

SoC-FPGA Design Guide

LAP – IC – EPFL

Version 1.25

Sahand Kashani-Akhavan

René Beuchat

mailto:sahand.kashani-akhavan@epfl.ch?subject=SoC-FPGA%20Design%20Guide
mailto:rene.beuchat@epfl.ch?subject=SoC-FPGA%20Design%20Guide
http://lap.epfl.ch/
http://www.epfl.ch/

DE1-SoC Guide

1 TABLE OF CONTENTS
2 List of Figures ... 6

3 Table of Tables .. 8

4 Prerequisites .. 9

4.1 Hardware .. 9

4.2 Software ... 9

4.2.1 Software Versions Used in this Guide .. 9

4.2.2 Licenses .. 9

5 Introduction ... 10

6 Terasic DE1-SoC Board ... 11

6.1 Specifications ... 11

6.1.1 FPGA Device ... 11

6.1.2 Configuration and Debug ... 11

6.1.3 Memory Device .. 11

6.1.4 Communication .. 11

6.1.5 Connectors ... 12

6.1.6 Display .. 12

6.1.7 Audio .. 12

6.1.8 Video Input ... 12

6.1.9 ADC ... 12

6.1.10 Switches, Buttons and Indicators ... 12

6.1.11 Sensors ... 12

6.1.12 Power ... 12

6.1.13 Block Diagram .. 13

6.2 Layout ... 13

7 Cyclone V Overview ... 15

7.1 Introduction to the Cyclone V Hard Processor System .. 15

7.2 Features of the HPS .. 17

7.3 System Integration Overview ... 18

7.3.1 MPU Subsystem ... 18

7.3.2 SDRAM Controller Subsystem .. 18

7.3.3 Support Peripherals .. 18

22/06/2016 P a g e | 1

DE1-SoC Guide

7.3.3.1 System Manager ... 18

7.3.3.2 FPGA Manager ... 18

7.3.4 Interface Peripherals .. 19

7.3.4.1 GPIO Interfaces ... 19

7.3.5 On-Chip Memory .. 19

7.3.5.1 On-Chip RAM .. 19

7.3.5.2 Boot ROM ... 19

7.4 HPS-FPGA Interfaces .. 19

7.5 HPS Address Map ... 19

7.5.1 HPS Address Spaces ... 19

7.5.2 HPS Peripheral Region Address Map .. 21

7.6 HPS Booting and FPGA Configuration .. 23

7.6.1 HPS Boot and FPGA Configuration Ordering .. 23

7.6.2 Zooming In On the HPS Boot Process ... 25

7.6.2.1 Preloader .. 26

8 Using the Cyclone V – General Information ... 27

8.1 Introduction ... 27

8.2 FPGA-only ... 27

8.3 HPS & FPGA .. 27

8.3.1 Bare-metal Application .. 27

8.3.2 Application Over an Operating System (Linux) .. 28

8.4 Goals ... 28

8.5 Project Structure .. 28

9 Using the Cyclone V – Hardware .. 30

9.1 General Quartus Prime Setup .. 30

9.2 System Design with Qsys – Nios II .. 30

9.3 System Design with Qsys – HPS ... 33

9.3.1 Instantiating the HPS Component .. 33

9.3.1.1 FPGA Interfaces Tab ... 33

9.3.1.2 Peripheral Pins Tab ... 34

9.3.1.2.1 Theory .. 34

9.3.1.2.2 Configuration ... 35

9.3.1.3 HPS Clocks Tab ... 37

9.3.1.4 SDRAM Tab ... 37

22/06/2016 P a g e | 2

DE1-SoC Guide

9.3.2 Interfacing with FPGA Peripherals ... 39

9.4 Generating the Qsys System .. 40

9.5 Instantiating the Qsys System .. 41

9.6 HPS DDR3 Pin Assignments .. 45

9.7 Wiring the DE1-SoC .. 45

9.8 Programming the FPGA .. 46

9.9 Creating Target sdcard Artifacts .. 48

10 Using the Cyclone V – FPGA – Nios II – Bare-metal ... 49

10.1 Project Setup .. 49

10.2 Nios II Programming Theory – Accessing Peripherals .. 49

10.3 Nios II Programming Practice ... 50

11 Using the Cylone V – HPS – ARM – General ... 53

11.1 Partitioning the sdcard ... 53

11.2 Generating a Header File for HPS Peripherals ... 53

11.3 HPS Programming Theory .. 54

12 Using the Cyclone V – HPS – ARM – Bare-metal .. 55

12.1 Preloader .. 55

12.1.1 Preloader Generation ... 55

12.1.2 Creating Target sdcard Artifacts .. 56

12.2 ARM DS-5 ... 56

12.2.1 Setting Up a New C Project .. 57

12.2.2 Writing a DS-5 Debug Script ... 58

12.2.3 Setting Up the Debug Configuration .. 59

12.2.4 Bare-metal Programming ... 60

12.2.4.1 Accessing FPGA Peripherals ... 61

12.2.4.2 Accessing HPS Peripherals.. 62

12.2.4.2.1 Using Altera’s HWLIB - Prerequisites ... 62

12.2.4.2.2 Global Timer & Clock Manager .. 63

12.2.4.2.3 GPIO ... 64

12.2.4.3 Launching the Bare-metal Code in the Debugger .. 65

12.2.4.4 DS-5 Bare-metal Debugger Tour .. 66

12.2.4.4.1 “Registers” View .. 66

12.2.4.4.2 App Console ... 68

13 Using the Cyclone V – HPS – ARM – Linux ... 69

22/06/2016 P a g e | 3

DE1-SoC Guide

13.1 Preloader .. 69

13.1.1 Preloader Generation ... 69

13.1.2 Creating Target sdcard Artifacts .. 70

13.2 Bootloader.. 70

13.2.1 Getting & Compiling U-Boot .. 70

13.2.2 Scripting U-Boot ... 72

13.2.3 Creating Target sdcard Artifacts .. 73

13.3 Linux Kernel .. 74

13.3.1 Getting & Compiling Linux ... 74

13.3.2 Creating Target sdcard Artifacts .. 75

13.4 Ubuntu Core Root Filesystem .. 75

13.4.1 Obtaining Ubuntu Core .. 75

13.4.2 Customizing Ubuntu Core .. 75

13.4.2.1 Setup the chroot Environment ... 76

13.4.2.2 Inside the chroot Environment .. 76

13.4.3 Cleanup the chroot Environment ... 78

13.4.4 Creating Target sdcard Artifacts .. 78

13.5 Writing Everything to the sdcard ... 78

13.6 Scripting the Complete Procedure ... 79

13.7 Testing the Setup ... 80

13.8 ARM DS-5 ... 86

13.8.1 Setting Up a New C Project .. 86

13.8.2 Creating a Remote Debug Connection to the Linux Distribution ... 88

13.8.2.1 Find the Linux Distribution’s IP Address .. 88

13.8.2.2 Create an SSH Remote Connection .. 89

13.8.2.3 Setting Up the Debug Configuration .. 90

13.8.3 Linux Programming .. 92

13.8.3.1 Using Altera’s HWLIB - Prerequisites ... 93

13.8.3.2 Accessing Hardware Peripherals from User Space .. 93

13.8.3.2.1 Opening the Physical Memory File Descriptor .. 93

13.8.3.2.2 Accessing HPS Peripherals ... 94

13.8.3.2.3 Accessing FPGA Peripherals ... 95

13.8.3.2.4 Cleaning Up Before Application Exit .. 96

13.8.3.3 Launching the Linux code in the Debugger .. 97

22/06/2016 P a g e | 4

DE1-SoC Guide

13.8.3.4 App Console ... 98

13.8.3.5 DS-5 Linux Debugger Restrictions .. 98

14 TODO .. 99

15 References .. 100

22/06/2016 P a g e | 5

DE1-SoC Guide

2 LIST OF FIGURES
Figure 6-1. Terasic DE1-SoC Board [1] .. 11

Figure 6-2. Block Diagram of the DE1-SoC Board [1] ... 13

Figure 6-3. Back [1] .. 13

Figure 6-4. Front [1] ... 14

Figure 7-1. Altera SoC FPGA Device Block Diagram [2, pp. 1-1] ... 15

Figure 7-2. HPS Block Diagram [2, pp. 1-3] .. 17

Figure 7-3. HPS Address Space Relations [2, pp. 1-14] .. 20

Figure 7-4. Simplified HPS Boot Flow [2, pp. A-3] .. 23

Figure 7-5. Independent FPGA Configuration and HPS Booting [2, pp. A-2] ... 24

Figure 7-6. FPGA Configuration before HPS Booting (HPS boots from FPGA) [2, pp. A-2] 24

Figure 7-7. HPS Boots and Performs FPGA Configuration [2, pp. A-3] ... 25

Figure 7-8. HPS Boot Flows [2, pp. A-3] ... 25

Figure 8-1. Project Folder Structure ... 29

Figure 9-1. Exporting the pll_0.outclk2 Signal ... 31

Figure 9-2. Basic Nios II System with SDRAM and JTAG UART ... 32

Figure 9-3. Adding LEDs and Switches to the System .. 33

Figure 9-4. HPS Component Parameters ... 33

Figure 9-5. HPS_KEY & HPS_LED on DE1-SoC Schematic ... 34

Figure 9-6. HPS_KEY & HPS_LED on Qsys Peripheral Pins Tab... 34

Figure 9-7. Using Pin G21 for SPI .. 35

Figure 9-8. Ethernet MAC configuration .. 35

Figure 9-9. SD/MMC configuration .. 35

Figure 9-10. UART configuration .. 36

Figure 9-11. Exported peripheral pins ... 36

Figure 9-12. Quad SPI Flash, USB, SPI, and I2C peripheral pin configurations ... 37

Figure 9-13. Adding the "Standalone" HPS to the System ... 39

Figure 9-14. Adding Buttons and 7-segment Displays to the Lightweight HPS-to-FPGA Bridge 40

Figure 9-15. Generate Qsys System ... 41

Figure 9-16. Qsys Component Instantiation .. 43

Figure 9-17. Final Top-level Entity.. 44

Figure 9-18. Correct HPS DDR3 Pin Assignment TCL Script Selection .. 45

22/06/2016 P a g e | 6

DE1-SoC Guide

Figure 9-19. DE1-SoC Wiring .. 46

Figure 9-20. Quartus Prime Programmer... 46

Figure 9-21. FPGA Selection ... 47

Figure 9-22. JTAG Scan Chain ... 47

Figure 9-23. Programming the FPGA ... 47

Figure 10-1. Incorrect Nios II Peripheral Access in C ... 49

Figure 10-2. Correct Nios II Peripheral Access in C .. 50

Figure 10-3. nios.c .. 51

Figure 10-4. Nios II Target Connection Dialog ... 51

Figure 11-1. Partitioning the sdcard .. 53

Figure 11-2. hps_soc_system.h .. 54

Figure 12-1. New BSP Dialog .. 55

Figure 12-2. Preloader Settings Dialog ... 56

Figure 12-3. New C Project Dialog ... 57

Figure 12-4. debug_setup.ds.. 59

Figure 12-5. Debug Configuraton “Connection” Tab ... 60

Figure 12-6. Debug Configuration "Files" Tab .. 60

Figure 12-7. Debug Configuration "Debugger" Tab ... 60

Figure 12-8. hps_baremetal.c main() function .. 61

Figure 12-9. Accessing FPGA Buttons from the HPS .. 61

Figure 12-10. Setting the 7-Segment Displays from the HPS ... 62

Figure 12-11. Programming the HPS Global Timer .. 63

Figure 12-12. Programming the HPS GPIO Peripheral ... 65

Figure 12-13. Switching to the DS-5 Debug Perspective .. 65

Figure 12-14. Debug Control View ... 65

Figure 12-15. DS-5 Debugger Controls ... 66

Figure 12-16. DS-5 Debugger Registers View ... 67

Figure 12-17. DS-5 App Console View .. 68

Figure 13-1. New BSP Dialog .. 69

Figure 13-2. Preloader Settings Dialog ... 70

Figure 13-3. U-Boot Script .. 73

Figure 13-4. Target sdcard directory .. 78

Figure 13-5. DE1-SoC Boot Messages .. 86
22/06/2016 P a g e | 7

DE1-SoC Guide

Figure 13-6. New C Project Dialog ... 87

Figure 13-7. hps_linux.c with an empty main() function. .. 88

Figure 13-8. ARM DS-5 Serial Terminal .. 88

Figure 13-9. ARM DS-5 Serial Terminal Settings .. 89

Figure 13-10. ARM DS-5 Serial Terminal Linux Prompt ... 89

Figure 13-11. Obtaining the DE1-SoC's IP Address through ARM DS-5’s Serial Terminal 89

Figure 13-12. New SSH Only Connection ... 90

Figure 13-13. New SSH Connection In "Remote Systems" View .. 90

Figure 13-14. Debug Configuraton “Connection” Tab ... 91

Figure 13-15. Debug Configuration "Files" Tab .. 91

Figure 13-16. Debug Configuration "Debugger" Tab ... 92

Figure 13-17. hps_linux.c main() Function ... 93

Figure 13-18. Prototype of the mmap() Function .. 94

Figure 13-19. open_physical_memory_device() Function ... 94

Figure 13-20. mmap_hps_peripherals() Function ... 94

Figure 13-21. setup_hps_gpio() Function .. 95

Figure 13-22. handle_hps_led() Function .. 95

Figure 13-23. mmap_fpga_peripherals() Function. ... 96

Figure 13-24. is_fpga_button_pressed() Function ... 96

Figure 13-25. munmap_hps_peripherals() Function ... 96

Figure 13-26. close_physical_memory_device() Function ... 96

Figure 13-27. Switching to the DS-5 Debug Perspective .. 97

Figure 13-28. Debug Control View ... 97

Figure 13-29. DS-5 Debugger Controls ... 98

Figure 13-30. DS-5 App Console View .. 98

3 TABLE OF TABLES
Table 7-1. Possible HPS and FPGA Power Configurations .. 16

Table 7-2. HPS Address Spaces [2, pp. 1-13] .. 20

Table 7-3. Common Address Space Regions [2, pp. 1-15] .. 20

Table 7-4. HPS Peripheral Region Address Map [2, pp. 1-16] .. 22

Table 11-1. Predefined Data Sizes in socal.h ... 54

22/06/2016 P a g e | 8

DE1-SoC Guide

4 PREREQUISITES

4.1 HARDWARE
We use the Terasic DE1-SoC board in this guide, but the guide can easily be adapted to be used with any other
Cyclone V SoC device.

4.2 SOFTWARE
This guide assumes users are running a version of the UBUNTU operating system on which you have ROOT
PERMISSIONS, and have installed the following programs:

• Quartus Prime
• Nios II Software Build Tools (Nios II SBT)
• ModelSim-Altera
• SoC Embedded Design Suite (SoC EDS)

Additionally, we require that you install the following packages from the Ubuntu package manager:

• git
• qemu-user-static
• minicom

Finally, we insist that ALL command-line instructions provided in this guide MUST be executed in an ALTERA
EMBEDDED COMMAND SHELL. The executable for the Altera Embedded Command Shell can be found at
“<altera_install_directory>/<version>/embedded/embedded_command_shell.sh”

4.2.1 Software Versions Used in this Guide
• All HARDWARE and SOFTWARE examples in this guide were made with Quartus Prime, SoC EDS and

Nios II SBT version 15.1.
• Some FIGURES in this guide were made with Quartus Prime, SoC EDS and Nios II SBT version 14.0.
• The operating system used is UBUNTU 16.04, but all instructions in the guide have also been

successfully tested on all versions of Ubuntu from 14.04 to 16.04.

4.2.2 Licenses
• Chapter 12: “Using the Cyclone V – HPS – ARM – Bare-metal” shows how to perform bare-metal

debugging for demonstration purposes in order to see what the systems described in this tutorial can
do. However, I highly recommend using linux on the HPS instead or bare-metal debugging.

Indeed, BARE-METAL debugging in ARM DS-5 REQUIRES a PAID LICENSE (not the free community
license). If you do not have a paid license, then you should use linux on the HPS instead of bare-metal
debugging as debugging a LINUX application in ARM DS-5 does NOT REQUIRE a PAID LICENSE, and is
FULLY SUPPORTED with the FREE COMMUNITY LICENSE.

Additionally, using linux on such a system is much easier and supperior to bare-metal programming.

• Using a Nios II processor as described in this tutorial REQUIRES a PAID LICENSE in order to convert the
FPGA programming file that Quartus Prime generates (*.sof) into a RAW Binary File (*.rbf) to be
used to program the FPGA automatically at boot time.
If you do not have a paid license for the Nios II processor, then you should avoid using it and just use
the HPS instead. No license is required for using the HPS.

22/06/2016 P a g e | 9

DE1-SoC Guide

5 INTRODUCTION
The development of embedded systems based on chips containing one or more microprocessors and hardcore
peripherals, as well as an FPGA part is becoming more and more important. This technology gives the designer
a lot of freedom and powerful abilities. Classical design flows with microcontrollers are emphasized with the
full power of FPGAs.

Mixed designs are becoming a reality. One can now design specific accelerators to greatly improve algorithms,
or create specific programmable interfaces with the external world.

Two main HDL (Hardware Design Language) languages are available for the design of the FPGA part: VHDL and
Verilog. There also exist other tools that perform automatic translations from C to HDL. New emerging
technologies like OpenCL allow compatibility between high-level software design, and low-level hardware
implementations such as:

• Compilation for single or multicore processors
• Compilation for GPUs (Graphical Processing Unit)
• Translation and compilation for FPGAs. The latest models use a PCIe interface or some other way of

parameters passing between the main processor and the FPGA

We will introduce and use the Terasic DE1-SoC board, as well as the ARM DS-5 IDE.

22/06/2016 P a g e | 10

http://de1-soc.terasic.com/

DE1-SoC Guide

6 TERASIC DE1-SOC BOARD

Figure 6-1. Terasic DE1-SoC Board [1]

The DE1-SoC board has many features that allow users to implement a wide range of designed circuits. We will
discuss some noteworthy features in this guide.

6.1 SPECIFICATIONS

6.1.1 FPGA Device
• Cyclone V SoC 5CSEMA5F31C6 Device
• Dual-core ARM CORTEX-A9 (HPS)
• 85K Programmable Logic Elements
• 4’450 Kbits embedded memory
• 6 Fractional PLLs
• 2 Hard Memory Controllers (only seems to be used for the HPS DDR3 SDRAM, not the FPGA SDRAM)

6.1.2 Con�iguration and Debug
• Quad Serial Configuration device – EPCQ256 on FPGA
• On-Board USB BLASTER II (Normal type B USB connector)

6.1.3 Memory Device
• 64 MB (32Mx16) SDRAM on FPGA
• 1 GB (2x256Mx16) DDR3 SDRAM on HPS
• MICRO SD Card Socket on HPS

6.1.4 Communication
• Two Port USB 2.0 Host (ULPI interface with USB type A connector)
• USB to UART (micro USB type B connector)
• 10/100/1000 Ethernet
• PS/2 mouse/keyboard
• IR Emitter/Receiver

22/06/2016 P a g e | 11

DE1-SoC Guide

6.1.5 Connectors

• Two 40-pin Expansion Headers
• One 10-pin ADC Input Header
• One LTC connector (One Serial Peripheral Interface (SPI) Master, one I2C and one GPIO interface)

6.1.6 Display
• 24-bit VGA DAC

6.1.7 Audio
• 24-bit CODEC, line-in, line-out, and microphone-in jacks

6.1.8 Video Input
• TV Decoder (NTSC/PAL/SECAM) and TV-in connector

6.1.9 ADC
• Fast throughput rate: 1 MSPS
• Channel number: 8
• Resolution: 12 bits
• Analog input range : 0 ~ 2.5 V or 0 ~ 5V as selected via the RANGE bit in the control register

6.1.10 Switches, Buttons and Indicators
• 4 User Keys (FPGA x4)
• 10 User switches (FPGA x10)
• 11 User LEDs (FPGA x10; HPS x 1)
• 2 HPS Reset Buttons (HPS_RST_n and HPS_WARM_RST_n)
• Six 7-segment displays

6.1.11 Sensors
• G-Sensor on HPS

6.1.12 Power
• 12V DC input

22/06/2016 P a g e | 12

DE1-SoC Guide

6.1.13 Block Diagram

Figure 6-2. Block Diagram of the DE1-SoC Board [1]

6.2 LAYOUT

Figure 6-3. Back [1]

22/06/2016 P a g e | 13

DE1-SoC Guide

Figure 6-4. Front [1]

• Green for peripherals directly connected to the FPGA
• Orange for peripherals directly connected to the HPS
• Blue for board control

22/06/2016 P a g e | 14

DE1-SoC Guide

7 CYCLONE V OVERVIEW
This section describes some features of the Cyclone V family of devices. We do not list all features, but only
the ones most important to us. All information below, along with the most complete documentation regarding
this family can be found in the Cyclone V Device Handbook [2].

7.1 INTRODUCTION TO THE CYCLONE V HARD PROCESSOR SYSTEM
The Cyclone V device is a single-die system on a chip (SoC) that consists of two distinct parts – a hard
processor system (HPS) portion and an FPGA portion.

Figure 7-1. Altera SoC FPGA Device Block Diagram [2, pp. 1-1]

The HPS contains a microprocessor unit (MPU) subsystem with single or dual ARM Cortex-A9 MPCore
processors, flash memory controllers, SDRAM L3 Interconnect, on-chip memories, support peripherals,
interface peripherals, debug capabilities, and phase-locked loops (PLLs). The dual-processor HPS supports
symmetric (SMP) and asymmetric (AMP) multiprocessing.

The DE1-SoC has a DUAL-processor HPS.

The FPGA portion of the device contains the FPGA fabric, a control block (CB), phase-locked loops (PLLs), and
depending on the device variant, high-speed serial interface (HSSI) transceivers, hard PCI Express (PCIe)
controllers, and hard memory controllers.

The DE1-SoC does not contain any HSSI transceivers, or hard PCIe controllers.

The HPS and FPGA portions of the device are distinctly different. The HPS can boot from

• the FPGA fabric,
• external flash, or
• JTAG

 In contrast, the FPGA must be configured either through

• the HPS, or
• an externally supported device such as the Quartus Prime programmer.

22/06/2016 P a g e | 15

DE1-SoC Guide

The MPU subsystem can boot from

• flash devices connected to the HPS pins, or
• from memory available on the FPGA portion of the device (when the FPGA portion is previously

configured by an external source).

The HPS and FPGA portions of the device each have their own pins. Pins are not freely shared between the
HPS and the FPGA fabric. The FPGA I/O PINS are configured by an FPGA CONFIGURATION IMAGE through the
HPS or any external source supported by the device. The HPS I/O PINS are configured by SOFTWARE executing
in the HPS. Software executing on the HPS accesses control registers in the Cyclone V system manager to
assign HPS I/O pins to the available HPS modules.

The SOFTWARE that configures the HPS I/O PINS is called the PRELOADER.

The HPS and FPGA portions of the device have separate external power supplies and independently power on.
You can power on the HPS without powering on the FPGA portion of the device. However, to power on the
FPGA portion, the HPS must already be on or powered on at the same time as the FPGA portion. Table 7-1
summarizes the possible configurations.

HPS Power FPGA Power
On On
On Off
Off Off

Table 7-1. Possible HPS and FPGA Power Configurations

22/06/2016 P a g e | 16

DE1-SoC Guide

7.2 FEATURES OF THE HPS

Figure 7-2. HPS Block Diagram [2, pp. 1-3]

The following list contains the main modules of the HPS:

• Masters
o MPU subsystem featuring dual ARM Cortex-A9 MPCore processors
o General-purpose Direct Memory Access (DMA) controller
o Two Ethernet media access controllers (EMACs)
o Two USB 2.0 On-The-Go (OTG) controllers
o NAND flash controller
o Secure Digital (SD) / MultiMediaCard (MMC) controller
o Two serial peripheral interface (SPI) master controllers
o ARM CoreSight debug components

• Slaves
o Quad SPI flash controller
o Two SPI slave controllers
o Four inter-integrated circuit (I2C) controllers
o 64 KB on-chip RAM

22/06/2016 P a g e | 17

DE1-SoC Guide

o 64 KB on-chip boot ROM
o Two UARTs
o Four timers
o Two watchdog timers
o Three general-purpose I/O (GPIO) interfaces
o Two controller area network (CAN) controllers
o System manager
o Clock manager
o Reset manager
o Scan manager
o FPGA manager

7.3 SYSTEM INTEGRATION OVERVIEW
In this part, we briefly go through some features provided by the most important HPS components.

