1 D
A I:l = I D A Making Qsys Components

For Quartus 11 15.0

1 Introduction

The Altera Qsys tool allows a digital system to be designed by interconnecting selected Qsys components, such as
processors, memory controllers, parallel and serial ports, and the like. The Qsys tool includes many pre-designed
components that may be selected for inclusion in a designed system, and it is also possible for users to create
their own custom Qsys components. This tutorial provides an introduction to the process of creating custom Qsys
components. The discussion is based on the assumption that the reader is familiar with the Verilog or VHDL
hardware description language and is also familiar with the material in the tutorial Introduction to the Altera Qsys
System Integration Tool.

The screen captures in this tutorial were obtained using the Quartus II version 15.0 software; if other versions are
used, some of the images may be slightly different.

Contents:

* Introduction to Qsys

* What is a Qsys component?

* Avalon Memory-Mapped Interface details
* Adding a new component to Qsys

* Instantiating the new component

Altera Corporation - University Program 1
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

2 Introduction to Qsys

The Qsys tool allows users to put together a system using pre-made and/or custom components. Such systems
usually comprise one or more processors, memory interfaces, I/O ports and other custom hardware. The Qsys-
created system can be included as part of a larger circuit and implemented on an FPGA board, such as the Altera
DE-series boards. An example of such a system is depicted in Figure 1, where the part of the system created by the
Qsys tool is highlighted in a blue color.

Host computer

[\/_ (USB connection)
Llj— USB Altera DE-series Board RS-232

Blaster KEY chip
Reset
JTAG port Nios Il processor
P Interval Serial port
timer

Avalon Interconnect

System .
- On-chip
1D FPGA chip memory
Parallel Parallel Parallel Parallel SRAM SDRAM Parallel
port port ports port controller controller ports
T | | T i
Slider 7-Segment LEDs Pushbuttons SRﬁM SDE_AM Expansion
switches displays chip chip connectors

Figure 1. Block diagram of an example Qsys system implemented on an FPGA board.

Each component in the system, referred to as a Qsys component, adheres to at least one of the Avalon Interfaces
supported by Qsys. With the interface defined for the component, Qsys is able to construct an interconnect structure,
called the Avalon Interconnect, which enables components to exchange data. The Qsys tool can generate a system
based on the selected set of components and user parameters. The generated system contains Verilog or VHDL code
for each component and the interconnect structure, allowing it to be synthesized, placed and routed for an FPGA
device.

2 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

In this tutorial we explain what we mean by a Qsys component, describe the Avalon Interfaces in more detail, and
show how to create a custom component that can be included in the Qsys list of available components.

3 What is a Qsys Component?

A Qsys component is a hardware subcircuit that is available as a library component for use in the Qsys tool. Typically,
the contains two parts: the internal hardware modules, and the external Avalon Interfaces. The internal modules are
the circuits that implement the desired functionality of the Qsys component, while the Avalon Interfaces are used by
the component to communicate with hardware modules that are external to the component.

There are many types of Avalon Interfaces; the most commonly used types are:

¢ Avalon Clock Interface — an interface that drives or receives clocks
* Avalon Reset Interface — an interface that provides reset capability

* Avalon Memory-Mapped Interface (Avalon MM) — an address-based read/write interface which is typical of
master-slave connections

* Avalon Streaming Interface (Avalon-ST) — an interface that supports unidirectional flow of data

* Avalon Conduit Interface — an interface that accommodates individual signals or groups of signals that do
not fit into any of the other Avalon Interface types. You can export the conduit signals to make connections
external to the Qsys system.

A single component can use as many of these interface types as it requires. For example, a component might provide
an Avalon-ST port for high-throughput data, in addition to an Avalon MM slave port for control. All components
must include the Avalon Clock and Reset Interfaces. Readers interested in more complete information about the
Avalon Interfaces may consult the Avalon Interface Specifications document that can be found on the Altera website.

In this tutorial we will show how to develop a Qsys component that has an Avalon Memory-Mapped Interface and
an Avalon Conduit Interface. The component is a 32-bit register that can be read or written as a memory-mapped
slave device via the Avalon Interconnect and can be visible outside the system through a conduit signal. The purpose
of the conduit is to allow the register contents to displayed on external components such as LEDs or 7-segment
displays. Thus, this register is similar to the output parallel ports shown in Figure 1.

If the register is to be used in a system such as the one depicted in Figure 1, then it should respond correctly to
Nios II instructions that store data into the register, or load data from it. Let D be the 32-bit input data for the
register, byteenable be the four-bit control input that indicates which byte(s) will be loaded with new data, and Q be
the 32-bit output of the register. In addition, it is necessary to provide clock and reset signals. Figures 2 and 4 show
a suitable specification for the desired register, called reg32, in Verilog and VHDL, respectively.

Our register will be instantiated in a top-level module that provides the necessary signals for connecting to an Avalon
MM Interconnect. Let this module be called reg32_avalon_interface. The Avalon MM Interface signals used in this
module are:

Altera Corporation - University Program 3
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

* clock

* resetn — active-low reset signal

* readdata — 32-bit data read from the register

* writedata — 32-bit data to be stored in the register

* read — active when a read (load) transaction is to be performed

* write — active when a write (store) transaction is to be performed

* byteenable — two-bit signal that identifies which bytes are being used

* chipselect — active when the register is being read or written

The reg32_avalon_interface module also provides a 32-bit Avalon Conduit Interface signal called Q_export. Fig-
ures 3 and 5 show how this module can be specified in Verilog and VHDL code, respectively.

module reg32 (clock, resetn, D, byteenable, Q);
input clock, resetn;
input [3:0] byteenable;
input [31:0] D;
output reg [31:0] Q;

always @ (posedge clock)

if (Iresetn)
Q <=32'b0;

else

begin
// Enable writing to each byte separately
if (byteenable[0]) Q[7:0] <= D[7:0];
if (byteenable[1]) Q[15:8] <= D[15:8];
if (byteenable[2]) Q[23:16] <= D[23:16];
if (byteenable[3]) Q[31:24] <= D[31:24];

end

endmodule

Figure 2. Verilog code for the 32-bit register.

4 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

module reg32_avalon_interface (clock, resetn, writedata, readdata, write, read,
byteenable, chipselect, Q_export);

/I signals for connecting to the Avalon fabric
input clock, resetn, read, write, chipselect;
input [3:0] byteenable;

input [31:0] writedata;

output [31:0] readdata;

// signal for exporting register contents outside of the embedded system
output [31:0] Q_export;

wire [3:0] local_byteenable;
wire [31:0] to_reg, from_reg;

assign to_reg = writedata;
assign local_byteenable = (chipselect & write) ? byteenable : 4'd0;

reg32 U1 (.clock(clock), .resetn(resetn), .D(to_reg), .byteenable(local_byteenable),
.Q(from_reg));

assign readdata = from_reg;
assign Q_export = from_reg;
endmodule

Figure 3. Verilog code for the Avalon MM Interface.

