SoC-FPGA Design Guide

LAP — IC - EPFL

Version 1.25

Sahand Kashani-Akhavan

René Beuchat

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

mailto:sahand.kashani-akhavan@epfl.ch?subject=SoC-FPGA%20Design%20Guide
mailto:rene.beuchat@epfl.ch?subject=SoC-FPGA%20Design%20Guide
http://lap.epfl.ch/
http://www.epfl.ch/

DE1-SoC Guide

1 TABLE OF CONTENTS

A N o B T ={ U o TSP 6
R - o (=N o) i =1 o] 1= PO RT PSPPI 8
N N T (=To VT I {=T PP 9
4.1 o ETe 1Y [PSPPSRSO PPPPPP 9
4.2 Yo] 111V PP 9
4.2.1 Software Versions Used in this GUIAEc.eoiiiiiiiiiiiiee e e 9
4.2.2 Lol =T o Y=L PO TP P PP OPPPTOPPRT 9
LI [0V o o 11T o1 n o] o KPS PR 10
6 TErasiC DEL-SOC BOAIMeeeiuiiiiiieiiie ettt et iee ettt et sb e ettt se e e st e s bt e e s ab e e sateesabeeesaseesaseesareesneeesareesareeans 11
6.1 Y oTTof 1 [or=Y o] o L3NS 11
6.1.1 FPGA DEVICE ..ttt ettt ettt sttt ettt et et e bt e b e s bt e s bt s heesatesanesare s bt e be e beenbeenneens 11
6.1.2 Configuration @aNd DEDUEcoiieiiie i s e e e e e s s abe e e e eneeas 11
6.1.3 1Y =T o 0o VN T o N 11
6.1.4 COMMUNICATION ittt e ba e e s aba e e s sanas 11
6.1.5 (00T o g1 Tox /o PP TPTP 12
6.1.6 DT] - 1Y SRS 12
6.1.7 LAY Lo [o TP PO P PP TRR PP 12
6.1.8 LYo 1o T o] o U1 TP 12
6.1.9 ADC .ttt ettt st ettt bt e bt e bt e bt e b e e eh e e s h e saeeeateeabe e bt e bt e bt e beenbeesheesheesatesaeesane 12
6.1.10 Switches, BUTtONS aNd INAICATOIScovvuieiiiiiieeeeeeee et e e e e e e e e e e e e e aaaaaaas 12
L 0 Y= o o OO PPT 12
B.1.12 POWET ittt ettt e e e a e e e s a e e e e e s a e et e e e s e b aa e e e s 12
L0 T - (o ol QDI - 1= o USRI 13
6.2 I Yo LU PPNt 13
T CYCIONE V OVEIVIEW ...uviiieiiiiieeciitee e ettt ee ettt e ettt e e e ata e e e e et e e e eaaebaee e asaeeeassaeeeanssaeeeasssaeeaanssaeessssseeeansseeesanssens 15
7.1 Introduction to the Cyclone V Hard Processor SYStemcieicviiiiiiiieeieiiee st esee e 15
7.2 FEAtUres OF the HPS ... ettt ettt e b e bt e b e e s beesbeesbeesaeesanenas 17
7.3 SYSTEM INTEZIrATiON OVEIVIEW ..cciviiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaeeeeaeeeeseeeeeeeeeeeeeseeeseeeeeseesaeees 18
7.3.1 e U] o T2y =T o SRS 18
7.3.2 SDRAM Controller SUDSYSTEM ...cciii it e e e e e e e e aarr e e e e e e e e enaraeeeaaaeean 18
733 U] o oo T o A =TT o 1=T = R UURR 18
22/06/2016 Page |1

DE1-SoC Guide

5 T T VA o= 0 o I AV, = o = T == OO PP PPPPPPPNN 18
7.3.3.2 FPGA MANQEEYL .. eetiiiiiiii ittt ettt s e s s e e ettt te s e e e e e e e e taa e s s e e eee e et e baa e s eeeaeeeaesaaaaeeeeeaanenes 18
7.3.4 [aL =Y e o Tol ol T e o] V=T = L SRS 19
7.3.4. 1 GPIO INEEITACES. cecutieitie ettt ettt st e ebe e st e st e s b e e e s nb e e st e e sar e e e ne e e sareeeareas 19
7.3.5 (0 o Rt 1T o TN 1V, 1=T0 0 o T Y PP 19
7.3.5.1 ON-ChiP RAM .ttt ettt ettt e sttt e e sttt e e s st e e e ssabaeeesaataeessbeeeesanbeeeesantaeessntaeessnseneesans 19
7.3.5.2 BOOE ROM ...ttt e s e e e sesesasssasasasnsnnnnnn 19

7.4 HPS-FPGA INTEITACES ooneteeeiieeeie ettt ettt ettt sttt et st e s bt e s bt e e st e e sabeeebeeesabeesabeeebeeennee 19
7.5 [LYo Lo [T Y 1= o U SURU 19
7.5.1 [LN o o T T Y o = Lol TS URR R 19
7.5.2 HPS Peripheral Region Address IMAp......cccuieeiiiieieiiiieeeecireeeetre e esree e e sivee e esraee e e sabaeesesnbaeeeeneeas 21
7.6 HPS Booting and FPGA CONfISUIAtIONuiiiiiiiiiiciiee ettt et e et save e e e seae e e s sanae e e snaaneaeas 23
7.6.1 HPS Boot and FPGA Configuration Ordering.........ccccuiuiieeeiiecciiiiieee e ecrire et e e e e e 23
7.6.2 Zooming IN ON the HPS BOOT PrOCESS......ccciciiiiiiiiieecciiee e ettt e e ettt e e ette e e eetae e e seateeeesntaeeseabanaeenes 25
7.6.2.1 PrElO@der .. .ceiiie ettt ettt st et e bt e e b e e sabe e s bt e e ht e e ateesabeeebeeenareas 26

