not exceed the depth of the pipeline. The longest,
weighted arithmetic path is defined as starting from a
single endpoint (parameter of the system or a state) and
terminating with the completion of the differential of the
state.

(a) Delays are added in an initial pass providing
a ratio of 4:2:1 cycles (see equation (3)) of
latency to constant multipliers, hardware multipliers
and additions/subtractions, respectively. Non-
hardware embedded multipliers have similar delay
requirements to constant multipliers.

(b) Add an additional delay for each operand of a
multiplier that is greater than 18 bits.

(c) Tables, both ROM (read-only memory) and single-
and multi-port RAM (random access memory) blocks
require one unit of delay regardless of bit-width
or addressability when fit into one SelectRAM.
Additional glue logic is required when more than
one SelectRAM is required which could benefit from
an additional delay.

(d) When the number of delays in the pipeline exceeds
the number of simultaneous models, remove delays
evenly throughout the path until the number of delays
equals the number of models.

3. Repeat on all other paths taking care to never use more
latency cycles than the critical path. Adding extra delays
such that all paths are balanced is not necessary and will
waste FPGA resources.

This algorithm post processes the expression trees making
up the data path solving the intermediate calculation, as defined
above, with the timing information required to interface with
the state solvers and parameter subsystems. The leaves of
these expression trees are the parameters and the state inputs.
Each leaf has an insertion delay associated with it defined as
the sum of the delays along the path from the leaf to the root
of the tree, including any calculation that may occur within
the state solver (ex. multiplication by the time constant). For
example, in figure 1(b), k, a, b, c, d, e and f are mapped
to k[p − 5], a[p − 3], b[p − 4], c[p − 4], d[p − 4],
e[p − 5] and f [p − 4], respectively. Synchronization of the
paths within the expression trees is therefore accomplished
by providing delayed version of states and parameters to the
leaves consistent with the insertion delay of the particular leaf
node.

5.2. Pipelining the states

Executing n models simultaneously requires the continuous
storage of n sets of information within a pipeline that is n
stages deep. In the previous work (Graas et al 2004), all
information was stored within the pipeline via delay blocks,
requiring careful synchronization of the expressions. States
were implemented as a simple delay block with n cycles of
latency. This architecture recognizes the states and parameters
as forming a basis set of model information. All intermediates
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Figure 6. Simulink block diagram of a multiple unit model. Ten iterations of the FitzHugh–Nagumo model are run simultaneously through
the constructed ten stage pipeline. All blocks are depicted to be in scale with respect to cycle latency. Since the data path requires only seven
cycles per iteration, the state register chain must be at least seven stages within this architecture. It was chosen to be ten for this example.

can be shown to be a function of the states and parameters.
Therefore, only the states must be explicitly stored within each
time step.

The delays of the previous work are replaced with a chain
of n registers. This has two benefits: first, each register can
now contain an initial value for the state that can be unique
for each model simulated. By convention, the tail of the
chain (last output) contains the initial state of the first model
and the head register of the chain stores the state for the last
model. Second, the outputs of the n registers represent the set
of all delayed versions of the state. These outputs are now
accessible to be routed back into the expression trees at the
delay required for the particular operation. For example, if a
change on a particular state leaf of the expression tree has an
insertion delay of six cycles, then the input of that state should
be tapped six registers deep in the state pipeline. This allows
the state information to follow cycle by cycle the intermediate
logic within the expression tree. This algorithm applied to the
FitzHugh–Nagumo model is shown in figure 6.

5.3. Shared versus unique parameters

When executing a set of models, parameters can be either
static across all models or arbitrarily varying across all models.
In the simple case where a parameter is static, it can be
represented as a System Generator constant block and has no
particular timing requirements. Unique parameters per model
can readily be exploited through the use of a circular buffer
of length n counting through each parameter per cycle. These
parameters must be synchronously available relative to the
target model at the correct insertion point within the model.

Given an input I, delayed by d cycles, as represented in
the difference equation as I [p − d], within a pipeline of depth
n, the circular buffer must be initiated with parameters forward
rotated by n − d steps in order to maintain synchronization.
Therefore, after n − d increments of the pipeline, the parameter
I will be inserted into the pipeline such that d cycles later, the
output for that model will appear at the root of the expression
tree.

