A I:l 1 D A Introduction to the Altera
—u b Qsys System Integration Tool

For Quartus Il 14.0

1 Introduction

This tutorial presents an introduction to Altera’s Qsys system integration tool, which is used to design digital hard-
ware systems that contain components such as processors, memories, input/output interfaces, timers, and the like.
The Qsys tool allows a designer to choose the components that are desired in the system by selecting these com-
ponents in a graphical user interface. It then automatically generates the hardware system that connects all of the
components together.

The hardware system development flow is illustrated by giving step-by-step instructions for using the Qsys tool in
conjuction with the Quartus® II software to implement a simple example system. The last step in the development
process involves configuring the designed hardware system in an actual FPGA device, and running an application
program. To show how this is done, it is assumed that the user has access to an Altera DE-series Development and
Education board connected to a computer that has Quartus II and Nios® II software installed. The screen captures in
the tutorial were obtained using the Quartus II version 14.0; if other versions of the software are used, some of the
images may be slightly different.

Contents:

* Nios II System

* Altera’s Qsys Tool

* Integration of a Nios II System into a Quartus II Project

* Compiling a Quartus II Project when using the Qsys Tool

» Using the Altera Monitor Program to Download a Designed Hardware System and Run an Application Pro-
gram

Altera Corporation - University Program 1
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

2 Altera DE-series FPGA Boards

For this tutorial we assume that the reader has access to an Altera DE-series board, such as the one shown in Figure 1.
The figure depicts the DE2-115 board, which features an Altera Cyclone IV FPGA chip. The board provides a lot
of other resources, such as memory chips, slider switches, pushbutton keys, LEDs, audio input/output, video input
(NTSC/PAL decoder) and video output (VGA). It also provides several types of serial input/output connections,
including a USB port for connecting the board to a personal computer. In this tutorial we will make use of only a
few of the resources: the FPGA chip, slider switches, LEDs, and the USB port that connects to a computer.

Although we have chosen the DE2-115 board as an example, the tutorial is pertinent for other DE-series boards that
are described in the University Program section of Altera’s website.

Figure 1. An Altera DE2-115 board.

3 A Digital Hardware System Example

We will use a simple hardware system that is shown in Figure 2. It includes the Altera Nios® II embedded processor,
which is a soft processor module defined as code in a hardware-description language. A Nios II module can be
included as part of a larger system, and then that system can be implemented in an Altera FPGA chip by using the
Quartus II software.

2 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus II 14.0

Host computer

USB-Blaster
Reset n Clock interface

| |

|
Nios II processor |
|

FPGA chip
JTAG Debug JTAG UART
module interface

Avalon switch fabric

On-chi Switches LEDs
memorl}), parallel input parallel output
interface interface

S

SW7 SWO0 LEDG7 LEDGO

Figure 2. A simple example of a Nios II system.

As shown in Figure 2, the Nios II processor is connected to the memory and I/O interfaces by means of an inter-
connection network called the Avalon switch fabric. This interconnection network is automatically generated by the
Qsys tool.

The memory component in our system will be realized by using the on-chip memory available in the FPGA chip.
The I/O interfaces that connect to the slider switches and LEDs will be implemented by using the predefined modules
that are available in the Qsys tool. A special JTAG UART interface is used to connect to the circuitry that provides a
USB link to the host computer to which the DE-series board is connected. This circuitry and the associated software
is called the USB-Blaster. Another module, called the JTAG Debug module, is provided to allow the host computer
to control the Nios II system. It makes it possible to perform operations such as downloading Nios II programs into
memory, starting and stopping the execution of these programs, setting breakpoints, and examining the contents of

Altera Corporation - University Program 3
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

memory and Nios II registers.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware description
language, a knowledgeable user could write such code to implement any part of the system. This would be an
onerous and time consuming task. Instead, we will show how to use the Qsys tool to implement the desired system
simply by choosing the required components and specifying the parameters needed to make each component fit the
overall requirements of the system. Although in this tutorial we illustrate the capability of the Qsys tool by designing
a very simple system, the same approach is used to design larger systems.

Our example system in Figure 2 is intended to realize a trivial task. Eight slider switches on the DE2-115 board,
SW7 -0, are used to turn on or off the eight green LEDs, LEDG7 —0. To achieve the desired operation, the eight-bit
pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs. This will
be done by having the Nios II processor execute a program stored in the on-chip memory. Continuous operation is
required, such that as the switches are toggled the lights change accordingly.

In the next section we will use the Qsys tool to design the hardware depicted in Figure 2. After assigning the FPGA
pins to realize the connections between the parallel interfaces and the switches and LEDs on the DE2-115 board,
we will compile the designed system. Finally, we will use the software tool called the Altera Monitor Program to
download the designed circuit into the FPGA device, and download and execute a Nios II program that performs the
desired task.

Doing this tutorial, the reader will learn about:

» Using the Qsys tool to design a Nios II-based system
* Integrating the designed Nios II system into a Quartus II project
* Implementing the designed system on the DE2-115 board

* Running an application program on the Nios II processor

4 Altera’s Qsys Tool

The Qsys tool is used in conjuction with the Quartus II CAD software. It allows the user to easily create a system
based on the Nios II processor, by simply selecting the desired functional units and specifying their parameters. To
implement the system in Figure 2, we have to instantiate the following functional units:

* Nios II processor

* On-chip memory, which consists of the memory blocks in the FPGA chip; we will specify a 4-Kbyte memory
arranged in 32-bit words

* Two parallel I/O interfaces

JTAG UART interface for communication with the host computer

4 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

To define the desired system, start the Quartus II software and perform the following steps:

1. Create a new Quartus II project for your system. As shown in Figure 3, we stored our project in a directory
called gsys_tutorial, and we assigned the name lights to both the project and its top-level design entity. You
can choose a different directory or project name. Step through the screen for adding design files to the project;
we will add the required files later in the tutorial. In your project, choose the FPGA device used on your
DE-series board. A list of FPGA devices on the DE-series boards is given in Table 1.

e . =)

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?
D:\gsys_tutorial

What is the name of this project?

lights

What is the name of the toplevel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.
lights

Use Existing Project Settings...

[< Back] [Mext = J [Finish] [Cancel] [Help

Figure 3. Create a new project.

Board Device Name
DEO-Nano Cyclone IVE EPACE22F17C6
DE1-SoC | Cyclone V SoC SCSEMASF31C6
DE2-115 Cyclone IVE EP4CE115F29C7

Table 1. DE-series FPGA device names

2. After completing the New Project Wizard to create the project, in the main Quartus II window select Tools >
Qsys, which leads to the window in Figure 4. This is the System Contents tab of the Qsys tool, which is used
to add components to the system and configure the selected components to meet the design requirements. The
available components are listed on the left side of the window.