8 Using the Cyclone V — General INformation.........cocuiriiriiriieee e 27
8.1 INEFOTUCTION <.ttt et st st e st esab e e s bt e s beeesabeesabeeebteessseesabeesneeesareenns 27
8.2 [G2 o T o TP URTIP 27
8.3 HPS & FPGA ..ttt ettt ettt ettt e sttt e e s abt e e e s bt te e s sabtaeesaabaaeesnbaeeesstaeessabteeesanbaaeesanbaeeenans 27
8.3.1 Bare-metal APPlICAtioNooiiiiiie et e e e e e e e earaeas 27
8.3.2 Application Over an Operating System (LINUX)cccvieeiiiiieeeiiieeeecieee et ectee e e eive e e e e 28
8.4 (CToF- Y OO TSP P PO U PPV PPN 28
8.5 o o= Lot Y A U L1 (U = PP PPPPPPPPPPPPN 28
9 UsINg the CyCloNE V — HaldWarE....cocciiii e cciiee ettt ttee e ettt e s sttt e e s e bae e e e st ae e s e snbeeessnsteeeesabaeessnnseeas 30
9.1 General QUArtUS PrimeE SELUP cooo ettt e e e e e e et e e e e s e et rae e e e e e seennbeeeeeeeeessnnsanneeeaeeans 30
9.2 System Design With QSYS — NIOS [l....uuiieiiiiiiciiieiee e e e e e s e e e e e s s e aebreeeeeeeean 30
9.3 System Design With QSYS — HPSoo ettt e e e rbe e e e sree e e e bae e e eareas 33
9.3.1 Instantiating the HPS COMPONENT..........uviiiiiii ittt e e e brre e e e e e e e snrreaeaaaeean 33
9.3.1.1 FPGA INtErfaces Tabooouieieeieeieeste ettt sttt sttt e b e sbe e saeeeaes 33
9.3.1.2 Peripheral PiNs Tab. ..ottt e e e e e e et e e e e e e e e e aeba e e e e e eeesnntaaaeeaaeeenns 34
0 700 0 A I 0T To oYU 34
10 700 0 A o | = [1 4 o o AP PRSP 35
9.3.1.3 HPS ClOCKS TaD .ottt s s e s s et esne e e nnees 37
9.3.1.4 SDRAM Tab .ttt ettt e st e e st e e st a e e s s bt e e e s e bt e e e s aabae e e saataeeesbraeeeas 37

22/06/2016 Page |2

DE1-SoC Guide

9.3.2 Interfacing With FPGA Peripheralsuuiiiiiii ittt et ee e e e e e nnraae e e e 39

9.4 Generating the QSYS SYSTEM ... i e e e te e e e st re e e e ate e e e ebteeeesabaeeeeenbaeeeenneeas 40
9.5 INStaNtiating the QSYS SYSTEMuviiiii i ittt e et e e e e e e e stbbeeeeeeeeseabsbeeaeeseeessssasaeeeeesansnes 41
9.6 HPS DDR3 PiN ASSIZNMIENTS .. iieieieieieieieieie e e e e e aaaeaasasarasesasssesssssnsssssnsnsssnsnsnsnsnnnrnsnnnnnnnnns 45
9.7 LTV T =38 1 o T T ot Y o T U 45
9.8 Programming the FPGA ...ttt et e et e e et e e e e ata e e e e ataeeessaeeeesasaeeeeansseeesnnsaeeaan 46
9.9 Creating Target SACArd Artifactsocuiee i e e e sree e s s eabe e e e e bae e e esares 48
10 Using the Cyclone V — FPGA — Nios [l = Bare-metalcccooooioiiiiiiii it e e 49
LO.1 PrOJECE SETUP .uvuuutiiiiiiiiiiiiitiiiiiritrtrer et e ettt ettt et ettt eteteeeteeeeetetetetetaeeeeeeteteeaeeeeeeeeeeeeeeeeeeseseeesesesesees 49
10.2 Nios Il Programming Theory — Accessing Peripherals........ccvivciiiiiecieii e sveee e 49
10.3 NioS I Programming PraCtiCe....cccieieieiei e eieieiecei e a b e besaeeeesesasssnsesnsssnenensnnnnnnnnes 50
11 Using the Cylone V —HPS — ARM — GENEIAl....cccc ottt e e e et e e e e e e e rnaaaeees 53
111 Partitioning the SACAId.........coi i e e e e e e te e e e abr e e e enbaeeeenntaeeeenneeas 53
11.2 Generating a Header File for HPS Peripheralsooociiiiiiiiii ittt 53
11.3 HPS Programming TREOIY ...ccoccceeiiieeee e e ettt e e e e ectttte e e e e e e s etste e e e e e s e ssaabtaeeeeeeesnnsstaneeeseesansenneeeeseannnsnns 54
12 Using the Cyclone V —HPS — ARM — Bare-metal.......ccccocveiiiiiiie et 55
I R o =1 (o T o [T T O O O T OO PPOTOTSTUPRTPPPPION 55
12.1.1 Preloader GENEratioN..... .o iii ittt e st st e s e s bt e e smeeesab e e e be e e sneeesareeenneeesanes 55
12.1.2 Creating Target sdcard Artifactsoooiiiiie i et e e e e e e e e e s aaeeean 56
12.2 AR IDS-5 ettt sttt et e b e bbbt she e she e e n e e an e e bt e bt e bt e reenreen 56
12.2.1 Setting UpP @ NEW C PrOJECT .. be e ba e aeeaseaesesesssesssesssnennerersnnnnnnnn 57
12.2.2 Writing @ DS-5 DEDUE SCIIPt...uuiiiiiiiiiiiciiiee et e e e e s e s tare e e e e e s s nanarneeeeeeeeas 58
12.2.3 Setting Up the Debug ConfigUurationccocciiiiiiiiii et ar e s e e s aaee e 59
12.2.4 Bare-metal Programming. ... iiiieiiiiie e siiee st ee st e e e e st e e e sate e e e ssseeeesntaeeesnnaeeesnnraeeean 60
12.2.4.1 AccessiNg FPGA Peripheralsuueeiii ittt eeeteee e e e e st e e e e e e e et ae e e e e e e e enanes 61
12.2.4.2 ACCESSING HPS PeriPNEIralS...ccceiiieeciiiie ettt e et e e s b e e e s aaeee s 62
12.2.4.2.1 Using Altera’s HWLIB - Prer€qUiSitesccccueeeeiiuiereiiieeeeiiieeeesireesesireeeesreeesssseeesnnnnees 62
12.2.4.2.2 Global Timer & CloCk Man@gEercccccuviiiiiiiiee ettt e e s e e e e aaaee s 63
12.2.4.2.3 GPIO ettt h e bt bttt ettt e bt e b e e bt e be e beenbeesheenaeesanenas 64

