
Title: Hybrid Computing on an FPGA 

 

Introduction 

 
When I was a freshman taking physics in 1964, I had to analyze coupled, spring-mass, 
harmonic oscillator data. There was one digital computer available (for the whole 
school!) and one analog computer. The line was long for the card punch and FORTRAN 
ran slowly on a machine which did about 100 multiplies/sec, so I decided to learn to use 
the analog computer. The analog computer was faster at the time for solving differential 
equations because it was fully parallel. Each separate addition, integral, and multiply 
happened at the same time on the machine, so results were immediately available on the 
attached analog pen-plotter. 
 
Now I teach a course at Cornell University, ECE 576, which uses field-programmable 
gate arrays (FPGAs) to build embedded systems which may include processor cores, DSP 
units, I/O units, and other specialized processing.  To get good performance from a 
FPGA, you need to execute as many operations as possible in parallel because the clock 
rate is relatively slow compared to a dedicated CPU. I wondered if I could simulate the 
parallel functions of an analog computer on the FPGA and get the advantages of parallel 
execution, while being able to use the extremely handy ability to implement a general-
purpose CPU on the same chip to control the “analog” simulation. 
 

The hardware and software. 

 
Several courses at Cornell use the Altera DE2 educational board. This board has a fairly 
large CycloneII FPGA and a wide range of hardware interfaces including LEDs, 
switches,  audio I/O codec, ntsc video input codec, VGA output, USB interfaces, SD card 
interface, ethernet controller,  serial port, IRDA interface, 512 Kbyte of SRAM, 8 Mbyte 
of SDRAM, 4 Mbyte of flash and 80 lines of general-purpose lines arranged as two 40-
pin connectors. The price is $269 for academic users.  
 
The CycloneII FPGA on the board has about 33,000 logic elements, each of which can 
each be configured as an arbitrary logic function 4-input gate with output register bit, and 
with support for arithmetic. Logic elements are connected via switches to each other and 
to memory and i/o to form a specified circuit. Implementing a 32-bit CPU takes less than 
10% of the logic units. In addition to the general-purpose logic units there are 105 blocks 
of 4Kbit memory, 35 18-bit hardware multipliers, and 4 phase-locked loops. 
 
To control all of this hardware there is a downloadable suite of software called QuartusII 
for Education and NiosII for Education. QuartusII allows a student to design hardware in 
Verilog, VHDL or by schematic, and includes point-and-click CPU design for the NiosII 
soft processor. The NiosII software provides a GCC development environment for the 
processor you just built, including a custom C-library specific to your design.  Two 
articles in Circuit Cellar (June/July 2004) explain how to build a Nios proessor in the 
FPGA and how to program the processor in GCC (see resources section). 
 



 
We have found that the Verilog hardware definition language is good for advanced 
design because it is less bulky than VHDL, but easier for big designs than schematic 
capture. A module of QuartusII, called SPOC builder, generates a CPU design in Verilog 
based on a series of specifications which the student chooses. The specifications can 
include the number and bit-width of i/o ports, number of hardware timers, memory type 
(on chip, SRAM, SDRAM) and size to be used, cache size, and pipeline options. 
Multiprocessor designs are supported with a defined bus structure, shared hardware 
mutex structures, and shared mailboxes. It is possible to design and build a fully 
functional 32 bit CPU in a few minutes. 
 

Simulating Analog Computation 

 
Traditionally, analog computers use operational amplifiers to implement addition, 
subtraction and to compute time-integrals of functions. Multiplication was handled by 
analog multipliers. All of these operations are easy to perform on the FPGA, except for 
computing time integrals. However, around the time that digital circuitry was getting 
faster then analog computation, a device called a Digital Differential Analyzer (DDA) 
was invented to simulate the integral function digitally.  I used a version of the DDA 
which was easy to implement on the FPGA and which gives speedy execution. 
 