Altera Corporation - University Program 5
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

F Bl

& Qsys =S X
File Edit System Generate View Tools Help
E P Catalog &% = t: System Contents 52 | AddressMap &1 | Interconnect Requirements &Y | Device Family &2 il =
\ % @ 9 |Use Conn... Name Description Export Clock Base
Project X B dk_0o Clock Source
L e G et E; dk_in Clock Input clk exported
Lihra:v . dk_in_reset Reset Input reset
: =
[#]-Basic Functions is Tt B
A dk_reset Reset Qutput
-DSP
-Interface Protocols v
-Memory Interfaces and Controllers -
-PLL .
[#-Processors and Peripherals ?
[#-Qsys Interconnect
T, Herarchy & il |
i} msaved
[S
+)- B reset
Fe-4k ck_0
q [| "
- Messages &% _=m|
Type Path Message
4 1 | +
0 Errors, 0 Warnings Generate HOL...
A

Figure 4. Create a new Nios II system.

3. The hardware system that will be generated using the Qsys tool runs under the control of a clock. For this
tutorial we will make use of the 50-MHz clock that is provided on the DE2-115 board. In Figure 4 select View
> Clocks to bring the Clocks tab to the foreground, as illustrated in Figure 5. Here, it is possible to specify
the names and frequency of clock signals used in the project. If not already included in this tab, specify a
clock named clk_0 with the source designated as External and the frequency set to 50.0 MHz. The settings
are made by clicking in each of the three columns: Name, Source and MHz.

Return to the System Contents tab.

Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

-

A Qsys

File Edit System Generate View Tools Help

E P Catalog &% | — ' M| SystemContents £% | AddressMap E2 [‘x\E Clocks 2@] Interconnect Requirements &2 | Device Family &%
4

X @ Clocks
Source MHz

MName
clk_o 50.0 Remave

Project
Library

[#-Basic Functions

-DSP

-Interface Protocols

-Memory Interfaces and Controllers
-PLL

[#-Processors and Peripherals
--sts Interconnect

Edit... & Add...

T, Herarchy & il |

[=Junsaved|
[S
B= reset

4 ck_0

External

E Messages ia - o

Type Path Message

| +

1

1
Generats HOL...

0 Errors, 0 Warnings

Figure 5. The Clock Settings tab.

4. Next, specify the processor as follows:

* On the left side of the Qsys window expand Processors and Peripherals, select Embedded Proces-
sor > Nios Il Processor and click Add, which leads to the window in Figure 6.

Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

F ~
& Nios II Processor - nios2_gsys_0 |
%E Nios II Processor
Magetors® altera_nios2_gsys
[~ Block Diagram | |1 Core Nios 11 | Caches and Memory Inter faces | Advanced Features | MMU and MPU Settings | JTAG Debug Module -
[Show signals |~ Select a Nios II Core iy
Nios II Core: @ fa
nios2_gsys_0 =
<_ASYS_ () Nios 1Ifs
3 letock avalan| data_master () Nios TIff
eset_n avalan| instruction_master
- o a0 debug mocle res Nios II/e Nios II/s Nios II/f
p | fiag_debug_nodule_Teszt)
= RISC RISC RISC
et clul " " ist struct st
pasdebug moStle lovon i _ustom custon petructionnasiey ||| | Nlios IT a2-bit 2. 2t
a Selector Guide Instruction Cache Instruction Cache
LA GE Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply E
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Memory Usage {e.g Stratix Iv) | Two M3Ks (or equiv.) Two MIKs + cache Three M3Ks + cache
|' Hardware Arithmetic Operation
Hardware multiplication type: Embedded Multipliers
Hardware divide
~ Reset Vector
Reset vector memory: [Mone - ||
Reset vector offset: 0x00000000
Reset vector: 0x00000000
= ion Vector
Exception vector memory: Mone =
Exception vector offset: 0x00000020
Exception vector: 0x00000000
&) Error: nios2_gsys_0: Reset slave is not specified. Please select the reset slave
0 Error: nios2_gsys_0: Exception slave is not specified, Please select the exception slave
@ Info: nios2_gsys_0: Flease note that for early evaluation, preview versions of new Nios II Gen2 Processors are available with this release.
e —= — = =

Figure 6. Create a Nios II processor.

* Choose Nios II/e which is the economy version of the processor. This version is available for use without
a paid license. The Nios II processor has reset and interrupt inputs. When one of these inputs is activated,
the processor starts executing the instructions stored at memory addresses known as reset vector and
interrupt vector, respectively. Since we have not yet included any memory components in our design,
the Qsys tool will display corresponding error messages. Ignore these messages as we will provide the
necessary information later. As of Quartus II version 14.0, you must disable the Include reset_req
signal for OCI RAM and Multi-Cycle Custom Instructions setting in the Advanced Features tab to
ensure proper operation. It is important that the checkbox is unchecked, otherwise you will experience
issues when loading programs onto the system using the Altera Monitor Program. Click Finish to return
to the main Qsys window, which now shows the Nios II processor specified as indicated in Figure 7.

Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

=

A Qsys

m@ﬂ

File Edit System Generate View Tools Help

i‘. IP Catalog &% = ! _, System Contents 2% | AddressMap &% | InterconnectRequirements &% | Device Famiy % il =
v 4 |Use Connections Name Description Expart Clodk Bz
oY X p p
[&-DSP i X B dk_0 Clock Source
--Inberfaca Protocols D C— dk_in Clock Input ck exporied
[#-Memory Interfaces and Controller 'x = dk_in_reset Reset Input reset
[-PLL r dk Clock Qutput dk_0
[J-Processors and Peripherals — dk_reset Reset Qutput
i}-Co-Processors = — B nios2_gsys_0 Mios II Processor
| [=-Embedded Processors dk Clock Input wnconnected
: Mios II Gen2 Processc— = reset n Reset Input [clk]
\? data_master Avalon Memory Mapped Master [clk]
ard Processor Systems - instruction_master Avalon Memory Mapped Master [clk]
m | 5 d_irg Interrupt Receiver [clk]
jtag_debug_medule_r... [Reset Qutput [clk]
y jtag_debug_module Avalon Memory Mapped Slave [clk]
.. | i)
! custom_instruction_m... [Custom Instruction Master
I T, Herarchy & | il |
[l
| (M unsaved
t]- =k
1k nios2_gsys_0
Fl-[| Connections < i 8
E Messages &5 - El
Type Path Message @
=%] 4 Errors -
(|
0 unsaved.nios2_gsys_0|Reset slave is not specified. Please select the reset slave =
8 unsaved.nios2_gsys_0 |Exception slave is not specified. Please select the exception slave i

<

1

| 3

4 Errors, 0 Warnings

Figure 7. Inclusion of the Nios II processor in the design.