12.2.43 Launching the Bare-metal Code in the Debugger........c.ccveiiiiiieiiiiiiieeee e 65
12.2.4.4 DS-5 Bare-metal DeDUGEEN TOUN ...ccicuiiiiiiieeeeieeeectte et e e e e e e s sbee e e sarae e s snaaeeesnteeeesanees 66
O O R =Y =1 o S VT U 66
A A Y o Yo @] o o] /PR USPRRE 68

13 Using the Cyclone V — HPS — ARIM = LINUX ..eeeiiiiiiiiiiiieee e e ececiieee e e e eecetre e e e s s e eeveane e e e s e ennnnaneeeessesnnnnnnnneas 69

22/06/2016 Page |3

DE1-SoC Guide

I 0 R o =1 (o =T 1= TSP U P PO USUPRPPRON 69
13.1.1 Preloader GENEIratioN.....c.ciocuieiieteeeee ettt ettt et b et be e sre e s sanesane e 69
13.1.2 Creating Target sdCard Artifactscoocciiiieiiiii et eeeeerr e e e e e e e e eatrreeeeeeeens 70

I T A = To o 4 [o 1= Yo =T U TSRO PPV 70
13.2.1 Getting & ComMPiling U-BOOLcoeiiiiiiiiiiieee ettt e e e et re e e e e e s aaare e e e e eeean 70
13.2.2 SCIIPLING U-BOOT ...ttt e e e e e eeee e e e e et s e et e e s eseaeseeeseseeeeeeeeeeeneeeeeees 72
13.2.3 Creating Target sdcard Artifactsc.oeiiiciiiiie e 73

13.3 LINUX KEINEL ..t ettt e mr e s e e s re e e s mr e e sbeeeaneeesaneesnnes 74
13.3.1 Getting & COMPIlING LINUX weeiiiviiiiiiiiiec ettt e st e e et e e e str e e e e saabe e e ssataeeesntaeeesnnsaeenan 74
13.3.2 Creating Target sdcard Artifactsc..coiviiiei i 75

13.4 Ubuntu Core ROOt FIlESYSTEMuviiieiii ettt e e e e e e e b e e e e e e e e e sanntaeeeeeeeeannrnns 75
T N R O] o) =11 a1 T= 2 U o TUT o (I O o ISR UEPRR 75
13.4.2 CuStOMIZING UDUNTU COME .oiiiiiiiieiiiiieeciitee ettt ettt e et e e e et e e e st e e e s sataeeeesasaeeesnsaeesansseeeeannreeanns 75

134.2.1 Setup the chroot ENVIFONMENT.......ciii ettt e s sree e e s sbaeeesnes 76
13.4.2.2 Inside the chroot ENVIFONMENTcoiiiiiiieee ettt 76
13.4.3 Cleanup the chroot ENVIrONMENt.......coocuiiiiiciiiccciee ettt e et e e et e e e s naaeeeas 78
13.4.4 Creating Target sdcard Artifactsc..eeovciiie i 78

13.5 Writing Everything to the SACArd ... e e e e e e e e e e e e e e eenreees 78

13.6 Scripting the COmMPIete ProCEAUIEccci ettt et e et e e tae e e e eabe e e e ente e e e eabteeeennreeas 79

13.7 TESHING The SELUP weeiiiiiiee e e et e e st e e e s bt e e e e s baeeeeabaeeeensbaeeesnsteeeesnsenesennsens 80

L3.8 AR D5 ettt et ee ettt e et et et e e et ettt et ettt e e ettt et et e eeteeeeeeaeaaaaaaaaaaeaaaaaeens 86
13.8.1 Setting UpP @ NEW C PrOJECT ...uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiertvtreareseererererereeereeeeeeereeeeeteseeeeereeeeerereeeeeeeseeeees 86
13.8.2 Creating a Remote Debug Connection to the Linux Distribution..........ccccceevcviieiiiieeecicieeecieee, 88

13.8.2.1 Find the Linux Distribution’s IP Addresscceeiiiiiiiinieeiie et 88
13.8.2.2 Create an SSH Remote CONNECLIONccoiviiiiiiiiiiiiiiiic e 89
13.8.2.3 Setting Up the Debug Configurationcocciiiiiciiiic et 90
13.8.3 LiNUX ProgrammMIiNG ...ccooocieieiiiiee ittt ettt e s e st e e s e e s s e e s anr e e e snnneeesnneeessnnenenan 92
13.8.3.1 Using Altera’s HWLIB - Prer@QUISITESeeccvieieeiiiieeciiieeeeieee et e itee e vte e e sivae e e avee e e 93
13.8.3.2 Accessing Hardware Peripherals from USer SPaceccccueeeeeuieeeeciiiee et et e 93
13.8.3.2.1 Opening the Physical Memory File DesCriptorccccceeeeeciiiiieeee et ecrrnee e e e 93
13.8.3.2.2 AccesSiNg HPS PEIIPNEIaAlSeeeiiii ittt e et e e e e e e e esarareeee e e eenaanns 94
13.8.3.2.3 AccesSiNg FPGA PeriPNerals......ccuviiiiiiiie ettt e s ab e e e saaee s 95
13.8.3.2.4 Cleaning Up Before Application EXitcccccveeeiiiieiiiiiiee et e e savee e e aaeee s 96
13.8.3.3 Launching the Linux code in the DEDUGEENcceeiiieiiiiiieee e 97

22/06/2016 Page |4

DE1-SoC Guide

13.8.3.4 PN o] o @o] g o] [T PEPPROE 98
13.8.3.5 DS-5 Linux Debugger ReStIICLIONSiiiiiieciiiiieee ettt et e e e e e nnrr e e e e e 98
14 TODO ..ttt ettt ettt e ettt e bt e s be e s b et e bt e e a bt e s be e e eht e e e a bt e et e e e beeeeabee e bee e be e e abee e bee e hteenabeesbeeeanteenareens 99
15 RETEIEINCES ... ettt sttt e st e st e e be e e st e e sabe e e b et e sate e s be e e be e e ane e e s reeeneeenarean 100