Altera Corporation - University Program 5
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY reg32 IS

PORT (clock, resetn : IN STD_LOGIC;

D
byteenable

Q
END reg32;

:IN STD_LOGIC_VECTOR(31 DOWNTO 0);
:IN STD_LOGIC_VECTOR(@3 DOWNTO 0);
: OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

ARCHITECTURE Behavior OF reg32 IS

BEGIN
PROCESS
BEGIN

WAIT UNTIL clock' EVENT AND clock =1
IF resetn = '0'THEN
Q <= "00000000000000000000000000000000";

ELSE

IF byteenable(0) = '1'THEN

Q(7 DOWNTO 0) <= D(7 DOWNTO 0); END IF;
IF byteenable(1) = '1'THEN

Q(15 DOWNTO 8) <= D(15 DOWNTO 8); END IF;
IF byteenable(2) = '1'THEN

Q(23 DOWNTO 16) <= D(23 DOWNTO 16); END IF;
IF byteenable(3) = '1'THEN

Q31 DOWNTO 24) <= D(31 DOWNTO 24); END IF;

END IF;
END PROCESS;
END Behavior;

Figure 4. VHDL code for the new register.

Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg32_avalon_interface IS

PORT (clock, resetn :IN STD_LOGIC;
read, write, chipselect :IN STD_LOGIC;
writedata :IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
readdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
Q_export : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END reg32_avalon_interface;

ARCHITECTURE Structure OF reg32_avalon_interface IS
SIGNAL local_byteenable : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL to_reg, from_reg : STD_LOGIC_VECTOR(31 DOWNTO 0);

COMPONENT reg32
PORT (clock, resetn : IN STD_LOGIC;
D - IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable : IN STD_LOGIC_VECTOR((3 DOWNTO 0);
Q : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END COMPONENT;
BEGIN

to_reg <= writedata;
WITH (chipselect AND write) SELECT
local_byteenable <= byteenable WHEN '1', "0000" WHEN OTHERS;
reg_instance: reg32 PORT MAP (clock, resetn, to_reg, local_byteenable, from_reg);
readdata <= from_reg;
Q_export <= from_reg;
END Structure;

Figure 5. VHDL code for the memory-mapped new-register interface.

4 Avalon Memory-Mapped Interface Details

The Avalon Memory-Mapped Interface is a bus-like protocol that allows two components to exchange data. One
component implements a master interface that allows it to request and send data to slave components. A slave com-
ponent can only receive and process requests, either receiving data from the master, or providing the data requested
by the master.

Each slave device includes one or more registers that can be accessed for read or write transaction by a master

Altera Corporation - University Program 7
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

device. Figures 6 and 7 illustrate the signals that are used by master and slave interfaces. The direction of each
signal is indicated by arrows beside it, with < indicating an output and — indicating an input to a device. All
transactions are synchronized to the positive edge of the Avalon clk signal. At time f#; in the figures, the master
begins a read transaction by placing a valid address on its address outputs and asserting its read control signal. The
slave recognizes the request because its chipselect input is asserted. It responds by placing valid data on its readdata
outputs; the master captures this data on its readdata inputs and the read transaction ends at time #;. A second read
transaction is shown in the figure starting at time £,. In this case, the slave device asserts the waitrequest input of the
master, which can be used to extend a read transaction by any number of clock cycles. The slave device deasserts
the waitrequest signal and provides the requested data at time #3, and the read transaction ends at time #4.

A write transaction is illustrated starting at time #5 in Figures 6 and 7. The master places a valid address and data on
its address and datawrite outputs, and asserts the write control signal. The slave captures the data on its datawrite
inputs and the write transaction ends at time #g. Although not shown in this example, a slave device can assert the
waitrequest input of the master to extend a write transaction over multiple clock cycles if needed.

to t, t, ty t, tg ty
—- clk [7 -7 -7 LI ©°—7 ©L—T "
- address address address address_»>—
- writedata data__ >—
—- readdata data data
- write 1
- resd __ [[| I
—+= waitrequest

Figure 6. Timing diagram for read/write transactions from the master’s point of view.

to t t, ts t, tg tg

- clk [L [I I [1 [LT 1
—- address address address address_ >—
—- writedata data__ >—

- readdata data data
- chipselect [1 I e
—- write 1
—- read I

= waitrequest

Figure 7. Timing diagram for read/write transactions from the slave’s point of view.

Addresses used by master devices are aligned to 32-bit word boundaries. For example, Figure 8 illustrates four
32-bit addresses that could be used to select four registers in a slave device. The address of the first register is
0x10000000, the address of the second register is 0x10000004, and so on. In this example, the slave would have
a two-bit address input for selecting one of its four registers in any read or write transaction. Since addresses are
word-aligned, the lower two address bits from the master are not seen in the slave. The master provides a four-bit
byteenable signal, which is used by the slave to control a write transaction for individual bytes. For example, if
the master performs a write transaction to only the most-significant byte of the second register in Figure 8 then the

8 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

master would write to address 0x10000007 by having its byteenable output signal set to the value 0x1000 and its
address output signal set to the value 0x10000004. The slave device would see its two-bit address input set to 0x01
and would use its byteenable inputs to ensure that the write transaction is performed only for the selected byte of the
second register. Although the byteenable signals are not shown in Figures 6 and 7, they have the same timing as the
address signals.

The above examples show the basic transactions between a master and a slave. More advanced transactions can be
performed, the procedure for which is described in the Avalon Interconnect Specifications document.

Xc?cjigs ,SAIg:jlfess[l..O] st e 1o

0x10000000 00 First Register
0x10000004 01 Second Register
0x10000008 10 Third Register
0x1000000C 11 Fourth Register

Figure 8. Example for registers in an Avalon MM Interface.

Altera Corporation - University Program 9
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

5 Adding a New Component to the Qsys IP Catalog

In this section we show how to create a new Qsys component for our 32-bit register defined in Figures 2 to 5.
As a first step, start the Quartus II software and make a new project for use with this tutorial. Name the project
component_tutorial, and choose the settings that are needed for your DE-series board, including the specific FPGA

chip.

Later, we will create a top-level HDL file for the component_tutorial project, but first we will use the Qsys tool
to generate an embedded system. Open the Qsys tool to get to the window depicted in Figure 9. The Qsys tool
automatically includes a clock component in the system, as shown in the figure. Since we will use an active-low
reset signal for our system, double-click on the name of the exported reset signal on the clock component and change

it to resetn.

£ Qsys

File Edit System Generate View Tools Help

b

l‘] 1P Catalog &2 e |

x| &

Project
J_J New Component...