7.3.1 MPU Subsystem
Here are a few important features of the MPU subsystem:

• Interrupt controller
• One general-purpose timer and one watchdog timer per processor
• One Memory management unit (MMU) per processor

The HPS masters the L3 interconnect and the SDRAM controller subsystem.

7.3.2 SDRAM Controller Subsystem
The SDRAM controller subsystem is MASTERED by HPS MASTERS and FPGA FABRIC MASTERS. It supports
DDR2, DDR3, and LPDDR2 devices. It is composed of 2 parts:

• SDRAM controller
• DDR PHY (interfaces the single port memory controller to the HPS I/O)

The DE1-SoC contains DDR3 SDRAM

7.3.3 Support Peripherals

7.3.3.1 System Manager
This is one of the most essential HPS components. It offers a few important features:

• PIN MULTIPLEXING (term used for the SOFTWARE configuration of the HPS I/O PINS by the
PRELOADER)

• Freeze controller that places I/O elements into a safe state for configuration
• Low-level control of peripheral features not accessible through the control and status registers (CSRs)

The low-level control of some peripheral features that are not accessible through the CSRs is NOT externally
documented. You will see this type of code when you generate your custom preloader, but must NOT use the

constructs in your own code.

7.3.3.2 FPGA Manager
The FPGA manager offers the following features:

• Manages the configuration of the FPGA portion of the device
• Monitors configuration-related signals in the FPGA
• Provides 32 general-purpose inputs and 32 general-purpose outputs to the FPGA fabric

22/06/2016 P a g e | 18

DE1-SoC Guide

7.3.4 Interface Peripherals

7.3.4.1 GPIO Interfaces
The HPS provides three GPIO interfaces and offer the following features:

• Supports digital de-bounce
• Configurable interrupt mode
• Supports up to 71 I/O pins and 14 input-only pins, based on device variant
• Supports up to 67 I/O pins and 14 input-only pins

The DE1-SoC has 67 I/O pins and 14 input-only pins

7.3.5 On-Chip Memory
The following on-chip memories are DIFFERENT from any on-chip memories located in the FPGA fabric.

7.3.5.1 On-Chip RAM
The on-chip RAM offers the following features:

• 64 KB size
• High performance for all burst lengths

7.3.5.2 Boot ROM
The boot ROM offers the following features:

• 64 KB size
• Contains the code required to support HPS boot from cold or warm reset
• Used EXCLUSIVELY for booting the HPS

The code in the boot ROM CANNOT be changed.

7.4 HPS-FPGA INTERFACES
The HPS-FPGA interfaces provide a variety of communication channels between the HPS and the FPGA fabric.
The HPS-FPGA interfaces include:

• FPGA-to-HPS bridge – a high performance bus with a configurable data width of 32, 64, or 128 bits. It
allows the FPGA fabric to master transactions to slaves in the HPS. This interface allows the FPGA
fabric to have full visibility into the HPS address space.

• HPS-to-FPGA bridge – a high performance bus with a configurable data width of 32, 64, or 128 bits. It
allows the HPS to master transactions to slaves in the FPGA fabric. I will sometimes call this the
“heavyweight” HPS-to-FPGA bridge to distinguish its “lightweight” counterpart (see below).

• Lightweight HPS-to-FPGA bridge – a bus with a 32-bit fixed data width. It allows the HPS to master
transactions to slaves in the FPGA fabric.

• FPGA manager interface – signals that communicate with FPGA fabric for boot and configuration.
• Interrupts – allow soft IP to supply interrupts directly to the MPU interrupt controller.
• HPS debug interface – an interface that allows the HPS debug control domain to extend into the FPGA.

7.5 HPS ADDRESS MAP

7.5.1 HPS Address Spaces
The HPS address map specifies the address of slaves, such as memory and peripherals, as viewed by the HPS
masters. The HPS has 3 address spaces:

22/06/2016 P a g e | 19

DE1-SoC Guide

Name Description Size
MPU MPU subsystem 4 GB
L3 L3 interconnect 4 GB
SDRAM SDRAM controller subsystem 4 GB

Table 7-2. HPS Address Spaces [2, pp. 1-13]

The following figure shows the relationships between the different HPS address spaces. The figure is NOT to
scale.

Figure 7-3. HPS Address Space Relations [2, pp. 1-14]

The window regions provide access to other address spaces. The thin black arrows indicate which address
space is accessed by a window region (arrows point to accessed address space).

The SDRAM window in the MPU can grow and shrink at the top and bottom (short blue vertical arrows) at the
expense of the FPGA slaves and boot regions. The ACP window can be mapped to any 1 GB region in the MPU
address space (blue vertical bidirectional arrow), on gigabyte-aligned boundaries.

The following table shows the base address and size of each region that is common to the L3 and MPU address
spaces.

Region Name Description Base Address Size
FPGA slaves FPGA slaves connected to the HPS-to-FPGA bridge 0xC0000000 960 MB
HPS peripherals Slaves directly connected to the HPS (corresponds

to all orange colored elements on Figure 6-4 and
Figure 6-3)

0xFC000000 64 MB

Lightweight FPGA slaves FPGA slaves connected to the lightweight HPS-to-
FPGA bridge

0xFF200000 2 MB

Table 7-3. Common Address Space Regions [2, pp. 1-15]

22/06/2016 P a g e | 20

DE1-SoC Guide

7.5.2 HPS Peripheral Region Address Map
The following table lists the slave identifier, slave title, base address, and size of each slave in the HPS
peripheral region. The Slave Identifier column lists the names used in the HPS register map file provided by
Altera (more on this later).

Slave Identifier Slave Title Base Address Size
STM STM 0xFC000000 48 MB
DAP DAP 0xFF000000 2 MB
LWFPGASLAVES FPGA slaves accessed with lightweight HPS-to-FPGA

bridge
0xFF200000 2 MB

LWHPS2FPGAREGS Lightweight HPS-to-FPGA bridge GPV 0xFF400000 1 MB
HPS2FPGAREGS HPS-to-FPGA bridge GPV 0xFF500000 1 MB
FPGA2HPSREGS FPGA-to-HPS bridge GPV 0xFF600000 1 MB
EMAC0 EMAC0 0xFF700000 8 KB
EMAC1 EMAC1 0xFF702000 8 KB
SDMMC SD/MMC 0xFF704000 4 KB
QSPIREGS Quad SPI flash controller registers 0xFF705000 4 KB
FPGAMGRREGS FPGA manager registers 0xFF706000 4 KB
ACPIDMAP ACP ID mapper registers 0xFF707000 4 KB
GPIO0 GPIO0 0xFF708000 4 KB
GPIO1 GPIO1 0xFF709000 4 KB
GPIO2 GPIO2 0xFF70A000 4 KB
L3REGS L3 interconnect GPV 0xFF800000 1 MB
NANDDATA NAND controller data 0xFF900000 1 MB
QSPIDATA Quad SPI flash data 0xFFA00000 1 MB
USB0 USB0 OTG controller registers 0xFFB00000 256 KB
USB1 USB1 OTG controller registers 0xFFB40000 256 KB
NANDREGS NAND controller registers 0xFFB80000 64 KB
FPGAMGRDATA FPGA manager configuration data 0xFFB90000 4 KB
CAN0 CAN0 controller registers 0xFFC00000 4 KB
CAN1 CAN1 controller registers 0xFFC01000 4 KB
UART0 UART0 0xFFC02000 4 KB
UART1 UART1 0xFFC03000 4 KB
I2C0 I2C0 0xFFC04000 4 KB
I2C1 I2C1 0xFFC05000 4 KB
I2C2 I2C2 0xFFC06000 4 KB
I2C3 I2C3 0xFFC07000 4 KB
SPTIMER0 SP Timer0 0xFFC08000 4 KB
SPTIMER1 SP Timer1 0xFFC09000 4 KB
SDRREGS SDRAM controller subsystem registers 0xFFC20000 128 KB
OSC1TIMER0 OSC1 Timer0 0xFFD00000 4 KB
OSC1TIMER1 OSC1 Timer1 0xFFD01000 4 KB
L4WD0 Watchdog0 0xFFD02000 4 KB
L4WD1 Watchdog1 0xFFD03000 4 KB
CLKMGR Clock manager 0xFFD04000 4 KB
RSTMGR Reset manager 0xFFD05000 4 KB
SYSMGR System manager 0xFFD08000 16 KB
DMANONSECURE DMA nonsecure registers 0xFFE00000 4 KB
DMASECURE DMA secure registers 0xFFE01000 4 KB
SPIS0 SPI slave0 0xFFE02000 4 KB
SPIS1 SPI slave1 0xFFE03000 4 KB
SPIM0 SPI master0 0xFFF00000 4 KB
SPIM1 SPI master1 0xFFF01000 4 KB

22/06/2016 P a g e | 21

DE1-SoC Guide

SCANMGR Scan manager registers 0xFFF02000 4 KB
ROM Boot ROM 0xFFFD0000 64 KB
MPUSCU MPU SCU registers 0xFFFEC000 8 KB
MPUL2 MPU L2 cache controller registers 0xFFFEF000 4 KB
OCRAM On-chip RAM 0xFFFF0000 64 KB

Table 7-4. HPS Peripheral Region Address Map [2, pp. 1-16]

The programming model for accessing the HPS peripherals in Table 7-4 is the same as for peripherals created
on the FPGA fabric. That is, every peripheral has a base address at which a certain number of registers can be
found. You can then read and write to a certain set of these registers in order to modify the peripheral’s
behavior.

When using a HPS peripheral in
Table 7-4, you do not need to hard-code any base address or peripheral register map in your programs, as
Altera provides a header file for each one.

Three directories contain all HPS-related HEADER FILES:

1. “<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de”
Contains HIGH-LEVEL header files that typically contain a few FUNCTIONS which facilitate control over
the HPS components. These functions are all part of Altera’s HWLIB, which was created to make
programming the HPS easier. This directory contains code that is common to the Cyclone V, Arria V,
and Arria 10 devices.

2. “<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de/soc_cv_av”
Same as above, but more specifically for the Cyclone V and Arria V FPGA families.

3. “<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de/soc_cv_av/socal”
Contains LOW-LEVEL header files that provide a peripheral’s BIT-LEVEL REGISTER DETAILS. For
example, any bits in a peripheral’s register that correspond to undefined behavior will be specified in
these header files.

To illustrate the differences among the high and low-level header files, we can compare the ones related to the
FPGA manager peripheral:

1. “…/hwlib/include/soc_cv_av/alt_fpga_manager.h”
ALT_STATUS_CODE alt_fpga_reset_assert(void);
ALT_STATUS_CODE alt_fpga_configure(const void* cfg_buf, size_t cfg_buf_len);

2. “…/hwlib/include/soc_cv_av/socal/alt_fpgamgr.h”
/* The width in bits of the ALT_FPGAMGR_CTL_EN register field. */
#define ALT_FPGAMGR_CTL_EN_WIDTH 1
/* The mask used to set the ALT_FPGAMGR_CTL_EN register field value. */
#define ALT_FPGAMGR_CTL_EN_SET_MSK 0x00000001
/* The mask used to clear the ALT_FPGAMGR_CTL_EN register field value. */
#define ALT_FPGAMGR_CTL_EN_CLR_MSK 0xfffffffe

An important header file is “…/hwlib/include/soc_cv_av/socal/hps.h”. It contains the HPS component’s
full REGISTER MAP, as provided in
Table 7-4.

Note however, that there exists NO HEADER FILE for the “heavyweight” HPS-to-FPGA bridge, as it is not
located in the “HPS peripherals” region in Figure 7-3. Indeed, the “heavyweight” HPS-to-FPGA bridge is not

22/06/2016 P a g e | 22

DE1-SoC Guide

considered a HPS peripheral, whereas the “lightweight” HPS-to-FPGA bridge is. Therefore, in order to use the
“heavyweight” HPS-to-FPGA bridge, you will have to define a macro in your code, as follows:

#define ALT_HWFPGASLVS_OFST 0xc0000000

Note that HWLIB can only be directly used in a BARE-METAL APPLICATION, as it directly references physical
addresses. The library can unfortunately NOT be used directly in a LINUX DEVICE DRIVER, because it uses
standard header files that are not available in the kernel. Needless to say that a userspace linux program
cannot use the library either, as the linux kernel would terminate a user process that tries to access any of

these physical addresses directly.

7.6 HPS BOOTING AND FPGA CONFIGURATION
Before being able to use the Cyclone V SoC, one needs to understand how the HPS boots and how the FPGA is
configured. We’ll first take a look at the ordering between the HPS and FPGA.

7.6.1 HPS Boot and FPGA Con�iguration Ordering
The HPS BOOT starts when the processor is released from reset (for example, on power up) and executes code
in the internal boot ROM at the reset exception address. The boot process ends when the code in the boot
ROM jumps to the next stage of the boot software. This next stage of the boot software is referred to as the
preloader. Figure 7-4 illustrates this initial incomplete HPS boot flow.

Figure 7-4. Simplified HPS Boot Flow [2, pp. A-3]

The processor can boot from the following sources:

• NAND flash memory through the NAND flash controller
• SD/MMC flash memory through the SD/MMC flash controller
• SPI and QSPI flash memory through the QSPI flash controller using Slave Select 0
• FPGA fabric on-chip memory

The choice of the boot source is done by modifying the BOOTSEL and CLKSEL values BEFORE THE DEVICE IS
POWERED UP. Therefore, the Cyclone V device normally uses a PHYSICAL DIP SWITCH to configure the
BOOTSEL and CLKSEL.

The DE1-SoC can ONLY BOOT from SD/MMC flash memory, as its BOOTSEL and CLKSEL values are hard-wired
on the board. Although its HPS contains all necessary controllers, the board doesn’t have a physical DIP switch

to modify the BOOTSEL and CLKSEL values. The actual location of the DIP switch is present underneath the
board, as can be seen in Figure 6-3, but a switch isn’t soldered.

CONFIGURATION OF THE FPGA portion of the device starts when the FPGA portion is released from reset state
(for example, on power up). The control block (CB) in the FPGA portion of the device is responsible for
obtaining an FPGA configuration image and configuring the FPGA. The FPGA configuration ends when the
configuration image has been fully loaded and the FPGA enters user mode. The FPGA configuration image is
provided by users and is typically stored in non-volatile flash-based memory. The FPGA CB can obtain a
configuration image from the HPS through the FPGA manager, or from another external source, such as the
Quartus Prime Programmer.

The following three figures illustrate the possible HPS boot and FPGA configuration schemes. Note that
Cyclone V devices can also be fully configured through a JTAG connection.

22/06/2016 P a g e | 23

DE1-SoC Guide

Figure 7-5. Independent FPGA Configuration and HPS Booting [2, pp. A-2]

Figure 7-5 shows the scheme where the FPGA configuration and the HPS boot occur independently. The FPGA
configuration obtains its image from a non-HPS source (Quartus Prime Programmer), while the HPS boot
obtains its configuration image from a non-FPGA fabric source.

Figure 7-6. FPGA Configuration before HPS Booting (HPS boots from FPGA) [2, pp. A-2]

Figure 7-6 shows the scheme where the FPGA is first configured through the Quartus Prime Programmer, then
the HPS boots from the FPGA fabric. The HPS boot waits for the FPGA fabric to be powered on and in user
mode before executing. The HPS boot ROM code executes the preloader from the FPGA fabric over the HPS-
to-FPGA bridge. The preloader can be obtained from the FPGA on-chip memory, or by accessing an external
interface (such as a larger external SDRAM).

22/06/2016 P a g e | 24

DE1-SoC Guide

Figure 7-7. HPS Boots and Performs FPGA Configuration [2, pp. A-3]

Figure 7-7 shows the scheme under which the HPS first boots from one of its non-FPGA fabric boot sources,
then software running on the HPS configures the FPGA fabric through the FPGA manager. The software on the
HPS obtains the FPGA configuration image from any of its flash memory devices or communication interfaces,
such as the SD/MMC memory, or the Ethernet port. The software is provided by users and the boot ROM is
not involved in configuring the FPGA fabric.

7.6.2 Zooming In On the HPS Boot Process

Figure 7-8. HPS Boot Flows [2, pp. A-3]

Booting software on the HPS is a multi-stage process. Each stage is responsible for loading the next stage. The
first software stage is the boot ROM. The boot ROM code locates and executes the second software stage,
called the preloader. The preloader locates, and IF PRESENT, executes the next software stage. The preloader
and subsequent software stages are collectively referred to as user software.

The reset, boot ROM, and preloader stages are always present in the HPS boot flow. What comes after the
preloader then depends on the type of application you want to run. The HPS can execute 2 types of
applications:

• Bare-metal applications (no operating system)
• Applications on top of an operating system (linux)

Figure 7-8 shows the HPS’ available boot flows. The Reset and Boot ROM stages are the only fixed parts of the
boot process. Everything in the user software stages can be customized.

Although the DE1-SoC has a DUAL-processor HPS (CPU0 and CPU1), the boot flow only executes on CPU0 and
CPU1 is under reset. If you want to use both processors of the DE1-SoC, then USER SOFTWARE executing on

CPU0 is responsible for releasing CPU1 from reset.

22/06/2016 P a g e | 25

DE1-SoC Guide

7.6.2.1 Preloader
The preloader is one of the most important boot stages. It is actually what one would call the boot “source”, as
all stages before it are unmodifiable. The preloader can be stored on external flash-based memory, or in the
FPGA fabric.

The preloader typically performs the following actions:

• Initialize the SDRAM interface
• Configure the HPS I/O through the scan manager
• Configure pin multiplexing through the system manager
• Configure HPS clocks through the clock manager
• Initialize the flash controller (NAND, SD/MMC, QSPI) that contains the next stage boot software
• Load the next boot software into the SDRAM and pass control to it

The preloader does NOT release CPU1 from reset. The subsequent stages of the boot process are responsible
for it if they want to use the extra processor.

22/06/2016 P a g e | 26

DE1-SoC Guide

8 USING THE CYCLONE V – GENERAL INFORMATION

8.1 INTRODUCTION
The HPS component is a SOFT component, but it does NOT mean that the HPS is a softcore processor. In fact,
the HPS exclusively contains HARD LOGIC. The reason it is considered a softcore component originates from
the fact that it enables other soft components to interface with the HPS hard logic. As such, the HPS
component has a small footprint in the FPGA fabric, as its only purpose is to connect the soft and hard logic
together.

Therefore, it is possible to use the Cyclone V SoC in 3 different configurations:

• FPGA-only
• HPS-only
• HPS & FPGA

We will look at the FPGA-only and HPS & FPGA configurations below. We will not cover the HPS-only
configuration as it is identical to the HPS & FPGA one where you simply don’t load any design on the FPGA
fabric. The configurations using the HPS are more difficult to set up than the FPGA-only one.

8.2 FPGA-ONLY
Exclusively using the FPGA part of the Cyclone V is easy, as the design process is identical to any other Altera
FPGA. You can build a complete design in Quartus Prime & Qsys, simulate it in ModelSim-Altera, then program
the FPGA through the Quartus Prime Programmer. If you instantiated a Nios II processor in Qsys, you can use
the Nios II SBT IDE to develop software for the processor.

The DE1-SoC has a lot of pins, which makes it tedious to start an FPGA design. It is recommended to use the
ENTITY in [3] for your TOP-LEVEL VHDL FILE, as it contains all the board’s FPGA and HPS pins.

After having defined a top-level module, it is necessary to map your design’s pins to the ones available on the
DE1-SoC. The TCL SCRIPT in [4] can be executed in Quartus Prime to specify the board’s device ID and all its
PIN ASSIGNMENTS. In order to execute the TCL script, place it in your quartus working directory, then run it
through the “Tools > Tcl Scripts…” menu item in Quartus Prime.

8.3 HPS & FPGA

8.3.1 Bare-metal Application
On one hand, bare-metal software enjoys the advantage of having no OS overhead. This has many
consequences, the most visible of which are that code executes at native speed as no context switching is ever
performed, and additionally, that code can directly address the HPS peripherals using their PHYSICAL memory-
mapped addresses, as no virtual memory system is being used. This is very useful when trying to use the HPS
as a high-speed microcontroller. Such a programming environment is very similar to the one used by other
microcontrollers, like the TI MSP430.

On the other hand, bare-metal code has one great disadvantage, as the programmer must continue to
configure the Cyclone V to use all its resources. For example, we saw in 7.6.2.1 that the preloader does not
release CPU1 from reset, and that it is up to the user software to perform this, which is the bare-metal
application itself in this case. Furthermore, supposing CPU1 is available for use, it is still difficult to run multi-
threaded code, as an OS generally handles program scheduling and CPU affinity for the programmer. The
programmer must now manually assign code fragments to each CPU.

22/06/2016 P a g e | 27

DE1-SoC Guide

8.3.2 Application Over an Operating System (Linux)
Running code over a linux operating system has several advantages. First of all, the kernel releases CPU1 from
reset upon boot, so all processors are available. Furthermore, the kernel initializes and makes most, if not all
HPS peripherals available for use by the programmer. This is possible since the linux kernel has access to a
huge amount of device drivers. Multi-threaded code is also much easier to write, as the programmer has
access to the familiar Pthreads system calls. Finally, the linux kernel is not restricted to running compiled C
programs. Indeed, you can always run code written in another programming language providing you first
install the runtime environment required (that must be available for ARM processors).

However, running an “EMBEDDED” application on top of an operating system also has disadvantages. Due to
the virtual memory system put in place by the OS, a program cannot directly access the HPS peripherals
through their physical memory-mapped addresses. Instead, one first needs to map the physical addresses of
interest into the running program’s virtual address space. Only then will it be possible to access a peripheral’s
registers. Ideally, the programmer should write a device driver for each specific component that is designed to
have a clean interface between user code, and device accesses.

At the end of the day, bare-metal applications and applications running code on top of linux can do the same
things. Generally speaking, programming on top of linux is superior and much easier compared to bare-metal
code, as its advantages greatly outweigh its drawbacks.

8.4 GOALS
Let’s start by defining what we want to achieve in this tutorial. We want to create a system in which both the
HPS and FPGA can do some computation simultaneously. More specifically, we want the following
capabilities:

1. A Nios II processor on the FPGA must be able to use the 10 LEDs and 10 switches connected to the
FPGA PORTION of the device. The Nios II processor will create a strobing light effect on the 10 LEDs,
with the 10 switches acting as enable signals for the corresponding LEDs.

2. The Nios II processor will use its SDRAM instead of any form of on-chip memory.
3. The HPS must be able to use the LED and button that are directly connected to the HPS PORTION of

the device. Pressing the button should toggle the LED.
4. The HPS must be able to use 2 buttons and the six 7-segment displays connected to the FPGA

PORTION of the device. The HPS will increment and decrement a counter that will be shown on the 7-
segment displays. Pressing the first button should invert the counting direction, and pushing the
second button should reset the counter to 0.

5. The HPS must be able to use the ethernet port on the board.
6. The HPS must be able to use the microSD card port on the board to which we will write anything we

want.

8.5 PROJECT STRUCTURE
The development process creates a lot more files compared to an FPGA-only design. We will use the folder
structure shown in Figure 8-1 to organize our project. In this demo, we will use “DE1_SoC_demo” as the
project name.

• The “hw” directory contains all hardware-related files.
• The “sw” directory contains all software-related files.
• The “sdcard” directory contains all final targets needed to create a valid sdcard from which the DE1-

SoC can boot.

22/06/2016 P a g e | 28

DE1-SoC Guide

Figure 8-1. Project Folder Structure

Many steps have to be performed in order to configure the Cyclone V before you can use the HPS.

• The HARDWARE design is IDENTICAL whether you want to write bare-metal applications, or linux HPS
applications.

• The SOFTWARE design is DIFFERENT for bare-metal and linux HPS applications.

The complete design for this tutorial can be found in DE1_SoC_demo.zip [5].

Note that a trimmed down design is also available for the more recent DE0-Nano-SoC board in
DE0_Nano_SoC_demo.zip [6].

22/06/2016 P a g e | 29

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=941

DE1-SoC Guide

9 USING THE CYCLONE V – HARDWARE
The details below give step-by-step instructions to create a full system from scratch.

9.1 GENERAL QUARTUS PRIME SETUP
1. Create a new Quartus Prime project. You only need to specify the project name and destination, as all

other settings will be set at a later stage by a TCL script. For this demo, we will call our project
“DE1_SoC_demo” and will store it in “DE1_SoC_demo/hw/quartus”.