22/06/2016 Page |5

DE1-SoC Guide

2 LIST OF FIGURES

U N S B LY e T (ol B Yo Ol = T ¥ [o I [U UPUU 11
Figure 6-2. Block Diagram of the DE1-SOC BOard [1]cccciiiiiiiee ittt e e e e e ecttree e e e e e e anrre e e e e e e e e nnrnee s 13
= U T T 2 T- Yol 1 PRSP 13
= ULl R o oY o 1 SRR 14
Figure 7-1. Altera SoC FPGA Device Block Diagram [2, PP. 1-1]..ccuiieeiciiieeciiee et ccieeeesree e esvree s svae e snrnea e 15
Figure 7-2. HPS BlOCk Diagram [2, PP. L1-3] coeiiiiiiiiiiee ettt e ettt e e e e e ettt e e e e e e e e saanta e e e e e e s sensssaeeeeeeeeennsrnneeas 17
Figure 7-3. HPS Address Space Relations [2, PP. 1-14] ..ottt ettt e e s satee e e e ate e e s ebaee e esnranaeeans 20
Figure 7-4. Simplified HPS BOOT FIOW [2, PP. A=3] eriiiiiiiiie ittt sttt e sttt e e ettt e e st e e e ssaaae e s sbaae e ssntaeessnnnaeassnns 23
Figure 7-5. Independent FPGA Configuration and HPS Booting [2, PP. A-2] .urriiiieeeeecciiieeee e eeerveeee e e e 24
Figure 7-6. FPGA Configuration before HPS Booting (HPS boots from FPGA) [2, pp. A-2]..cccvveeeciiieeeciieeeeiieen, 24
Figure 7-7. HPS Boots and Performs FPGA Configuration [2, PP. A-3]..eeeieiciieeeciiieeeciees e st e s e e s saaee e 25
Figure 7-8. HPS BOOt FIOWS [2, PP. A-3] ceiiiiiiiieiiiieeecittee sttt e ettt e e s ettt e e seate e e e svteee s snbteeessnbaeeesntaeeessseeessseneesnnes 25
Figure 8-1. Project FOIARN STIUCTUIE......uuiiii ettt e e e e e e e e e e e e e saet e e e e e e e e sannbtsaeeeeeeeennnntenneens 29
Figure 9-1. Exporting the pll_0.0UtCIK2 SIBNAIuviiiiiiiee e e e sre e e e ta e e s eatr e e e sereeeeeeaes 31
Figure 9-2. Basic Nios Il System with SDRAM and JTAG UARTooiiiiiiiiiiiiiieeciiiee s cciieeeesitee s sstnee s snraeeesneneaens 32
Figure 9-3. Adding LEDs and Switches to the SYStemuviiiiii i 33
Figure 9-4. HPS COMPONENT PArAMELEIS ...uuuviiiiiiiiiiiiiiiiiieieitirierererereeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeseseseeeeesesseeaesaessesasesasaees 33
Figure 9-5. HPS_KEY & HPS_LED 0N DE1-SOC SCHEMAtIC...cccuuiiiiiiiiieiciiie e ceiiee ettt e st e e eritre e s svrae e e svaeeaeans 34
Figure 9-6. HPS_KEY & HPS_LED on Qsys Peripheral Pins Tab......ccccoviiiiiieiiiie e 34
Figure 9-7. USING PiN G2L fOr SPl. ... ettt e e ettt e e e e e e et e e e e e s e e s anateeeeaeeesannstsaneaeeeeennntenneens 35
Figure 9-8. Ethernet MAC CONfIGUIAtIONiiciiii ettt e et e e e ete e e e s sbte e e seabaeeessntaeeesnseaeaennns 35
Figure 9-9. SD/MMC CONTIGUIAtION ...eeiviiiiie i cie et et ete et e e e st e s e e steestae st e e abeeabeeabeeteestaesbaessaesssesssesasesssesnsensenns 35
Figure 9-10. UART CONTIGUIAtION ... i ettt e e e e e et e e e e e e e e e sanntereeeeessannstsaeeeeaeeesnnteaneeas 36
Figure 9-11. Exported Peripheral PiNSoocuiii ittt e et e e e e ette e e e e sbtee e s eabaeeesentaeeesstaeeeanns 36
Figure 9-12. Quad SPI Flash, USB, SPI, and 12C peripheral pin configurationscccooeeevevveeeeeeereseseeeeeeneans 37

Figure 9-13.
Figure 9-14.
Figure 9-15.
Figure 9-16.
Figure 9-17.

Figure 9-18.

Adding the "Standalone"” HPS to the SYSteMccciiiiiiiiiii i 39
Adding Buttons and 7-segment Displays to the Lightweight HPS-to-FPGA Bridgeccccvvveeeen.. 40
GENErAtE QSYS SYSTOM ittt et e e e e et e e e e e e e e et eeeeeeaaaeaeaaaeeeeeesaeeeeeeeeeseeeeeees 41
Qsys ComponeNnt INSTANTIATIONuuuiiiiiiiiiiiiiiiieeeeerreee e e e e e e e e e e e e e e eeeeeeaeaeaaaaeaeens 43
FINAl TOP-1€VEI ENTItY .. ittt e e e e e e et e e e e e e e e ebtbae e e e e e eeennraaneeas 44

Correct HPS DDR3 Pin Assignment TCL Script Selection........ccccceveveeciiiieeee e 45