In System Generator, this circular buffer is implemented
as a count limited counter ranging from 0 to n − 1 addressing
a ROM with the parameter values pre-initialized. The pre-
rotation of the circular buffer can be accomplished in two ways,
either through a change in the initial value of the counter or by
a rotation in the initial values in the ROM. The former method
requires a dedicated counter per unique parameter set in the
model. Therefore, the latter method is preferred as a rotation
in the ROM requires no extra resources allowing one counter
to be shared for all parameter tables. This approach was used
for the ‘current’ input I, for the traces illustrated in figure 7.

The ROM macro in System Generator becomes
synthesized as a synchronous memory such that the output
is registered. Rotating the buffer by n − d − 1 indices
compensates for this one-cycle latency. When n is relatively
small (n < 15), it is advisable to use distributed RAM resources
when available. In distributed RAM, each slice can store up
to 32 bits of data. When n is large or when logic resources
are limited, these parameter tables can be kept in block RAM.
The decision to use block RAM or distributed RAM largely
depends on the particular limiting resource constraint in a
model.
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Figure 7. Output traces from a cycle-accurate, fixed-point
simulation within Simulink of ten concurrently executing
Fitzhugh–Nagumo models. The traces were generated from the
model shown in figure 6. All parameters were kept constant with the
exception of I, which was varied from 0.99 to 2.97 with a step of
0.22 illustrated from top trace to bottom trace. The first 3000 points
are shown. Note that this simulation would execute in
approximately 0.25 ms on the FPGA, and 50 such designs could run
concurrently for a total of 500 models.

6. Coupled, multiple unit case

Coupled, multiple unit models are a straightforward extension
to the isolated multiple model, single unit case. Coupling
can occur between compartments in a morphologically
complex neuron model, as electrical connection between
neurons in the form of gap junctions, or as chemical
connections, or synapses within a population. This case
deals exclusively with homogenous populations of neurons
or neural compartments with some form of coupling or real-
time interaction. A particular example of a ten-compartment
motoneuron designed in this manner is described in the
previous work within this laboratory (Weinstein and Lee
2005).

A coupling is defined as a state variable from one unit
acting as a term or factor of an intermediate calculation of a
different unit. A unit can be coupled to all other units of a
model in the case of a fully interconnected population model.
In contrast, a unit might only be coupled to its neighbours in
the case of a linear multi-compartment chain. These two cases
are considered the general cases of unit coupling, where there
is regularity between the connections.

When modelling non-general cases where few
connections are created, it is often simpler to map the scenario
back into a general case when possible. This may not turn
out to be the most optimal implementation. For example, in
a model of 20 neurons such that each neuron is coupled to
another to form pairs of half-centre oscillators, each neuron
will take input from only one other neuron and output to
only one neuron. If adjacent neurons within the pipeline are
coupled, then odd neurons will couple to the next neuron
and even neurons will couple to the previous neuron. The
following describes two such approaches to generating this
coupling logic.

The first approach is a literal conversion of the coupling
algorithm into System Generator blocks. An even–odd test
can be accomplished by using the LSB (least significant bit)

of the parameter set address counter as a select line into a
2:1 multiplexer. The counter will go from 0 to 19 in this
example, toggling the LSB at each cycle. The inputs of the
multiplexer will be the voltage states from the adjacent units.
Following the convention where the first model is at the tail
of the register chain, when the multiplexer select line is 0,
the unit is odd and requires the state from the following unit.
The state used will be tapped from the state register chain
at the point of the insertion delay of the leaf node plus one.
When the multiplexer select line is one, then the unit is even,
and the previous unit’s state is used, which will be tapped at
the insertion delay minus one. Any parameters acting on the
coupled state can be processed as usual with a 20 element
ROM.

The second approach generalizes the coupling and
removes the multiplexer from the implementation. This
approach provides for two inputs to each model, one from
the previous unit and one from the next unit. Very often neural
models have an intensity parameter in the form of a maximal
current or conductance. These parameters can be set to zero for
the cases where there is no coupling and the proper value when
there is coupling. Two parameter tables will be required, one
for the even units and one for the odd. This approach, while
wasteful in resources, simplifies design as only the standard
arithmetic blocks are required.

Models requiring full interconnection between all units
are reasonable and straightforward to design but are generally
resource constraining. In the case of synapses for a fully
interconnected population of n neurons, given recurrent
connections, the logic requirements include n2 synapses with n
implementations of the synaptic mechanism including at least
n state solvers, n parameter tables of n depth hold the synaptic
weights, and n − 1 adders in a tree with log2(n) levels to sum
the synaptic input. As n becomes larger, the synapses take
on an ever-increasing percentage of FPGA resources, quickly
limiting the scale of population models. Future work is needed
to consider alternative design approaches for increasing the
size of neural population models.