2. Download DE1_SoC_top_level.vhd [3] and save it in “DE1_SoC_demo/hw/hdl”. We will use this file
as the project’s top-level VHDL file, as it contains a complete list of pin names available on the DE1-
SoC for use in your designs. Add the file to the Quartus Prime project by using “Project >
Add/Remove Files in Project…” and set it as your design’s top-level entity.

3. Download pin_assignment_DE1_SoC.tcl [4] and save it in “DE1_SoC_demo/hw/quartus”. This
script assigns pin locations and I/O standards to all pins names in “DE1_SoC_top_level.vhd”.
Execute the TCL script by using “Tools > Tcl Scripts…” in Quartus Prime.

At this stage, all general Quartus Prime settings have been performed, and we can start creating our
design. We want to use the HPS, as well as a Nios II processor in our design, so we will use the Qsys tool to
create the system.

4. Launch the Qsys tool and create a new system. Save it under the name “soc_system.qsys”.

9.2 SYSTEM DESIGN WITH QSYS – NIOS II
In this section, we assemble all system components needed to allow the Nios II processor to create a strobing
light effect on the 10 LEDs with the 10 switches acting as enable signals for the corresponding LEDs.

We want to use a Nios II processor with an SDRAM. To use an SDRAM, we need 2 things:

• An SDRAM controller.
• A PLL to generate a clock for the softcore SDRAM controller and a phase-shifted clock for the off-chip

SDRAM component. The reference clocks and timings needed for the SDRAM can be found on its
datasheet: IS42R16320D.pdf [7].

5. Add an “Altera PLL” to the system.
• Reference Clock Frequency: 50 MHz
• Operation Mode: normal
• Uncheck “Enable locked output port”

We need to generate 3 clocks:
a. 50 MHz clock for the Nios II processor and all its peripherals.
b. 100 MHz clock for the SDRAM controller.
c. 100 MHz, -3758 ps phase-shifted clock for the off-chip SDRAM component.

In Qsys’ “System Contents” tab:

• Export “pll_0.outclk2” under the name “pll_0_sdram”, as shown in Figure 9-1. Exporting
the pll_0.outclk2 Signal. This clock will be used for the off-chip SDRAM component.

22/06/2016 P a g e | 30

DE1-SoC Guide

Figure 9-1. Exporting the pll_0.outclk2 Signal

6. Add an softcore SDRAM controller to the system. Use the following settings (taken from the SDRAM’s
datasheet):

a. Memory Profile
 Data Width

• Bits: 16
 Architecture

• Chip select: 1
• Banks: 4

 Address Width
• Row: 13
• Column: 10

b. Timing
 CAS latency cycles: 3
 Initialization refresh cycles: 2
 Issue one refresh command every: 7.8125 us
 Delay after powerup, before initialization: 100.0 us
 Duration of refresh command (t_rfc): 70.0 ns
 Duration of precharge command (t_rp): 15.0 ns
 ACTIVE to READ or WRITE delay (t_rcd): 15.0 ns
 Access time (t_ac): 5.4 ns
 Write recovery time (t_wr, no auto precharge): 14.0 ns

In Qsys’ “System Contents” tab:
• Rename “new_sdram_controller_0” to “sdram_controller_0”.
• Export “sdram_controller_0.wire” under the name “sdram_controller_0_wire”.

7. Add a Nios II processor to the system. You can choose any variant. In this demo, we use the “Nios II
(classic)” processor, with configuration “Nios II/f”.

8. Add a System ID Peripheral to the system. In Qsys’ “System Contents” tab:
• Rename the component to “sysid”

9. Add a JTAG UART to the system. This serial console will be used to be able to see the output
generated by the printf() function when programming the Nios II processor.

10. Connect the system as shown in Figure 9-2 below:

22/06/2016 P a g e | 31

DE1-SoC Guide

Figure 9-2. Basic Nios II System with SDRAM and JTAG UART

11. Edit the Nios II processor and set “sdram_controller_0.s1” as its Reset and Exception vectors.
12. Add a PIO component to the system for the LEDs. The DE1-SoC has 10 LEDs, so we will use a 10-bit PIO

component.
a. Width: 10 bits
b. Direction: Output
c. Output Port Reset Value: 0x00

In Qsys’ “System Contents” tab:
• Rename the component to “leds_0”
• Export “leds_0.external_connection”

13. Add a PIO component to the system for the switches. The DE1-SoC has 10 Switches, so we will again
use a 10-bit PIO component.

a. Width: 10 bits
b. Direction: Input

In Qsys’ “System Contents” tab:
c. Rename the component to “switches_0”
d. Export “switches_0.external_connection”

14. Connect the system as shown in Figure 9-3 below (we don’t show the full system to make figures hold
on one page):

22/06/2016 P a g e | 32

DE1-SoC Guide

Figure 9-3. Adding LEDs and Switches to the System

At this stage, we have created a system that satisfies goals 1 and 2 defined in 8.4.

9.3 SYSTEM DESIGN WITH QSYS – HPS
In this section, we assemble all system components needed to allow the HPS to access a button and LED
connected directly to itself, as well as a button and the 7-segment displays connected to the FPGA portion of
the device.

Note: When using Qsys to manipulate any signal or menu item related to the HPS, the GUI will seem as though
it is not responding, but this is not the case. The GUI is just checking all parameters in the background, which
makes the interface hang momentarily. It is working correctly behind the scenes.

9.3.1 Instantiating the HPS Component
15. To use the HPS, add an “Arria V/Cyclone V Hard Processor System” to the system.
16. Open the HPS’ parameters and have a look around. There are 4 tabs that control various aspects of

the HPS’ behaviour, as shown on Figure 9-4.

Figure 9-4. HPS Component Parameters

9.3.1.1 FPGA Interfaces Tab
This tab configures everything related to the interfaces between the HPS and the FPGA. You can configure
which bridges to use, interrupts, …

17. We want to use the HPS to access FPGA peripherals, so we need to enable one of the following buses:
a. HPS-to-FPGA AXI bridge
b. Lightweight HPS-to-FPGA AXI bridge

Since we are not going to be using any high performance FPGA peripherals in this demo, we’ll choose
to enable the Lightweight HPS-to-FPGA AXI bridge.

• Set the FPGA-to-HPS interface width to “Unused”.
22/06/2016 P a g e | 33

DE1-SoC Guide

• Set the HPS-to-FPGA interface width to “Unused”.
By default, Qsys checks “Enable MPU standby and event signals”, but we are not going to use
this feature, so

• Uncheck “Enable MPU standby and event signals”.
Qsys also adds an FPGA-to-HPS SDRAM port by default, which we are not going to use either, so

• Remove the port listed under “FPGA-to-HPS SDRAM Interface”.

9.3.1.2 Peripheral Pins Tab
This tab configures the physical pins that are available on the device. Most device pins have various sources,
and are multiplexed. The pins can be configured to be sourced by the FPGA, or by various HPS peripherals.

9.3.1.2.1 Theory
We want to use the HPS to access the button and LED that are directly connected to it. These HPS peripherals
correspond to pins “HPS_KEY_N” and “HPS_LED” on the device’s top-level entity. We need to know how
these 2 pins are connected to the HPS to access them. To find out this information, we have to look at the
board’s schematics. You can find the schematics in DE1-SoC.pdf [8].

The right side of Figure 9-5 shows the area of interest on the DE1-SoC’s schematics. We see that “HPS_KEY_N”
and “HPS_LED” are respectively connected to pins G21 and A24.

Figure 9-5. HPS_KEY & HPS_LED on DE1-SoC Schematic

Figure 9-5 allows us to explain what Qsys’ Peripheral Pins tab does. The Qsys GUI doesn’t make any reference
to pins G21 and A24, as they depend on the device being used, and cannot be generalized to other Cyclone V
devices. However, the GUI does have references to what is displayed on the left side of Figure 9-5. We will
examine the details of pin G21, to which “HPS_KEY_N” is connected. The schematic shows that pin G21 is
connected to 4 sources:

c. TRACE_D5
d. SPIS1_MOSI
e. CAN1_TX
f. HPS_GPIO54

This can be seen in Qsys, as shown in Figure 9-6.

Figure 9-6. HPS_KEY & HPS_LED on Qsys Peripheral Pins Tab

22/06/2016 P a g e | 34

DE1-SoC Guide

Depending on how you configure the Peripheral Pins tab, you can configure pin G21 to use any of the sources
above. For example, if you want to use this pin as an SPI slave control signal, you would use the configuration
shown in Figure 9-7.

Figure 9-7. Using Pin G21 for SPI

However, if you don’t want to use any of the peripherals available at the top of the Peripheral Pins tab, then
you can always use one of the 2 buttons on the right side of Figure 9-6:

• GPIOXY: Configures the pin to be connected to the HPS’ GPIO peripheral.
• LOANIOXY: Configures the pin to be connected to the FPGA fabric. This pin can be exported from

Qsys to be used by the FPGA.

9.3.1.2.2 Configuration
18. We want the HPS to directly control the “HPS_KEY_N” and “HPS_LED” pins. To do this, we will connect

pins G21 and A24 to the HPS’ GPIO peripheral.
a. Click on the “GPIO53” button. This corresponds to pin A24, which is connected to “HPS_LED”.
b. Click on the “GPIO54” button. This corresponds to pin G21, which is connected to

“HPS_KEY_N”.
19. We want to connect to our DE1-SoC with an SSH connection later in the tutorial, so we need to enable

the Ethernet MAC interface.
a. Configure “EMAC1 pin” to “HPS I/O Set 0” and the “EMAC 1 mode” to “RGMII”, as shown

in Figure 9-8.
b. Click on the “GPIO35” button. This corresponds to pin C19, which is connected to

“HPS_ENET_INT_N”.

Figure 9-8. Ethernet MAC configuration

20. Our system will boot from the microSD card slot, so we need to enable the SD/MMC controller.
a. Configure “SDIO pin” to “HPS I/O Set 0” and “SDIO mode” to “4-bit Data”, as shown in

Figure 9-9.

Figure 9-9. SD/MMC configuration

22/06/2016 P a g e | 35

DE1-SoC Guide

21. When initially configuring our system, we will need to connect a keyboard to our system. We will do
this through a serial UART connection, so we need to enable the UART controller.

a. Configure “UART0 pin” to “HPS I/O Set 0” and “UART0 mode” to “No Flow Control”, as
shown in Figure 9-10.

Figure 9-10. UART configuration

At this stage, you should have the same configuration shown in Figure 9-11.

Figure 9-11. Exported peripheral pins

22. Although not needed to satisfy the design goals defined in 8.4, we enable all the remaining HPS
peripherals so future designs can use any of them if needed. Adding these peripherals does not
increase FPGA resource usage as they are all hard peripherals connected directly to the HPS.

a. Configure the Quad SPI Flash controller, USB controllers, SPI controllers, and the I2C
controllers as shown in Figure 9-12.

b. Click on the “GPIO09” button. This corresponds to pin B15, which is connected to
“HPS_CONV_USB_N”.

c. Click on the “GPIO40” button. This corresponds to pin H17, which is connected to
“HPS_LTC_GPIO”.

d. Click on the “GPIO48” button. This corresponds to pin B26, which is connected to
“HPS_I2C_CONTROL”.

e. Click on the “GPIO61” button. This corresponds to pin B22, which is connected to
“HPS_GSENSOR_INT”.

22/06/2016 P a g e | 36

DE1-SoC Guide

Figure 9-12. Quad SPI Flash, USB, SPI, and I2C peripheral pin configurations

23. In Qsys’ “System Contents” tab:
• Export “hps_0.hps_io” under the name “hps_0_io”. This is a conduit that contains all the

pins configured in the Peripheral Pins tab. We will connect these to our top-level entity later.

9.3.1.3 HPS Clocks Tab
This tab configures the clocking system of the HPS. We will generally use the default settings here, so no need
to change anything.

9.3.1.4 SDRAM Tab
This tab configures the memory subsystem of the HPS.

24. We need to configure all clocks and timings related to the memory used on our system. The DE1-SoC
uses DDR3 memory, so we need to consult its datasheet to find all the settings. The datasheet is
available at 43TR16256A-85120AL(ISSI).pdf [9] . Based on the memory’s datasheet, we can fill in
the following memory settings (you will soon see that it is quite tedious to enter these values):

• SDRAM Protocol: DDR3
• PHY Settings:

 Clocks:
• Memory clock frequency: 400.0 MHz
• PLL reference clock frequency: 25.0 MHz

 Advanced PHY Settings:
• Supply Voltage: 1.5V DDR3

• Memory Parameters:
 Memory vendor: Other
 Memory device speed grade: 800.0 MHz
 Total interface width: 32
 Number of chip select/depth expansion: 1
 Number of clocks: 1
 Row address width: 15
 Column address width: 10
 Bank-address width: 3
 Enable DM pins
 DQS# Enable
 Memory Initialization Options:

• Mirror Addressing: 1 per chip select: 0
• Mode Register 0:

o Burst Length: Burst chop 4 or 8 (on the fly)
o Read Burst Type: Sequential
o DLL precharge power down: DLL off
o Memory CAS latency setting: 11

• Mode Register 1:
o Output drive strength setting: RZQ/7
o ODT Rtt nominal value: RZQ/4

• Mode Register 2:
o Auto selfrefresh method: Manual
o Selfrefresh temperature: Normal
o Memory write CAS latency setting: 8
o Dynamic ODT (Rtt_WR) value: RZQ/4

• Memory Timing:
 tIS (base): 180 ps

22/06/2016 P a g e | 37

DE1-SoC Guide

 tIH (base): 140 ps
 tDS (base): 30 ps
 tDH (base): 65 ps
 tDQSQ: 125 ps
 tQH: 0.38 cycles
 tDQSCK: 255 ps
 tDQSS: 0.25 cycles
 tQSH: 0.4 cycles
 tDSH: 0.2 cycles
 tDSS: 0.2 cycles
 tINIT: 500 us
 tMRD: 4 cycles
 tRAS: 35.0 ns
 tRCD: 13.75 ns
 tRP: 13.75 ns
 tREFI: 7.8 us
 tRFC: 260.0 ns
 tWR: 15.0 ns
 tWTR: 4 cycles
 tFAW: 30.0 ns
 tRRD: 7.5 ns
 tRTP: 7.5 ns

• Board Settings:
 Setup and Hold Derating:

• Use Altera's default settings
 Channel Signal Integrity:

• Use Altera's default settings
 Board Skews:

• Maximum CK delay to DIMM/device: 0.03 ns
• Maximum DQS delay to DIMM/device: 0.02 ns
• Minimum delay difference between CK and DQS: 0.06 ns
• Maximum delay difference between CK and DQS: 0.12 ns
• Maximum skew within DQS group: 0.01 ns
• Maximum skew between DQS groups: 0.06 ns
• Average delay difference between DQ and DQS: 0.05 ns
• Maximum skew within address and command bus: 0.02 ns
• Average delay difference between address and command and CK: 0.01 ns

25. In Qsys’ “System Contents” tab:
• Export “hps_0.memory” under the name “hps_0_ddr”.

22/06/2016 P a g e | 38

DE1-SoC Guide

26. Connect the system as shown in Figure 9-13 below:

Figure 9-13. Adding the "Standalone" HPS to the System

At this stage, we have a functional HPS unit that can be programmed and that satisfies goals 1, 2, 3, 5, and 6
defined in 8.4. In our current system however, the HPS can only be used “standalone” and cannot access any
FPGA peripherals.

9.3.2 Interfacing with FPGA Peripherals
The next step is to connect the HPS to FPGA peripherals through one of its interface bridges. The setup we
have uses the Lightweight HPS-to-FPGA bridge to communicate with the FPGA.

27. Add a PIO component to the system for the buttons. The DE1-SoC has 4 buttons, so we will use a 4-bit
PIO component.

• Width: 4 bits
• Direction: Input

In Qsys’ “System Contents” tab:
• Rename the component to “buttons_0”
• Export “buttons_0.external_connection”

28. Add a PIO component for one of the 7-segment displays. We will use a 7-bit PIO component.
• Width: 7 bits
• Direction: Output
• Output Port Reset Value: 0x7f

In Qsys’ “System Contents” tab:
• Rename the component to “hex_0”
• Export “hex_0.external_connection”

29. Repeat step 28 five more times to obtain a total of six 7-segment displays “hex_0”, “hex_1”,
“hex_2”, “hex_3”, “hex_4”, and “hex_5”.

30. Connect the system as shown in Figure 9-14 below. Notice that we use “hps_0.h2f_reset” as the
reset signal for the components connected to the HPS. This is a design choice so we can separately
reset FPGA-only peripherals, and FPGA peripherals connected to the HPS.

22/06/2016 P a g e | 39

DE1-SoC Guide

Figure 9-14. Adding Buttons and 7-segment Displays to the Lightweight HPS-to-FPGA Bridge

31. In the main Qsys window, select “System > Assign Base Addresses” to get rid of any error
messages regarding memory space overlaps among the different components in the system.

At this stage, we finally have a system that satisfies all goals defined in 8.4. Our design work with Qsys is now
done.

9.4 GENERATING THE QSYS SYSTEM
32. Click on the “Generate HDL” button.
33. Select “VHDL” for “Create HDL design files for synthesis”.
34. Click on the “Generate” button to generate the system.
35. Save the design and exit Qsys. When asked if you want to generate the design, select “No”, as we

have already done it in the previous step.

22/06/2016 P a g e | 40

DE1-SoC Guide

Figure 9-15. Generate Qsys System

9.5 INSTANTIATING THE QSYS SYSTEM
You now have a complete Qsys system. The system will be available as an instantiable component in your
design files. However, in order for Quartus Prime to see the Qsys system, you will have to add the
system’s files to your Quartus Prime project.

36. Add “DE1_SoC_demo/hw/quartus/soc_system/synthesis/soc_system.qip” to the Quartus Prime
project by using “Project > Add/Remove Files in Project…”.

37. To use the Qsys system in your design, you have to declare its component, and then instantiate it.
Qsys already provides you with a component declaration. You can find it among the numerous files
that were generated. The one we are looking for is
“DE1_SoC_demo/hw/quartus/soc_system/soc_system.cmp”.

38. Copy the component declaration code in “DE1_SoC_demo/hw/hdl/DE1_SoC_top_level.vhd”. Be
sure to instantiate the component and assign all the correct pins of the DE1-SoC board. For our demo
project, we would use the instantiation shown in Figure 9-16.

soc_system_inst : component soc_system
 port map(
 buttons_0_external_connection_export => KEY_N,
 clk_clk => CLOCK_50,
 hex_0_external_connection_export => HEX0_N,
 hex_1_external_connection_export => HEX1_N,
 hex_2_external_connection_export => HEX2_N,
 hex_3_external_connection_export => HEX3_N,
 hex_4_external_connection_export => HEX4_N,
 hex_5_external_connection_export => HEX5_N,
 hps_0_ddr_mem_a => HPS_DDR3_ADDR,
 hps_0_ddr_mem_ba => HPS_DDR3_BA,
 hps_0_ddr_mem_ck => HPS_DDR3_CK_P,
 hps_0_ddr_mem_ck_n => HPS_DDR3_CK_N,
 hps_0_ddr_mem_cke => HPS_DDR3_CKE,
 hps_0_ddr_mem_cs_n => HPS_DDR3_CS_N,
 hps_0_ddr_mem_ras_n => HPS_DDR3_RAS_N,
 hps_0_ddr_mem_cas_n => HPS_DDR3_CAS_N,
 hps_0_ddr_mem_we_n => HPS_DDR3_WE_N,
 hps_0_ddr_mem_reset_n => HPS_DDR3_RESET_N,
 hps_0_ddr_mem_dq => HPS_DDR3_DQ,

22/06/2016 P a g e | 41

DE1-SoC Guide

 hps_0_ddr_mem_dqs => HPS_DDR3_DQS_P,
 hps_0_ddr_mem_dqs_n => HPS_DDR3_DQS_N,
 hps_0_ddr_mem_odt => HPS_DDR3_ODT,
 hps_0_ddr_mem_dm => HPS_DDR3_DM,
 hps_0_ddr_oct_rzqin => HPS_DDR3_RZQ,
 hps_0_io_hps_io_emac1_inst_TX_CLK => HPS_ENET_GTX_CLK,
 hps_0_io_hps_io_emac1_inst_TX_CTL => HPS_ENET_TX_EN,
 hps_0_io_hps_io_emac1_inst_TXD0 => HPS_ENET_TX_DATA(0),
 hps_0_io_hps_io_emac1_inst_TXD1 => HPS_ENET_TX_DATA(1),
 hps_0_io_hps_io_emac1_inst_TXD2 => HPS_ENET_TX_DATA(2),
 hps_0_io_hps_io_emac1_inst_TXD3 => HPS_ENET_TX_DATA(3),
 hps_0_io_hps_io_emac1_inst_RX_CLK => HPS_ENET_RX_CLK,
 hps_0_io_hps_io_emac1_inst_RX_CTL => HPS_ENET_RX_DV,
 hps_0_io_hps_io_emac1_inst_RXD0 => HPS_ENET_RX_DATA(0),
 hps_0_io_hps_io_emac1_inst_RXD1 => HPS_ENET_RX_DATA(1),
 hps_0_io_hps_io_emac1_inst_RXD2 => HPS_ENET_RX_DATA(2),
 hps_0_io_hps_io_emac1_inst_RXD3 => HPS_ENET_RX_DATA(3),
 hps_0_io_hps_io_emac1_inst_MDIO => HPS_ENET_MDIO,
 hps_0_io_hps_io_emac1_inst_MDC => HPS_ENET_MDC,
 hps_0_io_hps_io_qspi_inst_CLK => HPS_FLASH_DCLK,
 hps_0_io_hps_io_qspi_inst_SS0 => HPS_FLASH_NCSO,
 hps_0_io_hps_io_qspi_inst_IO0 => HPS_FLASH_DATA(0),
 hps_0_io_hps_io_qspi_inst_IO1 => HPS_FLASH_DATA(1),
 hps_0_io_hps_io_qspi_inst_IO2 => HPS_FLASH_DATA(2),
 hps_0_io_hps_io_qspi_inst_IO3 => HPS_FLASH_DATA(3),
 hps_0_io_hps_io_sdio_inst_CLK => HPS_SD_CLK,
 hps_0_io_hps_io_sdio_inst_CMD => HPS_SD_CMD,
 hps_0_io_hps_io_sdio_inst_D0 => HPS_SD_DATA(0),
 hps_0_io_hps_io_sdio_inst_D1 => HPS_SD_DATA(1),
 hps_0_io_hps_io_sdio_inst_D2 => HPS_SD_DATA(2),
 hps_0_io_hps_io_sdio_inst_D3 => HPS_SD_DATA(3),
 hps_0_io_hps_io_usb1_inst_CLK => HPS_USB_CLKOUT,
 hps_0_io_hps_io_usb1_inst_STP => HPS_USB_STP,
 hps_0_io_hps_io_usb1_inst_DIR => HPS_USB_DIR,
 hps_0_io_hps_io_usb1_inst_NXT => HPS_USB_NXT,
 hps_0_io_hps_io_usb1_inst_D0 => HPS_USB_DATA(0),
 hps_0_io_hps_io_usb1_inst_D1 => HPS_USB_DATA(1),
 hps_0_io_hps_io_usb1_inst_D2 => HPS_USB_DATA(2),
 hps_0_io_hps_io_usb1_inst_D3 => HPS_USB_DATA(3),
 hps_0_io_hps_io_usb1_inst_D4 => HPS_USB_DATA(4),
 hps_0_io_hps_io_usb1_inst_D5 => HPS_USB_DATA(5),
 hps_0_io_hps_io_usb1_inst_D6 => HPS_USB_DATA(6),
 hps_0_io_hps_io_usb1_inst_D7 => HPS_USB_DATA(7),
 hps_0_io_hps_io_spim1_inst_CLK => HPS_SPIM_CLK,
 hps_0_io_hps_io_spim1_inst_MOSI => HPS_SPIM_MOSI,
 hps_0_io_hps_io_spim1_inst_MISO => HPS_SPIM_MISO,
 hps_0_io_hps_io_spim1_inst_SS0 => HPS_SPIM_SS,
 hps_0_io_hps_io_uart0_inst_RX => HPS_UART_RX,
 hps_0_io_hps_io_uart0_inst_TX => HPS_UART_TX,
 hps_0_io_hps_io_i2c0_inst_SDA => HPS_I2C1_SDAT,
 hps_0_io_hps_io_i2c0_inst_SCL => HPS_I2C1_SCLK,
 hps_0_io_hps_io_i2c1_inst_SDA => HPS_I2C2_SDAT,
 hps_0_io_hps_io_i2c1_inst_SCL => HPS_I2C2_SCLK,
 hps_0_io_hps_io_gpio_inst_GPIO09 => HPS_CONV_USB_N,
 hps_0_io_hps_io_gpio_inst_GPIO35 => HPS_ENET_INT_N,
 hps_0_io_hps_io_gpio_inst_GPIO40 => HPS_LTC_GPIO,
 hps_0_io_hps_io_gpio_inst_GPIO48 => HPS_I2C_CONTROL,
 hps_0_io_hps_io_gpio_inst_GPIO53 => HPS_LED,
 hps_0_io_hps_io_gpio_inst_GPIO54 => HPS_KEY_N,