22/06/2016 Page |6

DE1-SoC Guide

FIGUIE 9-19. DEL-SOC WIlINE ...ueueiiiiiiiiiiiiieiiieteieieteeeteeeeeeeeeeeeeeeeeeeseseeeeeeeeeeeeeaeteeeeeeeteeeeeeeeataeateeaeeeaeeeeeeeeeeeeeeeeseeenenes 46
Figure 9-20. QUAItUS Prime PrOSramIMer........u e uuuuiiiiiiiiieitieirreeerreeeeeeeeeeteeeteteteeeteteeeeetetetetetetereteteteeetseeeeeeseeseeeeees 46
=Vl R B o €7 AN Y=Y =T ot o] o PR PRRRN: 47
T U gl R b B Y Yo=Y W O - 11 o PR 47
Figure 9-23. Programming the FPGAoooiii it e e e e e e et re e e e e s e e saaaba e e e e e e s sanststeeeeeeeennnsenneeas 47
Figure 10-1. Incorrect Nios [l Peripheral ACCESS IN Cuviiiicuiieiiiiiieeecieee ettt e ettt e e ette e e esataee s eateee s ebaeeeesasaeeeenns 49
Figure 10-2. Correct Nios Il Peripheral ACCESS iN C..ocivuiiiiiiiiieecciiie e ccieee e ecttee ettt e e sste e e s ssatee e s sbaeeessabaeeessnsaeeesnns 50
FIGUIE 10-3. NIOS.Currrrririiiiiiiiiieiiieieiereeeeereeeeeeeeerreerererereretereeeteeeteteteeeaeeeeeeesaeeeasaeaseeeeeeeeeseseeeeeseseseseeesseesssnsssssssssssnnns 51
Figure 10-4. Nios Il Target ConNection DialOguveiieiiiiiiiiiie ettt e e sre e e e etae e e s eata e e e sraaeeeenes 51
Figure 11-1. Partitioning the SACArduii i et e e e st e e st e e e sbte e e s sbeeeesanbaeeesnes 53
Figure 11-2. hps_SOC SYSTEMLN ..o e e e e e et re e e e e e e e e bt aeeeeaesesnassbaeeeaeeeennsrnes 54
FIUIE 12-1. NE@W BSP DiIalOg .. ueeeiiiiiiiiiiieie e ettt e e esetr e e e e e e et ate e e e e e e e saaba e e e e e e e sanbesteeeeaesesasnstaneeeeesannnnsanneeens 55
Figure 12-2. Preloader SETEINGS DialOZ.....ccicciiiiiiciiiie ittt ettt et e e e rtte e e e e bte e e s e taee e seataeeesntaeeesseneasanes 56
Figure 12-3. NEW C ProjeCt DI@lOg ..ueeiiciiieiiiiiie ettt cieee ettt e sttt e s sttt e e st e e sbte e e e sabaeeessntaeeesntaeeessteeessnseneesnnes 57
T o A o 1= oYU T - Y=Y U o o PR 59
Figure 12-5. Debug Configuraton “Connection” Tabcooviiii ittt e et e e e sbaee e e 60
Figure 12-6. Debug Configuration "Files" Tab......cciciiiciiiiiiiie et e e s e e ssnbe e e e ssreaeeeeans 60
Figure 12-7. Debug Configuration "Debugger” Tab ... e 60
Figure 12-8. hps_baremetal.c main() FUNCHIONooo it e et e e eeataee e eaes 61
Figure 12-9. Accessing FPGA Buttons from the HPScoo ittt e eaae e 61
Figure 12-10. Setting the 7-Segment Displays from the HPS...........eeiiiiiiii i 62
Figure 12-11. Programming the HPS GIobal TIMEruviiiiiiiee ettt ettt e e e ebre e e eeataeeeeans 63
Figure 12-12. Programming the HPS GPIO Peripheralcueiiiiiiiiiiiie ettt etee e et e e esane e 65
Figure 12-13. Switching to the DS-5 DebUEG PerSpeCtiVe......cuiiiiiiiiee et ctieee ettt e e s e e s e e ssbaeeeeaes 65
Figure 12-14. DEbUE CONTIOI VIEW cccccieeiiiiiiee ettt ettt e e e e e e te e e e e e e sttt e e e e e e e e sanbtaaeeeaeessnnsssaneeaaessnanssnes 65
Figure 12-15. DS-5 DEbUZEEI CONTIOIS......ciiiiciiieeeciieee ettt ecttee ettt e e et e e e etae e e e etta e e e e taeeesetaeeesansaeeesssaeeeensseeeaan 66
Figure 12-16. DS-5 DebUZEEr REGISTEIS VIEBW...cccicuiiiiiiiieeeceiiee ettt e ettt e e ette e e eette e e e stteeeeebtaeessnbaaeesantaeessseneesanes 67
Figure 12-17. DS-5 APP CONSOIE VIBW ...uiiiiieiiiiiiiiiiee ettt e e e e e ettt e e e e e e et rae e e e e eeesnntaseeaeeessnsssaseeeeesesannreaneens 68
FIUIE 13-1. NEW BSP DiIalOg ...ueeiiiiiiiiiiiiieie e e ettt e e s sttt e e e e e e et te e e e e e e e saate e e e e e e s senatteeeeeesesnsstaeaeeessannnnsannneens 69
Figure 13-2. Preloader SETEINGS DialO.....ccicciiie ittt eete e e e ette e e e e tre e e e etaee e sataeeesntaeesenbaneesanes 70
FIGUIE 13-3. U-BOOT SCIIPT...eeiiiiiiiiiiiiiiiiiiiiiiiittittittee ettt ettt ettt e et reeeeeteeeeeeeeeeaeeeeeeteeaeeeetaeaeaeaeaeseseseaeeeseeeesesasesanenns 73
Figure 13-4. Target SACArd dirCtOINYuuiiii ettt e e e e e et e e e e e e e e e snateeeeaeeesanstsaeeeeeeeesnnnteaneens 78
Figure 13-5. DEL1-SOC BOOT IMIESSQEES ...uvuvurrrririririririerererereeeeeeeereeeeeeeeeeeerereeeteteteteteeteeteteeeteteteteeeseeaeeseeseeeeeesesenenes 86