5. To specify the on-chip memory perform the following:

» Expand the category Basic Functions, and then expand to select On Chip Memory > On-Chip Mem-
ory (RAM or ROM), and click Add

* In the On-Chip Memory Configuration Wizard window, shown in Figure 8, ensure that the Data width
is set to 32 bits and the Total memory size to 4K bytes (4096 bytes)

* Do not change the other default settings

* Click Finish, which returns to the System Contents tab as indicated in Figure 9

Altera Corporation - University Program

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

r 5
A& On-Chip Memory (RAM or ROM) - onchip_memory2_1 &J

On-Chip Memory (RAM or ROM
E, aItera_avalz')l)ﬂ_onchip_me:ol52)

|+ Block Diagram |
[show signals

|' Memory type |

Type: RAM (Writable) v |
. Dual-port access
onchip_memaory2_1 [loualn
Single dock operation
L= Read During Write Mode: DONT_CARE

1) Block type: AUTO |

eset]

altera_avalon_onchip_memory2 |~ size
Data width: 33 |
Total memory size: 4095 bytes

Minimize memory block usage (may impact fmax)

[~ Read latency
Slave s1 Latency: 1 |

Slave s2 Latency: i

|~ ROM/RAM Memory Protection |
Reset Request: Enabled .|

|' ECC Parameter |
Extend the data width to support ECC bits: |pisabled -

[* Memory initialization |

Initialize memory content

[Enable non-default initialization file
Type the filename {e.q: my_ram.hex) or select the hex file using the file browser button.
User created initialization file: onchip_mem.hex
[”] Enable In-System Memory Content Editor feature
Instance ID: NOME

Memory will be initialized from unsaved_onchip_memory2_1.hex

Figure 8. Define the on-chip memory.

6. Observe that while the Nios II processor and the on-chip memory have been included in the design, no con-
nections between these components have been established. To specify the desired connections, examine the
Connections area in the window in Figure 9. The connections already made are indicated by filled circles
and the other possible connections by empty circles, as indicated in Figure 10.

Clicking on an empty circle makes a connection. Clicking on a filled circle removes the connection.

Make the following connections:

* Clock inputs of the processor and the memory to the clock output of the clock component

* Reset inputs of the processor and the memory to both the reset output of the clock component and the
jtag_debug_module_reset output

* The s/ input of the memory to both the data_master and instruction_master outputs of the processor

The resulting connections are shown in Figure 11.

10 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

F hl
& Qsys [E=REE S

File Edit System Generate View Tools Help

E 1P Catalog 22 = t: System Contents 5% l AddressMap &% | Interconnect Requirements 3% | Device Family &2 =
o [@ AP |Use | Connections L\\, MName Description Export Clock B
= X B dk_0o Clock Source
@ C— dk_in Clock Input clk exported
. C— dk_in_reset Reset Input reset
Avalon FIFO Memory — ck Clock Output dk_0
Avalon-5T Dual Clock FIFO [a ch_reset Reset Output
Avalon-5T Multi-Channel SH= k Bl nios2_gsys_0 Mios IT Processor
Avalon-5T Round Robin Sct — dk Clock Input uncom,
Avalon-5T Single Clock FIFt . reset n Reset Input [clk]
(E; data_master Avalon Memory Mapped Master [clk]
mulation; Debug and Verification = instruction_master Avalon Memory Mapped Master [clk]
o ¥ d_irg Interrupt Receiver [clk]
jtag_debug_module_r... [Reset Qutput [clk]
Edit... o Add... jtag_debug_module Avalon Memory Mapped Slave [clk]
custom_instruction_m. .. (Custom Instruction Master
B onchip_memory2_0 |On-Chip Memory (RAM or ROM)
.. Herarchy 22 M| dki Clock Input
sl Avalon Memory Mapped Slave [ck1]
'Q unsaved resetl Reset Input [ck1]
=k
B= reset
LF ck_D
Lk nios?_gsys_0
Lk onchip_memory2_0 < o
[#--[__| Connections

s

1

o,
g)a L=

Type Path Message @
=%] & Errors =
0 unsaved.nios2_gsys_0 Reset slave is not spedified. Please select the reset slave 9
%] unsaved.nios2_gsys_0 Exception slave is not spedfied. Please select the exception slave i

4| 1 | [

& Errors, 1Warring Generate HDL...

Figure 9. The on-chip memory included on a DE-series board.

Connections MName Description Export
B dk_0 Clock Source
CH dk_in Clock Input clk
CH dk_in_reset Reset Input reset
dk Clock Qutput
dk_reset Reset Output
E nios2_gsys_0 Mios IT Processor
dk Clock Input
reset_n Reset Input
data_master Avalon Memory Mapped Master
instruction_master Avalon Memory Mapped Master
d_irg Interrupt Receiver
jtag_debug_module_r... Reset Qutput
jtag_debug_module Avalon Memory Mapped Slave
custorn_instruction_m... |Custom Instruction Master
E onchip_memory2 0 |On-Chip Memory (RAM or ROM)
dki Clock Input
51 Avalon Memory Mapped Slave
resetl Reset Input

Figure 10. Connections that can be made.

Altera Corporation - University Program 11
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

12

Connections MName Description Export
B dk_0 Clock Source
dk_in Clock Input clk
dk_in_reset Reset Input reset
—_— dk Clock Output
—_— dk_reset Reset Output
E nios2_gsys_0 Mios IT Processor
dk Clock Input
reset_n Reset Input
—] data_master Avalon Memory Mapped Master
— instruction_master Avalon Memory Mapped Master
d_irg Interrupt Receiver
jtag_debug_module_r... Reset Qutput
jtag_debug_module Avalon Memory Mapped Slave
custorn_instruction_m... |Custom Instruction Master
E onchip_memory2 0 |On-Chip Memory (RAM or ROM)
dk1 Clock Input
51 Avalon Memory Mapped Slave
resetl Reset Input

Figure 11. The connections that are now established.

7. Specify the input parallel I/O interface as follows:

* Select Processors and Peripherals > Peripherals > PIO (Parallel I/O) and click Add to reach the
PIO Configuration Wizard in Figure 12

* Specify the width of the port to be 8 bits and choose the direction of the port to be Input, as shown in the
figure.

* Click Finish.

Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

F
L PIO (Parallel O) - pio_0 [
“"‘* PIO (Parallel 1/0)
Magecen altera_avalon_pio
4
|~ Block Diagram I
- |' Basic Settings |
[] Show signals Width (1-32 bits): 3
~ Direction:
pio_0
&7ch0|{
eset _
() Output
i
Output Port Reset Value: |nx0000000000000000
sternal_connection
[~ Output Register |
g I i 5
e Enable individual bit setting/dearing
|' Edge capture register |
| synchronously capture
Edge Type: RISING
Enable bit-dearing for edge capture register
[+ Interrupt
[Generate IRQ
IRQ Type: LEVEL
Level: Interrupt CPU when any unmasked 1/0 pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled
[* Test bench wiring
[] Hardwire PIO inputs in test bench
| | Drive inputs to: 0x0000000000000000
] M +
@ Info: pio_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation. ‘

Figure 12. Define a parallel input interface.

