ECE 5760
Fall 2020

DE1-SoC Remote 10

|¥ serial receiver
FIFO_EMPTY— FIFO FIFO FIFQ FIFO —| |

fifo_data_in
fifo_data_valid

Pl
e

sh_o
ey o
0

ut
fifo_full _out
out

b=l
i~

Remote 10 System Documentation

Author: Anthony Viego
Version: 1.0

Last Modified: December 7, 2020

ECE5S760 - Remote 10

Contents
1 Overview 2
1.1 WhattoRead 2
2 Adding Components to Qsys 2
3 Configuring the Top-Level 7
3.1 Instantiating the Qsys system L. 7
3.2 Pin Assignments and Project Files 9
4 Running and using the GUI 10
4.1 Functionality of the GUL 11
5 Quartus Interface - Details 11
5.1 Serial Protocol 13
5.2 System Infrastructure Lo 14
5.2.1 Data Transmission 14
5.2.2 Data Receiving oo 15
5.2.3 Modifying the System L. 15
5.3 Modifying the GUL 16
6 References and Documents 16
6.1 Project Setup Guide 17
6.2 DEI1-SoC User Manual 17
6.3 Quartus Handbook 17
A Appendix 19
A.1 Serial Protocol Types 19
A.2 Serial Protocol Functions 19
A.3 FPGA System Overview 20
A4 References L 20
A.4.1 DE1-SoC Project Setup Guide 20
A42 DE1-SoC User Manual 20
A.4.3 Quartus 15.1 Handbook L L. 20
A.4.4 Avalon Interface Specification, 20
A.4.5 Platform Designer (Qsys) Property Specification 21

1 Fall 2020

ECE5S760 - Remote 10

1 Overview

This document is intended to provide you with all the information necessary to setup and
use the remote IO system. This system consists of three main components, the virtual
desktop running the GUI, the arduino acting as a serial pass-through, and the fpga. The
steps necessary for setting up the system on each of these devices will be described in
separate sections. A detailed description of how the system works is also provided in later
sections.

In general, the remote-10 system is meant to provide you with access to IO which you would
normally need to be in person to make use of. This includes seven-segment displays, LEDs,
push-buttons, toggle switches, and potentiometers. A version of the GUI for this system
can be seen in figure 1.

1.1 What to Read

This document consists of several sections, not all of which you will need to read depending
on your situation. There are two primary audiences this document is intended for. The
first is those who are using the PIO example project, and the second is for those looking to
setup the system from scratch.

1. Using example Project: With the example project, everything should already be
setup so there is no need to read through the sections discussing this. However, please
do follow the first 4 points in section 2, to ensure that Qsys has found the IP path
for the new files. Following this, refer to section 4 for an overview of how to run the
GUI and what functionality it currently contains. Section 5 discusses the underlying
infrastructure in place if you are looking to eventually add on to this system.

2. Starting from scratch: If you are starting from scratch with a brand new project,
or simply adding the system to an existing project, then you will want to read sections
(2-3) at the very least. Section 2 describes how to setup the necessary components
in Qsys, and section 3 describes how to properly configure the top-level of quartus to
handle the new Qsys modules. The remaining sections discuss the functionality of the
GUI and the underlying infrastructure, so they are not strictly necessary for getting
things setup and running.

2 Adding Components to Qsys

The first step in setting up this system will be adding two new components to QSys. Mainly
the io_avalon_interface, and the RS232-UART. If you have not done so already, download
the stand-alone zip file from the ECE 5760 website.

1. Within the zip file there should be three folders (GUI, arduino, FPGA). Place the
FPGA folder into your existing quartus project folder.

2 Fall 2020

ECE5760 - Remote 10

LED Indicators

Pushbuttons & togg

16 15
Potentiometer

50

Figure 1: Remote 10 GUI

2. Open your current project and go to gsys

3. In gsys go to tools— >options. This should open up a GUI that looks like the
following:

«& Options X
Category 1P Search Path Options

IP Search Path

IP will be found in the project directory, the Altera
installation directories, and in the IP Search Path.

IP Search Path

Ciadd.. | [TRemove |

Quartus Prime Global IP Search Path

4. Click on add and select the FPGA folder that you added to your project folder
earlier. Once done click finish. You should now see Qsys scan the folders and if

3 Fall 2020

ECE5S760 - Remote 10

successful, the IP catalog on the left-hand side of Qsys will now show a 5760-IP
category as shown in the image below:

A 1P catalog 2

)

Project

Li

W

-1 Mew Component...
ibrary
—}-5760-1P

Lo o jo_interface
H-Basic Functions
H-DSP
H-Interface Protocols

+1-Low Power

H-Memory Interfaces and Controllers

H-Processors and Peripherals
H-Qsys Interconnect
H-System

e e o T o e O e O e N

t-University Program

5. The io_interface will be the first component we want to add to Qsys. Go ahead and
click on the component and click add. This will open up a tab showing you the

block symbol and the parameters. Ensure that the block symbol and parameters
match those in the images below