22/06/2016 Page |7

DE1-SoC Guide

Figure 13-6. NeW C ProjECt DIalOguuuviiiiieiieiiiiiiiie ettt e e e ettt et e e e e e et e e e e e e e e e sanateeeeaeeesannssbaeseaseeennnsreaneens 87
Figure 13-7. hps_linux.c with an empty main() fUNCLION.coeeiieiiiee e 88
Figure 13-8. ARM DS-5 Serial TEIMINGcciiciiiiiiiiee ettt ettt e e s et ae e e ssataee e sbeaeeesbaeeesnnes 88
Figure 13-9. ARM DS-5 Serial Terminal SELHINGScvviiiiieciiiiiie et e e e e e e e rrrer e e e e e e e rnaraeeeas 89
Figure 13-10. ARM DS-5 Serial Terminal LINUX PromMpPtvviiiiieiiiiiieee et e e e e e ee e e e e e 89
Figure 13-11. Obtaining the DE1-SoC's IP Address through ARM DS-5’s Serial Terminal........cccccooeeevciveeennnenn. 89
Figure 13-12. NeW SSH ONlY CONNECTION ..eeiiiciiiieiiiieeecciieeeecitee sttt e sttt e et e e s sate e e e sataeessaseeessnsaeeesnssaeeesnnsseeann 90
Figure 13-13. New SSH Connection In "Remote Systems" VIEW........ccceciieiiciiiec et eetree e s v e e 90
Figure 13-14. Debug Configuraton “Connection” Tabcoocciiii it e e sare e s 91
Figure 13-15. Debug Configuration "Files" Tab......ccciiiciiiiiiiiiie e e st e e e saae e e e sanaeae s 91
Figure 13-16. Debug Configuration "Debugger” Tab ... e e 92
Figure 13-17. hps_liNuX.C Main() FUNCLIONoii ettt et e e e tte e e e e ta e e e seataee e santeeeseraeeesanes 93
Figure 13-18. Prototype of the Mmap() FUNCHIONcccuiiiiiiee et e e e eaee e e e 94
Figure 13-19. open_physical_memory_device() FUNCLION.........cccviiiieecieecee et 94
Figure 13-20. mmap_hps_peripherals() FUNCLIONc..eii ittt ettt e e s eare e e e saraeaeeaes 94
Figure 13-21. setup_hps_gRIo() FUNCHION ...cccuiiie ettt e e st e e e v e e e s tae e s eeasaeeesnasaeeean 95
Figure 13-22. handle_hps_l€d() FUNCLIONcicciiiiiii et cceeeciee sttt teeeete e s te e sta e e taeesate e s baeesaeessteesnteeensneenns 95
Figure 13-23. mmap_fpga_peripherals() FUNCHION.cuiiiiciiiee ettt e et e e ab e e e aaeea s 96
Figure 13-24.is_fpga button_pressed() FUNCLIONcciiii ittt e e e e e e et e e e enbe e e esnaeee s 96
Figure 13-25. munmap_hps_peripherals() FUNCLIONoiiiiiiiiiicc et e e e e e sare e s 96
Figure 13-26. close_physical_memory _device() FUNCHION.........oioiiiiiiiceiec ettt et e e areea s 96
Figure 13-27. Switching to the DS-5 Debug PerspeCtiVe..........uuiiiiii it e e aree e e e e e 97
Figure 13-28. DEDUZ CONTIOI VIBW ...eeiiiiiiiee ittt ettt e e st e e e e et e e e esataeeesstaeessasteeeeantaeeesnntaeeesnsseeanns 97
Figure 13-29. DS-5 DebUZEEI CONIOIS......iiiiiiiieiiiiieecieee sttt ettt e st e e e st e e e saae e e ssabaeeesssbaeessnsraeessnsseeennn 98
Figure 13-30. DS-5 APP CONSOIE VIBWuuuiiiiieiie ettt e e e ettt e e e e e e e etee e e e e e s s s ataee e e e e e sesanseaseeeaseesssssaneeassesnansnnns 98
3 TABLE OF TABLES

Table 7-1. Possible HPS and FPGA Power Configurations..........cccuieiiciiieeeiciiie e cciee e e ectiee e eetee e e eeatee e e enreeesenaeeeenns 16
Table 7-2. HPS Address SPaces [2, PP. 1-13] ittt e ettt e e st e e e sbte e e e sbaeeeesnbaeeesntaeeesseneaeanes 20
Table 7-3. Common Address Space Regions [2, PP. 1-15]...ccuiiiiiiiiiiiiiiie e eiiee ettt eeeiree e srire e ssvte e e e sbae e s ssbaeeeenes 20
Table 7-4. HPS Peripheral Region Address Map [2, PP. 1-16] .eeeeeroiiiiiieee et ereree e e e nrree e e e e e e 22
Table 11-1. Predefined Data Sizes iN SOCAINooui ittt 54

22/06/2016

DE1-SoC Guide

4 PREREQUISITES

4.1 HARDWARE
We use the Terasic DE1-SoC board in this guide, but the guide can easily be adapted to be used with any other
Cyclone V SoC device.

4.2 SOFTWARE
This guide assumes users are running a version of the UBUNTU operating system on which you have ROOT
PERMISSIONS, and have installed the following programs:

e Quartus Prime

e Nios Il Software Build Tools (Nios Il SBT)
e ModelSim-Altera

e SoC Embedded Design Suite (SoC EDS)

Additionally, we require that you install the following packages from the Ubuntu package manager:

o git
e gemu-user-static
e minicom

Finally, we insist that ALL command-line instructions provided in this guide MUST be executed in an ALTERA
EMBEDDED COMMAND SHELL. The executable for the Altera Embedded Command Shell can be found at
“<altera_install directory>/<version>/embedded/embedded_command_shell.sh”

4.2.1 Software Versions Used in this Guide
o All HARDWARE and SOFTWARE examples in this guide were made with Quartus Prime, SoC EDS and
Nios Il SBT version 15.1.
e Some FIGURES in this guide were made with Quartus Prime, SoC EDS and Nios Il SBT version 14.0.
e The operating system used is UBUNTU 16.04, but all instructions in the guide have also been
successfully tested on all versions of Ubuntu from 14.04 to 16.04.

4.2.2 Licenses
e Chapter 12: “Using the Cyclone V — HPS — ARM — Bare-metal” shows how to perform bare-metal
debugging for demonstration purposes in order to see what the systems described in this tutorial can
do. However, | highly recommend using linux on the HPS instead or bare-metal debugging.

Indeed, BARE-METAL debugging in ARM DS-5 REQUIRES a PAID LICENSE (not the free community
license). If you do not have a paid license, then you should use linux on the HPS instead of bare-metal
debugging as debugging a LINUX application in ARM DS-5 does NOT REQUIRE a PAID LICENSE, and is
FULLY SUPPORTED with the FREE COMMUNITY LICENSE.

Additionally, using linux on such a system is much easier and supperior to bare-metal programming.

e Using a Nios Il processor as described in this tutorial REQUIRES a PAID LICENSE in order to convert the
FPGA programming file that Quartus Prime generates (*.sof) into a RAW Binary File (*. rbf) to be
used to program the FPGA automatically at boot time.

If you do not have a paid license for the Nios Il processor, then you should avoid using it and just use
the HPS instead. No license is required for using the HPS.