8. In the same way, specify the output parallel I/O interface:
* Select Peripherals > Microcontroller Peripherals > PIO (Parallel I/O) and click Add to reach the
PIO Configuration Wizard again
* Specify the width of the port to be 8 bits and choose the direction of the port to be Output.
* Click Finish to return to the System Contents tab

9. Specify the necessary connections for the two PIOs:

* Clock input of the PIO to the clock output of the clock component

» Reset input of the PIO to the reset output of the clock component and the jtag_debug_module_reset
output

* The s/ input of the PIO the data_master output of the processor

The resulting design is depicted in Figure 13.

Altera Corporation - University Program 13
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

Use

Connections Name
B ck_0
C dk_in
C ck_in_reset
————————¢ dk
—————— ck_reset
E nios2_gsys_0
ck
reset n
—r data_master
— instruction_master
d_irq
—(jtag_debug_module_r...

jtag_debug_madule
custom_instruction_m...
E onchip_memory2_0

dk1

sl

resetl
B pio_0

dk

reset

sl
external_connaction
B pio_1

dk

reset

sl
external_connaction

Description

Clock Source

Clock Input

Reset Input

Clock Qutput

Reset Output

Mios II Processor

Clock Input

Reset Input

Avalon Memary Mapped Master
Avalon Memary Mapped Master
Interrupt Receiver

Reset Output

Avalon Memary Mapped Slave
Custom Instruction Master
On-Chip Memory (RAM or ROM)
Clock Input

Avalon Memary Mapped Slave
Reset Input

PIO (Parallel 1/0)

Clock Input

Reset Input

Avalon Memary Mapped Slave
Conduit

PIO (Parallel 1/0)

Clock Input

Reset Input

Avalon Memary Mapped Slave
Conduit

Export

clk
reset

Clock

ck_0

clk_0
[ck]
[ck]
[ck]
[ck]
[ck]
[ck]

clk_0
[dk1]
[dk1]

clk_0
[ck]
[ck]

clk_0
[dk]
[dk]

Base

IRg 0

0x0800

0x0000

0x0000

0x0000

Figure 13. The system with all components and connections.

End

IRQ 31

Ox0£EL

Ox0£££

0x000£

0x000£

IRQ Tags

10. We wish to connect to a host computer and provide a means for communication between the Nios II system
and the host computer. This can be accomplished by instantiating the JTAG UART interface as follows:

14

* Select Interface Protocols > Serial > JTAG UART and click Add to reach the JTAG UART Configu-
ration Wizard in Figure 14

* Do not change the default settings

* Click Finish to return to the System Contents tab

Connect the JTAG UART to the clock, reset and data-master ports, as was done for the PIOs. Connect the
Interrupt Request (IRQ) line from the JTAG UART to the Nios II processor by selecting the connection under
the IRQ column, as shown in Figure 15. Once the connection is made, a box with the number O inside will
appear on the connection. The Nios II processor has 32 interrupt ports ranging from O to 31, and the number
in this box selects which port will be used for this IRQ. Click on the box and change it to use port 5. Make
sure the irq port of JTAG UART gets automatically connected to the d_irq port of Nios II Processor.

Altera Corporation - University Program

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0
-
A& JTAG UART - jtag_uart 0
%E JTAG UART
Megacom” altera_avalon_jtag_uart
|+ Block Diagram n -
- |~ write FIFO (Data from Avalon to JTAG) |
[T show signals Buffer depth (bytes): :54 -
IRQ threshold:
jtag_uart_0 e 8
[] Construct using registers instead of memory blocks
i BT
= intemupt |' Read FIFO (Data from JTAG to Avalon)
BEEL ot Buffer depth (bytes): |54 -
walon_jtag_slave " IRQ threshold: s '
altera_avalon | || Construct using registers instead of memory blocks
[~ Allow multiple ions
[Allow multiple connections to Avalon JTAG slave
< 10 b
.
Figure 14. Define the JTAG UART interface.
Altera Corporation - University Program 15

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

Use Connections Name

B cdk_o

C dk_in

C clk_in_reset
———————= ck

————————< clk_reset
E nios2_gsys_0
ck
reset_n
—r data_master
— = instruction_master

d_irg
— jtag_debug_module_r...
jtag_debug_modulz
custom_instruction_m. ..
E onchip_memory2_0
ck1
sl
resetl
B pio_0
ck
reset
sl
external_connaction
B pio_1
ck
reset
sl
external_connaction
B jtag_uart_0
ck
reset
avalon_jtag_slave
irg

Description

Clock Source

Clock Input

Reset Input

Clock Cutput

Reset Output

Mios II Processor

Clock Input

Reset Input

Avalon Memory Mapped Master
Avalon Memory Mapped Master
Interrupt Receiver

Reset Output

Avalon Memory Mapped Slave
Custom Instruction Master
On-Chip Memory (RAM or ROM)
Clock Input

Avalon Memory Mapped Slave
Reset Input

PIO (Parallel 1/0)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel 1/0)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

JTAG UART

Clock Input

Reset Input

Avalon Memory Mapped Slave
Interrupt Sender

Export

clk
reset

Clock

dk_0

clk_0
[ck]
[ck]
[ck]
[ck]
[ck]
[ck]

clk_0
[dk1]
[dk1]

clk_0
[ck]
[ck]

clk_0
[ck]
[ck]

clk_0
[ck]
[ck]

Dowble-click [dk]

Base

IRg 0O

0x0800

0x0000

0x0000

0x0000

0x0000

End

IR 31

0x0££E

Ox0££E

0x000£

0x000£

0x0007

Figure 15. Connect the IRQ line from the JTAG UART to the Nios II processor.

IRQ Tags

ey

11. Note that the Qsys tool automatically chooses names for the various components. The names are not neces-
sarily descriptive enough to be easily associated with the target design, but they can be changed. In Figure 2,
we use the names Switches and LEDs for the parallel input and output interfaces, respectively. These names
can be used in the implemented system. Right-click on the pio_0 name and then select Rename. Change the
name to switches. Similarly, change pio_1 to LEDs. Figure 16 shows the system with name changes that we

16

made for all components.