[~ Block Diagram

[] Show signals

eget

i0_avalon_interface 0

clk

reset avalon_streaming

avalon_streaming_sink

clock

conduit end

avalon_streaming

conduit

avalon streaming source
g el

jo_avalon_interface

Fall 2020

ECE5S760 - Remote 10

|" FIFO Params

FIFO_depth: 38
FIFO_width: 64
GEN_FIFOS: 5 W

[~ LED Params
LED_timer: 0x0005f5e10

|" Seven Seg Params
seven_seg_timer: px0017d7840

6. There will be a number of errors and warnings but we will fix these later. For now in
the IP-Catalog go to University Program — Communications — RS232 UART. In
the parameters that appear, change the avalon type to ”streaming” and the Baud
Rate to ”38400”. The parameters should now match the ones in the image below.

[~ Interface Settings

Avalon Type: Streaming ~
Incoming clock rate: spp00000 Hz
|- Baud Rate

Baud Rate (bps): 38400 v

|~ Data Format

Parity'. None
Data Bits: 8 -«
Stop Bits: i

7. These are the only two new components that will be needed for setting up the
system on the FPGA side. For the purposes of saving PLLs we are going to make
use of the external CLOCK_50 the FPGA provides. For this step, insert a clock
source from basic functions — clocks and plls. Make sure the clock frequency is set
to 50MHz. Connect the clock output and reset output of this clock source to the
clock and reset inputs of the io_interface and RS232 UART.

8. With the clock and resets setup we now want to export our conduits. A conduit in
Qsys is an interface meant for data that isn’t part of avalons predfined signal types
(memory-mapped signals, val/rdy, etc). For the purpose of this setup, export the
io_interface conduit as io_handler and the UART conduit as serial.

9. Your two blocks should now look like those shown in the image below. Note the
exported names don’t necessarily matter.

5 Fall 2020

ECE5760 - Remote 10

»—
A
»-—

E io_awvalon_interfa...
reset
clk
avalon_streaming...
avalon_streaming...
conduit_end

E rs232_0
clk
reset
avalon_data_recei...

io_interface

Reset Input

Clock Input

Avalon Streaming Sink
Avalon Streaming Source
Conduit

R5232 UART

Clock Input

Reset Input

Avalon Streaming Source

io_handler

clk_0
[clk]
[clk]
[clk]

clk_0
[clk]
[clk]

avalon_data_trans...
external_interface
B ck_0
clk_in
clk_in_reset
clk
clk_reset

Avalon Streaming Sink
Conduit

Clock Source

Clock Input

Reset Input

Clock Output

Reset Output

serial

clk_0
reset_0

Double-click to export

exported

clk_0

10. At this point we now need to configure the connections between the two blocks. The
goal here is to have the streaming source of one block connect to the streaming sink
of the other. Make sure that you do not configure the block to feed the data back

into itself. The connections should look like the image below

11.

E io_awvalon_interfa...
reset
clk

io_interface
Reset Input
Clock Input

clk_0

avalon_streaming...
avalon_streaming...
conduit_end

B rs232_0
clk
reset
avalon_data_recei...

Avalon Streaming Sink
Avalon Streaming Source
Conduit

R5232 UART

Clock Input

Reset Input

Avalon Streaming Source

io_handler

Double-click to export

[clk]
[clk]

clk_0
[clk]
[clk]

avalon_data_trans...
external_interface
B ck 0
clk_in
clk_in_reset
clk
clk_reset

‘Avalon Streaming Sink

Conduit
Clock Source
Clock Input
Reset Input
Clock Dutput
Reset Output

serial

clk_0
reset_0

Double-click to export

exported

clk_0

With this complete. The last step is to simply generate the HDL using generate —
generate HDL. You can then copy the instantiation template using generate — show
instantiation templates. It should look similar to the image below if you are using a

new project

Fall 2020

ECE5S760 - Remote 10

computer system ul |

.serial RXD (<connected-to—serial RXD>),

.serial_ TED {<connected-to-serial_ TED>),

.10 handler key out {<connected-to-io handler key out>),
.io_handler psh out {<connected-to-io_handler psh out>),

.10 handler reset {<connected-to—io handler reset>),
-io_handler fifo full {<connected-to-io_handler fifo full:x),

.10 _handler fifo data valid (<connected-to-io handler fifo data wvalid>),
.io_handler seven_seg 1 (<connected-to-ic_handler seven seg 1>},

.10 _handler seven seqg 2 (<connected-to-io handler seven seg 2>),
.io_handler seven_seg_3 {<connected-to-ic_handler seven seg_3>),

.10 handler seven seqg 4 {<connected-to-io handler seven seg 4>),
.io_handler seven_seg S {<connected-to-ioc_handler seven seg 5>),

.10 handler seven seg & {<connected-to—io handler seven seg &),
.io_handler led in {<connected-to-io_handler led in>),

.10 handler fifo data in (<connected-to-io handler fifo data in>),
.io_handler pot_out {<connected-to-io_handler pot out>),
ol ol (<connected-to-clk 0 clk>),
.reset_(_reset_n {<connected-to-reset_(_reset_nx)

3 Configuring the Top-Level

This section focuses on instantiating the system defined in the previous step, and configuring
quartus to define pins for our external connections.