Library

- Basic Functions

osp

[Interface Protocols

E-PLL

[-Qsys Interconnect

Memory Interfaces and Controllers

Processors and Peripherals

T, Herarchy &

[-m= ck

[#--mm= reset

[-40k ck_0

= =]

[@]unsaved|

I: System Contents 23

Address Map 2

Interconnect Requirements 5%

Device Family i3

9 |Use Comn... Name

3 clk_o
dk_in
dk_in_reset
dk
dk_reset

x

a
L

H4Pr N

<

Description
[Clock Source
(Clock Input
Reset Input
(Clock Output
Reset Output

Export Clock Base

i exported
reset

<

.

5= Messages %

Type Path Message

0 Errars, 0 Warnings

10

Figure 9. Qsys window.

Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Before creating the new Qsys component for our 32-bit register, we will first instantiate some other components that
will be needed in our system. In the IP Catalog area of the Qsys window expand the Processors and Peripherals
> Embedded Processors item and add a Nios Il (Classic) Processor to the system. In the Nios II Processor
dialog window that opens, select Nios Il/e as the type of processor. As of Quartus II version 14.1, you must
also disable the "Include reset_req signal for OCI RAM and Multi-Cycle Custom Instructions" setting in the
Advanced Features tab to ensure proper operation. Click Finish. Next, in the IP Catalog, expand the Basic
Functions > On-Chip Memory item and add a On-Chip Memory (RAM or ROM) component. Click Finish to
return to the main Qsys window. In the Connections area of the Qsys window, make the connections illustrated in
Figure 10 between the clock component, Nios II processor, and on-chip memory module.

- —

~
A& Qsys - unsaved.gsys™ (D:\component_tutorial\unsaved.qsys) E‘M
File Edit System Generate View Tools Help
L‘. P Catalog &% N e i | t: System Contents &0 I Address Map & | Interconnect Requirements &3 ‘ Device Family &% | - ™
% | & | 0 System: unsaved Path: dk_0
.) o syst ¥
ject -~ Ll Use Connections MName Description Export Clock Base
1 New Companent... B “'LE = ck_0 Clock Source
rary X D dk_in (Clock Tnput dk exported
Basic Functions = CH ok in_reset Reset Input resetn
-Arithmetic A
. —_— dk Clock Output ck_0
L -Bridges and Adaptors F = o f
—_—
Clocks; PLLs and Resets -~ =z [EmRiEE
-Configuration and Programmir E nios2_gsys_0 Mios II (Classic) Processor
(| DMA v dk Clock Input dk_o
E1-0n Chip Memory = reset_n Reset Input [clk]
i] i — data_master \Avalon Memory Mapped Master [ck]
—r instruction_master \Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk]
& Avalon FIFO Memory — jtag_debug_module_r... Reset Output [ck] I
. & Avalon-5T Dual Clock jtag_debug_module \Avalon Memory Mapped Slave [clk] 0x08
| @ Avalon-5T Multi-Chan il custom_instruction_m... |[Custom Instruction Master
£ Aunles €T Med Nak El onchip_memory2_0 (0On-Chip Memory (RAM or ROM)
4 1
L | 4 ki Clock Input dk_o
sl \Avalon Memory Mapped Slave [clk1] o0x00
[WIS] Bl [i Add...] resetl Reset Input [chk1]
4 n | 2
I Herarchy &2 il]
| “|~ fh’. E ? (a ‘Current filter: Al Interfaces
B= resein -~
-4 [E EE Messages 2% |]
- =& dk |:|
= dkin Type Path Message
- mm dk_in_reset
- = = 4 Errors o
[+ =@ dk_reset a
27k nios2_gsys_0 - %) unsaved.nios2_gsys_0 Reset slave is not specified. Please select the reset slave =
4« 1 | » 4| n »
I 4 Errors, 1Warning Generate HOL... Finish
P)

Figure 10. Connections needed between components.

Altera Corporation - University Program 11
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Errors will be displayed in the Qsys Messages window about the Reset and Exception vectors memories that are
needed for the Nios II Processor. To fix these errors, re-open the Nios II processor component that has already
been added to the system by right-clicking on it and selecting Edit. In the window shown in Figure 11 use the
provided drop-down menus to set both the Reset vector memory and Exception vector memory to the on-chip
memory component. Click Finish to return to the main Qsys window.

-
. Nios I (Classic) Processor - niosZ_q_

“ Nios 1I (Classic) Processor

Megators’ altera_nios2_gsys

4
M

Core Mios IT | Caches and Memory Interfaces | Advanced Features | MMU and MPU Settings | JTAG Debug Module
[~ Select a Nios II Core
Nios II Core: @) Mios Ije
() Nios IIfs
() Nios IIff
U . . . |
Nios II/e Nios II/s Nios II/f |
- RISC RISC RISC
Nios 11 32-bit 32-hit 32bit
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction =
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide
Barrel Shifter |
Data Cache
Dynamic Branch Prediction
Memory Usage (g.g Stratix IV) | Two M3Ks (or equiv.) Two MKz + cache Three M3Ks + cache
[~ Hardware Arithmetic Operation
Hardware multiplication type: Embedded Multipliers
Hardware divide
tl
~ Reset Vector N |
Reset vector memory: .ondﬂip_memoryz_o.sl —]
Reset vector offset: 000000000
Reset vector: 0x00000000
|' Exception Vector |
Exception vector memory: 'ondﬂip_memoryz_ﬂ.sl =] |
Exception vector offset: 0x00000020
Exception vector: 0x00000020
[
< | [T | » [

‘4, Warning: nios2_gsys_0: Nios II Classic cores are now superseded by improved Gen 2 cores. |

- = J

Figure 11. Setting the reset and exception vector memories.

12 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

The Qsys window may now show an error related to overlapping addresses assigned to the components in the system.
To fix this error click on the System menu in the Qsys window and then click on Assign Base Addresses. The
Qsys window should now appear as illustrated in Figure 12.

- ™
A Qsys - unsaved.gsys™ (D:\component_tutorial\unsaved.qsys) E‘E‘g
File Edit System Generate View Tools Help

g TP Catalog g i | t: System Contents &% I AddressMap £% | InterconnectRequirements &% | Device Famiy 2 - |
x| a ! System: unsaved Path: nios2_gsys 0
ject ~ 4 Use Connections Mame Description Export Clock Base
1 New Companent... B “IZ = dk_o (Clock Source
"a“_‘) b 4 chk_in Clock Input dk exported
BESI; F.:jnchzns E dk_in_reset Reset Input resetn
-Arithmetic A
Bridges and Adaptors = = ::: LRIl oo
-Clocks; PLLs and Resets A = =t RSEt Outpu
-Configuration and Programmir = nios2_gsys_0 Nios IT (Classic) Processor
DMA - ck Clock Input dk_0

| E1-On Chip Memary = reset_n Reset Input [clk]

il | — data_master \Avalon Memary Mapped Master [cl]

| — instruction_master \Avalon Memary Mapped Master [clk]