22/06/2016 P a g e | 42

DE1-SoC Guide

 hps_0_io_hps_io_gpio_inst_GPIO61 => HPS_GSENSOR_INT,
 leds_0_external_connection_export => LEDR,
 pll_0_sdram_clk => DRAM_CLK,
 reset_reset_n => '1',
 sdram_controller_0_wire_addr => DRAM_ADDR,
 sdram_controller_0_wire_ba => DRAM_BA,
 sdram_controller_0_wire_cas_n => DRAM_CAS_N,
 sdram_controller_0_wire_cke => DRAM_CKE,
 sdram_controller_0_wire_cs_n => DRAM_CS_N,
 sdram_controller_0_wire_dq => DRAM_DQ,
 sdram_controller_0_wire_dqm(1) => DRAM_UDQM,
 sdram_controller_0_wire_dqm(0) => DRAM_LDQM,
 sdram_controller_0_wire_ras_n => DRAM_RAS_N,
 sdram_controller_0_wire_we_n => DRAM_WE_N,
 switches_0_external_connection_export => SW
);

Figure 9-16. Qsys Component Instantiation

39. After finishing the design, REMOVE all unused pins from the top-level VHDL file. Your top-level entity
should look like the one shown in Figure 9-17.

entity DE1_SoC_top_level is
 port(
 -- CLOCK
 CLOCK_50 : in std_logic;

 -- SDRAM
 DRAM_ADDR : out std_logic_vector(12 downto 0);
 DRAM_BA : out std_logic_vector(1 downto 0);
 DRAM_CAS_N : out std_logic;
 DRAM_CKE : out std_logic;
 DRAM_CLK : out std_logic;
 DRAM_CS_N : out std_logic;
 DRAM_DQ : inout std_logic_vector(15 downto 0);
 DRAM_LDQM : out std_logic;
 DRAM_RAS_N : out std_logic;
 DRAM_UDQM : out std_logic;
 DRAM_WE_N : out std_logic;

 -- SEG7
 HEX0_N : out std_logic_vector(6 downto 0);
 HEX1_N : out std_logic_vector(6 downto 0);
 HEX2_N : out std_logic_vector(6 downto 0);
 HEX3_N : out std_logic_vector(6 downto 0);
 HEX4_N : out std_logic_vector(6 downto 0);
 HEX5_N : out std_logic_vector(6 downto 0);

 -- KEY_N
 KEY_N : in std_logic_vector(3 downto 0);

 -- LED
 LEDR : out std_logic_vector(9 downto 0);

 -- SW
 SW : in std_logic_vector(9 downto 0);

 -- HPS
 HPS_CONV_USB_N : inout std_logic;
 HPS_DDR3_ADDR : out std_logic_vector(14 downto 0);

22/06/2016 P a g e | 43

DE1-SoC Guide

 HPS_DDR3_BA : out std_logic_vector(2 downto 0);
 HPS_DDR3_CAS_N : out std_logic;
 HPS_DDR3_CK_N : out std_logic;
 HPS_DDR3_CK_P : out std_logic;
 HPS_DDR3_CKE : out std_logic;
 HPS_DDR3_CS_N : out std_logic;
 HPS_DDR3_DM : out std_logic_vector(3 downto 0);
 HPS_DDR3_DQ : inout std_logic_vector(31 downto 0);
 HPS_DDR3_DQS_N : inout std_logic_vector(3 downto 0);
 HPS_DDR3_DQS_P : inout std_logic_vector(3 downto 0);
 HPS_DDR3_ODT : out std_logic;
 HPS_DDR3_RAS_N : out std_logic;
 HPS_DDR3_RESET_N : out std_logic;
 HPS_DDR3_RZQ : in std_logic;
 HPS_DDR3_WE_N : out std_logic;
 HPS_ENET_GTX_CLK : out std_logic;
 HPS_ENET_INT_N : inout std_logic;
 HPS_ENET_MDC : out std_logic;
 HPS_ENET_MDIO : inout std_logic;
 HPS_ENET_RX_CLK : in std_logic;
 HPS_ENET_RX_DATA : in std_logic_vector(3 downto 0);
 HPS_ENET_RX_DV : in std_logic;
 HPS_ENET_TX_DATA : out std_logic_vector(3 downto 0);
 HPS_ENET_TX_EN : out std_logic;
 HPS_FLASH_DATA : inout std_logic_vector(3 downto 0);
 HPS_FLASH_DCLK : out std_logic;
 HPS_FLASH_NCSO : out std_logic;
 HPS_GSENSOR_INT : inout std_logic;
 HPS_I2C_CONTROL : inout std_logic;
 HPS_I2C1_SCLK : inout std_logic;
 HPS_I2C1_SDAT : inout std_logic;
 HPS_I2C2_SCLK : inout std_logic;
 HPS_I2C2_SDAT : inout std_logic;
 HPS_KEY_N : inout std_logic;
 HPS_LED : inout std_logic;
 HPS_LTC_GPIO : inout std_logic;
 HPS_SD_CLK : out std_logic;
 HPS_SD_CMD : inout std_logic;
 HPS_SD_DATA : inout std_logic_vector(3 downto 0);
 HPS_SPIM_CLK : out std_logic;
 HPS_SPIM_MISO : in std_logic;
 HPS_SPIM_MOSI : out std_logic;
 HPS_SPIM_SS : inout std_logic;
 HPS_UART_RX : in std_logic;
 HPS_UART_TX : out std_logic;
 HPS_USB_CLKOUT : in std_logic;
 HPS_USB_DATA : inout std_logic_vector(7 downto 0);
 HPS_USB_DIR : in std_logic;
 HPS_USB_NXT : in std_logic;
 HPS_USB_STP : out std_logic
);
end entity DE1_SoC_top_level;

Figure 9-17. Final Top-level Entity

22/06/2016 P a g e | 44

DE1-SoC Guide

9.6 HPS DDR3 PIN ASSIGNMENTS
In a normal FPGA design flow, you would be able to compile your design at this stage. However, this isn’t
possible at the moment in our design. The reason is that the HPS’ DDR3 pins assignments have not been
performed yet.

How is this possible? We said earlier that our TCL script assigns pin locations and I/O standards to all pins
names in “DE1_SoC_top_level.vhd”. The truth is that it assigns values for all pin names, except those
related to the HPS’ DDR3 memory. The reason is that the DDR3 pin assignments depend on how you
parameterize the HPS memory timings in Qsys. Our TCL script could not have known what timings you
were going to use, so it doesn’t set those pin locations and I/O standards.

However, Qsys knows what the parameters are (since you provided it with all the necessary information),
and it has generated a custom TCL script for the HPS DDR3 pin assignments.

40. Start the “Analysis and Synthesis” flow to perform a preliminary analysis of the system.
41. Go to “Tools > Tcl Scripts…” in Quartus Prime.

IF AT THIS POINT YOU DO NOT SEE THE SAME THING AS ON Figure 9-18, THEN CLOSE AND

RELAUNCH QUARTUS PRIME AGAIN. SOME VERSIONS OF QUARTUS PRIME SUFFER FROM A BUG,
WHERE THE PROGRAM DOESN’T CORRECTLY DETECT TCL FILES GENERATED BY QSYS. YOU SHOULD

SEE THE SAME THING AS ON Figure 9-18.

Figure 9-18. Correct HPS DDR3 Pin Assignment TCL Script Selection

42. Execute “hps_sdram_p0_pin_assignments.tcl”.
43. You can now start the full compilation of your design with the “Start Compilation” flow.

At this point, we have finished the hardware design process and can proceed to programming the FPGA.

9.7 WIRING THE DE1-SOC
Connect the DE1-SoC as shown in Figure 9-19. We connect the

• Power cable

22/06/2016 P a g e | 45

DE1-SoC Guide

• USB-Blaster cable
• Ethernet cable
• UART cable

Figure 9-19. DE1-SoC Wiring

Note that the microSD card is NOT plugged in at this point.

9.8 PROGRAMMING THE FPGA
44. Open the Quartus Prime Programmer.

Figure 9-20. Quartus Prime Programmer

45. Choose the “Auto Detect” button on the left of Figure 9-20, then choose “5CSEMA5”, as shown in
Figure 9-21.

22/06/2016 P a g e | 46

DE1-SoC Guide

Figure 9-21. FPGA Selection

You should now see 2 devices on the JTAG scan chain, as shown in Figure 9-22.

Figure 9-22. JTAG Scan Chain

46. Right-click on the “5CSEMA5” device shown in Figure 9-22 and choose “Edit > Change File”. Then,
select “DE1_SoC_demo/hw/quartus/output_files/DE1_SoC_demo.sof” through the file browser.

47. Enable the “Program/Configure” checkbox for device “5CSEMA5F31”, then press the “Start”
button, as shown in Figure 9-23.

Figure 9-23. Programming the FPGA

We are now done with the Quartus Prime program, and will no longer need it for the rest of this tutorial.

22/06/2016 P a g e | 47

DE1-SoC Guide

9.9 CREATING TARGET SDCARD ARTIFACTS
Later in this tutorial, we will sometimes want to avoid having to manually program the FPGA through the
Quartus Prime programmer, and would instead like the HPS to take care of this programmatically.

Quartus Prime generates an SRAM Object File (.sof) as its default FPGA target image. However, the HPS can
only program the FPGA by using a Raw Binary File (.rbf). Therefore, we must convert our .sof file to a .rbf
to later satisfy this requirement.

48. Execute the following command to convert the .sof file to a .rbf file.
$ quartus_cpf –c \
 DE1_SoC_demo/hw/quartus/output_files/DE1_SoC_demo.sof \
 DE1_SoC_demo/sdcard/fat32/socfpga.rbf

22/06/2016 P a g e | 48

DE1-SoC Guide

10 USING THE CYCLONE V – FPGA – NIOS II – BARE-METAL

10.1 PROJECT SETUP
1. Launch the Nios II SBT IDE by executing the following command.

$ eclipse-nios2

2. Choose “File > New > Nios II Application and BSP from Template”.
a. All the information needed to program a Nios II processor is contained within the

“.sopcinfo” file created by Qsys. For the “SOPC Information File name” use
“DE1_SoC_demo/hw/quartus/soc_system.sopcinfo”.

b. Use “DE1_SoC_demo_nios” as the project name.
c. Disable the “Use default location” checkbox
d. Use “DE1_SoC_demo/sw/nios/application/DE1_SoC_demo_nios” as the project location.
e. Choose the “Blank Project” template.
f. Click on the “Finish” button to create the project.

3. Right-click on the “DE1_SoC_demo_nios” project folder and select “New > Source file”. Use the
default C source template, and set “nios.c” as the file name.

4. Right-click on the “DE1_SoC_demo_nios_bsp” project, and select “Build Project”. Once the build is
completed, a number of files will be generated, the most useful of which is the “system.h” file. This
file contains all the details related to the Nios II processor’s various peripherals, as defined in Qsys in
9.2.

10.2 NIOS II PROGRAMMING THEORY – ACCESSING PERIPHERALS
The Nios II processor can be programmed in C similarly to any other microcontroller. However, care must be
taken when accessing any of the processor’s peripherals. Depending on which version of the Nios II you
instantiated in Qsys, you may not be able to correctly read data at a peripheral’s address space using pointers.
The issue arises when your Nios II processor has a data cache.

Suppose we use the code in Figure 10-1 to read data from the switches of our Qsys design.

#include <stdbool.h>
#include <inttypes.h>
#include "system.h"

int main() {
 uint32_t *p_switches = SWITCHES_0_BASE;
 while (true) {
 alt_u32 switches_value = *p_switches;
 printf("switches_value = %" PRIx32 "\n", switches_value);
 }
 return 0;
}

Figure 10-1. Incorrect Nios II Peripheral Access in C

When this code is run, the initial value of the “switches_value” variable, as obtained from the first iteration
of the while loop, will be the correct representation of the switches’ state. However, at each iteration of the
while loop, the “switches_value” variable will NEVER change again, even if the switches are flipped
between each iteration. The issue is that each successive access is being served by the data cache, which
doesn’t see that the switches have been modified.

The solution to this issue is to use special instructions that bypass the data cache when reading or writing to
peripherals. These instructions are part of the IO family of load and store instructions and bypass all caches.

22/06/2016 P a g e | 49

DE1-SoC Guide

The available instructions are listed below, and an example of how to correctly access Nios II peripherals is
shown in Figure 10-2.

• Reading

 IORD_8DIRECT(BASE, OFFSET)
 IORD_16DIRECT(BASE, OFFSET)
 IORD_32DIRECT(BASE, OFFSET)

• Writing

 IOWR_8DIRECT(BASE, OFFSET, DATA)
 IOWR_16DIRECT(BASE, OFFSET, DATA)
 IOWR_32DIRECT(BASE, OFFSET, DATA)

#include <stdbool.h>
#include <inttypes.h>
#include "system.h"
#include “io.h”

int main() {
 while (true) {
 uint32_t switches_value = IORD_32DIRECT(SWITCHES_0_BASE, 0);
 printf("switches_value = %" PRIx32 "\n", switches_value); }
 return 0;
}

Figure 10-2. Correct Nios II Peripheral Access in C

10.3 NIOS II PROGRAMMING PRACTICE
5. Write the code provided in Figure 10-3 in “nios.c”. The code instructs the Nios II processor to create

a strobing light effect on its 10 peripheral LEDs. The processor’s 10 peripheral switches are used as
enable signals for each corresponding LED. This corresponds to specification 1 in 8.4.

#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include "io.h"
#include "altera_avalon_pio_regs.h"
#include "system.h"

#define LEDS_MAX_ITERATION (1000)
#define SLEEP_DELAY_US (100 * 1000)

void rotate_leds() {
 int loop_count = 0;
 int leds_mask = 0x01;

 // 0/1 = left/right direction
 int led_direction = 0;

 while (loop_count < LEDS_MAX_ITERATION) {
 uint32_t switches_value = IORD_ALTERA_AVALON_PIO_DATA(SWITCHES_0_BASE);
 uint32_t leds_value = ~leds_mask;

 // only turn on leds which have their corresponding switch enabled
 IOWR_ALTERA_AVALON_PIO_DATA(LEDS_0_BASE, leds_value & switches_value);

 usleep(SLEEP_DELAY_US);

 if (led_direction == 0) {

22/06/2016 P a g e | 50

DE1-SoC Guide

 leds_mask <<= 1;
 if (leds_mask == (0x01 << (LEDS_0_DATA_WIDTH - 1))) {
 led_direction = 1;
 }
 } else {
 leds_mask >>= 1;
 if (leds_mask == 0x01) {
 led_direction = 0;
 loop_count++;
 }
 }
 }
}

int main() {
 rotate_leds();
 return 0;
}

Figure 10-3. nios.c

6. Right-click on “DE1_SoC_demo_nios” project, and select “Build Project”.
7. The code is now ready to be run on the FPGA. Right-click on “DE1_SoC_demo_nios” project, and

select “Run As > Nios II Hardware”. You should be able to see a strobing light effect on the 10
FPGA LEDs. You can use the 10 FPGA switches as enable signals for the corresponding LED.

8. In some cases, it is possible that the program will not immediately run on the Nios II processor, and
you will be prompted with a “Target Connection” dialog, as shown in Figure 10-4. If your Nios II
CPU doesn’t appear in the list of available processors, then

a. Click on the “Refresh Connections” button on the right of Figure 10-4.
b. Click on the “Run” button to finish.

Figure 10-4. Nios II Target Connection Dialog

We now have a programmed Nios II processor on the FPGA. Of course, the design we had specified didn’t
require the power of a Nios II processor, and could have easily been done in pure VHDL. Nevertheless, the

22/06/2016 P a g e | 51

DE1-SoC Guide

idea was to show that one can have a secondary programmable processor functioning on the FPGA parallely
to the HPS. We are now done with the Nios II SBT IDE, and will no longer need it for the rest of this tutorial.

22/06/2016 P a g e | 52

DE1-SoC Guide

11 USING THE CYLONE V – HPS – ARM – GENERAL

11.1 PARTITIONING THE SDCARD
The DE1-SoC needs to boot off of a microSD card, so we need to partition it appropriately before we can write
to it.

1. Plug your sdcard into your computer.
2. Find out the device’s identifier. When writing this tutorial, the sdcard was recognized as entry

“/dev/sdb” on my computer.

Please be careful and choose the correct /dev/sdX or /dev/mmcblkX entry for your sdcard. Failure to do so will
ensure that the following commands will WIPE THE WRONG PARTITION OFF OF YOUR MACHINE, which will

be a most unfortunate outcome!

3. Wipe the partition table of the sdcard by executing the following command.
$ sudo dd if=/dev/zero of=/dev/sdb bs=512 count=1

4. Manually partition the device by using the “fdisk” command. “fdisk” is an interactive program, so
you have to interactively provide the configuration of your device. You can do this by using the
following sequence of commands whenever “fdisk” prompts you for what to do.

The fdisk commands shown below were executed on version 2.27.1 of the fdisk utility. Other versions
of fdisk have different interfaces, and you will have to adapt the commands accordingly.

$ sudo fdisk /dev/sdx
use the following commands
 # n p 3 <default> 4095 t a2 (2048 is default first sector)
 # n p 1 <default> +32M t 1 b (4096 is default first sector)
 # n p 2 <default> +512M t 2 83 (69632 is default first sector)
 # w

Figure 11-1. Partitioning the sdcard

5. Create the required filesystems on the device. We need a FAT32 partition for various boot-time files
(FPGA raw binary file, linux kernel zImage file, U-Boot configuration script …), and an EXT3 partition
for the linux root filesystem.
$ sudo mkfs.vfat /dev/sdb1
$ sudo mkfs.ext3 -F /dev/sdb2

11.2 GENERATING A HEADER FILE FOR HPS PERIPHERALS
We need the HPS to be able to programmatically access peripherals that are part of the FPGA fabric. In order
to do this, we must generate a header file.

1. Execute the following command.
$ sopc-create-header-files \
 DE1_SoC_demo/hw/quartus/soc_system.sopcinfo \
 --single DE1_SoC_demo/sw/hps/application/hps_soc_system.h
 --module hps_0

Figure 11-2 shows a short extract of the generated “hps_soc_system.h” header file. At the top of the file, it
says that macros for devices connected to master port “h2f_lw_axi_master” of module “hps_0” have been
generated.

/*
 * This file contains macros for module 'hps_0' and devices

22/06/2016 P a g e | 53

DE1-SoC Guide

 * connected to the following master:
 * h2f_lw_axi_master
 *
 * Do not include this header file and another header file created for a
 * different module or master group at the same time.
 * Doing so may result in duplicate macro names.
 * Instead, use the system header file which has macros with unique names.
 */

/*
 * Macros for device 'hex_5', class 'altera_avalon_pio'
 * The macros are prefixed with 'HEX_5_'.
 * The prefix is the slave descriptor.
 */
#define HEX_5_COMPONENT_TYPE altera_avalon_pio
#define HEX_5_COMPONENT_NAME hex_5
#define HEX_5_BASE 0x0
#define HEX_5_SPAN 16
#define HEX_5_END 0xf

Figure 11-2. hps_soc_system.h

11.3 HPS PROGRAMMING THEORY
The HPS works just like any other “microcontroller”.

• If you want to access a peripheral, you have to read/write at its address.
• If a peripheral is connected to a bus, its address is obtained by adding its offset in the bus to the bus’

address.

Altera provides useful utility functions in
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/include/soc
_cv_av/socal/socal.h”, a few of which are listed below. Most functions exist for multiple sizes. These sizes
are summarized in Table 11-1. Note that “socal” means “SoC Abstraction Layer”.

• alt_write_byte(dest_addr, byte_data)
• alt_read_byte(src_addr)
• alt_setbits_byte(dest_addr, byte_data)
• alt_clrbits_byte(dest_addr, byte_data)
• alt_xorbits_byte(dest_addr, byte_data)
• alt_replbits_byte(dest_addr, msk, byte_data)

Name Size (bits)
byte 8

hword 16
word 32

dword 64

Table 11-1. Predefined Data Sizes in socal.h

Up until this point, the hardware and software design process has been IDENTICAL for both BARE-METAL and
LINUX HPS applications. This is where the design process DIVERGES between bare-metal and linux HPS
applications. If you want to write a bare-metal application for the HPS, then read section 12. If instead you
want to write a linux application for the HPS, then read section 13.

Note: In addition to the example used in this tutorial, you can find many more in
“<altera_install_directory>/<version>/embedded/examples/software/”

22/06/2016 P a g e | 54

DE1-SoC Guide

12 USING THE CYCLONE V – HPS – ARM – BARE-METAL

12.1 PRELOADER
In Figure 7-8, we saw that a bare-metal application can only be launched after the preloader has setup the
HPS. So, the first thing that needs to be done for bare-metal applications is to generate and compile a
preloader for the HPS.

12.1.1 Preloader Generation
1. Execute the following command to launch the preloader generator.

$ bsp-editor

2. Choose “File > New BSP…”.
a. The preloader will need to know which of the HPS’ peripherals were enabled so it can

appropriately initialize them in the boot process. Under “Preloader settings directory”,
select the “DE1_SoC_demo/hw/quartus/hps_isw_handoff/soc_system_hps_0” directory.
This directory contains settings relative to the HPS’ HARD peripherals, as configured in the
“Arria V/Cyclone V Hard Processor System” component in Qsys.

b. Disable the “Use default locations” checkbox and under the “BSP target directory”,
select the “DE1_SoC_demo/sw/hps/preloader” directory. You should have something similar
to Figure 12-1.

Figure 12-1. New BSP Dialog

c. Press the “OK” button. You should then arrive on a page with many settings, as shown on
Figure 12-2. Take some time to read through them to see what the preloader has the ability to
do.

22/06/2016 P a g e | 55

DE1-SoC Guide

Figure 12-2. Preloader Settings Dialog

3. On the main settings page of Figure 12-2, we will only need to modify 2 parameters for our design.
a. Under “spl.boot”, disable the “WATCHDOG_ENABLE” checkbox. This is necessary to prevent

the system from being automatically reset after a certain time has elapsed. Note that we only
disable this option since we intend on writing a bare-metal program and want to simplify the
code. Any operating system would periodically write to the watchdog timer to avoid it from
resetting the system, and this is a good thing.

b. Under “spl.boot”, enabled the “FAT_SUPPORT” checkbox. This option configures the
preloader to load the image of the next boot stage from the FAT32 partition of the sdcard
(instead of from a binary partition located immediately after the preloader on the sdcard).
The image of the next boot stage is named “u-boot.img” by default, but can be modified by
editing “spl.boot.FAT_LOAD_PAYLOAD_NAME”. We will leave the default name for this
tutorial.

c. Press the “Generate” button to finish. You can then exit the bsp-editor.
4. Execute the following command to build the preloader.

$ cd DE1_SoC_demo/sw/hps/preloader
$ make

IF YOU EVER DECIDE TO MOVE THE “DE1_SoC_demo” PROJECT DIRECTORY DEFINED IN FIGURE 8-1, YOU
WILL HAVE TO REGENERATE THE PRELOADER. UNFORTUNATELY, THE SCRIPT PROVIDED BY ALTERA WHICH
GENERATES THE PRELOADER HARD-CODES MULTIPLE ABSOLUTE PATHS DIRECTLY IN THE RESULTING FILES,

RENDERING THEM USELESS ONCE MOVED.

12.1.2 Creating Target sdcard Artifacts
5. Copy the preloader binary to the sdcard target directory. Execute the following command.

$ cp \
 DE1_SoC_demo/sw/hps/preloader/preloader-mkpimage.bin \
 DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin

12.2 ARM DS-5
6. Launch the ARM DS-5 IDE by executing the following command.

$ eclipse

22/06/2016 P a g e | 56

DE1-SoC Guide

12.2.1 Setting Up a New C Project

7. Create a new C project by going to “File > New > Project > C/C++ > C Project”.
a. Use “DE1_SoC_demo_hps_baremetal” as the project name.
b. Disable the “Use default location” checkbox.
c. Set “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal” as the target

location for the project.
d. We want to create a single output executable for our project, so choose “Executable >

Empty Project” as the project type.
e. Choose “Altera Baremetal GCC” as the Toolchain.
f. You should have something similar to Figure 12-3. Then, press the “Finish” button to create

the project.