Altera Corporation - University Program

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

Use Connections Mame Description Export Clock Base End IRQ Tags
= ck 0 Clock Source
(s dk_in Clock Input clk exported
o dk_in_reset Reset Input reset
———————¢ dk Clack Output clk_0
—————— dk_reset Reset Output
E nios2_processor Mios II Processar
dk Clock Input clk_0
reset_n Reset Input [iclk]
— data_master Avalon Memory Mapped Master [iclk]
—t instruction_master Avalon Memory Mapped Master [iclk]
—1— d_irg Interrupt Receiver [iclk] IRg O IR 31—,
—(jtag_debug_module_r... [Reset Output [iclk]
jtag_debug_module Avalon Memary Mapped Slave [iclk] 0x0800 |OxO££E
custom_instruction_m... [Custom Instruction Master
B onchip_memory On-Chip Memory (RAM or ROM)
dkl Clock Input clk_0
sl Avalon Memaory Mapped Slave [clk1] 0x0000 |OxOEEE
resetl Reset Input [clk1] %
B switches PIO (Parallel 1/0)
dk Clack Input clk_0
reset Reset Input [clk]
51 Avalon Memary Mapped Slave [clk] 0x0000 |0x000£
external_connection Conduit
Bl LEDs PIO (Parallel 1/0)
dk Clock Input clk_0
reset Reset Input [iclk]
sl Avalon Memaory Mapped Slave [iclk] 0x0000 |0x000£
external_connection Conduit
Bl jtag_uart ITAG UART
dk Clock Input clk_0
reset Reset Input [iclk]
avalon_jtag_slave Avalon Memary Mapped Slave [iclk] 0x0000 |0x0007
*-— irg Interrupt Sender [iclk] >—E|

Figure 16. The system with all components appropriately named.

12. Observe that the base and end addresses of the various components in the designed system have not been
properly assigned. These addresses can be assigned by the user, but they can also be assigned automatically
by the Qsys tool. We will choose the latter possibility. However, we want to make sure that the on-chip
memory has the base address of zero. Double-click on the Base address for the on-chip memory in the Qsys
window and enter the address 0x00000000. Then, lock this address by clicking on the adjacent lock symbol.
Now, let Qsys assign the rest of the addresses by selecting System > Assign Base Addresses (at the top of
the window), which produces an assignment similar to that shown in Figure 17.

Altera Corporation - University Program 17
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

Use Connections Name
= dk 0
C dk_in
C dk_in_reset
——————— ck
——————— ck_reset
B nios2_processor
ck
reset n
—r data_master
— instruction_master
d_irq
— jtag_debug_module_r...

jtag_debug_module
custom_instruction_m...

B onchip_memory
ck1
s1
resetl
B switches
ck

reset

sl
external_connaction
Bl LEDs

ck

reset

s1
external_connaction
B jtag_uart

ck

reset
avalon_jtag_slave
-— irg

Figure 17. The system with assigned addresses.

Description

Clock Source

Clock Input

Reset Input

Clock Output

Reset Output

Mios II Processor

Clock Imput

Reset Input

Avalon Memary Mapped Master
Avalon Memary Mapped Master
Interrupt Receiver

Reset Output

Avalon Memary Mapped Slave
Custom Instruction Master
On-Chip Memory (RAM ar ROM)
Clock Input

Avalon Memary Mapped Slave
Reset Input

PIO (Parallel 1,0)

Clock Imput

Reset Input

Avalon Memary Mapped Slave
Conduit

PIO (Parallel 1/0)

Clock Input

Reset Input

Avalon Memary Mapped Slave
Conduit

JTAG UART

Clock Imput

Reset Input

Avalon Memary Mapped Slave
Interrupt Sender

Export

clk

Clock

ck_0

clk_0
[ck]
[ck]
[ck]
[ck]
[ck]
[ck]

clk_0
[dk1]
[dk1]

clk_0
[ck]
[ck]

clk_0
[ck]
[ck]

clk_0
[ck]
[ck]
[ck]

Base

IRQ 0

Ox1g800

& 0x0000

0x2010

0x2000

0x2020

End

IRQ 31

Ox1££E

Ox0£££

Ox201£

0x200£

0x2027

IRQ Tags

e

13. The behavior of the Nios II processor when it is reset is defined by its reset vector. It is the location in the
memory device from which the processor fetches the next instruction when it is reset. Similarly, the exception
vector is the memory address of the instruction that the processor executes when an interrupt is raised. To
specify these two parameters, perform the following:

18

* Right-click on the nios2_processor component in the window displayed in Figure 17, and then select
Edit to reach the window in Figure 18

* Select onchip_memory.sl to be the memory device for both reset and exception vectors, as shown in

Figure 18

* Do not change the default settings for offsets

* Observe that the error messages dealing with memory assignments shown in Figure 6 will now disappear

Click Finish to return to the System Contents tab

Altera Corporation - University Program

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

:
| 53 Parameters i3

unsaved > nios2_processar

Nios II Processor

altera_nios2_gsys

Core Nios TI | Caches and Memary Interfaces | Advanced Features | MMU and MPU Settings I ITAG Debug Mudu\el

[~ Select a Nios II Core

Branch Prediction
Hardware Multiply
Hardware Divide

Mios II Core: (@ Nios ITje
() Nios ITfs
(T Nios ILff
Nios II/e Nios II/s Nios II/f
= RISC RISC RISC
Nios II 32-bit 32:bit 32-0it
Selector Guide Instruction Cache Instruction Cache

Branch Prediction

Hardware Multiply

Hardware Divide

Barrel Shifter

Data Cache

Dynamic Branch Prediction

Memory Usage (g.g Stratix IV)

Two M9Ks {or equiv.)

Two M3Ks + cache

Three M3Ks + cache

\' Hardware Arithmetic Operation

Hardware multiplication type:

Hardware divide

Embedded Multipliers

~ Reset Vector

Reset vector memory:
Reset vector offset:
Reset vector:

onchip_memory.s1
0x00000000
0x00000000

[* Exception Vector

Exception vector memary:
Exception vector offset:
Exception vector:

onchip_memory.s1
0x00000020
0x00000020

[MMU and MPU

Include MMU

m

Figure 18. Define the reset and exception vectors.

14. So far, we have specified all connections inside our nios_system circuit. It is also necessary to specify connec-
tions to external components, which are switches and LEDs in our case. To accomplish this, double click on
Double-click to export (in the Export column of the System Contents tab) for external_connection of the
switches PIO, and type the name switches. Similarly, establish the external connection for the lights, called

leds. This completes the specification of our nios_system, which is depicted in Figure 19.

Altera Corporation - University Program
August 2014

19

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

Use Connections Name

= dk_0

C— dk_in
C— dk_in_reset

——— ck

———— dk_reset
E nios2_processor
dk
reset_n
— data_master

— instruction_master
d_irg
— jtag_debug_module_r...
jtag_debug_module
custom_instruction_m...
B onchip_memory
dk1
s1
resetl
B switches
dk
reset
51
i external_connection
El LEDs
dk
reset
s1
< external_connection
B jtag_uart
dk
reset
avalon_jtag_slave
—— irq

Figure 19. The complete system.