L d_irg Interrupt Receiver [clk]

| . Avalon FIFO Memary Jjtag_debug_module_r... Reset Output [clk]

I = Avalon-5T Dual Clock jtag_debug_module \Avalon Memory Mapped Slave [clk] 0x28

i o Avalon-ST Multi-Chan custom_instruction_m... |Custom Instruction Master

o Al T A Rk El onchip_memory2_0 [On-Chip Memory (RAM or ROM)
M| L o 4 ki Clock Tnput dk_o
- s1 \Avalon Memory Mapped Slave [ck1] 0x10
[Bow..;] EaES [et] resett Reset Input [ck1]
< il | *
!« Hierarchy g = [}
= “IN fh’. - T current filter: Al Interfaces
B resetn -
= dk 0 il H
— = = Messages -
- ok [£ o
. =
[clk_in Type Path Message Ig
= ck_in_reset = W g
c_reset =) armnne
i Ynios2_gsys_0 - N unsaved.nios2_gsys_0 Mios II Classic cores are now superseded by improved Gen 2 cores, -
] m » < T »
0 Errors, 1Warning Generate HOL... -J

Altera Corporation - University Program

May 2015

Figure 12. The base

Qsys system.

13

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Now, we will create the new Qsys component for our 32-bit register, and make this component available in the Qsys
IP Catalog. To create a new component, click the New... button in the IP Catalog area of the Qsys window. The
Component Editor tool, shown in Figure 13, will appear. It has four tabs.

The first step in creating a component is to specify where in the IP Catalog our new component will appear. In the cur-
rent tab, Component Type, change the Name to reg32_avalon_interface, the Display name to reg32_component,
and provide a name for the Group setting, such as My Own IP Cores.

fal ™
A& Component Editor - reg32_avalon_interface_hw.tcl* - “ m
File Templates Beta View
Component Type &3] Files &% | Parameters i% | Signals & Interfaces ©3 | |
» About Component Type
Name: reg32_avalon_interface
| Display name: |reg32_component
Version: 1.0
.- Group: My Own IP Cores -
Description:
Created by: I
Icon: E]
Documentation: Title URL
Messages &a | il
C7 To Do: Add HOL files on the Files tab, or add signals on the Signals tab. |
ﬂ [Help] [4 Prev l [Next |] ’ Finish...
v T T———— y
Figure 13. Component Editor window.
14 Altera Corporation - University Program

May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

Next, we add the files that describe the component. Go to the Files tab, depicted in Figure 14, and then click
on the + button under Synthesis Files to browse and select the top-level file reg32_avalon_interface.v. Run the
analysis of the top-level file by clicking on the Analyze Synthesis Files button. Qsys analyzes this file to determine
the types of interfaces that are used by the component. Optionally, you can also add the file reg32.v to the list of
Synthesis Files. Then click the Copy from Synthesis Files button under Verilog Simulation Files to add the files
for simulation. If the Component Editor finds any errors when analyzing the top-level file, then they will need to
be fixed and the code re-analyzed. Once no syntax errors are present, then the next step is to specify the types of

interfaces that are used by the component.

-
A Component Editor - re932_avalon_interface_hw.td“-

)

Eile Templates Beta View

Component Type &3 [Files %l Parameters 33| Signals & Interfaces 33|

=]

I b About Files

Synthesis Files
These files describe this component's implementation, and will be created when a Quartus II synthesis model is generated.

The parameters and signals found in the top-evel module will be used for this component's parameters and signals.

Qutput Path Source File Type Attributes

|| lreg32_awvalon_interface.v reg32_avalon_interface.v Verilog HDL Top-level File
Verilog HDL

[Add File...] [Remove File] [Analyze Synthesis Files Create Synthesis File from Signals

Top-evel Module: :regsz_avalon_interﬁoe v:

Verilog Simulation Files
These files will be produced when a Verilog simulation model is generated.
Qutput Path Source File Type Attributes
[N | rea32_avalon_interface.v reg32_avalon_interface.v
reg32.v reg32.v Verilog HDL no attributes
[Add File...] [Remove File Copy from Synthesis Files
VHDL Simulation Files

| These files will be produced when a YHDL simulation model is generated.

Qutput Path Source File Type Attributes

i Add File... Remove File Copy from Synthesis Files

Messages

- o

I3 Error: clock_reset: Synchronous edges DEASSERT requires assodated dock

‘+, Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed)

‘=, Warning: avalon_slave_0: Slave with beginbursttransfer also needs burstcount for burst transfers
e Error: awvalon_slave_0: Should have readdatawvalid signal for read burst transfers

e Error: avalon_slave_0: Should have waitrequest signal for read burst transfers

s L L s Temdimm L sl imibimd ol ol

»

m

[tep | | dpev || mextp | [Enish..

Figure 14. Adding HDL files that define the new component.

Altera Corporation - University Program
May 2015

15

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

Click on the Signals & Interfaces tab to specify the meaning of each interface port in the top-level entity. This

leads to the window in Figure 15.

-
L Component Editor - reg32_avalon_interface_hw.t“

File Templates Beta View

Component Type 33| Files 33| Parameters i3 I Signals & Interfaces 33]

I b About Signals

- =

4

=0 Q_export [32] readdsts
== byteenable [4] Ayteenahl=
- chipselect [1] chpsalect
= read [1] read

=1 readdata [32] resddsiz

Mame T name:
avalon_slave_0

Type: :Avalon Memory Mapped Slave -

= resetn [1] beginbursitransfer

avalon_slave_0

Assodated Clodk: :none
Associated Reset: :none

Assignments:

»

Documentatiol |

m

- write [1] wnie 4
Block Di ~ Pa ry
== writedata [32] writedsts |' gram | " | ad '
<<add signal>> Address unil| i
= clock_reset feser Input avalon_slave_0 Assodiated ¢
- dock [1] ressf o Associated r
<<30d signal>> avalon_slave_0
<<add interface>> beginbursttransfer Bits per sym
ritedata Burstcount L
data Explicit addr
rite
d = Timing
byteenable Setup:
hipselect .
export[31..0] ddata Read wait:
Write wait:
rull
Hold:
] 1 -)
Messages |

”9 Error: clock_reset: Synchronous edges DEASSERT requires associated dock

[Help]

[dprev |[nextp | [Finish..

|

Figure 15. Initial settings for component signals.

16

Altera Corporation - University Program

May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

To define correctly the meaning of each signal, it is necessary to specify the correct types of interface, put the
signals in the correct interface, and specify the signal type for each signal. For the clock [1] signal, select <<add
interface>> and name it clock_sink. Click on the newly created interface and change its type to Clock Input, as
indicated in Figures 16. Now drag and drop the signal clock [1] into Clock Input interface and change its Signal

Type to clk, as shown in Figures 17.