3.1 Instantiating the Qsys system

If you have not done so already, copy the instantiation template from Qsys. This is an
incredibly helpful tool that will ensure we do not miss any ports when instantiating our
new system. Once copied, paste this template into your top-level design file. We will now
begin to setup the connections necessary to get the design compiling.

1. To start with, assign a 1 bit 1 to both of the reset ports. As we won’t have anyway
of resetting the system manually, there is no need for us to connect an actual button
to either reset signal.

2. Connect a 50MHz clock signal to clk_0_clk. If you are using a new project, define this
clock signal as an input CLK_50. Make sure this is included in the port list as well.

3. With the clocks and resets taken care of, we now need to connect the serial ports.
Define a 1-bit output port TX, and a 1-bit input port RX. NOTE: Don’t forget to
add these to the port list as well. Connect these two ports to the serial RXD and
serial TXD connections in our instantiated module. Make sure to connect RX to
RXD and TX to TXD. At this point your top-level should look something like the
image below. Note: if you are using a new project, define a 10-bit output port
LEDR as well. This will be useful for debugging.

7 Fall 2020

ECE5S760 - Remote 10

Imodule DE1_SoC_Computer (

LEDR,

CLK_50,

RX,

)

b &
input CLK_50;
input RX;
output 16
output [9:0] LEDR; |

I computer_system u0 (

.clk_0_clk (CLK_50),
.io_handler_key_out i !
.io_handler_psh_out (), !
.io_handler_reset (1'b1)},
.io_handler_fifo_full (), [
.io_handler_fifo_data_valid (O, //
.io_handler_seven_seg_1 (O, !
.io_handler_seven_seqg_2 (), Y
.io_handler_seven_seg_3 Q. iy
.io_handler_seven_seg_4 Q, //
.io_handler_seven_seg_5 (), £
.i0_handler_seven_seg_6 O, I
.io_handler_led_in O,
.io0_handler_fifo_data_in), Vi
.io_handler_pot_out (O, /
.reset_0_reset_n (1'b1},
.serial_RXD (RX),
.serial_TxD (Tx)

X

4. For testing purposes we want some way of knowing that data is being passed from
the GUI to the fpga, and vice versa. To accomplish this we will make use of the
potentiometer and LEDs on the GUI. To start, create an 8-bit wire call POT and
connect it to the pot_out connection on our module.

5. From here, assign the first eight bits of the LEDR port to our new pot connection,
and then assign LEDR to the led_in connection on our new module. This will not
only send the LED information back to the GUI, but also enable the LEDs on the
fpga itself. Your top-level should now look like the following:

8 Fall 2020

ECE5S760 - Remote 10

Imodu le DE1_SoC_Computer (

LEDR,

CLK_50,

RX,

™

¥;
input CLK_50;
input RX;
output T
output [9:0] LEDR;

wire [7:0] POT;
assign LEDR[7:0] = POT[7:0]; |

I computer_system uQ (

.clk.0_clk (CLK_50),
.io_handler_key _out ,
.io_handler_psh_out (1,
.io_handler_reset (1'b1),
.io_handler_fifo_full (O,
.io_handler_fifo_data_valid (), //
.io_handler_seven_seg_1 1§ /i
.i0_handler_seven_seqg_2 (), L
.io_handler_seven_seg_3 (), i
.io_handler_seven_seg_4 (), g
.io_handler_seven_seg_5 CJ, £
.i0_handler_seven_seg_ 6), fi
.io_handler_led_in (LEDR),
.io_handler_fifo_data_in (), L
.io_handler_pot_out (POT),
.reset_0_reset_n (1'b1),
.serial_RXD (RX),
.serial_TxD (Tx)

3.2 Pin Assignments and Project Files

1. If you were to try compiling this design now. You will notice that quartus will com-
plain that there is no module ”computer_system”. This is because we need to add
a file generated by Qsys to our project. To do this goto Project —Add/Remove
Files. Once in this gui click the small .. icon and browse to the following file: com-
puter_system/synthesis/computer_system.qip . Once selected make sure to click the
add button near the top of the GUI and then click ok. You should now see the qip file
listed in the project files. The qip file is a "quartus IP file” and specifies to quartus
the file paths for all the verilog files associated with the IP it was generated for. This
is useful as we do not need to manually add each file being used in gsys to the project.