Description
Clock Source
Clock Input
Reset Input
Clock Output
Reset Output
Mios II Processor
Clock Input
Reset Input
Avalon Memaory Mapped Master
Avalon Memaory Mapped Master
Interrupt Receiver
Reset Output
Avalon Memaory Mapped Slave
Custom Instruction Master
On-Chip Memory (RAM or ROM)
Clock Input
Avalon Memory Mapped Slave
Reset Input
PIO (Parallel 1/0)
Clock Input
Reset Input
Avalon Memaory Mapped Slave
Conduit
PIO (Parallel 1/0)
Clock Input
Reset Input
Avalon Memory Mapped Slave
Conduit
JTAG UART
Clock Input
Reset Input
Avalon Memaory Mapped Slave
Interrupt Sender

Export

clk

switches

Clock

clk_0
k]
k]
k]
k]
k]
k]

clk_0

ck1]
k1]

clk_0
k]
k]

clk_0
k]
k]

clk_0
k]
k]
k]

Base

IRQ O

Oxl1800

@ 0x0000

022010

02000

022020

End

IRD 31

Ox1fff

0x0££E

0xZ201£

0xZ200£

0xZ2027

IRQ Tags

"

15. Having specified all components needed to implement the desired system, it can now be generated. Save the
specified system; we used the name nios_system. Then, select Generate > Generate HDL, which leads to the
window in Figure 20. Select None for the options Simulation > Create simulation model and Testbench
System > Create testbench Qsys system, because in this tutorial we will not deal with the simulation
of hardware. Click Generate on the bottom of the window. When successfully completed, the generation
process produces the message “Generate Completed".

20

Exit the Qsys tool to return to the main Quartus II window.

Altera Corporation - University Program

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

.
L Generation @

|~ synthesis |

Synthesis files are used to compile the system in a Quartus II project.
Create HDL design files for synthesis: [yerjog v |

[] Create timing and resource estimates for third-party EDA synthesis tools.

Create block symbol file (,bsf)

|~ Simulation |

The simulation model contains generated HOL files for the simulator, and may indude simulation-only features.

Create simulation model: [Mone. | U
Allow mixedHanguage simulation

Enable this if your simulator supports mixedHanguage simulation.

|' Output Directory ‘

Path: D:fqsys_tutorial fnios_system E]
|
U

Figure 20. Generation of the system.

Changes to the designed system are easily made at any time by reopening the Qsys tool. Any component in the
System Contents tab of the Qsys tool can be selected and edited or deleted, or a new component can be added and
the system regenerated.

5 Integration of the Nios Il System into a Quartus Il Project

To complete the hardware design, we have to perform the following:

* Instantiate the module generated by the Qsys tool into the Quartus II project
* Assign the FPGA pins
* Compile the designed circuit

* Program and configure the FPGA device on the DE2-115 board

5.1 Instantiation of the Module Generated by the Qsys Tool

The Qsys tool generates a Verilog module that defines the desired Nios II system. In our design, this module will have
been generated in the nios_system.v file, which can be found in the directory gsys_tutorial/nios_system/synthesis of

Altera Corporation - University Program 21
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

the project. The Qsys tool generates Verilog modules, which can then be used in designs specified using either
Verilog or VHDL languages.

Normally, the Nios II module generated by the Qsys tool is likely to be a part of a larger design. However, in the
case of our simple example there is no other circuitry needed. All we need to do is instantiate the Nios II system in
our top-level Verilog or VHDL module, and connect inputs and outputs of the parallel I/O ports, as well as the clock
and reset inputs, to the appropriate pins on the FPGA device.

The Verilog code in the nios_system.v file is quite large. Figure 21 depicts the portion of the code that defines the
input and output ports for the module nios_system. The 8-bit vector that is the input to the parallel port switches is
called switches_export. The 8-bit output vector is called leds_export. The clock and reset signals are called clk_clk
and reset_reset_n, respectively. Note that the reset signal was added automatically by the Qsys tool; it is called
reset_reset_n because it is active low.

module nios system |
input wire [7:0] switches export, S awitches.export

output wire [7:0] leds export, £ leds.export
input wire reset_reset n, £ reset.reset_n
input wire clk clk £ clk.clk

Figure 21. A part of the generated Verilog module.

The nios_system module has to be instantiated in a top-level module that has to be named /lights, because this is the
name we specified in Figure 3 for the top-level design entity in our Quartus II project. For the input and output ports
of the lights module we have used the pin names that are specified in the DE2-115 User Manual: CLOCK_50 for the
50-MHz clock, KEY for the pushbutton switches, SW for the slider switches, and LEDG for the green LEDs. Using
these names simplifies the task of creating the needed pin assignments.

5.1.1 Instantiation in a Verilog Module

Figure 22 shows a top-level Verilog module that instantiates the Nios II system. If using Verilog for the tutorial, type
this code into a file called /ights.v, or use the file provided with this tutorial.

22 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

// Implements a simple Nios II system for the DE-series board.
/ Inputs: ~ SW7-0 are parallel port inputs to the Nios II system
/" CLOCK_50 is the system clock
/! KEYO is the active-low system reset
// Outputs: LEDG7-0 are parallel port outputs from the Nios II system
module lights (CLOCK_50, SW, KEY, LEDG);
input CLOCK_50;
input [7:0] SW;
input [0:0] KEY;
output [7:0] LEDG;
// Instantiate the Nios II system module generated by the Qsys tool:
nios_system NiosII (
.clk_clk(CLOCK_50),
reset_reset_n(KEY),
.switches_export(SW),
Jdeds_export(LEDG));
endmodule

Figure 22. Instantiating the Nios II system using Verilog code.

5.1.2 Instantiation in a VHDL Module

Figure 23 shows a top-level VHDL module that instantiates the Nios II system. If using VHDL for the tutorial, type
this code into a file called lights.vhd, or use the file provided with this tutorial.

Altera Corporation - University Program 23
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

-- Implements a simple Nios II system for the DE-series board.

-- Inputs: SW7-0 are parallel port inputs to the Nios II system

-- CLOCK_50 is the system clock

-- KEYO is the active-low system reset

-- Outputs: LEDG7-0 are parallel port outputs from the Nios II system

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY lights IS

PORT (
CLOCK_50 : IN STD_LOGIC;
KEY : IN STD_LOGIC_VECTOR (0 DOWNTO 0);
SW : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
LEDG : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);

END lights;

ARCHITECTURE lights_rtl OF lights IS
COMPONENT nios_system
PORT (
SIGNAL clk_clk: IN STD_LOGIC;
SIGNAL reset_reset_n : IN STD_LOGIC;
SIGNAL switches_export : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL leds_export : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
)
END COMPONENT,;
BEGIN
NioslI : nios_system
PORT MAP(
clk_clk => CLOCK_50,
reset_reset_n => KEY(0),
switches_export => SW(7 DOWNTO 0),
leds_export => LEDG(7 DOWNTO 0)
)
END lights_rtl;

Figure 23. Instantiating the Nios II system using VHDL code.