Figure 12-3. New C Project Dialog

8. When programming the HPS, we will need access to a few standard header and linker files provided
by Altera. We need to add these files to the ARM DS-5 project.

a. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “Properties”.
b. We are going to use Altera’s HWLIB to develop our bare-metal application, so we need to

define a macro that is needed by the library to know which board is being targetted.
Under “C/C++ Build > Settings > GCC C Compiler > Symbols”, add “soc_cv_av” to
the “Defined symbols (-D)” list.

c. Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include” to the “Include paths (-I)” list.

d. Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include/soc_cv_av” to the “Include paths (-I)” list.

e. Since we are not going to be running any operating system, we will need to use a linker script
in order to correctly layout our bare-metal program in memory. Altera provides linker scripts
for the HPS’ on-chip memory, as well as for it’s DDR3 memory. We want our code to be
loaded in the HPS’ DDR3 memory and will not use any on-chip memory in our design, so we

22/06/2016 P a g e | 57

DE1-SoC Guide

will use the DDR3 linker script.
Under “C/C++ Build > Settings > GCC C Linker > Image”, set the linker script to
“<altera_install_directory>/<version>/embedded/host_tools/mentor/gnu/arm/bar
emetal/arm-altera-eabi/lib/cycloneV-dk-ram-HOSTED.ld”. The “hosted” script
allows the bare-metal application to use some of the host’s functionality. In this case, we use
the “hosted” script to be able to see the output of the printf() function on the host’s
console.

f. Click on the “Apply” button, then on the “Ok” button to close the project properties dialog.

12.2.2 Writing a DS-5 Debug Script
In Figure 7-8, we saw that a bare-metal application cannot run immediately upon boot, and that the HPS must
first go through the preloader. The preloader executes, and, before terminating, it jumps to the next stage of
the user software. In the case of a bare-metal application, the preloader jumps to the start of the bare-metal
code.

Jumping directly to the bare-metal code is useful for production environments, but it would be great if we
could use a debugger when testing our bare-metal code. To do this, we will use a DS-5 DEBUG SCRIPT to
instruct the DS-5 debugger exactly how to load our application in the HPS’ memory. This debugger script will
load and execute the preloader, then jump to our bare-metal code.

9. Create a new file for our DS-5 debug script and save it under
“DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal/debug_setup.ds”.

10. Populate the file with the code shown in Figure 12-4. This script tells the debugger to load the
prealoder, then to load our bare-metal application. This is performed by placing a breakpoint at the
very last function executed by the preloader prior to handing control of the cpu to the next boot
stage. This function is “spl_boot_device()”, which is responsible for choosing the next boot
medium on the DE1-SoC and jumping to it’s address. For bare-metal applications, we don’t want the
boot process to continue on towards another device. Instead, we want to load our bare-metal code
and jump to it’s address. This is exactly what the debug script in Figure 12-4 does.

Reset and stop the system.
stop
wait 5s
reset system
wait 5s

Delete all breakpoints.
delete breakpoints

Disable semihosting
set semihosting enabled false

Load the preloader.
loadfile "$sdir/../../preloader/uboot-socfpga/spl/u-boot-spl" 0x0

Enable semihosting to allow printing even if you don't have a uart module
available.
set semihosting enabled true

Set a breakpoint at the "spl_boot_device()" function. This function is the
last step of the preloader. It looks for a boot device (qspi flash, sdcard,
fpga), and jumps to that address. For our bare-metal programs, we don't want
to use any boot device, but want to run our own program, so we want the
processor to stop here. Then, we will modify its execution to make it run our
program.
tbreak spl_boot_device

22/06/2016 P a g e | 58

DE1-SoC Guide

Set the PC register to the entry point address previously recorded by the
"load" or "loadfile" command and start running the target.
run

Instruct the debugger to wait until either the application completes or a
breakpoint is hit. In our case, it will hit the breakpoint.
wait

Load our bare-metal program.
loadfile "$sdir/Debug/DE1_SoC_demo_hps_baremetal.axf"

Set a breakpoint at our program's "main()" function.
tbreak main

Start running the target.
run

wait at main().
Wait

Figure 12-4. debug_setup.ds

For a comprehensive list of commands supported by the DS-5 debugger, please refer to [10].

12.2.3 Setting Up the Debug Configuration
11. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “Debug As > Debug

Configurations…”.
12. Choose to create a new debugger configuration by right-clicking on “DS-5 Debugger” on the left and

selecting “New”. Use “DE1_SoC_demo_hps_baremetal” as the name of the new debug configuration.
13. Under the “Connection” tab:

a. Use “Altera > Cyclone V SoC (Dual Core) > Bare Metal Debug > Debug Cortex-
A9_0” as the target platform.

b. Set the “Target Connection” to “USB-Blaster”.
c. Use the “Browse” button to select the DE1-SoC that is connected to your machine.
d. You should have something similar to Figure 12-5.

22/06/2016 P a g e | 59

DE1-SoC Guide

Figure 12-5. Debug Configuraton “Connection” Tab

14. Under the “Files” tab:
a. Leave the “Application on host to download” empty. We do this since we are using a

debug script to instruct the debugger how to load our application.
b. In 9.3.2, we configured our HPS to use some FPGA peripherals. We can instruct the debugger

about this so it can show more detailed information when debugging. To do this, set the
combobox to “Add peripheral description files from directory” and set it to the
“DE1_SoC_demo/hw/quartus/soc_system/synthesis” directory, as shown in Figure 12-6.
This directory contains a file called “soc_system_hps_0_hps.svd” which has information on
all of the HPS’ peripherals which are in the FPGA fabric.

Figure 12-6. Debug Configuration "Files" Tab

15. Under the “Debugger” tab:
a. Since we are going to use a debug script to launch the application, we don’t need to specify

any function to be loaded by the debugger. So, choose “Connect only” under “Run
control”.

b. Enable the “Run DEBUG initialization debugger script (.ds / .py)” checkbox. Set
the debug script to the one we defined for the project in 12.2.2. You should have something
similar to Figure 12-7.

16. Click on the “Apply” button, then on the “Close” button to save the debug configuration.

Figure 12-7. Debug Configuration "Debugger" Tab

12.2.4 Bare-metal Programming
We can now start writing bare-metal code for the HPS.

17. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “New > Source File”. Use
“hps_baremetal.c” as the file name, and click on the “Finish” button to create the new source file.

18. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “New > Header File”. Use
“hps_baremetal.h” as the file name, and click on the “Finish” button to create the new header file.

22/06/2016 P a g e | 60

DE1-SoC Guide

The code for this part of the application is quite large to be inserted in this document. Therefore, we will just
go over a few practical aspects of the code which are worth paying attention to. The full source can be found
in DE1_SoC_demo.zip [5].

We are not going to implement any interrupts for the various buttons on the board at this time. Therefore, in
order to satisfy the HPS-related goals specified in 8.4, we will need to use an infinite loop and do some polling.

This can be seen in our application’s “main()” function, which is shown in Figure 12-8.

int main() {
 printf("DE1-SoC bare-metal demo\n");

 setup_peripherals();

 uint32_t hex_counter = 0;
 while (true) {
 handle_hex_displays(&hex_counter);
 handle_hps_led();
 delay_us(ALT_MICROSECS_IN_A_SEC / 10);
 }

 return 0;
}

Figure 12-8. hps_baremetal.c main() function

12.2.4.1 Accessing FPGA Peripherals
Accessing the FPGA peripherals connected to the HPS’ lightweight HPS-to-FPGA bridge is quite simple, as no
libraries are needed. One can simply use the low-level functions listed in 11.3 to address the peripherals at an
offset from the lightweight HPS-to-FPGA bridge’s base address.

Figure 12-9 shows an example where the HPS accesses the buttons on the FPGA.

// fpga buttons can be found at an offset from the base of the lightweight HPS-to-FPGA bridge
void *fpga_buttons = ALT_LWFPGASLVS_ADDR + BUTTONS_0_BASE;

bool is_fpga_button_pressed(uint32_t button_number) {
 // buttons are active-low
 return ((~alt_read_word(fpga_buttons)) & (1 << button_number));
}

Figure 12-9. Accessing FPGA Buttons from the HPS

A more sophisticated example can be found in Figure 12-10, where the HPS sets the value to be displayed on
the FPGA’s 7-segment displays.

// The 7-segment display is active low
#define HEX_DISPLAY_CLEAR (0x7F)
#define HEX_DISPLAY_ZERO (0x40)
#define HEX_DISPLAY_ONE (0x79)
#define HEX_DISPLAY_TWO (0x24)
#define HEX_DISPLAY_THREE (0x30)
#define HEX_DISPLAY_FOUR (0x19)
#define HEX_DISPLAY_FIVE (0x12)
#define HEX_DISPLAY_SIX (0x02)
#define HEX_DISPLAY_SEVEN (0x78)
#define HEX_DISPLAY_EIGHT (0x00)
#define HEX_DISPLAY_NINE (0x18)
#define HEX_DISPLAY_A (0x08)
#define HEX_DISPLAY_B (0x03)
#define HEX_DISPLAY_C (0x46)
#define HEX_DISPLAY_D (0x21)

22/06/2016 P a g e | 61

DE1-SoC Guide

#define HEX_DISPLAY_E (0x06)
#define HEX_DISPLAY_F (0x0E)

// The HPS will only use HEX_DISPLAY_COUNT of the 6 7-segment displays
#define HEX_DISPLAY_COUNT (6)
#define HEX_COUNTER_MASK ((1 << (4 * HEX_DISPLAY_COUNT)) - 1)

void *fpga_hex_displays[HEX_DISPLAY_COUNT] = {ALT_LWFPGASLVS_ADDR + HEX_0_BASE,
 ALT_LWFPGASLVS_ADDR + HEX_1_BASE,
 ALT_LWFPGASLVS_ADDR + HEX_2_BASE,
 ALT_LWFPGASLVS_ADDR + HEX_3_BASE,
 ALT_LWFPGASLVS_ADDR + HEX_4_BASE,
 ALT_LWFPGASLVS_ADDR + HEX_5_BASE};

uint32_t hex_display_table[16] = {HEX_DISPLAY_ZERO , HEX_DISPLAY_ONE,
 HEX_DISPLAY_TWO , HEX_DISPLAY_THREE,
 HEX_DISPLAY_FOUR , HEX_DISPLAY_FIVE,
 HEX_DISPLAY_SIX , HEX_DISPLAY_SEVEN,
 HEX_DISPLAY_EIGHT, HEX_DISPLAY_NINE,
 HEX_DISPLAY_A , HEX_DISPLAY_B,
 HEX_DISPLAY_C , HEX_DISPLAY_D,
 HEX_DISPLAY_E , HEX_DISPLAY_F};

void set_hex_displays(uint32_t value) {
 char current_char[2] = " \0";
 char hex_counter_hex_string[HEX_DISPLAY_COUNT + 1];

 // get hex string representation of input value on HEX_DISPLAY_COUNT 7-segment displays
 snprintf(hex_counter_hex_string, HEX_DISPLAY_COUNT + 1, "%0*x", HEX_DISPLAY_COUNT, (unsigned int) value);

 uint32_t hex_display_index = 0;
 for (hex_display_index = 0; hex_display_index < HEX_DISPLAY_COUNT; hex_display_index++) {
 current_char[0] = hex_counter_hex_string[HEX_DISPLAY_COUNT - hex_display_index - 1];

 // get decimal representation for this 7-segment display
 uint32_t number = (uint32_t) strtol(current_char, NULL, 16);

 // use lookup table to find active-low value to represent number on the 7-segment display
 uint32_t hex_value_to_write = hex_display_table[number];

 alt_write_word(fpga_hex_displays[hex_display_index], hex_value_to_write);
 }
}

Figure 12-10. Setting the 7-Segment Displays from the HPS

12.2.4.2 Accessing HPS Peripherals
It is possible to do everything with the low-level functions listed in 11.3. However, a better way would be to
use Altera’s HWLIB, as discussed In 7.5.2. You can easily use HWLIB to access all the HPS’ HARD peripherals.

Note that some things may not be available in HWLIB, and you will then have to resort to using the low-level
functions. One example of this scenario which we have already seen is when accessing any FPGA peripherals
through the lightweight or heavyweight HPS-to-FPGA bus (as there is no standard header file for any FPGA
peripherals).

Since we already demonstrated how to use low-level functions to access peripherals in 12.2.4.1, we will
instead use Altera’s HWLIB to access the HPS’ hard peripherals.

12.2.4.2.1 Using Altera’s HWLIB - Prerequisites
In order to be able to use HWLIB to configure a peripheral, 2 steps need to be performed:

22/06/2016 P a g e | 62

DE1-SoC Guide

• You need to INCLUDE the HPS peripheral’s HWLIB HEADER FILE to your code.
• You must COPY the HPS peripheral’s HWLIB SOURCE FILE in your DS-5 project directory. The HWLIB

source files can be found in directory
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/src”,
and must be copied to “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal”.

12.2.4.2.2 Global Timer & Clock Manager
If you look closely at the code in Figure 12-8, you’ll see that we used a “delay_us()” function to slow the
counter down. It turns out that among all the code available for the HPS, Altera does not provide any
“sleep()” function (unlike for the Nios II processor). Therefore, we will have to write the “delay_us()”
function ourselves.

The easiest way to create a delay in the HPS is to use one of it’s timers. There are numerous timers on Cyclone
V SoCs:

• One such timer is the GLOBAL TIMER. This timer is actually shared by both HPS cores, as well as by the
FPGA.

• In addition to the unique global timer, each HPS core also has 7 other timers which it can use
exclusively, if needed.

For simplicity, we will use the global timer to implement the “delay_us()” function.

As described in 12.2.4.2.1, we need to add the required HWLIB sources to our project, and their headers to
our code. To program the global timer, we will need information regarding the clock frequency, as well as any
timer-specific functions. We can access this information by using the following source and header files:

• alt_clock_manager.c
• alt_clock_manager.h
• alt_globaltmr.c
• alt_globaltmr.h

Figure 12-11 shows how we implement the “delay_us()” function using the global timer.

#include "alt_clock_manager.h"
#include "alt_globaltmr.h"

void setup_hps_timer() {
 assert(ALT_E_SUCCESS == alt_globaltmr_init());
}

/* The HPS doesn't have a sleep() function like the Nios II, so we can make one
 * by using the global timer. */
void delay_us(uint32_t us) {
 uint64_t start_time = alt_globaltmr_get64();
 uint32_t timer_prescaler = alt_globaltmr_prescaler_get() + 1;
 uint64_t end_time;
 alt_freq_t timer_clock;

 assert(ALT_E_SUCCESS == alt_clk_freq_get(ALT_CLK_MPU_PERIPH, &timer_clock));
 end_time = start_time + us * ((timer_clock / timer_prescaler) / ALT_MICROSECS_IN_A_SEC);

 // polling wait
 while(alt_globaltmr_get64() < end_time);
}

Figure 12-11. Programming the HPS Global Timer

22/06/2016 P a g e | 63

DE1-SoC Guide

12.2.4.2.3 GPIO
Figure 12-12 shows how we implement the “handle_hps_led()” function. This function uses the HPS_KEY_N
button to toggle HPS_LED.

Once again, we need to add the HWLIB source file for the GPIO peripheral to our DS-5 project directory. The
files we will use are listed below:

• alt_generalpurpose_io.c
• alt_generalpurpose_io.h

As stated in 12.2.4.2 previously, HWLIB is quite a broad library, but it sometimes lacks certain “obvious”
things. In such cases, you have to fall back on using lower-level functions to implement whatever you are
missing.

In our case, we see that HWLIB has functions that allow us to write to the GPIO peripheral’s “data” register,
but it doesn’t have any function to read the it back. We get around this issue by directly reading the register
with “alt_read_word(ALT_GPIO1_SWPORTA_DR_ADDR)”.

Note that we also need to include the “socal/alt_gpio.h” header file to have access to the lower-level
ALT_GPIO1_SWPORTA_DR_ADDR macro.

#include "alt_generalpurpose_io.h"
#include "socal/alt_gpio.h"

// |=============|==========|==============|==========|
// | Signal Name | HPS GPIO | Register/bit | Function |
// |=============|==========|==============|==========|
// | HPS_LED | GPIO53 | GPIO1[24] | I/O |
// | HPS_KEY_N | GPIO54 | GPIO1[25] | I/O |
// |=============|==========|==============|==========|
#define HPS_LED_IDX (ALT_GPIO_1BIT_53) // GPIO53
#define HPS_LED_PORT (alt_gpio_bit_to_pid(HPS_LED_IDX)) // ALT_GPIO_PORTB
#define HPS_LED_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_LED_IDX)) // 24 (from GPIO1[24])
#define HPS_LED_MASK (1 << HPS_LED_PORT_BIT)
#define HPS_KEY_N_IDX (ALT_GPIO_1BIT_54) // GPIO54
#define HPS_KEY_N_PORT (alt_gpio_bit_to_pid(HPS_KEY_N_IDX)) // ALT_GPIO_PORTB
#define HPS_KEY_N_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_KEY_N_IDX)) // 25 (from GPIO1[25])
#define HPS_KEY_N_MASK (1 << HPS_KEY_N_PORT_BIT)

void setup_hps_gpio() {
 uint32_t hps_gpio_config_len = 2;
 ALT_GPIO_CONFIG_RECORD_t hps_gpio_config[] = {
 {HPS_LED_IDX , ALT_GPIO_PIN_OUTPUT, 0, 0, ALT_GPIO_PIN_DEBOUNCE, ALT_GPIO_PIN_DATAZERO},
 {HPS_KEY_N_IDX, ALT_GPIO_PIN_INPUT , 0, 0, ALT_GPIO_PIN_DEBOUNCE, ALT_GPIO_PIN_DATAZERO}
 };

 assert(ALT_E_SUCCESS == alt_gpio_init());
 assert(ALT_E_SUCCESS == alt_gpio_group_config(hps_gpio_config, hps_gpio_config_len));
}

void handle_hps_led() {
 uint32_t hps_gpio_input = alt_gpio_port_data_read(HPS_KEY_N_PORT, HPS_KEY_N_MASK);

 // HPS_KEY_N is active-low
 bool toggle_hps_led = (~hps_gpio_input & HPS_KEY_N_MASK);

 if (toggle_hps_led) {
 uint32_t hps_led_value = alt_read_word(ALT_GPIO1_SWPORTA_DR_ADDR);
 hps_led_value >>= HPS_LED_PORT_BIT;

22/06/2016 P a g e | 64

DE1-SoC Guide

 hps_led_value = !hps_led_value;
 hps_led_value <<= HPS_LED_PORT_BIT;
 assert(ALT_E_SUCCESS == alt_gpio_port_data_write(HPS_LED_PORT, HPS_LED_MASK, hps_led_value));
 }
}

Figure 12-12. Programming the HPS GPIO Peripheral

12.2.4.3 Launching the Bare-metal Code in the Debugger
19. Once you have finished writing all the application’s code, right-click on the

“DE1_SoC_demo_hps_baremetal” project, and select “Build Project”.
20. Switch to the DS-5 Debug perspective, as shown in Figure 12-13.

Figure 12-13. Switching to the DS-5 Debug Perspective

21. In the “Debug Control” view, click on the “DE1_SoC_demo_hps_baremetal” entry, then click on the
“Connect to Target” button, as shown on Figure 12-14. Our debug script will load and execute the
preloader, then it will load and wait at our application’s “main()” function.

Figure 12-14. Debug Control View

22. You can the use the buttons in the “Debug Control” view to control the application’s execution.

22/06/2016 P a g e | 65

DE1-SoC Guide

Figure 12-15. DS-5 Debugger Controls

12.2.4.4 DS-5 Bare-metal Debugger Tour

12.2.4.4.1 “Registers” View
DS-5’s greatest feature is its “Registers” view.

Recall that we provided the debugger with a PERIPHERAL DESCRIPTION FILE in 12.2.3. This file allows the
debugger’s “Registers” view to display information about all the HPS’ internal and FPGA peripherals, as
shown in Figure 12-16.

22/06/2016 P a g e | 66

DE1-SoC Guide

Figure 12-16. DS-5 Debugger Registers View

You can MODIFY any value in this view, and they will automatically be applied to the corresponding
peripheral. For example, you can manually switch on one of the 7-segment displays, or manually trigger a
button press of HPS_KEY_N (assuming you write the correct bit in the correct place).

The view also highlights the values that changed when stepping through the code while debugging, which
helps you track down invalid peripheral writes, side-effects, …

However, there is one downside with the “Registers” view. With so many details in this view, one would
normally start browsing through each peripheral’s registers (much easier than reading the Cyclone V manual,
isn’t it?).

22/06/2016 P a g e | 67

DE1-SoC Guide

The problem occurs when you expand a peripheral that has not been enabled in the preloader, or that has
side-effects when some of its registers are accessed.

Indeed, DS-5 will try to access an invalid address, and it will crash the debugging session, therefore leaving the
software on the board in an unrecoverable state. You will have to SWITCH OFF THE BOARD and reprogram it
to relaunch the application. Don’t forget to REPROGRAM THE FPGA FABRIC with your design as well.

12.2.4.4.2 App Console
Data sent to standard output is shown in the “App Console” view. Figure 12-17 shows the result of a
“printf()” call in our demo code shown in Figure 12-8.

Figure 12-17. DS-5 App Console View

22/06/2016 P a g e | 68

DE1-SoC Guide

13 USING THE CYCLONE V – HPS – ARM – LINUX
In Figure 7-8, we saw that there are 3 stages before a linux application can be launched:

• Preloader
• Bootloader
• Operating System

In this section, we detail each step needed to create such a linux system from scratch.

13.1 PRELOADER
The first step is to generate and compile the preloader which sets up the HPS.

13.1.1 Preloader Generation
1. Execute the following command to launch the preloader generator.

$ bsp-editor

2. Choose “File > New BSP…”.
a. The preloader will need to know which of the HPS’ peripherals were enabled so it can

appropriately initialize them in the boot process. Under “Preloader settings directory”,
select the “DE1_SoC_demo/hw/quartus/hps_isw_handoff/soc_system_hps_0” directory.
This directory contains settings relative to the HPS’ HARD peripherals, as configured in the
“Arria V/Cyclone V Hard Processor System” component in Qsys.

b. Disable the “Use default locations” checkbox and under the “BSP target directory”,
select the “DE1_SoC_demo/sw/hps/preloader” directory. You should have something similar
to Figure 13-1.

Figure 13-1. New BSP Dialog

c. Press the “OK” button. You should then arrive on a page with many settings, as shown on
Figure 13-2. Take some time to read through them to see what the preloader has the ability to
do.

22/06/2016 P a g e | 69

DE1-SoC Guide

Figure 13-2. Preloader Settings Dialog

3. On the main settings page of Figure 13-2, we will only need to modify 1 parameter for our design.
a. Under “spl.boot”, enabled the “FAT_SUPPORT” checkbox. This option configures the

preloader to load the image of the next boot stage from the FAT32 partition of the sdcard
(instead of from a binary partition located immediately after the preloader on the sdcard).
The image of the next boot stage is named “u-boot.img” by default, but can be modified by
editing “spl.boot.FAT_LOAD_PAYLOAD_NAME”. We will leave the default name for this
tutorial.

b. Press the “Generate” button to finish. You can then exit the bsp-editor.
4. Execute the following command to build the preloader.

$ cd DE1_SoC_demo/sw/hps/preloader
$ make

IF YOU EVER DECIDE TO MOVE THE “DE1_SoC_demo” PROJECT DIRECTORY DEFINED IN FIGURE 8-1, YOU
WILL HAVE TO REGENERATE THE PRELOADER. UNFORTUNATELY, THE SCRIPT PROVIDED BY ALTERA WHICH
GENERATES THE PRELOADER HARD-CODES MULTIPLE ABSOLUTE PATHS DIRECTLY IN THE RESULTING FILES,

RENDERING THEM USELESS ONCE MOVED.

13.1.2 Creating Target sdcard Artifacts
5. Copy the preloader binary to the sdcard target directory. Execute the following command.

$ cp \
 DE1_SoC_demo/sw/hps/preloader/preloader-mkpimage.bin \
 DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin

13.2 BOOTLOADER
The second step is to obtain a bootloader that is capable of loading the linux kernel. Altera provides a copy of
the U-Boot bootloader alongside the preloader. However, this copy is quite old as it dates back to 2013.
Instead, we will download the official U-Boot sources online and use a more recent version.