2. From here, our next step is to run analysis and elaboration. We need to do this in-
order to allow quartus to see what ports the top-level module has declared. This will
be important for our next step. To run analysis and elaboration go to processing —
start — analysis and elaboration.

9 Fall 2020

ECE5S760 - Remote 10

3. Now that we have run analysis and elaboration, we want to make use of the pin
planner to assign pins to our RX, TX, CLK_50, and LEDR ports. To save the time
and trouble, there is a tcl script prepared already which will do these pin
assignments. Navigate to tools — tcl scripts. Once here find the FPGA folder and
select pin_assign.tcl With the script open click run and it will automatically assign
the pins and the necessary voltage levels. If you now go to assignments — pin
planner, you should see that every pin has a location and 3.3V I/O standard
NOTE: if you are not working from a new project but instead are using the existing
DE1_SoC_Computer you should only need to go to assignments — pin planner and
assign pins for RX and TX like in the following image. It should be noted that these
pins may already be taken by GPIO_0[0] and [1]. Remove those assignments.

m R Input PIM Y17 44 B4A NO 3.3V LVTTL
- TX Output PIM AC18 44 B4A NO 3.3V LVTTL

4. At this point you can now compile your project and there should no longer be any
errors. Once you have finished compiling, program the FPGA.

4 Running and using the GUI

At this point everything should be ready to go on the FPGA side. The only remaining
steps are to check which COM port the arduino is connected to, and ensure the GUI
program is attempting communication with this port. To begin check the COM port the
arduino is on by going to device manager and scrolling down until you see the COM ports
section. Here you should see a device listed as USB-SERIAL CH340 like in the image
shown below. Make sure that the COM port that appears here matches the COM port
specified on line 12 of gui.py and gui-fpga.py found in the GUI folder. It is recommended
at this point to open the arduino code found in the arduino folder of the zip file, and flash
the code to the board (remember to select the proper COM port in the arduino IDE).

v §f Ports (COM & LPT)
¥i Communications Port (COM3)
USB-SERIAL CH340 (COMS)

Open a terminal of your choice and navigate to where you unzipped the GUI folder. You
should now be able to run gui-fpga.py using the command (python gui-fpga.py). This
should open a GUI similar to the one seen in Figure 1 on page 2. NOTE: if for some
reason you get a python error talking about serial not having a write object, this means
that the program failed to connect to the arduino. Once again, make sure that the COM
port specified is the one for the arduino. Note, if you use the arduino IDE to open the
”serial console”, this will prevent the GUI from being able to use the COM port. You
cannot have both the GUI and ”serial console” open simultaneously.

With the GUI now running you should be able to make use of the various buttons and
switches available.

10 Fall 2020

ECE5S760 - Remote 10

4.1

Functionality of the GUI

Here we will briefly talk about the functionality current available on the GUI. The image
in Figure 1: shows the current GUI that opens when using gui-fpga.py.

1.

Seven-Segs: The seven segment displays can be used to display information sent
from the FPGA. Simply sending a binary encoded digit (0-15) to any of the
seven_seg inputs will result in the data eventually being displayed on the
corresponding seven segment display here on the GUIL.

These displays are actually just text elements which use a seven segment font, so
adding additional displays for other uses should be simple. The font used also
includes letters if one wanted to expand the functionality to allow for hex displays.

. LEDs: The LEDs on the GUI are tied to the led_in port of the gsys module on the

FPGA. When a bit on the input port is set high, the corresponding LED on the GUI
will change from black (off) to red (on).

Toggle Switches: The toggle switches can be used just like the normal toggle
switches on the fpga. Pressing a toggle switch will place a check-mark in the box
and will update the key_out port to have a 1 for the corresponding switch. When
the switch is pressed again, the bit will be set back to 0.

. Push Buttons: the push buttons work similarly to the toggle switches. When the

button is pressed and held down, the corresponding bit on the psh_out port is set to
1. When the button on the GUI is then released, the bit is set back to 0.

. Potentiometer: The potentiometer sends an 8-bit value to the FPGA. This allows

the user to act as if they have the output of a potentiometer hooked-up to an ADC.
As such, by adjusting the slider, the port on the FPGA side will change accordingly.
The example program created earlier in this document ties the LEDs on the GUI to
this potentiometer so that we can see the values changing.

Sync Button: The sync button is a way of ensuring that the current state of the
GUI is correctly represented on the FPGA. For example, if the GUI is closed or
crashes when a toggle switch is currently high, this high state will remain on the
FPGA, but the switch will appear to be low when the GUI is restarted. Pressing the
sync button will send the status of the potentiometer and all toggle switches to the
FPGA, so it can update its outputs accordingly.

5 Quartus Interface - Details

This section is meant to give an in-depth explanation of the system on the FPGA. It will
mainly focus on explaining the currently implemented blocks and features, and describe
the various ports currently defined in the top-level. This section is intended to allow the
reader to gain an understanding of how to use the interface currently provided.