But first, what the problem we are trying to solve? Typically physical simulations involve 
the solution of differential equations. The differential equations fall directly out of 
Newton’s F=ma because forces are often related to position (e.g. gravity or spring) or 
velocity (e.g. frictional drag) and acceleration is the second derivative of position. If we 
define a set of state variables to be the position and velocity of each particle of interest 
then the system behavior will be determined by a set of differential equations with state 

variables v1 to vm and with arbitrary functions relating combinations of all the state 
variables to the rate of change of each state variable. 
 
dv1/dt = f1(t,v1,v2,v3,...vm)  
dv2/dt = f2(t,v1,v2,v3,...vm) 
dv3/dt = f3(t,v1,v2,v3,...vm) 
... 
dvm/dt = fm(...)  
 
To solve the equations digitally, we need to take discrete time steps. If the time step is of 
duration dt and we index time by n then we can use the values of the state variables at 
time n to compute the values at time n+1, then repeat. We will build circuitry to perform 
an Euler integration approximation to these equations in the form  
 
v1(n+1) = v1(n) + dt*(f1(t,v1(n),v2(n),v3(n),...vm(n)) 
v2(n+1) = v2(n) + dt*(f2(t,v1(n),v2(n),v3(n),...vm(n)) 
v3(n+1) = v3(n) + dt*(f3(t,v1(n),v2(n),v3(n),...vm(n)) 
... 
vm(n+1) = vm(n) + dt*(fm(...)) 
 



The number system we will use is 18-bit 2’complement, fixed point, which is compatible 
with the hardware multipliers and with standard addition and subtraction. Numbers are 
scaled so that there are 16-bits of fraction, with a sign bit and one bit of integer with a 
range of +1.999985 to -2.0000. Real analog computers also require amplitude scaling 
because they are bounded at high voltage by physical limits and at low voltage by noise. 
 
Figure 1 shows the structure of the numerical integrator as a block diagram. Many copies 
of this circuit would be built on the FPGA for a real application, and all would perform 
their operations at the same time. Quite often, calculating F(t,V(n)) is more complicated 
then the integration itself. 

 
Figure 1 
 
As an simple example, consider the linear, second-order differential equation resulting 
from a damped spring-mass system: 
 
d2x/dt2 = -k/m*x-d/m*(dx/dt) 
 

where k is the spring constant, d the damping coefficient, m the mass, and x the 
displacement of the mass. We will simulate this by converting the second-order system 

into a two first-order equations. If we let v1=x and v2=dx/dt then the second order 
equation is equivalent to  
 
dv1/dt = v2 
dv2/dt = -k/m*v1-d/m*v2 
 

These equations can be solved by wiring together two integrators, two multipliers and an 
adder as shown in Figure 2. Controlling such a system to start and stop time, record 
variable values, and load initial conditions is easily done using a standard sequential 
computer. The next sections will outline the actual hardware built using Verilog to 
specify multiple integrators, adders, multipliers and one CPU to control it all. 



 
Figure 2 
 

Verilog description of the second-order system 

 
Verilog is a text-based, hardware description language. Superficially, it looks like a 
sequential programming language, but it is not. All statements in a Verilog design 
execute at the same time! You can think of each statement is defining the values on  a 
wire or bus. Modules, which superficially resemble subroutines, cause hardware to be 
built and connected every time their name is used in a design.   
 
Starting at the bottom of the DDA design, lets consider the multiplier. We are using 18-
bit fixed point with the binary point between bit 15 and 16, for 16-bits of fraction and one 
bit of integer and a sign bit. The two 18-bit numbers result in a 36 bit result, of which bit 
35 is the new sign bit, and the rest of the value is in bits 32 to 16. The Verilog is shown 
below. A module designed in this fashion in QuartusII will result in using one of the 
hardware multipliers in the FPGA, according to the Altera HDL guidelines manual.  Each 
time this module is invoked, a new multiplier will be built. 
 
module signed_mult (out, a, b); 
 output   [17:0] out; 
 input  signed [17:0]  a; 
 input  signed [17:0]  b; 
 wire signed [17:0] out; 
 wire  signed [35:0] mult_out; 
 assign mult_out = a * b; 
 assign out = {mult_out[35], mult_out[32:16]}; 
endmodule 

