
FCCM’96, IEEE Symposium on FPGAs for Custom Computing Machines, April 17 – 19, 1996, Napa, California, USA, pp.98–106

Aizup - A Pipelined Processor Design and Implementation on

XILINX FPGA Chip

Yamin Li and Wanming Chu

Computer Architecture Laboratory
The University of Aizu

Aizu-Wakamatsu 965-80 Japan

yamin@u-aizu.ac.jp, w-chu@u-aizu.ac.jp

Abstract

This paper describes a pipelined processor (named
Aizup) design and implementation for the exercise of
Computer Architecture/Organization Education at the
University of Aizu. The Aizup pipeline has four stages
and deals with data dependency and control depen-
dency. The Aizup was designed at Cadence environ-
ment and implemented on Xilinx XC4006PC84 FPGA
chip. We ask students to design the processor, to per-
form functional simulations, to implement the design
on the chip, and to measure the chip with Logic An-
alyzer. The exercise course is helpful to students to
understand the operations of pipelined processors and
to master the design methodologies and the use of mea-
suring instruments.

1. Introduction

In the University of Aizu, there are more than sixty
sets of exercise equipments for Computer Architec-
ture/Organization Education [2] [3]. One set consists of
a SUN workstation with installed Cadence/Xilinx de-
sign tools [4], an evaluation board with mounted Xilinx
XC4006PC84 FPGA chip [5], and a Logic Analyzer.

We developed a RISC pipelined model (Aizup) and
implemented it on the Xilinx chip for Computer Ar-
chitecture/Organization Education [9]. The contents
of the exercise include analysis of processor instruc-
tion set, design of datapath and control unit, circuit
schematic, functional simulation, netlist generation,
pin assignment, placement and routing, Intel mcsfor-
mat file generation, file download, and measurement
and check of the chip [6]. Because students have mas-
tered the use of Cadence in Logic Circuit Design course,

they can finish the exercise within one semester, say 45
hours.

In this paper, we will introduce the pipelined Aizup
model and experiences in designing the circuits with
Xilinx XC4000 library. The paper is organized as fol-
lows. Section 2 introduces the pipelined processor ar-
chitecture model. Sections 3 and 4 discuss circuit de-
sign and functional simulation, respectively. Section
5 is dedicated to the Aizup implementation on FPGA
chip. The final section concludes the circuit design and
the Xilinx design tools that cooperate with Cadence.

2. Processor Architecture Model

The aim of the exercise for Computer Architec-
ture/Organization Education is to have students un-
derstand well the hardware structure and the operation
of pipelined processor and master the circuit design
methodology. In order to be able to implement the
pipelined processor associated with instruction mem-
ory and data memory on a single FPGA chip, we select
the 8 bits as the width of instructions and data. Most
of the instructions have two operands, one is a regis-
ter operand (RD) and the other is a register operand
(RS) or an immediate. The operation result is writ-
ten back to RD. The Aizup implements four pipeline
stages, they are IF (Instruction Fetch), DC (DeCode
and operand fetch), EX (EXecution or memory access),
and WB (Write Back).

Table 1 lists the instruction operation codes, the op-
erations in each stage, and the immediate extensions.
Some registers are needed for the pipeline operations.
They are PC (Program Counter), IR (Instruction Reg-
ister), register A and B (holding two source operands),
and register C (holding the result of operations). There
is also a single bit register, Z, for storing the zero tag,