11 Fall 2020

ECE5S760 - Remote 10

H Port Length Description
clk 1-bit Provides a clock signal for the system to use
reset 1-bit reset signal for everything in io_interface
reset_n 1-bit reset signal for clock generator
key_out 10-bits contains the state of each toggle switch
psh_out 4-bits contains the state of each push button
pot_out 8-bits contains the number displayed on the potentiometer of the GUI
fifo_full Variable contains the full flag for each FIFO
fifo_data_valid Variable used to indicate data on the input of a FIFO is valid
fifo_.data_in =~ Variable used to insert data into each FIFO
seven_seg(1-6) 4-bits used to insert data into a seven seg FIFO
led_in 10-bits used to insert the state of each LED into the led FIFO
RXD 1-bit UART serial input
TXD 1-bit UART serial output

The table above gives a list and short description of the various ports on the io interface.
Here, we will discuss a few of the ports needed to interact with the remote io system.

1. seven_seg: The seven_seg ports are meant for sending data to the GUI. Each port
is used for sending data specific to that seven_seg display. (0 being the rightmost
display on the GUI). It is important to note that GUI expects decimal numbers
encoded as binary, NOT seven seg controls. Thus if you want to display a 2, simply
put an 4’b0010 onto the seven_seg port. There is no need for a seven segment
controller.

The rate at which the data on these ports is sampled is based on the seven seg timer
parameter that appears in Qsys. As the clock we are using is a 50MHz clock, the
default seven seg timer is set to 25,000,000. This means the data on the port is
sampled and sent to the GUI every half second.

2. led_in: The led_in port is similar to the seven_seg port and is meant for sending the
state of each LED to the GUI. Unlike the seven_seg ports however, there is only one
LED port. The led_in port is 10 bits wide and as such, each bit is used to encode the
status of one LED. If you want to say that LEDs 0 and 1 are high and the rest are
low, simply send a 10’b0000000011.

Once again, the rate at whch the data on this port is sampled is based on the led
timer parameter that appears in Qsys. The default value is set so that the status of
the LEDs is sent every eighth of a second.

3. pot_out, psh_out, key_out: These three ports are all fairly similar, and allow you
to use the push buttons, toggle switches, and potentiometer as if you were in person.

12 Fall 2020

ECE5S760 - Remote 10

pot_out is an 8-bit value which contains the binary equivalent of the value displayed
on the GUI. key_out and psh_out represent the values of each push button and
toggle switch on the GUI (high or low). This allows you to read these values just as
easily as you would normally read the value of the buttons and switches.

4. fifo_data_in, fifo_data_valid, fifo_full the FIFO ports are the more complex part
of the interface and are meant as a way for you to extend the functionality of the
GUI. Lets say you wanted to add a new feature to the GUI (graph for example) and
you want to send data to that graphing element, these FIFO ports are the way for
you to do that.

The first thing to note about the FIFO ports is that they are variable in size. The
size of each port is determined by the GEN_FIFO parameter from Qsys. This
parameter allows you to easily change the number of general FIFOs without having
to modify the underlying infrastructure. It should also be noted that you can change
both the amount of data a FIFO holds (FIFO_DEPTH) and the width of each piece
of data (FIFO_WIDTH). However, the system will not allow you to have a depth
less than 1 or a width less than 32. NOTE: DO NOT CHANGE THE FIFO
WIDTH AT THIS TIME

The width of the fifo_data_in port is (64 x GEN_FIFO). Every 64 bits will be the
data in for a separate fifo. Thus if you want to send data into two fifos, one
assignment would be from [63:0] and the second would be from [127:64]. The size of
fifo_data_valid and fifo_full simply scale with GEN_FIFO. To push data into a FIFO
you must set the corresponding fifo_data_valid bit on the clock cycle you would like
to do so.

It is NOT recommended to leave the valid high, as you will quickly fill the FIFO and
begin to lose data. The fifo_full bit corresponding to each FIFO can be used to
determine when a fifo is full and is a helpful way of providing flow control. It should
be noted however that sending data whenever the FIFO is not full may also be
problematic since we are relying on the arduino to pass messages, and it may not be
able to handle sending and receive data at extremely high rates. As such it is
recommended to use a timer system to send messages every so often.

Hopefully from the explanation of the various ports you should now have an idea of what
data is available on the fpga side and how you can send data to the GUI. But what about
handling new data sent from the GUI to the fpga? The following section describes the

serial protocol currently in place and how you can add to it to support new functionality.

5.1 Serial Protocol

The serial protocol currently implemented is fairly basic and mostly exists to provide a
way to frame the data being sent back and forth. The diagram below shows how data is
broken up in the existing protocol.