13.2.1 Getting & Compiling U-Boot
6. Download the latest version of the U-Boot bootloader by executing the following command. This

command downloads the latest U-Boot sources and saves it to the “DE1_SoC_demo/sw/hps/u-boot”
directory.

22/06/2016 P a g e | 70

DE1-SoC Guide

$ git clone \
 git://git.denx.de/u-boot.git \
 DE1_SoC_demo/sw/hps/u-boot

7. Change your current working directory to the U-Boot directory.
$ cd DE1_SoC_demo/sw/hps/u-boot

8. We need to compile U-Boot for an ARM machine, but are compiling on an x86-64 machine, so we
must cross-compile the bootloader. To cross-compile U-Boot, define the following environment
variable:
$ export CROSS_COMPILE=arm-linux-gnueabihf-

9. Clean up the source tree to be sure it is in a clean state before we compile it.
$ make distclean

10. Checkout the following U-Boot commit. This corresponds to the last commit against which the
instructions in this guide were tested. You can skip this step if you want to use a more recent version
of U-Boot, but keep in mind that there may be regressions that make some things not work.

commit b104b3dc1dd90cdbf67ccf3c51b06e4f1592fe91
Author: Tom Rini trini@konsulko.com
Date: Mon Jun 6 17:43:54 2016 -0400

Prepare v2016.07-rc1

Signed-off-by: Tom Rini trini@konsulko.com

$ git checkout b104b3dc1dd90cdbf67ccf3c51b06e4f1592fe91

11. Configure U-Boot for the Cyclone V SoC architecture.
$ make socfpga_cyclone5_config

By default, U-Boot loads some environment variables from a specific flash sector on the sdcard, then
continues executing the commands specified in the macro called “CONFIG_BOOTCOMMAND” (defined in the U-
Boot source code). If this flash sector is empty, then U-Boot emits the following error message.

*** Warning - bad CRC, using default environment

To get around this issue, we are going to patch U-Boot’s source code to ignore the empty flash sector (if it
exists), and instruct it to always load and execute the contents of a user-defined script that we will provide. As
we will see in 13.2.2, U-Boot can be scripted to perform steps of your choosing.

12. Open “DE1_SoC_demo/sw/hps/u-boot/include/configs/socfpga_cyclone5_socdk.h" with a text
editor.

13. Replace the value of the “CONFIG_BOOTCOMMAND” macro with the following definition. This macro
contains the first instruction that will be executed by U-Boot when it boots. In our case, we are telling
U-Boot to execute the contents of the environment variable called “callscript”.

#define CONFIG_BOOTCOMMAND "run callscript"

The “callscript” environment variable does not yet exist in U-Boot, so we are going to set it in the source
code as an extra environment variable.

22/06/2016 P a g e | 71

mailto:trini@konsulko.com
mailto:trini@konsulko.com

DE1-SoC Guide

14. Replace the value of the “CONFIG_EXTRA_ENV_SETTINGS” macro with the following definition. We
define the environment variables needed to load a user-defined script called “u-boot.scr” from
partition 1 of the sdcard (FAT32 partition) into memory, and to execute it.
#define CONFIG_EXTRA_ENV_SETTINGS \
 "scriptfile=u-boot.scr" "\0" \
 "fpgadata=0x2000000" "\0" \
 "callscript=fatload mmc 0:1 $fpgadata $scriptfile;" \
 "source $fpgadata" "\0"

15. At this point, we have finished modifying U-Boot’s source code, and we can compile the bootloader.
$ make

13.2.2 Scripting U-Boot
U-Boot can be scripted to perform steps of your choosing. We will use this ability to automate a few steps
before booting into linux.

16. Create a new file for our U-Boot script and save it under “DE1_SoC_demo/sw/hps/u-boot/u-
boot.script”.

17. Populate the file with the code shown in Figure 13-3. This script instructs U-Boot to
a. Define some environment variables.
b. Load the FPGA .rbf file from the FAT32 partition into memory.
c. Program the FPGA.
d. Enable the FPGA2HPS and HPS2FPGA bridges.
e. Load linux kernel image and devicee tree into memory.
f. Boot linux.

In our case, we use such a script to ensure that the FPGA is programmed BEFORE linux boots.

echo --- Resetting Env variables ---

reset environment variables to default
env default -a

echo --- Setting Env variables ---

Set the kernel image
setenv bootimage zImage;

address to which the device tree will be loaded
setenv fdtaddr 0x00000100

Set the devicetree image
setenv fdtimage socfpga.dtb;

set kernel boot arguments, then boot the kernel
setenv mmcboot 'setenv bootargs mem=1024M console=ttyS0,115200 root=${mmcroot} rw rootwait; bootz
${loadaddr} - ${fdtaddr}';

load linux kernel image and device tree to memory
setenv mmcload 'mmc rescan; ${mmcloadcmd} mmc 0:${mmcloadpart} ${loadaddr} ${bootimage}; ${mmcloadcmd}
mmc 0:${mmcloadpart} ${fdtaddr} ${fdtimage}'

command to be executed to read from sdcard
setenv mmcloadcmd fatload

sdcard fat32 partition number

22/06/2016 P a g e | 72

DE1-SoC Guide

setenv mmcloadpart 1

sdcard ext3 identifier
setenv mmcroot /dev/mmcblk0p2

standard input/output
setenv stderr serial
setenv stdin serial
setenv stdout serial

save environment to sdcard (not needed, but useful to avoid CRC errors on a new sdcard)
saveenv

echo --- Programming FPGA ---

load rbf from FAT partition into memory
fatload mmc 0:1 ${fpgadata} socfpga.rbf;

program FPGA
fpga load 0 ${fpgadata} ${filesize};

enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges
bridge enable;

echo --- Booting Linux ---

load linux kernel image and device tree to memory
run mmcload;

set kernel boot arguments, then boot the kernel
run mmcboot;

Figure 13-3. U-Boot Script

18. Convert the U-Boot script to binary form.
$ mkimage \
 -A arm \
 -O linux \
 -T script \
 -C none \
 -a 0 \
 -e 0 \
 -n DE1_SoC_demo \
 -d DE1_SoC_demo/sw/hps/u-boot/u-boot.script \
 DE1_SoC_demo/sw/hps/u-boot/u-boot.scr

13.2.3 Creating Target sdcard Artifacts
19. Copy the U-Boot image to the sdcard target directory.

$ cp \
 DE1_SoC_demo/sw/hps/u-boot/u-boot.img \
 DE1_SoC_demo/sdcard/fat32/u-boot.img

20. Copy the binary U-Boot script to the sdcard target directory.
$ cp \
 DE1_SoC_demo/sw/hps/u-boot/u-boot.scr \
 DE1_SoC_demo/sdcard/fat32/u-boot.scr

22/06/2016 P a g e | 73

DE1-SoC Guide

13.3 LINUX KERNEL
The third step is to obtain and compile the linux kernel.

13.3.1 Getting & Compiling Linux
21. Download the latest version of the linux kernel by executing the following command. This command

downloads the latest linux sources and saves it to the “DE1_SoC-demo/sw/hps/linux/source”
directory.
Note that we are not going to use the sources directly from the mainline kernel branch, as it is
generally behind the various development branches maintained by Altera (which contain drivers for
most of the FPGA-related components specific to the socfpga architecture). Once Altera’s branches
are merged back into the mainline kernel, we can switch to that source tree, but for the moment, we
will continue to use Altera’s branch.
$ git clone \
 https://github.com/altera-opensource/linux-socfpga.git \
 DE1_SoC_demo/sw/hps/linux/source

22. Change your current working directory to the linux directory.
$ cd DE1_SoC_demo/sw/hps/linux/source

23. We need to compile linux for an ARM machine, but are compiling on an x86-64 machine, so we must
cross-compile the kernel. To cross-compile linux, define the following environment variables:
$ export ARCH=arm
$ export CROSS_COMPILE=arm-linux-gnueabihf-

24. Clean up the source tree to be sure it is in a clean state before we compile it.
$ make distclean

25. Checkout the following linux commit. This corresponds to the last commit against which the
instructions in this guide were tested. You can skip this step if you want to use a more recent version
of linux, but remember that there may be regressions that make some things not work.

commit ffea805b5209e0e6ad8645217f5ab742455a066b
Author: Dinh Nguyen dinguyen@opensource.altera.com
Date: Tue May 3 08:59:01 2016 -0500

ARM: dts: socfpga: add ethernet alias on Arria10

Without having an ethernet alias, ethernet will have a random MAC address,
versus take an address that was provided from the bootloader.

Signed-off-by: Dinh Nguyen dinguyen@opensource.altera.com

$ git checkout ffea805b5209e0e6ad8645217f5ab742455a066b

26. Configure linux for the Cyclone V SoC architecture.
$ make socfpga_defconfig

27. Compile the linux kernel “zImage” binary, which corresponds to a self-extracting compressed version
of the linux kernel image.
$ make zImage

28. Compile the device tree blob for the Cyclone V Development Kit. This device tree does not exactly
correspond to the device tree needed for the DE1-SoC, but given that there are no predefined device

22/06/2016 P a g e | 74

mailto:dinguyen@opensource.altera.com
mailto:dinguyen@opensource.altera.com

DE1-SoC Guide

trees available for the DE1-SoC, we will use the one provided for the (more feature-rich) Cyclone V
Development Kit.
$ make socfpga_cyclone5_socdk.dtb

13.3.2 Creating Target sdcard Artifacts
29. Copy the linux zImage binary to the sdcard target directory

$ cp \
 DE1_SoC_demo/sw/hps/linux/source/arch/arm/boot/zImage
 DE1_SoC_demo/sdcard/fat32/zImage

30. Copy the linux device tree blob to the sdcard target directory.
$ cp \
 DE1_SoC_demo/sw/hps/linux/source/arch/arm/boot/dts/socfpga_cyclone5_socdk.dtb \
 DE1_SoC_demo/sdcard/fat32/socfpga.dtb

13.4 UBUNTU CORE ROOT FILESYSTEM
At this stage, we technically have everything needed to have a fully-working linux machine. The machine,
however, is quite minimal. This is normal, as we merely have the linux KERNEL available at this point. If we
want to have more functionality, we need to install a linux DISTRIBUTION.

In this guide, we will install Ubuntu Core on our DE1-SoC. Ubuntu Core is the minimal root filesystem (rootfs)
needed to run Ubuntu. It consists of a very basic command-line version of the distribution, and can be
customized to eventually ressemble the desktop version of Ubuntu most people are familiar with. Most
importantly, it comes with a package manager.

13.4.1 Obtaining Ubuntu Core
31. Download the Ubuntu Core 14.04.4 rootfs for the armhf architecture from Canonical’s servers.

$ wget \
 http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.4-
core-armhf.tar.gz \
 -O DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-base-14.04.4-core-armhf.tar.gz

32. Create a directory where we will extract the root filesystem.
$ mkdir –p DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

33. Change your working directory to the previously created directory and extract the root filesystem.
Note that you need to extract the archive with root permissions to allow the “mknod” commands to
work.
$ cd DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs
$ sudo tar –xzpf ../ubuntu-base-14.04.4-core-armhf.tar.gz

13.4.2 Customizing Ubuntu Core
The Ubuntu Core rootfs is not very useful in its current state, as it is completely unconfigured. By
unconfigured, we mean that there is no user installed, no DNS configuration, no network interfaces …

We must therefore configure the rootfs before we can use it. We will do this by means of the “chroot”
command. This command allows you to obtain an interactive shell in another root directory than is currently
available on your host machine. It is very practical for configuring the rootfs, as it will allow us to simulate
being in the Ubuntu Core rootfs while we configure it.

But, we will need to set up the environment before using the “chroot” command: the chroot environment
uses the resources of your host machine, so we need to make a few of these resources available in the rootfs
before we can use them.

22/06/2016 P a g e | 75

http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.4-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.4-core-armhf.tar.gz

DE1-SoC Guide

Note that most chroot-related commands must be executed with admin rights, as we are manipulating system
resources.

13.4.2.1 Setup the chroot Environment
34. Mount your host’s “/dev”, “/sys”, and “/proc” directories in the chroot environment.

$ sudo mount -o bind \
 /dev \
 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/dev
$ sudo mount -t sysfs \
 /sys \
 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/sys
$ sudo mount -t proc \
 /proc \
 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/proc

35. Copy your host’s “/proc/mount” file to the chroot environment. This file contains information about
all currently mounted directories on your host (including the 3 directories we just mounted above).
$ sudo cp \
 /proc/mounts \
 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/etc/mtab

36. We want network connectivity when using “chroot”, so we copy our host’s “/etc/resolv.conf” file
to the chroot environment so DNS name resolution is available.
$ sudo cp \
 /etc/resolv.conf \
 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/etc/resolv.conf

37. The Ubuntu Core rootfs is for armhf architectures (not x86-64), so we need to use qemu to emulate
the binaries available in the chroot environment.
$ sudo cp \
 /usr/bin/qemu-arm-static \
 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/usr/bin/

38. Use the “chroot” command to enter the rootfs.
$ sudo chroot DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

13.4.2.2 Inside the chroot Environment
We are now inside the rootfs, and can start customizing the Ubuntu Core root filesystem.

39. Configure the locale to have proper language support.
$ localedef -i en_US -c -f UTF-8 en_US.UTF-8
$ dpkg-reconfigure locales

40. Configure the timezone.
$ echo "Europe/Zurich" > /etc/timezone
$ dpkg-reconfigure -f noninteractive tzdata

41. Set the machine’s hostname.
$ echo DE1-SoC > /etc/hostname
$ cat <<EOF > /etc/hosts
 127.0.0.1 localhost
 127.0.1.1 DE1-SoC
 EOF

22/06/2016 P a g e | 76

DE1-SoC Guide

42. Create the “/etc/network/interfaces” file that describes the network interfaces available on the
board.
$ cat <<EOF > /etc/network/interfaces
 # interfaces(5) file used by ifup(8) and ifdown(8)

 # The loopback network interface
 auto lo
 iface lo inet loopback

 # The primary network interface
 auto eth0
 iface eth0 inet dhcp
 EOF

43. Configure Ubuntu Core to display a login shell on the serial console once the kernel boots. In Figure
13-3, we had configured U-Boot to supply appropriate command-line arguments to the linux kernel.
We can see that we had instructed the kernel to use serial console “ttyS0” as the boot shell, so we
choose to use the same one for the login shell.
$ cat <<EOF > /etc/init/ttyS0.conf
 # ttyS0 – getty
 #
 # This service maintains a getty on ttyS0

 description "Get a getty on ttyS0"

 start on runlevel [2345]
 stop on runlevel [016]

 respawn

 exec /sbin/getty -L 115200 ttyS0 vt102
 EOF

44. Edit the “/etc/apt/sources.list” file to configure the package manager. This file contains a list of
mirrors that the package manager queries. By default, this file has all fields commented out, so the
package manager will not have access to any mirrors. You can either manually edit the file and
uncomment some entries, or you can execute the following command which will do it automatically.
uncomment the "deb" lines (no need to uncomment "deb src" lines)
$ perl -pi -e 's/^#+\s+(deb\s+http)/$1/g' /etc/apt/sources.list

45. When writing our linux applications, we want to use ARM DS-5’s remote debugging feature to
automatically transfer our binaries to the target device and to start a debugging session. The remote
debugging feature requires an SSH server and a remote gdb server to be available on the target. These
are easy to install as we have a package manager available.
$ apt-get update
$ apt-get install -y ssh gdbserver

46. Create a user and a password. In this example, we create a user called “sahand”. You will be
interactively prompted to input a password of your choice.
$ adduser sahand

47. Ubuntu requires administrators to be part of the “adm” and “sudo” groups, so add the previously-
created user to these 2 groups.
$ addgroup sahand adm

22/06/2016 P a g e | 77

DE1-SoC Guide

$ addgroup sahand sudo

48. Set the root password: we do this so we can supply a password to ARM DS-5 when remote debugging
linux applications that require elevated rights.
$ passwd root

49. Allow the root user to login through SSH with a password. This is needed so we can use ARM DS-5 for
remote debugging linux applications.
$ perl -pi -e \
 's/^(PermitRootLogin) without-password$/$1 yes/g' \
 /etc/ssh/sshd_config

50. The configuration of Ubuntu Core is done at this point, so we can exit the chroot environment.
$ exit

13.4.3 Cleanup the chroot Environment
51. Unmount the “/dev”, “/sys”, and “/proc” directories that we had previously mounted.

$ sudo umount DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/proc
$ sudo umount DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/sys
$ sudo umount DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/dev

13.4.4 Creating Target sdcard Artifacts
52. Copy the customized root filesystem to the sdcard target directory. For the previous artifacts, we used

to simply copy files with the “cp” command. However, we will create an archive for the rootfs, as
there are many special files in some directories that the standard “cp” command does not copy
correctly.
$ cd DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs
Note: there is a “.” at the end of the next command
$ sudo tar -czpf DE1_SoC_demo/sdcard/ext3_rootfs.tar.gz .

13.5 WRITING EVERYTHING TO THE SDCARD
If you have followed all the steps in sections 9 and 13 until this point, then you should have the file structure
shown in Figure 13-4 as your “DE1_SoC_demo/sdcard” directory.

sdcard/
├── a2
│ └── preloader-mkpimage.bin
├── ext3_rootfs.tar.gz
└── fat32
 ├── socfpga.dtb
 ├── socfpga.rbf
 ├── u-boot.img
 ├── u-boot.scr
 └── zImage

Figure 13-4. Target sdcard directory

We now have all the files needed to create our final sdcard.

53. Create 2 directories where you will mount the FAT32 and EXT3 partitions of the sdcard.
$ mkdir –p DE1_SoC_demo/sdcard/mount_point_fat32
$ mkdir –p DE1_SoC_demo/sdcard/mount_point_ext3

54. Mount the sdcard partitions.
$ sudo mount /dev/sdb1 DE1_SoC_demo/sdcard/mount_point_fat32

22/06/2016 P a g e | 78

DE1-SoC Guide

$ sudo mount /dev/sdb2 DE1_SoC_demo/sdcard/mount_point_ext3

55. Write the preloader to the custom “a2” partition.
$ sudo dd \
 if=DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin \
 of=/dev/sdb3 \
 bs=64K \
 seek=0

56. Write the FPGA .rbf file, U-Boot .img file, U-Boot .scr file, linux zImage file, and linux .dtb file to
the FAT32 partition.
$ sudo cp \
 DE1_SoC_demo/sdcard/fat32/* \
 DE1_SoC_demo/sdcard/mount_point_fat32

57. Write the customized Ubuntu Core root filesystem to the EXT3 partition.
$ cd DE1_SoC_demo/sdcard/mount_point_ext3
$ sudo tar -xzf ../ext3_rootfs.tar.gz

58. Flush all write buffers to target.
$ sudo sync

59. Unmount sdcard partitions.
$ cd DE1_SoC_demo
$ sudo umount DE1_SoC_demo/sdcard/mount_point_fat32
$ sudo umount DE1_SoC_demo/sdcard/mount_point_ext3

60. Delete sdcard mount points.
$ rm –rf DE1_SoC_demo/sdcard/mount_point_fat32
$ rm –rf DE1_SoC_demo/sdcard/mount_point_ext3

The sdcard is now finally ready.

13.6 SCRIPTING THE COMPLETE PROCEDURE
As previously stated, the full design used in this tutorial is available in DE1_SoC_demo.zip [5]. Due to the very
large number of steps required to build the current linux system from scratch, we provide a
“create_linux_system.sh” script that performs all steps described until now automatically. The script
performs the following tasks:

• Compile the Quartus Prime hardware project.
• Generate, configure, and compile the preloader.
• Download, configure, and compile U-Boot.
• Download, configure, and compile Linux.
• Download and configure the Ubuntu Core root filesystem.
• Partition the sdcard.
• Write the sdcard.

The script has a large number of constants at the beginning that you can modify to tailor the process to your
needs. The default linux user account created is “sahand” and the password is “1234”. The root password is
also set to “1234”.

22/06/2016 P a g e | 79

DE1-SoC Guide

===
usage: create_linux_system.sh [sdcard_device]

positional arguments:
 sdcard_device path to sdcard device file [ex: "/dev/sdb", "/dev/mmcblk0"]
===

IT IS RECOMMENDED TO USE THE SCRIPT TO AUTOMATE THE FULL SYSTEM CREATION PIPELINE, AND TO GO

GET A SNACK WHILE YOU WAIT FOR IT TO FINISH 

13.7 TESTING THE SETUP
61. Wire up the DE1-SoC as described in Figure 9-19.
62. Plug in the microSD card.

BE SURE YOU ARE PART OF THE “dialout” GROUP BEFORE YOU CONTINUE, OTHERWISE YOU WON’T BE

ABLE TO ACCESS THE SERIAL CONSOLE ON YOUR MACHINE IN ORDER TO CONNECT TO THE DE1-SOC.

63. Launch a serial console on your host machine by executing the following command.
$ minicom --device /dev/ttyUSB0

64. Configure the serial console as shown below.
+--+
| A - Serial Device : /dev/ttyUSB0 |
| B - Lockfile Location : /var/lock |
| C - Callin Program : |
| D - Callout Program : |
| E - Bps/Par/Bits : 115200 8N1 |
| F - Hardware Flow Control : No |
| G - Software Flow Control : No |
| |
| Change which setting? |
+--+

BE SURE TO SET THE MSEL SWITCH ON THE BOTTOM SIDE OF THE DE1-SOC TO “00000” BEFORE
CONTINUING.

65. Power-on the DE1-SoC.

You should see the messages shown in Figure 13-5, and after roughly 30 seconds you will arrive at the linux
login prompt. You can log in with the username and password you set in 13.4.2.2.