98

Table 1. Instruction set and pipeline operations

Instruction Format Operations IF DC EX WR
NOP No Operation IR←M[PC]
0000 00 00 PC←PC+1
ADD RD, RS RD←RD + RS IR←M[PC] A←RD C←A + B RD←C
0001 RD RS Update Z PC←PC+1 B←RS Z←((A + B)==0)
SUB RD, RS RD←RD − RS IR←M[PC] A←RD C←A − B RD←C
0010 RD RS Update Z PC←PC+1 B←RS Z←((A − B)==0)
OR RD, RS RD←RD or RS IR←M[PC] A←RD C←A or B RD←C
0011 RD RS Update Z PC←PC+1 B←RS Z←((A or B)==0)
AND RD, RS RD←RD and RS IR←M[PC] A←RD C←A and B RD←C
0100 RD RS Update Z PC←PC+1 B←RS Z←((A and B)==0)
XOR RD, RS RD←RD xor RS IR←M[PC] A←RD C←A xor B RD←C
0101 RD RS Update Z PC←PC+1 B←RS Z←((A xor B)==0)
MOV RD, RS RD←RS IR←M[PC] A←RD C←B RD←C
0110 RD RS Update Z PC←PC+1 B←RS Z←(B==0)
LD RD, RS RD←M[RS] IR←M[PC] A←RD C←M[B] RD←C
0111 RD RS PC←PC+1 B←RS
ST RD, RS M[RS]←RD IR←M[PC] A←RD M[B]←A
1000 RD RS PC←PC+1 B←RS
ADDI RD, n RD←RD + 000000n IR←M[PC] A←RD C←A + B RD←C
1001 RD n Update Z PC←PC+1 B←000000n Z←((A + B)==0)
SUBI RD, n RD←RD − 000000n IR←M[PC] A←RD C←A − B RD←C
1010 RD n Update Z PC←PC+1 B←000000n Z←((A − B)==0)
SR0L N R0←R0 or 0000N IR←M[PC] A←R0 C←A or B R0←C
1011 N Update Z PC←PC+1 B←0000N Z←((A or B)==0)
SR0H N R0←N0000 IR←M[PC] A←R0 C←B R0←C
1100 N Update Z PC←PC+1 B←N0000 Z←(B==0)
BZ N if (Z) IR←M[PC] if (Z)
1101 N PC←PC+(s)N PC←PC+1 PC←PC+(s)N
BNZ N if (!Z) IR←M[PC] if (!Z)
1110 N PC←PC+(s)N PC←PC+1 PC←PC+(s)N
BRA N PC←PC+(s)N IR←M[PC] PC←PC+(s)N
1111 N PC←PC+1

that will be evaluated by conditional branch instruc-
tions.

For the data dependency, consider the following se-
quence of pipeline executions of I1, I2, and I3. The
pipeline operations are shown in Figure 1.

I1: ADD R1, R2 ; R1 <- R1 + R2
I2: SUB R3, R1 ; R3 <- R3 - R1
I3: SUBI R1, 1 ; R1 <- R1 - 1

The instruction I2 reads R3 and R1 from register file
in DC stage, and writes them to A and B respectively.
At the same time, the instruction I1 calculates the sum
of R1 and R2 and write it to C. I1 will write the sum

to R1 in the next stage. Therefore, I2 will get old
content from register file and write it to B. If I2 uses it
for subtraction, then a wrong result will be generated.
There is no problem with I3 reading R1.

A NOP instruction can be inserted between I1 and
I2 to delay the execution of I2, but the performance will
suffer. We can design a special data path to solve this
problem. A dependency detection block can detect the
dependencies. When a data dependency is detected,
the source data for ALU operation is passed from C
via multiplexor, instead of from A or B.

The data dependencies (ADEPEN/BDEPEN) will
happen if

99

ADD R1, R2

SUB R3, R1

SUB R1, 1

READ R1,R2 R1 + R2 W R1

READ R3,R1

READ R1 R1 + 1

W R3

W R1

PC IR A,B C RF

PC IR A,B C RF

PC IR A,B C RF

FORWARDING
R1 FROM C
DURING THE
SUBTRACTION

I1

I2

I3

R1 IS READY
FOR READ
OF I3

R3 - R1

CLOCK

IF DC EX WB

IF DC EX WB

IF DC EX WB

Figure 1. Data dependency and data forwarding

1. the operand A/B of the current instruction is a
register operand (cRD/cRS),

2. the result of the previous instruction will be writ-
ten into register file (pRD), and

3. cRD/cRS and pRD are the same register.

The dependency detection takes place in EX stage.
In our processor design, we move it to DC stage, and
use pipeline registers to transfer to EX stage. There
are good points of the movement. First, doing the de-
tection in DC stage will save the gates because some
common logic can be shared with other decode circuits.
Second, the time required by EX stage will be short-
ened because the ADEPEN and BDEPEN are available
immediately at the beginning of EX stage.

As for the control dependency, we adopt a delay
branch method. In our processor model, the branch
target address is evaluated in DC stage. It means that
one delay cycle is introduced and an additional adder is
needed for address evaluation. We can use this method
to demonstrate the optimization by reorganizing the
instruction codes.

3. Processor Design with Xilinx XC4000
Library

Figure 2 shows the organization of Aizup. The ma-
jor cells include ALU, register file, adders, instruction
memory, data memory, decoder, pipeline registers, and
multiplexors. The four pipeline stages are marked in
the left side of the figure.