13 Fall 2020

ECE5S760 - Remote 10

1. 0x80 : start_char The start_char is used to indicate to serial receivers that a
message is beginning. This allows us to properly begin receiving a message without
needing some sort of additional reliability mechanisms or handshakes

2. type: The type byte is used to indicate to a receiver what device/function a
message is meant for. Receivers will then handle the payload accordingly based on
the type of the message. A table of the currently supported message types can be
seen in appendix A.1

3. payload_length The payload length byte is used to indicate to the serial
transmitter how long of a message is to be sent. The transmitter will then send that
many bytes followed by an end_char. This is also used by receivers to check whether
an error in transmission occurred (the payload length field doesn’t match with how
many bytes were received before end_char was detected).

4. payload: The payload is dependent upon the type of message. Typically for a push
button, the payload will contain which push button it is and what event is occurring
(either a press or release). A table of events/functions can be seen in appendix A.2

5. 0x81 : end_char The end_char is used to allow serial receivers to know that the
current message has finished being received. Alongside the payload length this is one
way of ensuring some sort of reliability since there is currently no re-transmission or
check sums implemented.

5.2 System Infrastructure

This section will describe underlying infrastructure on the FPGA side. The goal here is to
provide an understanding of how everything is working together for those who wish to
expand upon its functionality or correct any errors.

5.2.1 Data Transmission

Appendix A.3 Shows an overview of the io_interface block. As can be seen the general
infrastructure revolves around a series of FIFOs. These FIFOs take in data from
fifo_data_in as well as the seven segment and LED data. The empty bits of the FIFOs are
then combined to form the request vector of the round robin arbiter. This is a relatively
fast arbiter which allows us to chose which FIFO to pull data from in a single cycle. The
arbiter is also work conserving so there are no additional cycles when looping back around
the last FIFO to the first one. The grant of this round-robin arbiter feeds into a

14 Fall 2020

ECE5S760 - Remote 10

multiplexer which is then used to send data to the serial transmitter. It should be noted
that data is only popped from a FIFO when the serial transmitter is ready to receive new
data.

For those looking to expand on the existing data the FPGA sends, it is as simple as
adding more general FIFOs via the parameters described in previous sections. The point
of describing the transmission process is to present its weaknesses so that they can be
avoided. Currently it takes roughly 0.2 milliseconds (based on 38400 baud) to send a byte
of data (or roughly 1.6 milliseconds to send a full 64-bit packet). As such, data can only be
taken from a FIFO roughly once every 1.6 milliseconds. If every FIFO in the system has
data, it would take (1.6 x N)milliseconds to make one round trip of all the FIFOs. If the
rate at which data is entering the FIFOs increases beyond this point, the FIFOs will begin
to fill up and eventually data will be lost. To avoid this, it is recommended to make the
rate at which you enter data into the FIFOs much slower, or make use of the fifo_full port.

5.2.2 Data Receiving

The serial receiver is where data being sent to the FPGA is handled. Data handling
begins when the receiver reads in a start_char. Data is then continually stored in internal
registers until an end_char is found. Once this occurs the serial receiver looks at the type
of message, payload length and function and determines what to do with the data. In the
case of toggle switches for example, it will change the state of key_out depending on which
switch number was in the payload and if the function byte in the payload is a switch
event. If the function byte was instead a sync event, a different action occurs. For those
looking on how to modify the system to allow the FPGA to receive new events, this is
where you will need to begin.

5.2.3 Modifying the System

Appendix A.4 shows the FSM for the serial receiver. The "PROCESS” state is where the
serial receiver processes a received packet. In order to handle new data, you will need to
add a new statement to this state in (serial_receiver.sv). Use the other statements as a
guide on how to process your own data, as a note, the start character and end characters
are not a part of the data being stored for processing. You will likely need to add
additional ports to both (serial_receiver.sv and io_avalon_interface.sv) in order to get new
data to the top-level module. When making theses change it is important to note that you
will need to modify the io_interface Qsys component in-order to get the changes to take
effect. There are two ways you can accomplish this.

1. Qsys Component Editor: The component editor is a great way of editing Qsys
components; however, I would not recommend using it for simply adding new ports
to the conduit interface. This is due to the fact that when adding new ports, it
tends to mess up the interfaces and reset parameter groupings. Additionally in
Quartus 15.1 the component editor is bugged, and any syntax or verilog issues (even
a missing semicolon) will result in a "null module error” with no other provided

15 Fall 2020

ECE5S760 - Remote 10

information. If you would still like to use it, you can simply run analyze synthesis
files in the files tab, and that should find your new ports.

2. TCL file editing: This is probably the simpler way to add a new port to a conduit.
In the gsys folder which lives in the FPGA folder, you will find
(io_avalon_interface_hw.tcl). This is the tcl script that tells Qsys which ports exist,
what size they are, what parameters are there, etc. Lets say I wanted to add a new
port called "NEW_IN” all I would need to do is add the following line to the bottom
of the file.
add_interface_port conduit_end NEW_IN new_in Output 8
The above line tells Qsys that we want our internal port declaration of NEW_IN to
become new_in when it gets exported via the conduit. Additionally, it tells Qsys that
this port should be 8 bits in width. When you then generate the HDL in Qsys, it
will take care of creating this port and you can add it to your top level instantiation.