U-Boot SPL 2013.01.01 (Jun 15 2016 - 10:41:25)
BOARD : Altera SOCFPGA Cyclone V Board
CLOCK: EOSC1 clock 25000 KHz
CLOCK: EOSC2 clock 25000 KHz
CLOCK: F2S_SDR_REF clock 0 KHz
CLOCK: F2S_PER_REF clock 0 KHz
CLOCK: MPU clock 925 MHz
CLOCK: DDR clock 400 MHz
CLOCK: UART clock 100000 KHz
CLOCK: MMC clock 50000 KHz
CLOCK: QSPI clock 370000 KHz
RESET: COLD
INFO : Watchdog enabled
SDRAM: Initializing MMR registers
SDRAM: Calibrating PHY
SEQ.C: Preparing to start memory calibration

22/06/2016 P a g e | 80

DE1-SoC Guide

SEQ.C: CALIBRATION PASSED
SDRAM: 1024 MiB
ALTERA DWMMC: 0
reading u-boot.img
reading u-boot.img

U-Boot 2016.07-rc1-dirty (Jun 15 2016 - 10:42:03 +0200)

CPU: Altera SoCFPGA Platform
FPGA: Altera Cyclone V, SE/A5 or SX/C5 or ST/D5, version 0x0
BOOT: SD/MMC Internal Transceiver (3.0V)
 Watchdog enabled
I2C: ready
DRAM: 1 GiB
MMC: dwmmc0@ff704000: 0
In: serial
Out: serial
Err: serial
Model: Altera SOCFPGA Cyclone V SoC Development Kit
Net:
Error: ethernet@ff702000 address not set.
No ethernet found.
Hit any key to stop autoboot: 0
reading u-boot.scr
1778 bytes read in 5 ms (346.7 KiB/s)
Executing script at 02000000
--- Resetting Env variables ---
Resetting to default environment
--- Setting Env variables ---
Saving Environment to MMC...
Writing to MMC(0)... done
--- Programming FPGA ---
reading socfpga.rbf
7007204 bytes read in 389 ms (17.2 MiB/s)
--- Booting Linux ---
reading zImage
4018912 bytes read in 222 ms (17.3 MiB/s)
reading socfpga.dtb
31348 bytes read in 9 ms (3.3 MiB/s)
Kernel image @ 0x1000000 [0x000000 - 0x3d52e0]
Flattened Device Tree blob at 00000100
 Booting using the fdt blob at 0x000100
 reserving fdt memory region: addr=0 size=1000
 Loading Device Tree to 03ff5000, end 03fffa73 ... OK

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 4.5.0-00160-gffea805 (sahand@thinkpad) (gcc version 4.8.3 20140401 (prerelease)
(crosstool-NG linaro-1.13.1-4.8-2014.04 - Linaro GCC 4.8-2014.04)) #1 SMP Wed Jun 15 10:49:49 CEST 2016
[0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=10c5387d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[0.000000] Machine model: Altera SOCFPGA Cyclone V SoC Development Kit
[0.000000] Truncating RAM at 0x00000000-0x40000000 to -0x30000000
[0.000000] Consider using a HIGHMEM enabled kernel.
[0.000000] Memory policy: Data cache writealloc
[0.000000] PERCPU: Embedded 13 pages/cpu @ef9c3000 s21824 r8192 d23232 u53248
[0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 195072

22/06/2016 P a g e | 81

DE1-SoC Guide

[0.000000] Kernel command line: mem=1024M console=ttyS0,115200 root=/dev/mmcblk0p2 rw rootwait
[0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
[0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
[0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
[0.000000] Memory: 770528K/786432K available (6131K kernel code, 423K rwdata, 1532K rodata, 452K init, 140K
bss, 15904K reserved, 0K cma-reserved)
[0.000000] Virtual kernel memory layout:
[0.000000] vector : 0xffff0000 - 0xffff1000 (4 kB)
[0.000000] fixmap : 0xffc00000 - 0xfff00000 (3072 kB)
[0.000000] vmalloc : 0xf0800000 - 0xff800000 (240 MB)
[0.000000] lowmem : 0xc0000000 - 0xf0000000 (768 MB)
[0.000000] modules : 0xbf000000 - 0xc0000000 (16 MB)
[0.000000] .text : 0xc0008000 - 0xc078423c (7665 kB)
[0.000000] .init : 0xc0785000 - 0xc07f6000 (452 kB)
[0.000000] .data : 0xc07f6000 - 0xc085fe3c (424 kB)
[0.000000] .bss : 0xc085fe3c - 0xc0882eb4 (141 kB)
[0.000000] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1
[0.000000] Hierarchical RCU implementation.
[0.000000] Build-time adjustment of leaf fanout to 32.
[0.000000] NR_IRQS:16 nr_irqs:16 16
[0.000000] L2C: platform provided aux values permit register corruption.
[0.000000] L2C-310 erratum 769419 enabled
[0.000000] L2C-310 enabling early BRESP for Cortex-A9
[0.000000] L2C-310 full line of zeros enabled for Cortex-A9
[0.000000] L2C-310 ID prefetch enabled, offset 1 lines
[0.000000] L2C-310 dynamic clock gating enabled, standby mode enabled
[0.000000] L2C-310 cache controller enabled, 8 ways, 512 kB
[0.000000] L2C-310: CACHE_ID 0x410030c9, AUX_CTRL 0x76460001
[0.000000] clocksource: timer1: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604467 ns
[0.000006] sched_clock: 32 bits at 100MHz, resolution 10ns, wraps every 21474836475ns
[0.000017] Switching to timer-based delay loop, resolution 10ns
[0.000362] Console: colour dummy device 80x30
[0.000381] Calibrating delay loop (skipped), value calculated using timer frequency.. 200.00 BogoMIPS
(lpj=1000000)
[0.000394] pid_max: default: 32768 minimum: 301
[0.000481] Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
[0.000492] Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
[0.001010] CPU: Testing write buffer coherency: ok
[0.001039] ftrace: allocating 20284 entries in 60 pages
[0.031702] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[0.031929] Setting up static identity map for 0x8280 - 0x82d8
[0.033308] CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
[0.033369] Brought up 2 CPUs
[0.033384] SMP: Total of 2 processors activated (400.00 BogoMIPS).
[0.033389] CPU: All CPU(s) started in SVC mode.
[0.034056] devtmpfs: initialized
[0.040817] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[0.041100] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns
[0.042050] NET: Registered protocol family 16
[0.042772] DMA: preallocated 256 KiB pool for atomic coherent allocations
[0.049057] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[0.049070] hw-breakpoint: maximum watchpoint size is 4 bytes.
[0.082040] SCSI subsystem initialized
[0.082313] usbcore: registered new interface driver usbfs
[0.082375] usbcore: registered new interface driver hub
[0.082433] usbcore: registered new device driver usb
[0.082579] soc:usbphy@0 supply vcc not found, using dummy regulator
[0.089797] lcd_load_custom_fonts: i2c_master_send returns -121
[0.090093] lcd_cmd_no_params: i2c_master_send returns -121
[0.099764] lcd_cmd_one_param: i2c_master_send returns -121

22/06/2016 P a g e | 82

DE1-SoC Guide

[0.109810] lcd_cmd_no_params: i2c_master_send returns -121
[0.109838] lcd-comm 0-0028: LCD driver initialized
[0.110222] pps_core: LinuxPPS API ver. 1 registered
[0.110232] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <giometti@linux.it>
[0.110261] PTP clock support registered
[0.110413] FPGA manager framework
[0.111173] clocksource: Switched to clocksource timer1
[0.140402] NET: Registered protocol family 2
[0.140914] TCP established hash table entries: 8192 (order: 3, 32768 bytes)
[0.140993] TCP bind hash table entries: 8192 (order: 4, 65536 bytes)
[0.141098] TCP: Hash tables configured (established 8192 bind 8192)
[0.141243] UDP hash table entries: 512 (order: 2, 16384 bytes)
[0.141316] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
[0.141508] NET: Registered protocol family 1
[0.141825] RPC: Registered named UNIX socket transport module.
[0.141835] RPC: Registered udp transport module.
[0.141841] RPC: Registered tcp transport module.
[0.141846] RPC: Registered tcp NFSv4.1 backchannel transport module.
[0.142964] futex hash table entries: 512 (order: 3, 32768 bytes)
[0.154153] NFS: Registering the id_resolver key type
[0.154193] Key type id_resolver registered
[0.154201] Key type id_legacy registered
[0.154261] ntfs: driver 2.1.32 [Flags: R/W].

[0.154561] jffs2: version 2.2. (NAND) �© 2001-2006 Red Hat, Inc.
[0.155917] io scheduler noop registered (default)
[0.162142] Serial: 8250/16550 driver, 2 ports, IRQ sharing disabled
[0.163373] console [ttyS0] disabled
[0.163406] ffc02000.serial0: ttyS0 at MMIO 0xffc02000 (irq = 45, base_baud = 6250000) is a 16550A
[0.738234] console [ttyS0] enabled
[0.742364] ffc03000.serial1: ttyS1 at MMIO 0xffc03000 (irq = 46, base_baud = 6250000) is a 16550A
[0.753157] brd: module loaded
[0.756281] at24 0-0051: 4096 byte 24c32 EEPROM, writable, 32 bytes/write
[0.763914] cadence-qspi ff705000.spi: Read data capture delay for 100000000 baud calibrated to 8 (0 - 15)
[0.773564] cadence-qspi ff705000.spi: unrecognized JEDEC id bytes: ff, ff, ff
[0.780757] cadence-qspi ff705000.spi: Cadence QSPI NOR probe failed -2
[0.787386] cadence-qspi: probe of ff705000.spi failed with error -2
[0.795617] CAN device driver interface
[0.800089] c_can_platform ffc00000.can: c_can_platform device registered (regs=f08ee000, irq=26)
[0.809405] stmmac - user ID: 0x10, Synopsys ID: 0x37
[0.814461] Ring mode enabled
[0.817503] DMA HW capability register supported
[0.822020] Enhanced/Alternate descriptors
[0.826366] Enabled extended descriptors
[0.830355] RX Checksum Offload Engine supported (type 2)
[0.835826] TX Checksum insertion supported
[0.840076] Enable RX Mitigation via HW Watchdog Timer
[0.845746] socfpga-dwmac ff702000.ethernet eth0: No MDIO subnode found
[0.857841] libphy: stmmac: probed
[0.861267] eth0: PHY ID 00221611 at 1 IRQ POLL (stmmac-0:01) active
[0.868036] ffb40000.usb supply vusb_d not found, using dummy regulator
[0.874687] ffb40000.usb supply vusb_a not found, using dummy regulator
[1.161180] dwc2 ffb40000.usb: EPs: 16, dedicated fifos, 8064 entries in SPRAM
[1.261270] dwc2 ffb40000.usb: DWC OTG Controller
[1.265979] dwc2 ffb40000.usb: new USB bus registered, assigned bus number 1
[1.273035] dwc2 ffb40000.usb: irq 47, io mem 0x00000000
[1.278581] usb usb1: New USB device found, idVendor=1d6b, idProduct=0002
[1.285355] usb usb1: New USB device strings: Mfr=3, Product=2, SerialNumber=1
[1.292554] usb usb1: Product: DWC OTG Controller
[1.297238] usb usb1: Manufacturer: Linux 4.5.0-00160-gffea805 dwc2_hsotg

22/06/2016 P a g e | 83

DE1-SoC Guide

[1.304004] usb usb1: SerialNumber: ffb40000.usb
[1.309123] hub 1-0:1.0: USB hub found
[1.312905] hub 1-0:1.0: 1 port detected
[1.317445] usbcore: registered new interface driver usb-storage
[1.323796] mousedev: PS/2 mouse device common for all mice
[1.330134] rtc-ds1307: probe of 0-0068 failed with error -5
[1.335841] i2c /dev entries driver
[1.340117] Synopsys Designware Multimedia Card Interface Driver
[1.346398] dw_mmc ff704000.dwmmc0: IDMAC supports 32-bit address mode.
[1.353039] dw_mmc ff704000.dwmmc0: Using internal DMA controller.
[1.359199] dw_mmc ff704000.dwmmc0: Version ID is 240a
[1.364360] dw_mmc ff704000.dwmmc0: DW MMC controller at irq 34,32 bit host data width,1024 deep fifo
[1.373701] dw_mmc ff704000.dwmmc0: Got CD GPIO
[1.411260] dw_mmc ff704000.dwmmc0: 1 slots initialized
[1.417148] ledtrig-cpu: registered to indicate activity on CPUs
[1.423350] usbcore: registered new interface driver usbhid
[1.428900] usbhid: USB HID core driver
[1.432987] fpga_manager fpga0: Altera SOCFPGA FPGA Manager registered
[1.439884] altera_hps2fpga_bridge ff400000.fpga_bridge: fpga bridge [lwhps2fpga] registered
[1.448516] altera_hps2fpga_bridge ff500000.fpga_bridge: fpga bridge [hps2fpga] registered
[1.457125] fpga-region soc:base_fpga_region: FPGA Region probed
[1.463383] oprofile: no performance counters
[1.467821] oprofile: using timer interrupt.
[1.473185] NET: Registered protocol family 10
[1.478322] sit: IPv6 over IPv4 tunneling driver
[1.483546] NET: Registered protocol family 17
[1.487998] NET: Registered protocol family 15
[1.492447] can: controller area network core (rev 20120528 abi 9)
[1.498653] NET: Registered protocol family 29
[1.503108] can: raw protocol (rev 20120528)
[1.507365] can: broadcast manager protocol (rev 20120528 t)
[1.513023] can: netlink gateway (rev 20130117) max_hops=1
[1.518705] 8021q: 802.1Q VLAN Support v1.8
[1.522940] Key type dns_resolver registered
[1.527269] ThumbEE CPU extension supported.
[1.531544] Registering SWP/SWPB emulation handler
[1.537445] of_cfs_init
[1.539954] of_cfs_init: OK
[1.544852] ttyS0 - failed to request DMA
[1.548920] Waiting for root device /dev/mmcblk0p2...
[1.581562] mmc_host mmc0: Bus speed (slot 0) = 50000000Hz (slot req 50000000Hz, actual 50000000HZ div = 0)
[1.591323] mmc0: new high speed SDHC card at address 0007
[1.597192] mmcblk0: mmc0:0007 SD8GB 7.42 GiB
[1.603298] mmcblk0: p1 p2 p3
[1.662365] EXT4-fs (mmcblk0p2): mounting ext3 file system using the ext4 subsystem
[1.721175] usb 1-1: new high-speed USB device number 2 using dwc2
[1.931328] usb 1-1: New USB device found, idVendor=0424, idProduct=2512
[1.938005] usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[1.945687] hub 1-1:1.0: USB hub found
[1.949494] hub 1-1:1.0: 2 ports detected
[3.924905] random: nonblocking pool is initialized
[4.387998] EXT4-fs (mmcblk0p2): recovery complete
[4.397177] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data mode. Opts: (null)
[4.405279] VFS: Mounted root (ext3 filesystem) on device 179:2.
[4.422408] devtmpfs: mounted
[4.425690] Freeing unused kernel memory: 452K (c0785000 - c07f6000)
Mount failed for selinuxfs on /sys/fs/selinux: No such file or directory
[4.847646] init: plymouth-upstart-bridge main process (639) terminated with status 1
[4.855850] init: plymouth-upstart-bridge main process ended, respawning

22/06/2016 P a g e | 84

DE1-SoC Guide

[4.890717] init: plymouth-upstart-bridge main process (649) terminated with status 1
[4.898831] init: plymouth-upstart-bridge main process ended, respawning
[4.922300] init: hwclock main process (641) terminated with status 1
[4.936132] init: plymouth-upstart-bridge main process (652) terminated with status 1
[4.944074] init: plymouth-upstart-bridge main process ended, respawning
[4.971422] init: plymouth-upstart-bridge main process (654) terminated with status 1
[4.979432] init: plymouth-upstart-bridge main process ended, respawning
[5.046143] init: ureadahead main process (642) terminated with status 5
 * Stopping Send an event to indicate plymouth is up[OK]
 * Starting Mount filesystems on boot[OK]
 * Starting Signal sysvinit that the rootfs is mounted[OK]
 * Starting Populate /dev filesystem[OK]
 * Stopping Populate /dev filesystem[OK]
 * Starting Clean /tmp directory[OK]
 * Starting Populate and link to /run filesystem[OK]
 * Stopping Clean /tmp directory[OK]
 * Stopping Populate and link to /run filesystem[OK]
 * Stopping Track if upstart is running in a container[OK]
 * Starting Initialize or finalize resolvconf[OK]
 * Starting set console keymap[OK]
 * Starting Signal sysvinit that virtual filesystems are mounted[OK]
 * Starting Signal sysvinit that virtual filesystems are mounted[OK]
 * Starting Bridge udev events into upstart[OK]
 * Starting Signal sysvinit that local filesystems are mounted[OK]
 * Starting device node and kernel event manager[OK]
 * Starting Signal sysvinit that remote filesystems are mounted[OK]
 * Stopping set console keymap[OK]
 * Starting load modules from /etc/modules[OK]
 * Starting cold plug devices[OK]
 * Starting log initial device creation[OK]
 * Stopping load modules from /etc/modules[OK]
 * Starting flush early job output to logs[OK]
 * Stopping Mount filesystems on boot[OK]
 * Stopping cold plug devices[OK]
 * Stopping log initial device creation[OK]
 * Stopping flush early job output to logs[OK]
 * Starting configure network device security[OK]
 * Starting save udev log and update rules[OK]
 * Starting userspace bootsplash[OK]
 * Stopping save udev log and update rules[OK]
 * Stopping userspace bootsplash[OK]
 * Starting configure network device security[OK]
 * Starting Send an event to indicate plymouth is up[OK]
 * Starting configure network device security[OK]
 * Stopping Send an event to indicate plymouth is up[OK]
 * Starting configure network device[OK]
 * Starting system logging daemon[OK]
 * Starting configure network device security[OK]
 * Starting configure network device security[OK]
 * Starting configure network device[OK]
 * Starting configure network device[OK]
 * Starting Mount network filesystems[OK]
 * Starting Failsafe Boot Delay[OK]
 * Stopping Mount network filesystems[OK]
 * Starting Bridge socket events into upstart[OK]
 * Starting Bridge file events into upstart[OK]
Waiting for network configuration...
Waiting up to 60 more seconds for network configuration...
Booting system without full network configuration...

22/06/2016 P a g e | 85

DE1-SoC Guide

 * Stopping Failsafe Boot Delay[OK]
 * Starting System V initialisation compatibility[OK]
 * Stopping System V initialisation compatibility[OK]
 * Starting System V runlevel compatibility[OK]
 * Starting save kernel messages[OK]
 * Starting Get a getty on ttyS0[OK]
 * Starting regular background program processing daemon[OK]
 * Stopping System V runlevel compatibility[OK]
 * Stopping save kernel messages[OK]

Ubuntu 14.04.4 LTS DE1-SoC ttyS0

DE1-SoC login: sahand
Password:
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.5.0-00160-gffea805 armv7l)

 * Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

sahand@DE1-SoC:~$

Figure 13-5. DE1-SoC Boot Messages

Now that full system is up and running, we can move on towards building a linux application.

13.8 ARM DS-5
66. Launch the ARM DS-5 IDE by executing the following command.

$ eclipse

13.8.1 Setting Up a New C Project
67. Create a new C project by going to “File > New > C Project”.

a. Use “DE1_SoC_demo_hps_linux” as the project name.
b. Disable the “Use default location” checkbox.
c. Set “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_linux” as the target

location for the project.
d. We want to create a single output executable for our project, so choose “Executable >

Empty Project” as the project type.
e. Choose “GCC 4.x [arm-linux-gnueabihf] (DS-5 built-in)” as the Toolchain.
f. You should have something similar to Figure 13-6. Then, press the “Finish” button to create

the project.

22/06/2016 P a g e | 86

DE1-SoC Guide

Figure 13-6. New C Project Dialog

68. When programming the HPS, we will need access to a few standard header and linker files provided
by Altera. We need to add these files to the ARM DS-5 project.

a. Right-click on the “DE1_SoC_demo_hps_linux” project, and go to “Properties”.
b. We are going to use a RESTRICTED SUBSET of Altera’s HWLIB to develop our linux application,

so we need to define a macro that is needed by the library to know which board is being
targetted. The reason we use a restricted subset of the library is due to the fact that the
library is not fully usable in a user application, as many physical peripheral addresses are
employed. We will only use the library to compute offsets and to use the non-intrusive
functions it has available.
Under “C/C++ Build > Settings > GCC C Compiler > Symbols”, add “soc_cv_av” to
the “Defined symbols (-D)” list.

c. Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include” to the “Include paths (-I)” list.

d. Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include/soc_cv_av” to the “Include paths (-I)” list.

e. Click on the “Apply” button, then on the “Ok” button to close the project properties dialog.
69. In order to unlock a few settings later in this tutorial, we will create a C file that simply contains an

empty “main()” function for the moment.
a. Right-click on the “DE1_SoC_demo_linux” project, and go to “New > Source File”. Use

“hps_linux.c” as the file name, and click on the “Finish” button to create the new source
file.

b. Right-click on the “DE1_SoC_demo_linux” project, and go to “New > Header File”. Use
“hps_linux.h” as the file name, and click on the “Finish” button to create the new header
file.

c. Fill “hps_linux.c” with the code shown in Figure 13-7.

22/06/2016 P a g e | 87

DE1-SoC Guide

int main(void) {
 return 0;
}

Figure 13-7. hps_linux.c with an empty main() function.

d. Right-click on the “DE1_SoC_demo_linux” project and select “Build Project”.

13.8.2 Creating a Remote Debug Connection to the Linux Distribution

13.8.2.1 Find the Linux Distribution’s IP Address
Later in this tutorial, we will need to know the IP address assigned to the DE1-SoC so ARM DS-5 can
automatically use an SSH connection to transfer linux binaries and launch gdb debug sessions for us. In this
step, we will use a serial terminal to manually connect to the linux distribution running on the board and find
out its IP address.

70. Although we can continue to use the “minicom” program as we previously did in Figure 13-5, we will
use the built-in serial terminal available in ARM DS-5 to have all development windows in one area.
Go to “Window > Show View > Other… > Terminal > Terminal” to open ARM DS-5’s the built-in
serial terminal. You should see the terminal shown in Figure 13-8.

Figure 13-8. ARM DS-5 Serial Terminal

71. Modify the serial terminal’s settings to match those shown in Figure 13-9, then press “OK” to start the
connection.

22/06/2016 P a g e | 88

DE1-SoC Guide

Figure 13-9. ARM DS-5 Serial Terminal Settings

72. You should see the linux login prompt. Log with the username and password we defined in 13.4.2.2.
You should see something similar as Figure 13-10.

Figure 13-10. ARM DS-5 Serial Terminal Linux Prompt

73. Type “ifconfig eth0 | grep inet” to obtain the IP address attributed to the device. You should
get something similar to Figure 13-11. If you don’t see an IP address listed, then run the following
command to try to get one automatically through DHCP.
$ sudo dhclient eth0

Figure 13-11. Obtaining the DE1-SoC's IP Address through ARM DS-5’s Serial Terminal

13.8.2.2 Create an SSH Remote Connection
74. Go to “File > New > Other… > Remote System Explorer > Connection”.
75. Choose to create an “SSH Only” connection.
76. Enter the IP address you found in 13.8.2.1 as the “Host name”.
77. Enter “DE1-SoC” as the “Connection name”. You should have something similar to Figure 13-12.
78. Click on “Finish” to create the connection.

22/06/2016 P a g e | 89

DE1-SoC Guide

Figure 13-12. New SSH Only Connection

79. You should be able to see the remote system in ARM DS-5’s “Remote Systems” view, as shown in
Figure 13-13.

Figure 13-13. New SSH Connection In "Remote Systems" View

13.8.2.3 Setting Up the Debug Configuration
80. Right-click on the “DE1_SoC_demo_linux” project, and go to “Debug As > Debug

Configurations…”.
81. Choose to create a new debugger configuration by right-clicking on “DS-5 Debugger” on the left and

selecting “New”. Use “DE1_SoC_demo_hps_linux” as the name of the new debug configuration.
82. Under the “Connection” tab:

a. Use “Altera > Cyclone V SoC (Dual Core) > Linux Application Debug > Download
and debug application” as the target platform.

b. Set the “RSE connection” to “DE1-SoC”. This is the remote system connection we created
earlier. You should have something similar to Figure 13-14.

22/06/2016 P a g e | 90

DE1-SoC Guide

Figure 13-14. Debug Configuraton “Connection” Tab

83. Under the “Files” tab:
a. Set “Application on host to download” to the built binary of our project. Use the

“Workspace” button to choose the binary. You should have something similar to
“${workspace_loc:/DE1_SoC_demo_hps_linux/Debug/DE1_SoC_demo_hps_linux}”.

b. Set the “Target download directory” to your user directory. In my case it is
“/home/sahand”.

c. Set the “Target working directory” to your user directory. In my case it is
“/home/sahand”. You should have something similar to Figure 13-15.

Figure 13-15. Debug Configuration "Files" Tab

84. Under the “Debugger” tab, make sure that “Debug from symbol” is selected and that “main” is the
name of the symbol, as shown in Figure 13-16.

22/06/2016 P a g e | 91

DE1-SoC Guide

85. Click on the “Apply” button, then on the “Close” button to save the debug configuration.

Figure 13-16. Debug Configuration "Debugger" Tab

13.8.3 Linux Programming
The interrupt-driven nature of operating systems requires that error-prone processes be unable to harm the
correct operation of the computer. Modern processors provide a hardware solution to this issue by means of
a DUAL-MODE operating state. CPUs define two modes which operating systems can then use to implement
protection mechanisms among processes they are handling.

The linux operating system calls these modes USER MODE and KERNEL MODE. Processors remain in user
mode when executing harmless code in user applications, whereas they transition to kernel mode when
executing potentially dangerous code in the system kernel. Examples of dangerous code are handling an
interrupt from a peripheral, copying data from a peripheral’s registers to main memory, …

User code cannot be executed in kernel mode. When a user process needs to perform an action that is only
allowed in kernel mode, it performs a system call and asks the operating system to take care of the task in its
place. What this boils down to is that USER CODE CANNOT ACCESS THE HARDWARE DIRECTLY, as there is too
much of a risk for the code to have an error and cause the system to crash. User code must always ask the
operating system to perform dangerous operations in its place.

The main advantage of Cyclone V SoCs is the ability to have the HPS and FPGA communicate with each other
easily. This is simple to accomplish in a standard bare-metal application as there are absolutely no protection
mechanisms implemented. However, this is not possible while the HPS is running linux, as user code doesn’t
have the right to access hardware directly.

There are 2 solutions to this problem:

• If developers are knowledgeable enough, they can write a device driver for the target peripheral they
want to access in their user code, and package this in a loadable linux kernel module. This is the
correct way to access hardware in linux, but it requires that the developer know how to write a device
driver. Administrative users can load the kernel module, then any standard user code can interact
with the peripheral.

• A simpler technique often used in embedded linux environments is to leverage the virtual memory
system in order to access any MEMORY-MAPPED peripherals (peripherals and operations that are
only accessible through priviledged machine instructions cannot be accessed with this method).
Unfortunately, this method requires code to be run with root privileges. However, it does not require
any kernel code to be written.

22/06/2016 P a g e | 92

DE1-SoC Guide

Writing a linux device driver is outside the scope of this tutorial, so we will use the memory mapping
technique here.