7. Discussion

This paper serves to provide the methods for implementing
stereotypical neural circuit model elements in an FPGA. While
designing a model in itself is straightforward, there are some
key limitations and areas of future work to make it as easy
to use as a software simulation. This discussion documents
the challenges of converting floating-point calculations to
fixed-point representations, interfacing the model to external
systems, and the limits of scalability within an FPGA.

7.1. Precision determination

System Generator provides no means for handling real or
floating-point numbers. Instead, all parameters, states and
intermediate calculations utilize fixed-point numbers, defined
by a sign, number of total bits and number of fractional
bits. Before executing in hardware, it is necessary to set
each operation to have sufficient precision to avoid overflows,
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Table 3. Calculations to determine range values per operation type.

R∗ = R1◦R2 High range value (H∗) Low range value (L∗)

Addition ‘+’ H1 + H2 L1 + L2

Subtraction ‘−’ max(H1 − L2, L1 − H2) min(H1 − L2, L1 − H2)
Multiplication ‘∗’ max(L1·L2, L1·H2, H1·L2, H1·H2) min(L1·L2, L1·H2, H1·L2, H1·H2)
Division ‘/’a max(L1/L2, L1/H2, H1/L2, H1/H2) min(L1/L2, L1/H2, H1/L2, H1/H2)

a The division assumes that the range of the inputs does not cross zero.

underflows or functional mismatches due to quantization
errors. Excessive precision should be avoided as area
utilization and performance will suffer.

Optimal precision for all operations is a difficult if not
an impossible goal and is still an active area of research.
On the other end of the scale, the number of bits required
to guarantee full precision continuously increases after each
operation. (Full precision here means precision based on the
argument precisions rather than the arguments themselves.)
Full precision for a multiplication, as implemented in System
Generator, is the sum of the number of bits of each operand.
An addition has full precision when the number of integer
bits of the output is the maximum of the integer bits of
each operand. Similarly, the number of fractional bits of
the output is the maximum of the number of fractional bits
of each operand. This is a worst-case, pessimistic approach
to determining precision through the pipeline by assuming
that all the full range of values are valid for each operation
and that maximum fractional precision is always necessary.
As an example, a 17 bit multiply (17 bit unsigned or 18 bit
signed inputs) requires just one embedded multiplier. A 34
bit multiply requires 4 embedded multipliers to calculate the
partial products and adders to sum the two partial products.
When moving to a 51 bit multiplier, the resources jump to 9
embedded multipliers (Shi et al 2004). Excess precision will
require additional latency to maintain the same throughput and
waste logic resources that could be used for additional parallel
operations.

We have found several techniques to reduce the required
precision but have yet to report on a general algorithm for
determining the optimal precision. First, we can reduce
the number of integer bits per operation by bounding the
parameters and states within practical ranges. For example,
for a particular neuron firing, the membrane potential might
range from −70.00 mV to 30.00 mV requiring one sign bit,
seven integer bits and a number of fractional bits to achieve
the desired resolution. Those signed seven integer bits allow a
range of −127 to 126. Full precision uses the full range of the
fixed-point representation, but in reality, only the usable range
is required. We define S to denote a signed number (versus an
unsigned, positive only value) and Ri = (Li, Hi), where Li and
Hi are the low and high values of the usable range of the ith leaf
node. When Li and Hi are of different signs or both negative,
the number is signed and requires an extra bit to denote the
sign. Formally, the sign, Si, and the number of integer bits, Zi,

given a range Ri are determined by:

Si =



1, Li < 0
1, Hi < 0
0, otherwise

Given : max int = max�|Li |�, �|Hi |�
Zi =

{�log2(maxint) + 1� maxint > 0
0, otherwise.

(12)

Using the range notation, Ri, instead of the full precision to
represent each value, the number of integer bits, Zi, required
throughout the pipeline is generally reduced. We recalculate
these range values at the output of each operation using the
expressions in table 3. Without further a priori knowledge
of the range of intermediate values within the pipeline, this
provides an approach to determining the number of integer
bits required throughout the data path, avoiding any overflow
conditions.