5.3 Modifying the GUI

With an understanding of how data is sent and received on the FPGA side, lets now take
a look at how we can modify the GUI to add new functionality. The GUI uses the python
GUI library known as PySimpleGUI. It is recommended that one take a brief look at the
examples and documentation provided by PySimpleGUI before attempting to modify the
GUI. From reading the documentation you will discover that PySimpleGUI handles
updates to the GUI through an event system. When a button is pressed for example, an
event will be triggered, with the event name being equal to the "key” defined in the
creation of the button. We use these events to then take an action. In the case of a
button, we send a serial message corresponding to either the press or release of a button
using the python serial library. If you would like to add addition functionality to the GUI,
you will likely need to follow a similar process. Currently, the serial protocol byte
definitions occur in protocol.py

In terms of handling new data being sent to the GUI, one should only need to add a new
case to the handle_serial function. Previous functions should have already taken care of
reading in a serial message and storing it in the serial_storage array. Once again the start
and end bytes are not stored in this array, so keep this in mind when indexing.

6 References and Documents

This section is intended to go through various references/documents that were used in this
project, and that may be helpful to anyone looking to create a similar project. A list of
references can be seen in Appendix A.4.

16 Fall 2020

ECE5S760 - Remote 10

6.1 Project Setup Guide

Appendix A.4.1 includes a link to a DE1-SoC project setup guide. This guide goes
through what is required to setup a project from scratch in Quartus, including creating
the empty project, doing pin assignments, configuring the top-level, and more. This guide
was made for more recent versions of Quartus; however, most of what it describes is still
relevant to Quartus 15.1

6.2 DE1-SoC User Manual

Appendix A.4.2 includes a link to a DE1-SoC user manual. This manual includes a lot of
information on the usage of the board, from the various peripherals it has, to several
example projects showing how to use the FGPA and HPS together. Chapters 2 and 3 were
particularly useful for this system.

1. Chapter 2 shows the overall diagram of the board along with a diagram which shows
which peripherals are connected to the FPGA, and which are connected to the HPS.
This is useful as it allows one to see what devices the FPGA has access to without
needing any sort of pin muxing in Qsys.

2. Chapter 3 goes into detail on each peripheral connected to both the FPGA and
HPS. In cases where applicable, the manual also provides a circuit diagram of the
peripheral, which is helpful in seeing what the default state may be (pull-ups to 3.3V
in the case of the push buttons). Along with descriptions of each peripheral, the
manual also provides the list of associated pins for use in the pin planner. This saves
one the trouble of trying to figure out the pins arrangements themselves.

6.3 Quartus Handbook

Appendix A.4.3 includes a link to the intel Quartus IT Handbook for version 15.1. This is
a rather massive 1600 page guide which covers pretty much every detail about Quartus
that you would want to know. Here we will mention a couple of sections that were
particularly useful.

1. Section 5: Creating Qsys Components - Page 265 This section discusses how
to create a Qsys component in extreme detail, so what in here is useful to take a
look at? For starters take a look at table 5-1. This table provides a description of
each interface type available in this version of Qsys. If you are looking to create a
new Qsys component, understanding the various interfaces and their use cases
should help guide you in determining what you need to make your design function as
intended. Here we will provide a brief description of each interface to help clear up
any confusion:

(a) Memory-Mapped: The Avalon memory mapped interface is mainly meant to
be used between a "host” and a series of ”slaves”. Each slave device will

17 Fall 2020

ECE5S760 - Remote 10

consists of some sort of write-able or readable RAM /memory which is given an
associated address range in Qsys. When the host wants to read from or write
to these slave devices, it will specify an address on the Avalon bus, along with a
serie of other signals. You can think of this interface as being similar to an 12C
protocol, so if you are looking to setup communications between a master, and
multiple other devices, this would be a way of doing that.

(b) Streaming (ST): The Avalon Streaming interface is used for unidirectional
transfer of data from one device to another. What this means is that data flows
from the data source port of one device to the data sink port of another. While
the interface is ”unidirectional”, a device can have both a data source and sink
port, allowing for it to simultaneously read data in, and write data out. In
terms of flow control, the interface is different from the memory mapped
interface in that is uses a simple val/rdy protocol to allow device to know when
data can be sent or received. If you only need to communicate from one device
to another, this is the way to go.

(¢) Conduit: The conduit interface is different from the other two interface
mentioned so far, in that it is more of a way to provide data sharing, rather
than data communications. What is meant by this is that data put on a conduit
is just like any other wire you might create in a file. The conduit interface has
no val/rdy signls, or write enable signals, so it is up to the hardware on both
sides to know when to sample data. As such, the conduit interface is meant to
be used as a simple input/output port rather than a communications port.