24 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

6 Compiling the Quartus Il Project

Add the lights.v/vhd file to your Quartus II project. Also, add the necessary pin assignments for the DE-series board
to your project. The procedure for making pin assignments is described in the tutorial Quartus Il Introduction Using
Verilog/VHDL Designs. Note that an easy way of making the pin assignments when we use the same pin names as
in the DE2-115 User Manual is to import the assignments from a Quartus II Setting File with Pin Assignments. For
example, the pin assignments for the DE2-115 board are provided in the DE2-115.gsf file, which can be found on
Altera’s DE2-115 web pages.

Since the system we are designing needs to operate at a 50-MHz clock frequency, we can add the needed timing
assignment in the Quartus II project. The tutorial Using TimeQuest Timing Analyzer shows how this is done. How-
ever, for our simple design, we can rely on the default timing assignment that the Quartus II compiler assumes in
the absence of a specific specification. The compiler assumes that the circuit has to be able to operate at a clock
frequency of 1 GHz, and will produce an implementation that either meets this requirement or comes as close to it
as possible.

Finally, before compiling the project, it is necessary to add the nios_system.qip file (IP Variation file) in the directory
gsys_tutorial/nios_system/synthesis to your Quartus II project. Then, compile the project. You may see some warn-
ing messages associated with the Nios II system, such as some signals being unused or having wrong bit-lengths of
vectors; these warnings can be ignored.

7 Using the Altera Monitor Program to Download the Designed Circuit and Run an Appli-
cation Program

The designed circuit has to be downloaded into the FPGA device on a DE-series board. This can be done by using
the Programmer Tool in the Quartus II software. However, we will use a simpler approach by using the Altera
Monitor Program, which provides a simple means for downloading the circuit into the FPGA as well as running the
application programs.

A parallel I/O interface generated by the Qsys tool is accessible by means of registers in the interface. Depending
on how the PIO is configured, there may be as many as four registers. One of these registers is called the Data
register. In a PIO configured as an input interface, the data read from the Data register is the data currently present
on the PIO input lines. In a PIO configured as an output interface, the data written (by the Nios II processor) into the
Data register drives the PIO output lines. If a PIO is configured as a bidirectional interface, then the PIO inputs and
outputs use the same physical lines. In this case there is a Data Direction register included, which determines the
direction of the input/output transfer. In our unidirectional PIOs, it is only necessary to have the Data register. The
addresses assigned by the Qsys tool are 0x00002010 for the Data register in the PIO called switches and 0x00002000
for the Data register in the PIO called LEDs, as indicated in Figure 17.

Our application task is very simple. A pattern selected by the current setting of slider switches has to be displayed
on the LEDs. We will show how this can be done in both Nios II assembly language and C programming language.

Altera Corporation - University Program 25
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

7.1 A Nios Il Assembly Language Program

Figure 23 gives a Nios II assembly-language program that implements our task. The program loads the addresses of
the Data registers in the two PIOs into processor registers r2 and r3. It then has an infinite loop that merely transfers
the data from the input P1O, switches, to the output PIO, leds.

.equ switches, 0x00002010
.equ leds, 0x00002000
.global _start
_start: movia 12, switches
movia 13, leds
LOOP: Idbio r4, 0(r2)
stbio r4, 0(r3)
br LOOP
.end

Figure 24. Assembly-language code to control the lights.

The directive .global _start indicates to the Assembler that the label _start is accessible outside the assembled
object file. This label is the default label we use to indicate to the Linker program the beginning of the application
program.

For a detailed explanation of the Nios II assembly language instructions see the tutorial Introduction to the Altera
Nios II Soft Processor, which is available on Altera’s University Program website.

Enter this code into a file lights.s, or use the file provided with this tutorial, and place the file into a working directory.
We placed the file into the directory gsys_tutorial\app_software.

7.2 A C-Language Program

An application program written in the C language can be handled in the same way as the assembly-language pro-
gram. A C program that implements our simple task is given in Figure 24. Enter this code into a file called lights.c,
or use the file provided with this tutorial, and place the file into a working directory.

#define switches (volatile char *) 0x0002010
#define leds (char *) 0x0002000
void main()
{ while (1)
*leds = *switches;

}

Figure 25. C-language code to control the lights.

26 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

7.3 Using the Altera Monitor Program

The Altera University Program provides the monitor software, called Altera Monitor Program, for use with the DE-
series boards. This software provides a simple means for compiling, assembling and downloading of programs onto
a DE-series board. It also makes it possible for the user to perform debugging tasks. A description of this software
is available in the Altera Monitor Program tutorial. We should also note that other Nios II development systems are
provided by Altera, for use in commercial development. Although we will use the Altera Monitor Program in this
tutorial, the other Nios II tools available from Altera could alternatively be used with our designed hardware system.

Open the Altera Monitor Program, which leads to the window in Figure 26.

r [r———
i Altera Menitor Program [Mios II] EIL

Eile Settings Actions Windows Help

HE BB 2pnl @
Disassembly *. | Registers

Goto instruction‘ Address (hex) or symbol namr::| | Go Mw

-

L4 N
Disassemhlyj Bleakpoinisj Memmy/f Watchszlace/f

Terminal — | Info & Errors Y

Info & Errors j‘ GDB Server /J‘

Figure 26. The Altera Monitor Program main window.

Altera Corporation - University Program 27
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

The monitor program needs to know the characteristics of the designed Nios II system, which are given in the file
nios_system.qsys. Click the File > New Project menu item to display the New Project Wizard window, shown in
Figure 27, and perform the following steps:

1. Enter the gsys_tutorial\app_software directory as the Project directory by typing it directly into the Project
directory field, or by browsing to it using the Browse... button.

2. Enter lights_example (or some other name) as the Project name

3. Select Nios Il as the Architecture and click Next, leading to Figure 28.

[2 New Project Wizard =5
Specify a project name and directory

Project directory:

|D:\q5}r5_tut0ria|\app_50ftware | | Browse... |

Project name:

|Iight5_examp|e |

Architecture: ||Nios I '”

Figure 27. Specify the project directory and name.

28 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

[2 New Project Wizard =5
Specify a system

~Select a system

|<Custom Systern = "| | Documentation

Specify a system by selecting a system description (SOPClnfo) file, and cptional Quartus I programming
(50F) and Quartus IJTAG debugging information (JDI) files.