22/06/2016 Page |9

DE1-SoC Guide

5 INTRODUCTION

The development of embedded systems based on chips containing one or more microprocessors and hardcore
peripherals, as well as an FPGA part is becoming more and more important. This technology gives the designer
a lot of freedom and powerful abilities. Classical design flows with microcontrollers are emphasized with the
full power of FPGAs.

Mixed designs are becoming a reality. One can now design specific accelerators to greatly improve algorithms,
or create specific programmable interfaces with the external world.

Two main HDL (Hardware Design Language) languages are available for the design of the FPGA part: VHDL and
Verilog. There also exist other tools that perform automatic translations from C to HDL. New emerging
technologies like OpenCL allow compatibility between high-level software design, and low-level hardware
implementations such as:

e Compilation for single or multicore processors

e Compilation for GPUs (Graphical Processing Unit)

e Translation and compilation for FPGAs. The latest models use a PCle interface or some other way of
parameters passing between the main processor and the FPGA

We will introduce and use the Terasic DE1-SoC board, as well as the ARM DS-5 IDE.

22/06/2016 Page |10

http://de1-soc.terasic.com/

DE1-SoC Guide

6 TERASIC DE1-S0C BOARD

Figure 6-1. Terasic DE1-SoC Board [1]

The DE1-SoC board has many features that allow users to implement a wide range of designed circuits. We will
discuss some noteworthy features in this guide.

6.1 SPECIFICATIONS

6.1.1

FPGA Device

Cyclone V SoC 5CSEMA5F31C6 Device

Dual-core ARM CORTEX-A9 (HPS)

85K Programmable Logic Elements

4’450 Kbits embedded memory

6 Fractional PLLs

2 Hard Memory Controllers (only seems to be used for the HPS DDR3 SDRAM, not the FPGA SDRAM)

Configuration and Debug
Quad Serial Configuration device — EPCQ256 on FPGA
On-Board USB BLASTER Il (Normal type B USB connector)

Memory Device

64 MB (32Mx16) SDRAM on FPGA

1 GB (2x256Mx16) DDR3 SDRAM on HPS
MICRO SD Card Socket on HPS

Communication

Two Port USB 2.0 Host (ULPI interface with USB type A connector)
USB to UART (micro USB type B connector)

10/100/1000 Ethernet

PS/2 mouse/keyboard

IR Emitter/Receiver

22/06/2016 Page |11

DE1-SoC Guide

6.1.5 Connectors
e Two 40-pin Expansion Headers
e One 10-pin ADC Input Header
e One LTC connector (One Serial Peripheral Interface (SPI) Master, one 12C and one GPIO interface)

6.1.6 Display
e 24-bit VGA DAC

6.1.7 Audio
e 24-bit CODEC, line-in, line-out, and microphone-in jacks

6.1.8 Video Input
e TV Decoder (NTSC/PAL/SECAM) and TV-in connector

6.1.9 ADC
e Fast throughput rate: 1 MSPS
e Channel number: 8
e Resolution: 12 bits
e Analoginputrange:0~ 2.5V or0~5V as selected via the RANGE bit in the control register

6.1.10 Switches, Buttons and Indicators

4 User Keys (FPGA x4)

10 User switches (FPGA x10)

11 User LEDs (FPGA x10; HPS x 1)

2 HPS Reset Buttons (HPS_RST_n and HPS_WARM_RST_n)
e Six 7-segment displays

6.1.11 Sensors
e G-Sensor on HPS

6.1.12 Power
e 12V DCinput

22/06/2016 Page |12

DE1-SoC Guide

6.1.13 Block Diagram

.

Normal Type-B

MAX L

ITAG @

v -

25MHz Clock Input
(Clock Generator x1)

@

x39

SDRAM x16 64 MB >

cooccooe

coccococ
GE00CE00U00 00000

40 pin GPIO

*29

Video DAC | s

x12

Video ————————=——=—p
\ﬁde&[nr]%’ sere

Line Out

Line In

X2
From HPS _Tswitch Control
e ——»

RTX |-

x4

Clock(Clock Generator) ey £

Cyck;cg,@?’

SCSEMASF31C6N

FPGA HPS

Micro

pr s0 Card

- U U | Ethernet

{ =
USB Host
Normal Type-A| = =il

RGMII

o, [SE

DDR3
SDRAM x32

x72 1GB

USB Mini-B

< Accelerometer
C X3 -

cococcoopD

6ccooe 2T LTC Header

M

X10 |x42 T:d Tx1

HPS

User LED RST uUser
‘ ‘ * Button
dna

vy
lll

O

v
ai
LED

=
BEEHEHE

7-Segment Display xé

a

j ’.‘.-4-

€

RST

Figure 6-2. Block Diagram of the DE1-SoC Board [1]

6.2 LAYOUT

(Z XX]

2229029920
-

2993999099000

"
e
-.

STERD]

Figure 6-3. Back [1]

HPS H PS WARM

22/06/2016

Page |13

DE1-SoC Guide

M Frca
-
Il systen VGA Out
Mic Line Line VGA HPS Gigabit HPS .

In In Out Video-In 24-bit DAC

=3

|
JTAG Header‘E

Audio Codec —=

Video Decoder
Ps2

USB-Blaster Il ——= 2%20 GPIO x2

Power DC Jack R St
T il : _ - - | = Altera 28-nm
- : - ' 8§ | B — Cyclone V FPGA
Power ONJOFF _ T e MBS i ARV Cortex-Ag
64MB SDRAM
ADC
ADC Header i
7-Segment Display , el
LED x10 B-ER 2 E-K R | Be5 o o S User LED
FIFAMARE T | B — R-out
(D .)]] vttt bt et] L : : IR-in
Switch x10 Button x4 WARM_RST IPS User Button

Figure 6-4. Front [1]

e Green for peripherals directly connected to the FPGA
e Orange for peripherals directly connected to the HPS

e Blue for board control

22/06/2016 Page |14

DE1-SoC Guide

7 CYCLONE V OVERVIEW

This section describes some features of the Cyclone V family of devices. We do not list all features, but only
the ones most important to us. All information below, along with the most complete documentation regarding
this family can be found in the Cyclone V Device Handbook [2].

7.1 INTRODUCTION TO THE CYCLONE V HARD PROCESSOR SYSTEM
The Cyclone V device is a single-die system on a chip (SoC) that consists of two distinct parts —a hard
processor system (HPS) portion and an FPGA portion.