The remainder of this section goes into great detail on the various types of Qsys
components, and the ways to create them. For the purposes of simplification, there
are really two main ways of creating and editing components in Qsys. Both of these
methods were mentioned earlier in this document in section 5.2.3, but we will
describe them in a little more detail here.

(a) Qsys Component Editor: The component editor is a really useful tool for
getting started on creating a new Qsys component. It is particularly useful in
that it will allow you to generate a TCL script for a component simply by
analyzing the HDL files you specify for your component. By then making use of
the parameters and signals tabs, one can configure and create an entire Qsys
module without the need for editing an TCL scripts. Additionally, page 278 of
the Qsys handbook describes the various prefixes that can be used for naming
ports in a HDL file. Using a prefix in the format of jinterface type
prefix; _jsignal type; will automatically tell the component editor to assign that
port to the interface of that type. This will make ones life much easier when
using the component editor. Unfortunately however, the component editor does
have its limitations. The parameter system that Qsys has is very cool, but its
abilities are limited to assigning parameters to groups if you are using the

18 Fall 2020

ECE5S760 - Remote 10

component editor. For anything outside of this, you will need to use a TCL
script.

(b) TCL Scripts: TCL scripts are used in Qsys to define the various interfaces,

parameter configurations, display items, etc, that a module contains. As
mentioned before, the component editor actually generates a TCL script when
it is used, so it is recommended that one uses the component editor when first
creating a component. However, once that initial TCL script has been
generated, we can modify the TCL script to allow us to have more flexibility.
As an example of what we can do, let say that you want to limit the range of a
parameter, so that it can’t take just any random value. We can accomplish this
using the parameter property ALLOWED_RANGES, which is shown on
handbook page 286. Furthermore, lets say you wanted to make a ”optional port
or interface”, you can also accomplish this through modifications to the TCL
script, like the ones towards the bottom of page 288 of the handbook. For those
interested, appendix A.4.5 links to the section of the Qsys/Platform Designer
documentation which discusses all of the available properties that can be used
in scripting.

Outside of the ways to make a component and the types of interfaces, the section
also goes into a lot of other details (including how to create composed modules /
subsystems, dynamically generated parameters, and more), but those are topics that
were not necessary for this system, and so will not be discussed here.

A Appendix

A.1 Serial Protocol Types

H Char Type H
0x82 push button
0x83 toggle switch
0x84 key pad
0x85 seven segment
0x86 LED
0x87 potentiometer

A.2 Serial Protocol Functions

H Char Function H
0x70 button press
0x71 button release
0x72 toggle (toggle switch)
0x73 sync

19 Fall 2020

ECE5S760 - Remote 10

A.3 FPGA System Overview

serial transmitter

round robin —Grant/ Select——3»

arbiter

serial receiver

FIFO_EMPTY— FIFO FIFO FIFO FIFO —_

-~ A A
4

fifo_data_in) psh_out

fifo dat: lid fIfO_fU" key_out

ITo_qQata_vall DOt—OUt

A.4 References
A.4.1 DE1-SoC Project Setup Guide
PDF Project Setup Guide

A.4.2 DE1-SoC User Manual
PDF DEI1-SoC User Manual Revf

A.4.3 Quartus 15.1 Handbook
PDF Quartus Handbook

A.4.4 Avalon Interface Specification
WEB Avalon Specification

20 Fall 2020

https://www.intel.com/content/dam/altera-www/global/en_US/uploads/1/1f/Introduction_to_Digital_Logic_and_Altera_FPGAs_Using_the_DE0_CV_Development_Kit.pdf
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=836&FID=3a3708b0790bb9c721f94909c5ac96d6
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/archives/qts-qpp-handbook-15.1.1.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351

ECE5S760 - Remote 10

A.4.5 Platform Designer (Qsys) Property Specification
WEB Property Specification

21 Fall 2020

https://www.intel.com/content/www/us/en/programmable/documentation/jrw1529444674987.html#mwh1409958757897

	Overview
	What to Read

	Adding Components to Qsys
	Configuring the Top-Level
	Instantiating the Qsys system
	Pin Assignments and Project Files

	Running and using the GUI
	Functionality of the GUI

	Quartus Interface - Details
	Serial Protocol
	System Infrastructure
	Data Transmission
	Data Receiving
	Modifying the System

	Modifying the GUI

	References and Documents
	Project Setup Guide
	DE1-SoC User Manual
	Quartus Handbook

	Appendix
	Serial Protocol Types
	Serial Protocol Functions
	FPGA System Overview
	References
	DE1-SoC Project Setup Guide
	DE1-SoC User Manual
	Quartus 15.1 Handbook
	Avalon Interface Specification
	Platform Designer (Qsys) Property Specification