~System details
System description file (SOPClnfo):

|D:Iqsys_tutu:urialfnins_system.sopcinfn | | Browse...|

Quartus I programming (SOF) file (optional):

|D:/qsys_tutnriaIfnutput_filesflights.snf | | Browse...|

The SOF file represents the FPGA programming file for the hardware system. If it is specified here, then
the Maonitor Pregram can be used to download this programming file onto the board. Otherwise, the
system will need to be downloaded using some other method (for example, by using Quartus T).

Quartus I JTAG debugging information (JDI) file:

| | Browse... |

The JDI file is required for multiprocessor systems designed in Qsys, It stores the JTAG Device IDs, These
IDs are needed for communication between the Monitor Program and the system's multiple processors
and/or ITAG UARTs.

| < Eack| | Mext > | | Finish | | Qancel|

Figure 28. The System Specification window.

4. From the Select a System drop-down box select Custom System, which specifies that you wish to use the
hardware that you designed.

Click Browse... beside the System description field to display a file selection window and choose the
nios_system.sopcinfo file. Note that this file is in the design directory gsys_tutorial.

Select the lights.sof file in the Quartus Il programming (SOF) file field, which provides the information
needed to download the designed system into the FPGA device on the DE-series board. Click Next, which
leads to the window in Figure 29.

Altera Corporation - University Program 29
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

[New Project Wizard =)
Specify a program type

Program Type: | Select a program type... v|

Select a program type from the drop-down menu above,

You rust select a program type to proceed.

| <Eack| | Mext > || Finish | Cancel

Figure 29. Specification of the program type.

5. If you wish to use a Nios II assembly-language application program, select Assembly Program as the pro-
gram type from the drop-down menu. If you wish to use a C-language program, select C Program. Click
Next, leading to Figure 30.

6. Click Add... to display a file selection window and choose the lights.s file, or lights.c for a C program, and
click Select. We placed the application-software files in the directory gsys_tutorial\app_software. Upon
returning to the window in Figure 30, click Next.

30 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

[2 New Project Wizard =5
Specify program details

~Source files

First source file is used to determine the name of the binary pregram file.

D:/qsys_tutorial/app_software/lights.s | Add... |

| Remove |

r Program options

Start symbol: |_start |

| <Back|| Next> || Finish | | Cancel|

Figure 30. Specify the application program to use.

7. In the window in Figure 31, ensure that the Host Connection is set to USB-Blaster, the Processor is set to
nios2_processor and the Terminal Device is set to jtag_uart. Click Next.

Altera Corporation - University Program 31
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

-

< New Project Wizard =

Specify system parameters

~System parameters
Host connection:| USB-Blaster [USB-0] ~| [[Refresh
Processor |ni052_processor '|
Terminal device: |jtag_uart v|

| < Eack| | Mext > | | Finish | | Cancel |

Figure 31. Specify the system parameters.

8. The Monitor Program also needs to know where to load the application program. In our case, this is the mem-
ory block in the FPGA device. The name assigned to this memory is onchip_memory. Since there is no other
memory in our design, the Monitor Program will select this memory by default, as shown in Figure 32.

Having provided the necessary information, click Finish to confirm the system configuration. When a pop-up
box asks you if you want to have your system downloaded onto the DE-series board click Yes.

32 Altera Corporation - University Program
August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

-

i New Project Wizard

Specify program memory settings

- Memory options

Here you can specify section names and their start and end addresses. These sections will be used by
the linker to place code and data at the specified addresses. To ensure correct use of the section names
by the linker, the names must match those identified by the assembler directives, such as .text.

Linker Section Presets: |Basic

Section Mame

Memory Device

Address Range |

. CEeXt

onchip memory

0x00000000 - Ox00000FFF

| <Back| | Mev - | [LEinish]| | Cancel |

Figure 32. Specify where the program will be loaded in the memory.

9. Now, in the monitor window in Figure 26 select Actions > Compile & Load to assemble (compile in the case
of a C program) and download your program.

10. The downloaded program is shown in Figure 33. Run the program and verify the correctnes of the designed
system by setting the slider switches to a few different patterns.

Altera Corporation - University Program

August 2014

33

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 14.0

.
i Altera Monitor Program - lights_example : lights.srec [Paused]

mﬁlg

File Settings Actions Windows Help

instance 0x00

Username: jenhuang

Quartus IT RootDir: D:/alterafacds/quartus

HE &+E 20k ©
Disassembly — * | Registers -
Goto nsl:rul:l:um‘ Address (hex) or symbal name: | | Reg | WValue
— || lpc 0x00000000 |-
| |zero 0x00000000
.equ switches, Ox00002010 rl 0x00000000
sequ leds, Ox0o0nozoo0 r2 0x00000000
r3 0x00000000
I .global _start rd 0x00000000
| r5 0x00000000
wowia rZ, switches ré 0x00000000
I 7 0x00000000
|| oxnooooooo oosno0sa orhi rz, zero, Oxi ré 000000000
|| oxoooOoOO4 1080404 addi 2, r2, 0x2010 z3 fx00000000
movia r3. leds rld 0x00000000
I Ox0000000s oocoonsa hi ’3 141 il 0=00008000
* orid o ne, Eerm L rlz 0x00000000
|| Ox000ooooc 15Ca0004 addi r3, r3, 0x2000 13 nx00000000
| rld 0x00000000
rls 0x00000000
ldbio rd, O(rz) ||| |16 0x00000000
= (17 0x00000000
L] [||z 0x00000000
Disassemhlyj Brealcpoinisj Memory/f Watches j Trace/l‘ Info & Enorsj rlg 0200000000 [
|
Terminal — * | Debug -
JTAG URRT link established using cabkle "U3B-Blaster [U3B-0]", device 1, 05 Name: windows 7 “

GDB Server

Debug |

Monitor Program RootDir: D:/faltera/acds/Un ‘
0

34

Figure 33. Display of the downloaded program.

Altera Corporation - University Program

August 2014

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus I 14.0

Copyright ©1991-2014 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

Altera Corporation - University Program 35
August 2014

http://www.altera.com/education/univ/

	1 Introduction
	2 Altera DE-series FPGA Boards
	3 A Digital Hardware System Example
	4 Altera's Qsys Tool
	5 Integration of the Nios II System into a Quartus II Project
	5.1 Instantiation of the Module Generated by the Qsys Tool
	5.1.1 Instantiation in a Verilog Module
	5.1.2 Instantiation in a VHDL Module

	6 Compiling the Quartus II Project
	7 Using the Altera Monitor Program to Download the Designed Circuit and Run an Application Program
	7.1 A Nios II Assembly Language Program
	7.2 A C-Language Program
	7.3 Using the Altera Monitor Program