-
A& Component Editor - regSE_avalm_interface_hw.t“

=)

File Templates Beta View

Component Type 33| Files 33| Parameters I3 I Signals & Interfaces ES]

I » About Signals

- ;o

MName

= avalon_slave_0 4300 Memory Mapped Slave
=1 ()_export [32] readdatas
= byteenable [4] Hpieanable
- chipselect [1] chjpsalect
= read [1] read
=1 readdata [32] readdsiz
B resetn [1] beginbursitransfer
== write [1] wnite
= writedata [32] writedzis
<<3dd signals>
= clock_reset Fss=f Input
- dodk [1] reset n
<<30d signal>>
| dock sink |
<<30d signal>>
<<add interface>>

™ Block Diag|Custom Instruction Master
Custom Instruction Slave
HS5I Bonded Clock Input
HSSI Bonded Clock Qutput
clock |HSS! Serial Clock Input

Mame: dock_sink
Type: Clock Input -
Assignments: i
< Clock Cutput
Conduit

1

IParameters

|

lock rate: |

|

rull

Ll

m

Messages

- =

| ‘v, Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed)

-~
L

I [ree | |

4 Prev ” MNext []

| Finish...

Figure 16. Creating the Clock Input interface.

Altera Corporation - University Program
May 2015

17

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

18

File Templates Beta View

Component Type 3@| Files 33| Parameters i3 I Signals & Interfaces 33]

- =

b About Signals

Mame

= avalon_slave_0 4vabn Memory Mapped Save
=21 Q_export [32] readdsts
== byteenable [4] Ayteenahl=
- chipselect [1] chipsalect
= read [1] read
=2 readdata [32] resdisiz
= resetn [1] beginbursitransfer
- write [1] wnite
== writedata [32] writedsts
<<aod signal>>

= clock_reset f=s=t Inout
<<aod signal>>

= clock_sink oot inour

o

<<add signal
< <gdd interfare>>

A Mame: |dock |

Signal Type:
Width:

Direction: [input -]

=]

! ”9 Error: clock_reset: Synchronous edges DEASSERT requires associated dock

=

[Ltep |

’ 4 Prev ” Next |]

| Finish...

Compenent Editer - reg32_avalon_interface_hw.

Figure 17. Specifying the signal type for clock.

Altera Corporation - University Program

May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

For the resetn signal, drag and drop it into the Reset Input interface and change its signal type to reset_n, as indicated
in Figures 18 and 19.

q_Component Editor - regEE_awlm_intevface_hw.td’_Ei

Eile Templates Beta View

Component Type #% | Files I3 | Parameters &3 I Signals & Interfaces 33] i

I b About Signals

Mame M Mame: resetn

= avalon_slave_0 4vabn Memory Mapped Save Signal Type: -beginbursth'ansfer -
=1 ()_export [32] .rffadda-.sl . Tl 1
== byteenable [4] Ayteenahl= L .
- chipselect [1] dhpsalct Direction: input -
= read [1] read) i
=1 readdata [32] resddsiz
I = write [1] write I
O= writedata [32] writedsziz
<<30d signal>>
B=clock_reset fessf Inout
<<30d signal>>
= clock_sink oot Inour
- clock [1] o
<<add signal>>

interface>>

H
=il
1 ”9 Error: clock_reset: Signal resetn has unknown type beginbursttransfer :|
I [Help] l 4 Prev] [Mext [#] ’ Finish... l
Figure 18. Changing the interface for resetn.
Altera Corporation - University Program 19

May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

fﬂ'ﬂmpomnt Editor - mgﬂ_aﬂlm_inmﬁce_h_ﬁi

File Templates Beta View
ComponentType #2 | Files &% | Parameters I3 I Signals & Interfaces &2 l il
I b About Signals
4
Mame M Mame: |reset’1 |
= avalon_slave_0 4vabn Memory Mapped Save Signal Type:
=2 ()_export [32] read: Width:
| == byteenable [4] Hyteenahls ’
| - chipselect [1] chipsalect Direction:
i - read [1] read beaqinbursttransfer
i =2 readdata [32] resdisiz
l == write [1] wnite I
= writedata [32] writedsziz
i <<30d signal>>
= clock_reset f=s=f Inout
= resetn [1]
<<aod signal>>
= clock_sink oot Inour
i = dodk [1] of
<<add signal>>
: < <gdd interfare>>
||
i
I
i
=
! ”9 Error: clock_reset: Signal resetn has unknown type beginbursttransfer & |
-
i
[Hep | ’ dPreu”Nextb] [Finish... ﬂ

Figure 19. Specifying the signal type for resetn.

Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Finally, the Q_export signal must be visible outside the Qsys-generated system; it requires a new interface which
is not a part of the Avalon Memory-Mapped Interface. Click on the <<add interface>>, name it conduit_end, and
specify its type as Conduit, as shown in Figure 20 Drag and drop Q_export into the newly created conduit interface.
The Signal Type for a conduit signal does not matter, so Q_export does not need to be edited. The rest of the signals
shown in the Component Editor already have correct interface types as their names are recognizable as specific
Avalon signals. The Component Editor window should now appear as shown in Figure 21.

-
A Component Editor - regi2_avalon_interfa-ce_hw,td;-‘ mn
File Templates Beta View

Component Type #% | Files I3 | Parameters &3 I Signals & Interfaces &3 l il
| b About Signals
4
Name (Mame: conduit_end Documentation
B= avalon_slave_ 0 4Avalon Memory Magped Shve r - 1
- — ’ Type: Conduit
= (Q_export [32] re 62s A
== byteenable [4] Assodiated Clock: o
W = chipselect [1] chi Custom Itsfruction Master
|| - read [1] resd R Assodated Reset: ¢ stom Instruction Slave
| = read daﬁ 33 s e HSS5I Bonded Clock Input
== write [1] HSSI Bonded Clod: Output |—| I
. ' HSSI Serial Clack Input E|
= writedata [32] ¢ —=
(32 ~ Block Diagram |H551 Serial Clock Qutput pmeters
Interrupt Receiver - [atedClack: clack_sink
conduit_end associatedReset:
conduit_end
rull
| |
] 1 ¥
Messages il
i | ., Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed) — |
| [Help] [4 Prev] [MNext |#] ’ Finish...
L "y
Figure 20. Creating an external interface for Q_export.
Altera Corporation - University Program 21

May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

TCompunent Editor - regEE_avalm_interface_hw.td;_Ei

File Templates Beta View

Comporent Type #% | Files I3 | Parameters %Iﬁmds&mtahces 33] il

I b About Signals

Mame : Mame: |Q_e:q:|ort |

= avalon_slave_0 4vabn Memory Mapped Save Signal Type: |E - |
= byteenable [4] £y i
= chipselect [1] chjpsalect
- read [1] read Direction: [ouu:.ut v]
=1 readdata [32] resddsis
- write [1] wnite
o= writedata [32] nritedats I
<<aod signal>>

= clock_reset f=s=t Inout
- resetn [1] resef o
<<30d signal>>

= clock_sink Cioch Inout
== clock [1] o
<<aod signal>>

width: |32 |

< <gdd interfare>>

I
i

=

! ”9 Error: avalon_slave_0: Interface must have an assodated dock :|
| ’ Help] ’ 4 Prev ” MNext [#] ’ Finish... ﬂ

Figure 21. Final settings for component signals.

Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

Note that there are still some error messages. The first error message states that the avalon_slave_0 interface must
have an Associated Clock and an Associated Reset. Select clock_sink as this clock and clock_reset as the reset, as
indicated in Figure 22. Also note in Figure 22 that under the Timing heading we have changed the parameter called
Read wait for the avalon_slave_0 interface from its default value, which was 1, to the value 0. This parameter
represents the number of Avalon clock signals that the component requires in order to respond to a read request. Our
register can respond immediately, so we do not need to use the default of 1 wait cycle.

-
L Component Editor - regS2_avaIm_imdace_hw,td*_ﬁ

File Templates Beta View
Component Type &3 | Files &% | Parameters &4 [Signals & Interfaces &8 l - M|
» About Signals
h -
’ e avalon_5|ave_0 I
avalon_slave_0 r 1
— P Type: Avalon Memary Mapped Slave
== byteenable [4] & L : Y “eppe v;
= chipselect [1] Associated Clock: | dodk_sink -
©-read [1] read Assodiated Reset: | dock_reset - 3
= readdata [32] reacl - -
= write [1] wr Assignments:
. |
|~ Block Diagram | || [Parameters — I [®
Address units: 'WORDS |
avalon_slave_0 Assodated dock: dlock_sink
A iated L=
avalon_slave_0 ssodatedress dock_reset
i Bits per symbol:
ritedatal3.0] | . . per symi 8 .
#= conduit_end o addata[31..0 readdata Burstcount units: WORDS
=3 Q_export [3 rite . - L J
Q export [37] £ “‘j Explicit address span: 00000000000000000000
eenable[3.0] [. —
hipselect ipesiect [+ Timing |
Setup: 0
il Read wait: 0
Mirita wisite -~ S
< [| +
Messages |
Q Error: clock_reset: Synchronous edges DEASSERT requires assodated dock
[Help] ’ 4 Prev] ’ Next [»] [Finish. ..
—

Figure 22. Specifying the clock and reset associated with the Avalon Slave interface.

Altera Corporation - University Program

May 2015

23

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

The remaining error messages state that the clock_reset interface must have an associated clock. Set this clock to
clock_sink, as depicted in Figure 23. Now, there should be no error messages left. Click Finish to complete the
creation of the Qsys component, and save the component when prompted to do so.

fa ™
AL Component Editor - reg32_avalon_interface_hw.tcl* -“ u
File Templates Beta View
ComponentType &% | Files &% | Parameters &3 [Signals & Interfaces 53] |
» About Signals
4
Name 1 Mame: clock_reset
= avalon_slave_0 412l I 1
= - Type: Reset Input
= hyteenable [4] & = - P v;
- chipselect [1] o Associated Clock: |nene -
W =~ read [1] read o = none
= readdata [32] 7 s
= write [1] s gy
ori wntes| || [~ Block Diagram MEE I
Assodated dock:
clock_reset Synchronous edges: |pDeassert |
clock_resef
esetn "
_n
null
I 4 1 | »
Messages 24 | |
|—Q Error: clock_reset: Synchronous edges DEASSERT requires associated dock
[Help] ’ 4 Prev] ’ Next [»] [Finish. ..
—

Figure 23. Specifying the clock associated with the reset interface.

6 Instantiating the New Component

In the Qsys IP Catalog, expand the newly-created item My Own IP Cores. Add an instance of the reg32_component,
to open the window shown in Figure 24. Click Finish to return to the main Qsys window. Next, make the connections
shown in Figure 25 to attach the register component to the required clock and reset signals, as well as to the data
master port of the Nios II processor. Finally, as indicated in the Export column in Figure 25, click on Double-click
to export for the Conduit and specify the name to_hex. Notice in the Base address column in Figure 25 that the
assigned address of the new register component is 00000000. This address can be directly edited by the user, or
it can be assigned automatically by using the Assign Base Addresses command in the System menu. In this
tutorial, we will leave the address as 00000000.

24 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

f— ™
& reg32_component - mg32_wa|on_inlerm u

“ reg32_component
Magcers” reg32_avalon_interface

|+ Block Diagram
[show signals

4
| (Mo parameters) W

reg32_avalon_interface_0

II gualon_stave 0|
clock_sink clock
glock_reset reset
Il .cﬂurt encl

Teg32_avalon_interface

Figure 24. Adding the reg32_component to the base system.

- - e ——] ™
] - -:--E\-u
A& Qsys - unsaved.qsys® (D{\component_tutorialunsaved.qsys)

File Edit System Generate View Tools Help

m tf System Contents &% l AddressMap &% | Interconnect Requirements 2% | Device Family &% - M|
_5 X = || M0 system:unsaved Path: req32_avalon_interface_D.conduit_end
Project A =4 Use Connections Name Description Export Clock Base
L1 New Companent... M || ¥ o dko (Clock Source
5, M‘J’ Own [P Cores b 4 [m ck_in [Clock Input clk exported
N e mporent 5] o dk_in_reset Reset Input resetn
L'ﬁ o s - — 4 o« (Clock Output k0
Arithmetic —_— dk_reset Reset Qutput
Bridges and Adsptors - O nios2_gsys_0 INios 11 (Classic) Processor
Clocks; PLLs and Resets | = o dk (Clock Input iclk_0
Configuration and Programr b 4 reset_n Reset Input [clk]
oMA | dste_master lAvalon Memary Mapped Master <K I
£-On Chip Memory —_— instruction_master |Avalon Memory Mapped Master [ck]
e d_irq Interrupt Receiver ek |
— jtag_debug_module_r... [Reset Output [clk]
jtag_debug_module \Avalon Memory Mapped Slave [ck] 0x2800
Avalon FIFO Memor custom_instruction_m. .. |Custom Instruction Master
@ Avalon-5T Dual Cloc E onchip_memory2_0 |On-Chip Memory (RAM or ROM)
@ Avalon-ST Multi-Ch: il Clock Input iclk_0
@ Avalon-5T Round R 51 \valon Memory Mapped Slave [cki] 0x1000
U Avalon-5T Single Ch resetl Reset Input [ck1] U
@ On-Chip Memary (R = reg32_avalon_interf...reg32_component
Simulation; Debug and Verif =)
y m T avalon_slave_0 \Avalon Memory Mapped Slave [clodk_sink] 0x0000
dock_sink (Clock Input clk_0
clock_reset Reset Input. [clock_sink]
conduit_end Conduit | [dock_sink]
= -oB <[I] 3
g D_ z:d';iimamoryzj i J"l-'" fh . ? ‘ Current filter: All Interfaces
{l »= resetl fl
B 51
reg32_avalon_interface_0
»= avalon_slave_0
- W= dock_reset
B= dodk_sink Mios II Classic cores are now superseded by improved Gen 2 cores,
| Ee 2
] I r < [} | 3

0 Errors, 1Warning Generate HOL...

S - J

Figure 25. Required connections for the new component.