 
The integrator module updates a state variable register (v1) on the positive edge of the 
system clock. The multiply of the input function by dt is simplified to a shift-right. This 
works because the value of dt is less than one and because steps of 2 are fine enough 
control. The strange triple-arrow operator for shift means “shift-right-signed”. 
 
module integrator(out,funct,InitialOut,dt,clk,reset); 
 output [17:0] out;  //the state variable V 
 input signed [17:0] funct;    //the dV/dt function 
 input [3:0] dt ; // in units of SHIFT-right 
 input clk, reset; 
 input signed [17:0] InitialOut; //the initial state variable V 
 wire signed  [17:0] out, v1new ; 



 reg signed   [17:0] v1 ; 
 always @ (posedge clk)  
 begin 
  if (reset==0) //reset  
   v1 <= InitialOut ; //  
  else  
   v1 <= v1new ;  
 end 
 assign v1new = v1 + (funct>>>dt) ; 
 assign out = v1 ; 
endmodule 

 
The second-order example above can now be coded as follows. Three signed multipliers 
are built, and two integrators. The form 18’h0_0800 means a 18-bit hexadecimal constant 
with value 1/32 in the notation we are using. 
 
// wire the integrators 
// time step: dt = 2>>9 
// v1(n+1) = v1(n) + dt*v2(n) 
integrator int1(v1,v2,0,9,AnalogClock,AnalogReset); 
  
// v2(n+1) = v2(n) + dt*(-k/m*v1(n) - d/m*v2(n)) 
signed_mult K_M(v1xK_M, v1, 18'h1_0000); //Mult by k/m 
signed_mult D_M(v2xD_M, v2, 18'h0_0800); //Mult by d/m 
//scale the input so that it does not saturate at resonance 
signed_mult Sine_gain(Sinput,{sine_out[15],sine_out[15],sine_out}, 
{2'h0,Sgain}); 
integrator int2(v2,(-v1xK_M-v2xD_M+Sinput), 
0,9,AnalogClock,AnalogReset); 

 
The output of both the integrators (velocity and position) were wired to the audio codec  
(Wolfsan WM8731) stereo outputs, and displayed on a scope. The 18-bit  2’s-
complement notation used in the calculation was truncated to 16 bits when sent to the 
codec. Figure 3 shows the output. The top trace is position and the bottom is velocity. 
The characteristic damped sine wave of a second order system is seen. With a dt=2-9, the 
system runs 32 times faster than real-time and had to be slowed down to use the audio 
codec. The resonant frequency of the simulated oscillator matched the analytical value 
within 0.2%. 



 
Figure 3. 
 

Adding the NiosII for controlling the DDA subsystem 

It is often useful to be able to control an analog computer using a digital computer. Such 
a system is called a hybrid computer. For example you might want to sequence through a 
set of input frequencies applied to the simulated system to build a Bode plot. A NiosII 
CPU was built on the FPGA with ports to (1) control the DDS frequency, (2) control the 
gain of the sine wave applied to the second order system, (3) control the analog reset and 
start the simulation, (4) record the amplitude and phase shift of the system under test. The 
top-level Verilog module contains the DDA simulation of the second order system and 
the NiosII cpu.  The description of the NiosII CPU is shown in Figure 4 which a a screen 
dump of QuartusII SOPC builder for the CPU used in this design. Designing the CPU 
consisted of drag-and-drop operations on this table. The module name column shows the 
name I assigned to each i/o port. These names will be picked up by the NiosII GCC tools 
and used to build a C library for this configuration.  This column also shows how each 
module is connected to data and instruction busses. The “base” and “end” columns show 
the address map for each module. The IRQ column shows any interrupt vectors 
associated with each module.  