3.1. ALU Design

For implementing the Aizup instruction set, six op-
erations should be done by ALU. The six operations are
(1) PassB (for MOV and SR0H), (2) OR (for OR and
SR0L), (3) XOR (for XOR), (4) AND (for AND), (5)
SUB (for SUB and SUBI), and (6) ADD (for ADD and
ADDI). A 3-bit signal (AOP<2:0>) selects the ALU
operation.

3.2. Register File Design

In Aizup, the register-to-register instructions per-
form RD←RD op RS, and two bits are used for ad-
dressing the register file. It means a 4× 8 bits register
file with two read ports and a write port is needed. It
can be implemented with four 8-bit registers plus a pair
of 4-to-1 multiplexors each 8 bits wide for read ports
and a 2-to-4 decoder for write control. The circuitry of
register file is shown in Figure 3.

3.3. Data Memory Design

In Aizup, there are separated instruction memory
module and data memory module. Each has 256 × 8
bits (8 bits address bus and 8 bits data bus). There is
no external memory chip mounted in the evaluation
board, therefore we use Xilinx ram32x8 modules to
build on-chip memory. It becomes possible to access
memory once at each cycle. Comparing to register ac-
cess, the memory access control circuit is more com-

100

Figure 2. The top schematic of Aizup

101

Figure 3. 4 x 8 bits register file

plicated. Especially, in the memory write operation
(WE), the glitches on the WE line or glitches on the
address lines while WE is active might cause problems
[1]. An example of a glitch-free WE generation circuit
is given in [1], but the memory access will take more
than one clock cycle. The performance will suffer.

Here we show a glitch-free WE and address gener-
ation circuit that can perform memory access once on
every clock cycle. An example of 32 × 8 data memory
module is shown in Figure 4. In order to match the
XC4000 RAM in the design, a FD8CE is added. It
postpones the data half cycle. And also a latch (ld5)
is used for latching the address. The timing chart of
write-cycle is shown in Figure 5.

3.4. Instruction Memory Design

For the instruction memory design, we use Xilinx
ROM32x1 components to build an on-chip instruction
memory module. The ROM must be initialized to a
known value with the INIT = value parameter. The

following code segment is used for testing the Aizup.

ADR INST-CODE INSTRUCTION COMMENT

00: 1100 00 00 SR0H 0 ; R0 = 0

01: 1011 01 00 SR0L 4 ; R0 = 4

02: 0110 01 00 MOV R1, R0 ; R1 = 4, COUNTER

03: 1100 00 00 SR0H 0 ; R0 = 0

04: 0110 10 00 MOV R2, R0 ; R2 = MEMORY ADDRESS

05: 0110 11 00 MOV R3, R0 ; R3 = RESULT DATA

L0000:

06: 1001 11 10 ADDI R3, 2 ; R3 = 2, 4, 6, 8

07: 1000 11 10 ST R3, R2 ; STORE TO MEM 0,1,2,3

08: 1001 10 01 ADDI R2, 1 ; ADDRESS + 1

09: 1010 01 01 SUBI R1, 1 ; COUNTER - 1

0A: 0000 00 00 NOP ; WAIT FOR ZERO TAG

0B: 1110 10 10 BNZ L0000 ; CONT IF NOT FINISHED

0C: 0000 00 00 NOP ; DELAY INST, EXECUTED

0D: 1100 00 00 SR0H 0 ; R0 = 0

0E: 1011 01 00 SR0L 4 ; R0 = 4

0F: 0110 01 00 MOV R1, R0 ; R1 = 4, COUNTER

10: 1100 00 00 SR0H 0 ; R0 = 0

11: 0110 10 00 MOV R2, R0 ; R2 = MEMORY ADDRESS

L0001:

102

Figure 4. A glitch-free WE and address generation circuit

12: 0111 11 10 LD R3, R2 ; R3 = LOADED DATA

13: 0001 00 11 ADD R0, R3 ; R0 = R0 + R3

14: 1001 10 01 ADDI R2, 1 ; ADDRESS + 1

15: 1010 01 01 SUBI R1, 1 ; COUNTER - 1

16: 0000 00 00 NOP ; WAIT FOR ZERO TAG

17: 1110 10 10 BNZ L0001 ; CONT IF NOT FINISHED

18: 0000 00 00 NOP ; DELAY INST, EXECUTED

19: 0110 11 00 MOV R3, R0 ; R3 = RESULT (SUM)

1A: 1100 00 00 SR0H 0 ; R0 = 0

1B: 1011 01 00 SR0L 4 ; R0 = 4

1C: 1000 11 00 ST R3, R0 ; STORE RESULT TO MEM 4

1D: 0000 00 00 NOP ;

1E: 0000 00 00 NOP ;

1F: 0000 00 00 NOP ;

The NOP instructions are used for waiting zero tag
and for the delay branch mechanism. We can ask stu-
dents to reorganize the instructions to remove the NOP
instructions.