Altera Corporation - University Program 25
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Use the Save command in the File menu to save the defined Qsys system using the name embedded_system. Next,
in the Qsys window select Generate > HDL Example..., the window in Figure 26 will show up. This window gives
an example of how the embedded system defined in the Qsys tool can be instantiated in HDL code. Note that the
clock input of our embedded system is called clk_clk, the reset input is called resetn_reset_n, and the conduit output
is named fo_hex_readdata.

r ~
% HDL Example =5
You can copy the example HDL below to dedare an instance of embedded_system.
HDL Language: .'u'erilog -
Example HOL
embedded system ul (
.clk clk (<connected-to-clk_clk>), clk.clk
.Ie3etn_reset n (<connected-to-resetn_reset_nr), J/ resetn.resec n f
.to_hex readdata (<connected-to-to hex readdata>) // to_hex.readdata
)i
b ——

Figure 26. The HDL Example tab.

26 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Finally, open the Generation window in the Qsys tool, shown in Figure 27 by selecting Generate > Generate
HDL, and then click the Generate button. This action causes the Qsys tool to generate HDL code that specifies the
contents of the embedded system, including all of the selected components and the Avalon interconnection fabric.

r |
X Generation léj

|~ Synthesis |

Synthesis files are used to compile the system in a Quartus II project.
Create HOL design files for synthesis: verilog |

[Create timing and resource estimates for third-party EDA synthesis tools,
Create block symbol file {.bsf)

[~ Simulation

The simulation model contains generated HOL files for the simulator, and may indude simulation-only features.

Create simulation model: None |
Allow mixedanguage simulation

Enable this if your simulator supports mixedJanguage simulation.

[~ output Directory |
Path: D:fcomponent_tutorial fembedded_system E

Generate ” Cancel

Figure 27. The Generation tab.

Altera Corporation - University Program 27
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Close the Qsys tool to return to the main Quatus IT window. Next, select the command Add/Remove Files in

Project... in the Project menu, and then browse on the ™ button to open the window in Figure 28. Browse to
the folder called embedded_system/synthesis and then select the file named embedded_system.qip. This file provides
the information needed by the Quartus II software to locate the HDL code generated by the Qsys tool. In Figure 28
click Open to return to the Settings window and then click Add to add the file to the project. Click OK to return to
the main Quartus II window.

Select File S5
| . % embedded_system » synthesis » - | + Search synthesis jo [
d b) i)
Organize « Mew folder =« 0 IZQI
15l Recent Places “* Mame Date modified Type
= | ibran J submodules 8/13/2014 8:14 PM File folder
NJ'D'E"ES e 8/13/20148:14PM QP File
£| Documents
J‘“ o || embedded_system.v 8/13/2014 8:14 PM V File
@' Music
le=| Pictures E
B¥ videos

M Computer
&, Local Disk (C:)
s DATA (D3)
s DATA (G3)

TS W SR

- 4 1 2

File name: embedded_system.qip - [Design Files (*.tdf *.vhd *.vhdl * v]

[open || conce |

Figure 28. Adding the .gip file to the Quartus II project.

28 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

7 Implementing the Embedded System in an FPGA Chip

To implement the Qsys-generated embedded system in an FPGA chip, we need to create a top-level HDL module
which instantiates the embedded system and has the appropriate input and output signals. A suitable HDL module is
given in Figures 29 and 30, in Verilog and VHDL. The module connects the 50 MHz clock signal, CLOCK_50, on
the DE-series board to the clock input of the embedded system, and connects KEY) to the reset input. The external
conduit from the embedded system is connected to the seven segment displays HEXO, ..., HEX3. The HDL code for
the 7-segment display code converter, called hex7seg, is provided in Appendix A, in Figures 35 and 36.

Store the code for the top-level module in a file called component_tutorial.v (or .vhd), and store the code for the
seven-segment code converter in a file called hex7seg.v (or .vhd). Include appropriate pin assignments in the Quar-
tus II project for the CLOCK_50, KEY,, and HEXO, ..., HEX3 signals on the DE-series board.

Compile the project. After successful compilation, download the circuit onto the DE-series board by using the
Quartus II Programmer tool.

module component_tutorial (CLOCK_50, KEY, HEX0, HEX1, HEX2, HEX3);
input CLOCK_50;
input [0:0] KEY;
output [0:6] HEX0, HEX1, HEX2, HEX3;

wire [15:0] to_HEX;

embedded_system UO (
.clk_clk(CLOCK_50), .resetn_reset_n(KEY[0]), .to_hex_readdata(to_ HEX));

hex7seg hO(to_HEX[3:0], HEXO0);

hex7seg h1(to_HEX][7:4], HEX1);

hex7seg h2(to_HEX][11:8], HEX2);

hex7seg h3(to_HEX[15:12], HEX3));
endmodule

Figure 29. Verilog code for the top-level module.

Altera Corporation - University Program 29
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY component_tutorial IS
PORT (CLOCK_50 : IN STD_LOGIC;

KEY . IN STD_LOGIC_VECTOR(0 DOWNTO 0);
HEXO0 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX 1 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX?2 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX3 : OUT STD_LOGIC_VECTOR(0 TO 6);

END component_tutorial;

ARCHITECTURE Structure OF component_tutorial IS
SIGNAL to_HEX : STD_LOGIC_VECTOR(31 DOWNTO 0);
COMPONENT embedded_system IS
PORT (clk_clk : IN STD_LOGIC;
resetn_reset_n : IN STD_LOGIC;
to_hex_readdataOUT STD_LOGIC_VECTOR (31 DOWNTO 0));
END COMPONENT embedded_system;

COMPONENT hex7seg IS
PORT (hex : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
display : OUT STD_LOGIC_VECTOR(0 TO 6));
END COMPONENT hex7seg;
BEGIN
UO: embedded_system PORT MAP (
clk_clk => CLOCK_50,
resetn_reset_n => KEY(0),
to_hex_readdata> to_HEX);
h0: hex7seg PORT MAP (to_HEX(3 DOWNTO 0), HEXO0);
h1: hex7seg PORT MAP (to_HEX(7 DOWNTO 4), HEX1);
h2: hex7seg PORT MAP (to_HEX(11 DOWNTO 8), HEX2);
h3: hex7seg PORT MAP (to_HEX(15 DOWNTO 12), HEX3);
END Structure;

Figure 30. VHDL code for the top-level module.

Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

8 Testing the Embedded System

One way to test the circuit is to use the Altera Monitor Program. Open the Monitor Program and create a new project

called component_tutorial and select Nios Il as the architecture. In the New Project Wizard, for the Specify a
system screen choose <Custom System>. As shown in the figure, under System details browse to select the
system description file called embedded_system.sopcinfo. Also, browse to select the Quartus Il programming
file called component_tutorial.sof, as illustrated in Figure 31. For the screen titled Specify a program type in the
New Project Wizard, choose No Program. Press Finish. When prompted to download the system, as shown in

Figure 32, press No since we have already done so with the Quartus II Programmer.

i New Project Wizard J—

==

Specify a system

rSelect a system

| <Custom System =

v| | Documentation

(S0F) and Quartus IITAG debugging information (JDI) files,

Specify a system by selecting a system description (SOPClInfo) file, and optional Quartus II programming

- System details
System description file (SOPClnfo):
|D:,a‘c0mpu:unent_tutoriaI,a‘embedded_system.snpcinfo | | Browse... |
Quartus I programming (SOF) file:
| D:/component_tutorial/output_files/component_tutorial.sof | [Browse...||

The SOF file represents the FPGA programming file for the hardware system. If it is specified here, then
the Maonitor Pregram can be used to download this programming file onto the board. Otherwise, the
system will need to be downloaded using some other method (for example, by using Quartus T).

| < Eack| | Mext > | | Finish | | Cancel |

Figure 31. Specifying the system description file and Quartus II programming file.

Altera Corporation - University Program
May 2015

31

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Download System - Prompt [&J

2 Would you like to download the systemn associated with this project onte the board?
-

If so, make sure that the board is connected via the correct cable and is powered up.

Lye J[ne

Figure 32. Press NO to this prompt.

After successfully creating the Monitor Program project, click on the command Connect to System in the Actions
menu. Open the Memory tab in the Monitor Program, and click the setting Query Memory Mapped Devices,
as indicated in Figure 33. Now, click the Refresh button to see that the content of address 0x00000000, which
represents the 32-bit register component, has the value 00000000. Edit the value stored in the register, as illustrated
in Figure 34, and observe the changes on the seven-segment displays on the DE-series board.

Memory -

Goto address [hex}: Query Memory Mapped Devices
[a]

0x00000000 00000000 ? 7 ? |

0x00000010 7 ? ? 2

0x00000020 7 ? ? 2

0x00000030 7 ? ? s

0x00000040 7 ? ? s

0x00000050 7 ? ? ?

0x00000060 7 ? ? ?

0x00000070 7 ? ? 2

0x 00000080 7 ? ? 2

0x00000090 7 ? ? s

0x 00000040 7 ? ? s

0x000000B0 7 ? ? ?

0x000000C0 7 ? ? ?

0x000000D0 7 ? 7 ? ||

M= ANAA0AFG =]] o b

Il I

Figure 33. Using the Memory tab in the Momitor Program.
32 Altera Corporation - University Program

May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Memory -

Goto address [hex}:l:l Query Memory Mapped Devices
[a]

000000000 12345675 2 ? ?]|

000000010 ? » » »

000000020 7 ¥ ¥ ?

000000030 7 ¥ ¥ ?

Q00000040 ? ? 7 ?

Q00000050 ? ? 7 ?

000000060 ? 2 ? 2

000000070 ? ? > z

000000080 7 H 7 ?

000000030 7 H 7 ?

Q00000040 ? ? ? ?

Q00000080 ? ? ? ?

Ox000000ca ? ? > z

000000000 ? 2 2 ? | |

[AO0O00FD kel z el 3 |4

« D]

Figure 34. Changing the value stored in the 32-bit register.

9 Concluding Remarks

In this tutorial we showed how to create a component for use in a system designed by using the Qsys tool. Although
the example is for a slave interface, the same procedure is used to create a master interface, with the only difference
being in the type of an interface that is created for the component.

Altera Corporation - University Program 33
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

10 Appendix A

The HDL code for the seven-segment code converter that is instantiated in Figures 29 and 30 is shown in Figures 35
and 36.

module hex7seg (hex, display);
input [3:0] hex;
output [0:6] display;

reg [0:6] display;

always @ (hex)
case (hex)
4'h0: display = 7'b0000001;
4'hl1: display = 7'b1001111;
4'h2: display = 7'b0010010;
4'h3: display = 7'b0000110;
4'h4: display = 7'b1001100;
4'hS: display = 7'0100100;
4'h6: display = 7'b0100000;
4'h7: display = 7'b0001111;
4'h8: display = 7'b0000000;
4'h9: display = 7'0001100;
4'hA: display = 7'b0001000;
4'hb: display = 7'b1100000;
4'hC: display = 7'b0110001;
4'hd: display = 7'b1000010;
4'hE: display = 7'b0110000;
4'hF: display = 7'b0111000;
endcase
endmodule

Figure 35. Verilog code for the seven-segment display code converter.

34 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS

For Quartus I1 15.0

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY hex7seg IS
PORT (hex : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
display : OUT STD_LOGIC_VECTOR(0 TO 6));
END hex7seg;

ARCHITECTURE Behavior OF hex7seg IS
BEGIN
- —0-
-- 51 1
- —6—
-- 41 12
- e
PROCESS (hex)
BEGIN
CASE hex IS
WHEN "0000" => display <= "0000001";
WHEN "0001" => display <= "1001111";
WHEN "0010" => display <= "0010010";
WHEN "0011" => display <= "0000110";
WHEN "0100" => display <= "1001100";
WHEN "0101" => display <= "0100100";
WHEN "0110" => display <= "0100000";
WHEN "0111" => display <= "0001111";
WHEN "1000" => display <= "0000000";
WHEN "1001" => display <= "0001100";
WHEN "1010" => display <= "0001000";
WHEN "1011" => display <= "1100000";
WHEN "1100" => display <= "0110001";
WHEN "1101" => display <= "1000010";
WHEN "1110" => display <= "0110000";
WHEN "1111" => display <= "0111000";
END CASE;
END PROCESS;
END Behavior;

Figure 36. VHDL code for the seven-segment display code converter.

Altera Corporation - University Program
May 2015

35

https://www.altera.com/support/training/university/overview.html

MAKING QSYS COMPONENTS For Quartus I 15.0

Copyright © 2015 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

36 Altera Corporation - University Program
May 2015

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Introduction to Qsys
	3 What is a Qsys Component?
	4 Avalon Memory-Mapped Interface Details
	5 Adding a New Component to the Qsys IP Catalog
	6 Instantiating the New Component
	7 Implementing the Embedded System in an FPGA Chip
	8 Testing the Embedded System
	9 Concluding Remarks
	10 Appendix A