Underflow conditions are more difficult to optimize
around. An underflow occurs when the fraction precision of
an output of an operation is truncated from full precision such
that a small number is represented as zero. Underflows may
or may not cause any discrepancies in a simulation, depending
on where in the data path they occur. In the case of a Hodgkin
and Huxley style potassium channel with n4 kinetics, given an
activating gate with f fractional bits of precision, the output
via two cascading multiplications will require 4f fractional
bits when utilizing full precision. Realistically, fourth-order
kinetics requires no additional precision over a first-order
expression, in which case an underflow would be acceptable.
An adder tree combining all currents calculated per channel
would also be a possible candidate for allowing underflows
as very small currents are diminished by larger transients or
leakage paths. Other calculations, such as scaling by the
time step when performing integration, must be free from
underflows to maintain functional behaviour.

The remaining class of errors, quantization errors, is
substantially more difficult to reason through intuitively and
requires a more rigorous approach. This can be through
error analysis techniques such as propagating relative and
absolute error through the data path. The inherent feedback
in the system via the integration steps makes this analysis
exceedingly difficult. Alternatively, simulations can help
isolate the differences between floating- and fixed-point
representations of the model. There is still considerable work
to be done in investigating ways of analyzing fixed-point neural
models to minimize quantization error.
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7.2. External interfacing

By utilizing the techniques described in this text, a modeller
can readily implement a custom data path on an FPGA.
A challenge still remains in controlling and monitoring
the simulations, capabilities common in publicly available
simulation environments. System Generator provides limited
capabilities for interfacing via a co-simulation option. In
this mode, dedicated input and output ports are accessible to
the Simulink environment via a hardware/software wrapper
created by System Generator. In order for states and
intermediates to be monitored, System Generator must retain
cycle-level control over the simulation, in effect, single-
stepping through the simulation to access each value. No
buffering is done on-board, greatly limiting the performance
of the system.

Alternatively, the FPGA hardware can be executed via
a free-running clock. When in this mode, the FPGA will
be at full performance levels, but the software will not be
able to keep up with the throughput requirements, dropping
data regularly. When the FPGA development board contains
analogue data converters, inputs/outputs can be transferred to
the FPGA at a full speed. The slower, register based access
to the FPGA via System Generator can be used for modifying
parameters on the fly.

Future work is needed to maximize digital transfer rates
to and from FPGA models. In the case of our development
board, the Virtex-II Xtreme-DSP II, data must be buffered
and transferred via DMA (direct memory access) over the
PCI (peripheral component interconnect) interface. In other
development boards where a processor is accessible either in
the fabric (PowerPC hard core, MicroBlaze soft core, etc) or
external to the FPGA, additional interfaces become reasonable,
including USB, Firewire (IEEE 1394), Ethernet, IDE, etc.
These are possibilities that could potentially be exploited with
future hardware/software co-development work.

7.3. FPGA constraints

Software and hardware implementations of neural models
deal with increased complexity in different ways. In a
traditional software model, an increase in complexity causes
a proportional increase in processing time and memory usage.
On an FPGA, an increase in complexity will not cause an
increase in processing time if the following conditions are
met: the addition to the model can be processed in parallel to
the rest of the model (e.g. adding another ion channel) and
there are sufficient logic resources available to implement the
additional complexity. When there are not sufficient resources
available for additional parallel data paths, existing data paths
must be modified to add additional pipeline stages. In this
case, processing time and memory usage scales linearly much
like software implementations.

Limitations arise when the current FPGA cannot support
an increase in the depth of the pipeline. While increasing
the depth does not increase the area requirements of the
data paths, it does linearly increase the number of states,
thereby register-constraining the design. When all models

are interconnected, for each additional model simulated,
additional logic is required allowing for full integration of that
model into the system. This can quickly grow the requirements
of the model, limiting the number of simultaneously simulated
models. In general, tens to potentially a hundred models are
possible to implement using the techniques described in this
paper. However, future work is needed to find the techniques
to enable hundreds to thousands of simultaneous systems to
run.

7.4. Autogeneration

While the architecture presented in this paper permits the
construction of complex neural models, the difficulty of
manually creating these models grows dramatically with
the complexity of the model. The System Generator
environment is not a typical modelling language and lacks
general programmatic constructs such as functions, procedures
and iterations. Modularity is therefore difficult to achieve
requiring the model as a whole to be fully verified, independent
of its parts. Additionally, the masking of parameters
within each schematic block makes verification by inspection
difficult. Any alterations to a model can typically require long
testing/verification cycles. Consequently, the next logical step
in the evolution of the FPGA-as-neural-simulation platform
is the development of a ‘compiler’ to automatically generate
the necessary blocks and possibly include protocol and other
input–output harnesses.
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