3.5. Control Unit Design

The control unit generates all control signals for con-
trolling datapath. We summarize the control signals in
Aizup as following.

1. IF stage

• BTAKEN (Branch Taken). If branch is
taken, BTAKEN should be high to select the

branch target address for instruction fetching
in the next clock cycle.

2. DC stage

• AA<1:0> (A Address). It indicates the reg-
ister number of RD. RD is the destination
register but it is also the source 1 register
(RD←RD op RS). Most of the instructions
put the number of RD in a fixed position
in the instruction format, but the SR0L and
SR0H instructions are special cases. The
number of RD is always 0 for these instruc-
tions.

• AB<1:0> (B Address). It indicates the regis-
ter number of RS. RS is the source 2 register.
Most of the instructions put the number of
RS in a fixed position in the instruction for-
mat, but some instructions put immediate in
that position.

• IMMES (Immediate Selection). When the
source 2 operand is an immediate, IMMES
should be high for selecting the immediate,
not register operand.

• IMM<7:0> (Immediate). It is an 8-bit imme-
diate. Based on instructions, it can be gener-
ated with different extension methods. The
IMM<7:0> is used not only for the source 2
operand of ALU operations, but also for the

103

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

11
11

Figure 5. Timing chart of the memory module

calculation of branch target address. Gener-
ally speaking, the IMM<7:0> does not be-
long to control unit, it belongs to datapath.

3. EX stage

• AOP<2:0> (ALU Operation Control). It can
be generated easily based on instructions.
• ADEPEN (A Dependent). It is the selection

signal for ALU operand A. When it is high,
the forwarding data of register C is selected.
Otherwise, the data of register A is selected.
• BDEPEN (B Dependent). It is the selection

signal for ALU operand B. When it is high,
the forwarding data of register C is selected.
Otherwise, the data of register B is selected.
• STORE (Store). It is the memory-write con-

trol signal. When it is high, a memorywrite
happens.
• LOAD (Load). When LOAD is high, the reg-

ister C will be written with the loaded data
from data memory.
• ZRWRITE (Zero Register Write). When ZR-

WRITE is high, zero tag register will be up-
dated.

4. WB stage

• AA<1:0> (A Address). It is the same sig-
nal as AA<1:0> of DC stage. Here it is the
number of destination register only.

• REGWRITE (Register Write). It is the
register-write control signal. When it is high,
the data of register C will be written into reg-
ister file.

All of the control signals are generated at DC stage.
But some of them are used in EX and WB stages. To
cope with this, pipeline registers are used to put the
signals to the corresponding stages. We can divide the
control unit into the following five blocks, and each
block generates several signals.

1. branch block generates BTAKEN,

2. register address block generates AA<1:0> and
AB<1:0>,

3. alu control block generates AOP<2:0>, ZR-
WRITE, and REGWRITE,

4. immediate block generates IMMES and
IMM<7:0>,

104

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

11
11

Figure 6. Timing chart of the pipelined processor

5. dependent block generates ADEPEN and BDE-
PEN.

4. Problem and Solution of Functional
Simulation

We have initialized the instruction memory with the
test code segment but it can not be read out before
the implementation, i.e., it can not be used for the
functional simulation yet. Here is a solution to solve
this problem. First, we create another cell that is the
same with the original but has no schematic. Then, we
create the behavioral file for it, and use it in the top
schematic. The simulation can be now carried out. Af-
ter the processor passes the simulation, we can replace
it with the original. The initialized value can be read
out after the FPGA chip was programmed.

Figure 6 shows a part of timing chart of Verilog-XL

simulation based on the test code segment.

5. Implementation on XILINX XC4006
FPGA Chip

We can now implement the Aizup on XILINX
XC4006PC84 FPGA chip. In order to monitor the ex-
ecution of the processor, we add some output pins in
the top schematic so that we can use Logic Analyzer
to test them.