 



 

Figure 4 

The CPU module generated by SOPC builder is completely defined by a Verilog 
description which is instantiated in the same module which defines the DDA hardware.  
There are nine control ports for the SDRAM, as well as the clock, reset, and the i/o ports 
I defined. 

module hybrid_cntl ( 
                     // 1) global signals: 
                      clk,reset_n, out_port_from_the_DDS_incr, in_port_to_the_amplitude, 
                      out_port_from_the_control, out_port_from_the_input_gain, in_port_to_the_phase, 
                     // the_sdram_0 
                      zs_addr_from_the_sdram_0, 
                      zs_ba_from_the_sdram_0, 
                      zs_cas_n_from_the_sdram_0, 
                      zs_cke_from_the_sdram_0, 
                      zs_cs_n_from_the_sdram_0, 
                      zs_dq_to_and_from_the_sdram_0, 
                      zs_dqm_from_the_sdram_0, 
                      zs_ras_n_from_the_sdram_0, 
                      zs_we_n_from_the_sdram_0 

                   ) 

The GCC program running on the NiosII: 

1. Holds the DDA in reset, and initializes the test frequency 
2. Releases the DDA reset  
3. Waits until the DDA output phase and magnitude reach steady-state 
4. Prints the phase and magnitude through the JTAG UART 
5. Increments the frequency by a small factor 
6. Repeats the above steps for a number of frequencies 

A set of C macros generated by the NiosII development environment provides interfaces 
to the hardware. For instance to write a zero to the i/o port named “control” in the SOPC 
builder (Figure 4) you could use the following statement. The Avalon notation here refers 
to the bus structure used by the NiosII CPU. The CONTROL_BASE is the first address 
of the address map of the “control” port. 
IOWR_ALTERA_AVALON_PIO_DATA(CONTROL_BASE,0); 

 



 
The resulting phase/magnitude Bode plots in Figure 5 were produced with a small Matlab 
script which read the text file generated by the NiosII and also superimposed the 
analytical solution generated by Matlab on a PC.  The top plot is log-amplitude versus 
log-frequency and the bottom is phase versus log-frequency. You can see that the match 
to the analytical solution (red curves) is good. The resonant frequency can be easily seen 
and the analytical value  is marked with a vertical red line. You can also see some 
amplitude quantization error at low amplitudes on both ends of the curve. 

Figure 5 
 

Conclusions 

 
Each integrator takes about 2% of the circuitry on the FPGA and each multiplier takes 
3% of the multipliers. You could thus expect to build about 50 integrators and about 30 
multipliers in a larger design. If you filled the FPGA with integrators and multipliers and 
ran them at 50 MHz, you would expect to compute around four billion 18-bit 
operations/second. Of course, putting a control CPU on the FPGA would drop the 
number of integrators you could build. 
 
Let’s compare the experience of programming an analog computer by plugging in 
resistors and wires in 1964 and using Verilog and QuartusII to build one on an CycloneII 



FPGA in 2006. The learning and setup time for my first design on both systems was 
about the same (a few days). The setup time for the second project on the FPGA was 
much shorter. Adding integrators in a text file is just faster than running wires. The 
FPGA version has a simulation bandwidth at least 500 times higher, computed as 
(number of integrators)*(integrator bandwidth).  The analog computer ran in “continuous 
time” and thus had no time quantization error, but had no better than 1.0 % (7-bit)  
amplitude accuracy. The FPGA simulation seems to have an accuracy of 18-bits, but it is 
actually somewhat lower, depending on the size of dt. Picking a small dt decreases time 
quantization error, but increases round-off error. Extending the numerical precision, or 
using a higher-order integrator would help soften this tradeoff. 
 
  

Resources. 

 
Altera DE2 board. 
http://altera.com/education/univ/materials/boards/unv-dev-edu-boards.html 
 
Altera educational software page 
http://altera.com/education/univ/software/unv-software.html 
 
Altera Recommended HDL style 
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf 
 
Digital Differential Analyzer: Full hybrid design details are available at 
http://instruct1.cit.cornell.edu/courses/ece576/DDA/index.htm 
 
ECE576 webpage 
http://instruct1.cit.cornell.edu/courses/ece576/ 
 
Nios and GCC 
(1) Circuit Cellar ISSUE 167 June 2004, p. 72; Designing with the Nios (Part 1): Second-
Order, Closed-Loop Servo Control, by George Martin. 
(2) Circuit Cellar ISSUE 168 June 2004, p. 36; Designing with the Nios (Part 2): System 
Enhancement, by George Martin. 
 
 
 
 
 
 
 
 