The code for this part of the application is quite large to be inserted in this document. Therefore, we will just
go over a few practical aspects of the code which are worth paying attention to. The full source can be found
in DE1_SoC_demo.zip [5].

Recall that we cannot handle interrupts in linux user mode. Therefore, in order to satisfy the HPS-related goals
specified in 8.4, we will need to use an infinite loop and do some polling. This can be seen in our application’s
“main()” function, which is shown in Figure 13-17.

int main() {
 printf("DE1-SoC linux demo\n");

 open_physical_memory_device();
 mmap_peripherals();

 setup_hps_gpio();
 setup_hex_displays();

 uint32_t hex_counter = 0;
 while (true) {
 handle_hex_displays(&hex_counter);
 handle_hps_led();
 usleep(ALT_MICROSECS_IN_A_SEC / 10);
 }

 munmap_peripherals();
 close_physical_memory_device();

 return 0;
}

Figure 13-17. hps_linux.c main() Function

13.8.3.1 Using Altera’s HWLIB - Prerequisites
We will use a SUBSET of Altera’s HWLIB in this tutorial. In order to be able to use HWLIB to configure a
peripheral, 2 steps need to be performed:

• You need to INCLUDE the HPS peripheral’s HWLIB HEADER FILE to your code.
• You must COPY the HPS peripheral’s HWLIB SOURCE FILE in your DS-5 project directory. The HWLIB

source files can be found in directory
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/src”,
and must be copied to “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_linux”.

In the example used in this linux programming tutorial, we use some HWLIB functions related to the HPS’
GPIO peripheral, so you must copy “alt_generalpurpose_io.c” to your DS-5 project directory.

13.8.3.2 Accessing Hardware Peripherals from User Space

13.8.3.2.1 Opening the Physical Memory File Descriptor
In Figure 7-3 we saw that the FPGA slaves and HPS peripherals are visible to the MPU unit and are therefore
subject to memory-mapped IO. We need to be able to access these peripherals’ addresses in order to interact
with them.

Unfortunately, a process can only interact with the virtual address space it is assigned by the linux kernel. Any
attempt to access memory outside this region will cause the process to be terminated. Nevertheless, it is
possible for a process to gain access to another virtual memory region by using the “mmap()” function. The

22/06/2016 P a g e | 93

DE1-SoC Guide

mmap() function maps another memory region into the running process’ virtual address space. Therefore, all
we need to do is to mmap() the FPGA slaves and HPS peripherals’ memory regions into our address space.

The mmap() function’s prototype is shown in Figure 13-18. Note that it memory maps a FILE into the running
process’ address space, so we need to find a file that “represents” our peripherals.

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

Figure 13-18. Prototype of the mmap() Function

By design, linux represents everything as a file, including all devices. In particular, the special “/dev/mem” file
represents the content of the system’s physical memory. This is the file we will mmap() in order to access the
memory regions we are interested in.

Since we are memory-mapping a file, the first step is to open this file. Figure 13-19 shows how to open the
/dev/mem file. Remember that /dev/mem grants access to physical memory, so a user requires elevates rights
in order to open it. Therefore, don’t forget to launch this code as the root user in order to have enough
privileges.

// physical memory file descriptor
int fd_dev_mem = 0;

void open_physical_memory_device() {
 fd_dev_mem = open("/dev/mem", O_RDWR | O_SYNC);
 if(fd_dev_mem == -1) {
 printf("ERROR: could not open \"/dev/mem\"...\n");
 printf(" errno = %s\n", strerror(errno));
 exit(EXIT_FAILURE);
 }
}

Figure 13-19. open_physical_memory_device() Function

13.8.3.2.2 Accessing HPS Peripherals
Now that we have opened the physical memory file, we can memory-map a subset of it into our process’
virtual address space. Figure 13-20 shows how this is done for memory-mapping the HPS’ GPIO peripheral.
Note that you must know the offset of your peripheral within the physical memory file, as well as the amount
of memory you want to be memory-mapped from that offset. In our case, we will start memory-mapping
from the GPIO1 peripheral’s offset, and we choose to map the size of the full peripheral.

void *hps_gpio = NULL;
size_t hps_gpio_span = ALT_GPIO1_UB_ADDR - ALT_GPIO1_LB_ADDR + 1;
size_t hps_gpio_ofst = ALT_GPIO1_OFST;

void mmap_hps_peripherals() {
 hps_gpio = mmap(NULL, hps_gpio_span, PROT_READ | PROT_WRITE, MAP_SHARED, fd_dev_mem, hps_gpio_ofst);
 if (hps_gpio == MAP_FAILED) {
 printf("Error: hps_gpio mmap() failed.\n");
 printf(" errno = %s\n", strerror(errno));
 close(fd_dev_mem);
 exit(EXIT_FAILURE);
 }
}

Figure 13-20. mmap_hps_peripherals() Function

Finally, after having memory-mapped the HPS’ GPIO peripheral, we can access any of its internal registers
with the low-level functions we saw in 11.3. Figure 13-21 shows how we configure the HPS’ GPIO peripheral,
and Figure 13-22 shows how we can toggle HPS_LED on the DE1-SoC by using the HPS_KEY_N button.

void setup_hps_gpio() {
 // Initialize the HPS PIO controller:

22/06/2016 P a g e | 94

DE1-SoC Guide

 // Set the direction of the HPS_LED GPIO bit to "output"
 // Set the direction of the HPS_KEY_N GPIO bit to "input"
 void *hps_gpio_direction = ALT_GPIO_SWPORTA_DDR_ADDR(hps_gpio);
 alt_setbits_word(hps_gpio_direction, ALT_GPIO_PIN_OUTPUT << HPS_LED_PORT_BIT);
 alt_setbits_word(hps_gpio_direction, ALT_GPIO_PIN_INPUT << HPS_KEY_N_PORT_BIT);

Figure 13-21. setup_hps_gpio() Function

void handle_hps_led() {
 void *hps_gpio_data = ALT_GPIO_SWPORTA_DR_ADDR(hps_gpio);
 void *hps_gpio_port = ALT_GPIO_EXT_PORTA_ADDR(hps_gpio);

 uint32_t hps_gpio_input = alt_read_word(hps_gpio_port) & HPS_KEY_N_MASK;

 // HPS_KEY_N is active-low
 bool toggle_hps_led = (~hps_gpio_input & HPS_KEY_N_MASK);

 if (toggle_hps_led) {
 uint32_t hps_led_value = alt_read_word(hps_gpio_data);
 hps_led_value >>= HPS_LED_PORT_BIT;
 hps_led_value = !hps_led_value;
 hps_led_value <<= HPS_LED_PORT_BIT;
 alt_replbits_word(hps_gpio_data, HPS_LED_MASK, hps_led_value);
 }
}

Figure 13-22. handle_hps_led() Function

The key to doing memory-mapped IO in linux is to use HWLIB’s OFFSET-based macros with the virtual address
returned by mmap() as the base address. Note that HWLIB also has macros with ABSOLUTE addresses for
every device, but those can only be used in bare-metal or linux device driver code as they directly access
certain physical addresses.

In Figure 13-21 and Figure 13-22, we used three such offset-based macros to access the HPS GPIO peripheral’s
“Port A Data Register”, “Port A Data Direction Register”, and “External Port A Register”.
These macros were the following:

• ALT_GPIO_SWPORTA_DR_ADDR(base)
• ALT_GPIO_SWPORTA_DDR_ADDR(base)
• ALT_GPIO_EXT_PORTA_ADDR(base)

13.8.3.2.3 Accessing FPGA Peripherals
Memory-mapping FPGA peripherals is identical to the process used for HPS peripherals. However, there is one
subtlety that must be taken care of. When using mmap() you must specify an offset within the file that is to be
mapped, as well as the amount of memory to be mapped. The mmap() manual page states that the offset
provided MUST BE A MULTIPLE OF THE SYSTEM’S PAGE SIZE, which is 0x1000 bytes in our case.

If you look closely at the addresses in Table 7-4, you will realize that this requirement always holds for the
HPS’ peripherals. However, this is not always true for the FPGA peripherals. For example, the design we used
in this tutorial puts the FPGA buttons at address 0xFF200060 (offset 0x60 from the base address of the
Lightweight HPS-to-FPGA bridge), which is not a multiple of the system’s page size.

This implies that it isn’t possible to memory-map the FPGA buttons alone, but we must instead use some
offset which Is a multiple of the system’s page size. To get around this issue, we will memory-map FPGA
peripherals from the HPS peripheral to which they are connected, as we are sure that the particular HPS
peripheral’s base addres is a multiple of the page size.

Figure 13-23 shows how we memory-map the FPGA peripherals in our design from the Lightweight HPS-to-
FPGA bridge, and Figure 13-24 shows how we can check if one of the FPGA buttons are being pressed.

22/06/2016 P a g e | 95

DE1-SoC Guide

void *h2f_lw_axi_master = NULL;
size_t h2f_lw_axi_master_span = ALT_LWFPGASLVS_UB_ADDR - ALT_LWFPGASLVS_LB_ADDR + 1;
size_t h2f_lw_axi_master_ofst = ALT_LWFPGASLVS_OFST;

void *fpga_buttons = NULL;
void *fpga_hex_displays[HEX_DISPLAY_COUNT] = {NULL, NULL, NULL, NULL, NULL, NULL};

void mmap_fpga_peripherals() {
 h2f_lw_axi_master = mmap(NULL, h2f_lw_axi_master_span, PROT_READ | PROT_WRITE, MAP_SHARED, fd_dev_mem,
 h2f_lw_axi_master_ofst);

 if (h2f_lw_axi_master == MAP_FAILED) {
 printf("Error: h2f_lw_axi_master mmap() failed.\n");
 printf(" errno = %s\n", strerror(errno));
 close(fd_dev_mem);
 exit(EXIT_FAILURE);
 }

 fpga_buttons = h2f_lw_axi_master + BUTTONS_0_BASE;
 fpga_hex_displays[0] = h2f_lw_axi_master + HEX_0_BASE;
 fpga_hex_displays[1] = h2f_lw_axi_master + HEX_1_BASE;
 fpga_hex_displays[2] = h2f_lw_axi_master + HEX_2_BASE;
 fpga_hex_displays[3] = h2f_lw_axi_master + HEX_3_BASE;
 fpga_hex_displays[4] = h2f_lw_axi_master + HEX_4_BASE;
 fpga_hex_displays[5] = h2f_lw_axi_master + HEX_5_BASE;

Figure 13-23. mmap_fpga_peripherals() Function.

bool is_fpga_button_pressed(uint32_t button_number) {
 // buttons are active-low
 return ((~alt_read_word(fpga_buttons)) & (1 << button_number));
}

Figure 13-24. is_fpga_button_pressed() Function

13.8.3.2.4 Cleaning Up Before Application Exit
Although the operating system should take care of this for you, it is always a good practice to remove any
unneeded memory mappings and to close the physical memory file descriptor before your application
terminates.

Figure 13-25 shows how to unmap the GPIO peripheral’s memory-mapping, and Figure 13-26 shows how to
close the physical memory file descriptor.

void munmap_hps_peripherals() {
 if (munmap(hps_gpio, hps_gpio_span) != 0) {
 printf("Error: hps_gpio munmap() failed\n");
 printf(" errno = %s\n", strerror(errno));
 close(fd_dev_mem);
 exit(EXIT_FAILURE);
 }

 hps_gpio = NULL;
}

Figure 13-25. munmap_hps_peripherals() Function

void close_physical_memory_device() {
 close(fd_dev_mem);
}

Figure 13-26. close_physical_memory_device() Function

22/06/2016 P a g e | 96

DE1-SoC Guide

13.8.3.3 Launching the Linux code in the Debugger

86. Once you have finished writing all the application’s code, right-click on the
“DE1_SoC_demo_hps_linux” project, and select “Build Project”.

87. Switch to the DS-5 Debug perspective, as shown in Figure 12-13.

Figure 13-27. Switching to the DS-5 Debug Perspective

88. In the “Debug Control” view, click on the “DE1_SoC_demo_hps_linux” entry, then click on the
“Connect to Target” button, as shown on Figure 13-28. The debugger will start an SSH conection to
the linux distribution running on the DE1-SoC and will automatically transfer our binary file and wait
at our application’s “main()” function. If you are prompted to log in, then log in with the ROOT user
and password.

Figure 13-28. Debug Control View

89. You can the use the buttons in the “Debug Control” view to control the application’s execution.

22/06/2016 P a g e | 97

DE1-SoC Guide

Figure 13-29. DS-5 Debugger Controls

13.8.3.4 App Console
Data sent to standard output is shown in the “App Console” view. Figure 13-30 shows the result of a
“printf()” call in our demo code shown in Figure 13-17.

Figure 13-30. DS-5 App Console View

13.8.3.5 DS-5 Linux Debugger Restrictions
In 12.2.4.4.1, we saw that the DS-5 BARE-METAL debugger had a “Registers” view which could show the
registers of all HPS and FPGA peripherals. This was a very handy tool, as it made it easy to verify if registers
were accessed and updated correctly.

Unfortunately, when it comes to debugging LINUX binaries, the DS-5 debugger is subject to the same
constraints our linux applications are. Namely, it cannot directly access physical hardware addresses directly.
As such, there is no “Registers” view when debugging linux applications, and you must resort to manually
memory-mapping and verifying peripheral accesses yourself.

22/06/2016 P a g e | 98

DE1-SoC Guide

14 TODO
• Explain MSEL when reprogramming the FPGA from the HPS.
• Talk about what the JTAG to Avalon masters are.
• Find out how to automatically program the FPGA when writing a bare-metal HPS application. Use

“tftp” command?

22/06/2016 P a g e | 99

DE1-SoC Guide

15 REFERENCES

[1] Terasic Technologies, "Terasic - DE Main Boards - Cyclone - DE1-SoC Board," [Online]. Available:
http://de1-soc.terasic.com.

[2] Altera Corporation, "Cyclone V Device Handbook, Volume 3: Hard Processor System Technical Reference
Manual," 31 July 2014. [Online]. Available: http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf.

[3] S. Kashani-Akhavan, "DE1_SoC_top_level.vhd," [Online]. Available:
https://github.com/sahandKashani/Altera-FPGA-top-level-files/blob/master/DE1-
SoC/DE1_SoC_top_level.vhd.

[4] S. Kashani-Akhavan, "pin_assignment_DE1_SoC.tcl," [Online]. Available:
https://github.com/sahandKashani/Altera-FPGA-top-level-files/blob/master/DE1-
SoC/pin_assignment_DE1_SoC.tcl.

[5] S. Kashani-Akhavan, "DE1_SoC_demo.zip," [Online]. Available: https://github.com/sahandKashani/DE1-
SoC/blob/master/DE1_SoC_demo.zip.

[6] S. Kashani-Akhavan, "DE0_Nano_SoC_demo.zip," [Online]. Available:
https://github.com/sahandKashani/DE1-SoC/blob/master/DE0_Nano_SoC_demo.zip.

[7] ISSI. [Online]. Available: https://github.com/sahandKashani/DE1-SoC/raw/master/Documentation/DE1-
SoC/SDRAM%20Datasheet.pdf.

[8] Terasic Technologies, [Online]. Available: https://github.com/sahandKashani/DE1-
SoC/blob/master/Documentation/DE1-SoC%20Schematic.pdf.

[9] ISSI. [Online]. Available: https://github.com/sahandKashani/DE1-SoC/raw/master/Documentation/DE1-
SoC/DDR3%20SDRAM%20Datasheet.pdf.

[10] ARM, "DS-5 Debugger Commands," [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0452c/CIHJIBIH.html.

[11] Altera Corporation, "Documentation: Cyclone V Devices," [Online]. Available:
http://www.altera.com/literature/lit-cyclone-v.jsp?ln=devices_fpga&l3=Low-Cost%20FPGAs-
Cyclone%20V%20%28E,%20GX,%20GT,%20SE,%20SX,%20ST%29&l4=Documentation.

[12] Altera Corporation, "Address Map for HPS," [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/hps.html.

[13] Altera Corporation, "A Look Inside: SoC FPGAs Embedded Development Tools (Part 5 of 5)," 25
November 2013. [Online]. Available: http://www.youtube.com/watch?v=NxZznvf5EKc.

[14] Altera Corporation, "A Look Inside: SoC FPGAs Introduction (Part 1 of 5)," 25 November 2013. [Online].
Available: http://www.youtube.com/watch?v=RVM-ESUMOMU.

[15] Altera Corporation, "A Look Inside: SoC FPGAs Reliability and Flexibility (Part 3 of 5)," 25 November
2013. [Online]. Available: http://www.youtube.com/watch?v=cWIaqt2RU84.

22/06/2016 P a g e | 100

DE1-SoC Guide

[16] Altera Corporation, "A Look Inside: SoC FPGAs System Cost and Power (Part 4 of 5)," 25 November 2013.

[Online]. Available: http://www.youtube.com/watch?v=gUE669XKhUY.

[17] Altera Corporation, "A Look Inside: SoC FPGAs System Performance (Part 2 of 5)," 25 November 2013.
[Online]. Available: http://www.youtube.com/watch?v=Ssxf8ggmQk4.

[18] Altera Corporation, "Cyclone V Device Datasheet," July 2014. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/cv_51002.pdf.

[19] Altera Corporation, "Cyclone V Device Handbook, Volume 1: Device Interfaces and Integration," 22 July
2014. [Online]. Available: http://www.altera.com/literature/hb/cyclone-v/cv_5v2.pdf.

[20] ARM, "DS-5 Altera Edition: Bare-metal Debug and Trace," 21 October 2013. [Online]. Available:
http://www.youtube.com/watch?v=u_xKybPhcHI.

[21] ARM, "FPGA-adaptive debug on the Altera SoC using ARM DS-5," 16 December 2013. [Online]. Available:
http://www.youtube.com/watch?v=2NBcUv2TxbI.

[22] EE Journal, "OpenCL on FPGAs Accelerating Performance and Design Productivity -- Altera," 28
November 2013. [Online]. Available: http://www.youtube.com/watch?v=M6vpq6s1h_A.

[23] Altera Corporation, "Bare-Metal Debugging using ARM DS-5 Altera Edition," 3 December 2013. [Online].
Available: http://www.youtube.com/watch?v=CJ0EHJ9oQ7Y.

[24] Altera Corporation, "Cyclone V Device Overview," 7 July 2014. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf.

[25] Altera Corporation, "Linux Kernel Debug using ARM DS-5 Altera Edition," 3 December 2013. [Online].
Available: http://www.youtube.com/watch?v=QcA39O6ofGw.

[26] Altera Corporation, "Architecting FPGAs beyond 1M LEs," Altera Corporation, 3 September 2014.
[Online]. Available: http://www.fpl2014.org/fileadmin/w00bpo/www/hutton.pdf.

22/06/2016 P a g e | 101

	2 List of Figures
	3 Table of Tables
	4 Prerequisites
	4.1 Hardware
	4.2 Software
	4.2.1 Software Versions Used in this Guide
	4.2.2 Licenses

	5 Introduction
	6 Terasic DE1-SoC Board
	6.1 Specifications
	6.1.1 FPGA Device
	6.1.2 Configuration and Debug
	6.1.3 Memory Device
	6.1.4 Communication
	6.1.5 Connectors
	6.1.6 Display
	6.1.7 Audio
	6.1.8 Video Input
	6.1.9 ADC
	6.1.10 Switches, Buttons and Indicators
	6.1.11 Sensors
	6.1.12 Power
	6.1.13 Block Diagram

	6.2 Layout

	7 Cyclone V Overview
	7.1 Introduction to the Cyclone V Hard Processor System
	7.2 Features of the HPS
	7.3 System Integration Overview
	7.3.1 MPU Subsystem
	7.3.2 SDRAM Controller Subsystem
	7.3.3 Support Peripherals
	7.3.3.1 System Manager
	7.3.3.2 FPGA Manager

	7.3.4 Interface Peripherals
	7.3.4.1 GPIO Interfaces

	7.3.5 On-Chip Memory
	7.3.5.1 On-Chip RAM
	7.3.5.2 Boot ROM

	7.4 HPS-FPGA Interfaces
	7.5 HPS Address Map
	7.5.1 HPS Address Spaces
	7.5.2 HPS Peripheral Region Address Map

	7.6 HPS Booting and FPGA Configuration
	7.6.1 HPS Boot and FPGA Configuration Ordering
	7.6.2 Zooming In On the HPS Boot Process
	7.6.2.1 Preloader

	8 Using the Cyclone V – General Information
	8.1 Introduction
	8.2 FPGA-only
	8.3 HPS & FPGA
	8.3.1 Bare-metal Application
	8.3.2 Application Over an Operating System (Linux)

	8.4 Goals
	8.5 Project Structure

	9 Using the Cyclone V – Hardware
	9.1 General Quartus Prime Setup
	9.2 System Design with Qsys – Nios II
	9.3 System Design with Qsys – HPS
	9.3.1 Instantiating the HPS Component
	9.3.1.1 FPGA Interfaces Tab
	9.3.1.2 Peripheral Pins Tab
	9.3.1.2.1 Theory
	9.3.1.2.2 Configuration

	9.3.1.3 HPS Clocks Tab
	9.3.1.4 SDRAM Tab

	9.3.2 Interfacing with FPGA Peripherals

	9.4 Generating the Qsys System
	9.5 Instantiating the Qsys System
	9.6 HPS DDR3 Pin Assignments
	9.7 Wiring the DE1-SoC
	9.8 Programming the FPGA
	9.9 Creating Target sdcard Artifacts

	10 Using the Cyclone V – FPGA – Nios II – Bare-metal
	10.1 Project Setup
	10.2 Nios II Programming Theory – Accessing Peripherals
	10.3 Nios II Programming Practice

	11 Using the Cylone V – HPS – ARM – General
	11.1 Partitioning the sdcard
	11.2 Generating a Header File for HPS Peripherals
	11.3 HPS Programming Theory

	12 Using the Cyclone V – HPS – ARM – Bare-metal
	12.1 Preloader
	12.1.1 Preloader Generation
	12.1.2 Creating Target sdcard Artifacts

	12.2 ARM DS-5
	12.2.1 Setting Up a New C Project
	12.2.2 Writing a DS-5 Debug Script
	12.2.3 Setting Up the Debug Configuration
	12.2.4 Bare-metal Programming
	12.2.4.1 Accessing FPGA Peripherals
	12.2.4.2 Accessing HPS Peripherals
	12.2.4.2.1 Using Altera’s HWLIB - Prerequisites
	12.2.4.2.2 Global Timer & Clock Manager
	12.2.4.2.3 GPIO

	12.2.4.3 Launching the Bare-metal Code in the Debugger
	12.2.4.4 DS-5 Bare-metal Debugger Tour
	12.2.4.4.1 “Registers” View
	12.2.4.4.2 App Console

	13 Using the Cyclone V – HPS – ARM – Linux
	13.1 Preloader
	13.1.1 Preloader Generation
	13.1.2 Creating Target sdcard Artifacts

	13.2 Bootloader
	13.2.1 Getting & Compiling U-Boot
	13.2.2 Scripting U-Boot
	13.2.3 Creating Target sdcard Artifacts

	13.3 Linux Kernel
	13.3.1 Getting & Compiling Linux
	13.3.2 Creating Target sdcard Artifacts

	13.4 Ubuntu Core Root Filesystem
	13.4.1 Obtaining Ubuntu Core
	13.4.2 Customizing Ubuntu Core
	13.4.2.1 Setup the chroot Environment
	13.4.2.2 Inside the chroot Environment

	13.4.3 Cleanup the chroot Environment
	13.4.4 Creating Target sdcard Artifacts

	13.5 Writing Everything to the sdcard
	13.6 Scripting the Complete Procedure
	13.7 Testing the Setup
	13.8 ARM DS-5
	13.8.1 Setting Up a New C Project
	13.8.2 Creating a Remote Debug Connection to the Linux Distribution
	13.8.2.1 Find the Linux Distribution’s IP Address
	13.8.2.2 Create an SSH Remote Connection
	13.8.2.3 Setting Up the Debug Configuration

	13.8.3 Linux Programming
	13.8.3.1 Using Altera’s HWLIB - Prerequisites
	13.8.3.2 Accessing Hardware Peripherals from User Space
	13.8.3.2.1 Opening the Physical Memory File Descriptor
	13.8.3.2.2 Accessing HPS Peripherals
	13.8.3.2.3 Accessing FPGA Peripherals
	13.8.3.2.4 Cleaning Up Before Application Exit

	13.8.3.3 Launching the Linux code in the Debugger
	13.8.3.4 App Console
	13.8.3.5 DS-5 Linux Debugger Restrictions

	14 TODO
	15 References