By following Xilinx Design Flow, we can get the
bitstream file (aizup.bit). For our special evaluation
board, we assign CLOCK to pin35 and RESET to
pin51. An external clock is provided on pin35 on the
board and its frequency can be changed with switches.

The design does not fit in the 4006PC84. The
4006PC84 has 512 function generators, but the design
uses 541. We change the sizes of both the instruction

105

memory and data memory from 256 bytes to 224 bytes.
The result is like below.

Preliminary estimate of device utilization for part 4006PC84:

--

30\% utilization of I/O pins. (18 of 61)

98\% utilization of CLB function generators. (503 of 512)

19\% utilization of CLB flip-flops. (95 of 512)

--

By using Back-Annotation function, we can get a
pld schematic that is the very-top schematic of our cir-
cuitry with the chip as a component. We can see the
pins’ assignment. We can also do the functional simu-
lation on it. The contents of ROM can be read out in
the simulation.

The bitstream file is transformed to Intel mcs for-
mat (aizup.mcs), and then it is downloaded to the
evaluation board via RS-232C. After we program the
XC4006PC84 chip, we can use Logic Analyzer to test
the output pins and analyze the timing diagram.

6. Conclusions

In this paper, we presented a pipelined processor
design and implementation on Xilinx XC4006PC84 for
the exercise of Computer Architecture / Organization
Education at the University of Aizu. Through whole
the procedure, the undergraduate students can under-
stand well the hardware circuits of the pipelined pro-
cessors, and more important, they can master the de-
sign methodologies by using CAD/CAE design tools.

The Aizup model that we designed and implemented
does not contain any floating-point instruction. We
have designed a Multiple-threaded Multiplepipelined
processor including floating-point unit using Toshiba
TC180/183E/C ASIC library [7] [8]. The floating-point
unit can perform addition, subtraction, multiplication,
division, square root, and conversion between integer
and floating-point numbers. We are now investigating
the possibility of implementation of the floating-point
unit on FPGA chips for advanced exercise course.

We are also investigating the use of external mem-
ory modules so that we can demonstrate the external
memory access and instruction/data cache operations.
Multiple FPGA chips will be mounted in the board so
that we can realize multiprocessor design on the board.

As for the Xilinx design tools that cooperate with
Cadence, there are some restrictions, to which we have
to pay attention. First, it is not allowed to change
the instance name to realize an array of instances. For
example, we cannot change the name, I1 for example,
of or2 component to I1<7:0> for or2x8. We have to

put eight individually. Sometime we feel this is good for
view, but sometime we feel it is not convenient to use.
The second problem of the Xilinx design tools is that
it can not recognize a cell that is named with capital
characters. The third is that when the netlisting is
carried out, it cannot automatically create a directory
for a cell that has a multi-sheet structure. Users have to
create a directory manually using the same name of the
cell before starting the netlisting. The last problem we
encountered is that the initialized ROM cannot be read
out for functional simulation before implementation.

References

[1] R. Iwanczuk, “Using the XC4000 RAM Capabil-
ity,” The Programmable Logic Data Book. Xilinx,
1994.

[2] J. Hennessy and D. Patterson, Computer Archi-
tecture, A Quantitative Approach, Morgan Kauf-
mann Publishers, Inc., 1990.

[3] D. Patterson and J. Hennessy, Computer Organi-
zation & Design: The Hardware/Software Inter-
face, Morgan Kaufmann Publishers, Inc., 1994.

[4] XACT Development System - XACT User Guide,
Xilinx, April, 1994.

[5] XACT Development System - XACT Libraries
Guide, Xilinx, April, 1994.

[6] Y. Li and W. Chu, “Aizup - A Pipelined Pro-
cessor Design and Its Implementation on XILINX
FPGA Chip,” Lecture Notes, The University of
Aizu, 1995.

[7] Y. Li and W. Chu, “Design and Performance
Analysis of A Multiple-threaded Multiplepipelined
Architecture,” Proc. of the Second International
Conference on High Performance Computing,
New Delhi, India, December 1995.

[8] Y. Li and W. Chu, “A New Non-Restoring Square
Root Algorithm and Its VLSI Implementations,”
1996, to be submitted.

[9] Y. Li and W. Chu, “Using Computer Architec-
ture/Organization at the University of Aizu,” Sec-
ond Annual Workshop on Computer Architecture
Education, San Jose, California, February, 1996.

106