Altera SoC FPGA Device
HPS Portion FPGA Portion
XX XX XX XXX XX XX XXX XX X X X X X X XX
Flash SDRAM Controller
Controllers Subsystem Control| User HSSI
Block l/0 Transceivers
Cortex-A9 MPU Subsystem
HPS-FPGA
Interfaces FPGA Fabric
On-Chip Support (LUTs, RAMSs, Multipliers & Routing)
Memories Peripherals
Interface Hard Hard Memory
PLL) Deb PLL
S Peripherals ebug s PCle Controllers
DX XX XTI XTI XX DX DX XTI DX XX XTI DX X XTI XTI

Figure 7-1. Altera SoC FPGA Device Block Diagram [2, pp. 1-1]

The HPS contains a microprocessor unit (MPU) subsystem with single or dual ARM Cortex-A9 MPCore
processors, flash memory controllers, SDRAM L3 Interconnect, on-chip memories, support peripherals,
interface peripherals, debug capabilities, and phase-locked loops (PLLs). The dual-processor HPS supports
symmetric (SMP) and asymmetric (AMP) multiprocessing.

The DE1-SoC has a DUAL-processor HPS.

The FPGA portion of the device contains the FPGA fabric, a control block (CB), phase-locked loops (PLLs), and
depending on the device variant, high-speed serial interface (HSSI) transceivers, hard PCl Express (PCle)
controllers, and hard memory controllers.

The DE1-SoC does not contain any HSSI transceivers, or hard PCle controllers.
The HPS and FPGA portions of the device are distinctly different. The HPS can boot from

e the FPGA fabric,
e external flash, or
o JTAG

In contrast, the FPGA must be configured either through

e the HPS, or
e an externally supported device such as the Quartus Prime programmer.

22/06/2016 Page |15

DE1-SoC Guide

The MPU subsystem can boot from

e flash devices connected to the HPS pins, or
e from memory available on the FPGA portion of the device (when the FPGA portion is previously
configured by an external source).

The HPS and FPGA portions of the device each have their own pins. Pins are not freely shared between the
HPS and the FPGA fabric. The FPGA I/0 PINS are configured by an FPGA CONFIGURATION IMAGE through the
HPS or any external source supported by the device. The HPS I/O PINS are configured by SOFTWARE executing
in the HPS. Software executing on the HPS accesses control registers in the Cyclone V system manager to
assign HPS 1/0 pins to the available HPS modules.

The SOFTWARE that configures the HPS I/O PINS is called the PRELOADER.

The HPS and FPGA portions of the device have separate external power supplies and independently power on.
You can power on the HPS without powering on the FPGA portion of the device. However, to power on the
FPGA portion, the HPS must already be on or powered on at the same time as the FPGA portion. Table 7-1
summarizes the possible configurations.

» Po . » A Po

On On
On Off
Off Off

Table 7-1. Possible HPS and FPGA Power Configurations

22/06/2016 Page |16

DE1-SoC Guide

7.2 FEATURES OF THE HPS

The following

Figure 7-2. HPS Block Diagram [2, pp. 1-3]

list contains the main modules of the HPS:

e Masters

(0]

MPU subsystem featuring dual ARM Cortex-A9 MPCore processors

FPGA Portion FPGAto HPS HPS to FPGA Lightweight HPS to FPGA
Control 1-6
Block Masters Slaves Slaves Masters
1t 32-, 64- & 128-Bit AXI P 32-, 64- & 128-Bit AXI 32-Bit AXI
A /
- FPGA FPGA-to-HPS HPS-to-FPGA Lightweight
o Manager Bridge Bridge HPS-to-FPGA Bridge
A A A
32-Bit 64-Bit AXI 64-Bit AXI 32-Bit AXI
L4, 32-Bit Bus
L3 Interconnect y MPU Subsystem
(NIC-301)
ARM Cortex-A9
MPCore
o o 28 - cPU0 | cput
64-Bit »|ACPID »lacp| SCU
32-Bit Mapper
ETR > ¢
. A A
L3 Main 4
" Switch L2
32-Bit .
» SD/MMC > < 64-Bit Cache
L3 Master
Peripheral 32-Bit _
EMAC | 32-Bit Switch , > ST™
>) > 32-Bit
s28t > Boot ROM
| USB | 3Bt | sasit Y
> O&)G -~ sl ! On-Chip RAM
32-Bit _ SDRAM <
> Controller o
NAND | 2Bt | 32-Bit * 64-Bit e Subsystem
Flash " v DMA
-
A
32-Bit 4
32-Bit L3 Slave Peripheral Switch) Quad
- 32-Bit
32-Bit [SPI
Flash
A
v . l432BitBus v -
Y Y A Y Y \ 4 Y A Y Y
CAN Timer 12c Watchdog| | (yaRT GPIO SPI Clock Reset Scan System
) (4) @) T'(’;)e’ (2 3) @ Manager | |Manager | |Manager | |Manager

O General-purpose Direct Memory Access (DMA) controller
0 Two Ethernet media access controllers (EMACs)
0 Two USB 2.0 On-The-Go (OTG) controllers
0 NAND flash controller
O Secure Digital (SD) / MultiMediaCard (MMC) controller
0 Two serial peripheral interface (SPl) master controllers
0 ARM CoreSight debug components
e Slaves

0 Quad SPI flash controller
0 Two SPI slave controllers
0 Four inter-integrated circuit (1°C) controllers
O 64 KB on-chip RAM

22/06/2016 Page |17

DE1-SoC Guide

64 KB on-chip boot ROM

Two UARTSs

Four timers

Two watchdog timers

Three general-purpose I/0 (GPIO) interfaces
Two controller area network (CAN) controllers
System manager

Clock manager

Reset manager

Scan manager

FPGA manager

O O 0O OO O0OO0OO0OO0oOOoOOo

7.3 SYSTEM INTEGRATION OVERVIEW
In this part, we briefly go through some features provided by the most important HPS components.

7.3.1 MPU Subsystem
Here are a few important features of the MPU subsystem:

e Interrupt controller
e One general-purpose timer and one watchdog timer per processor
e One Memory management unit (MMU) per processor

The HPS masters the L3 interconnect and the SDRAM controller subsystem.

7.3.2 SDRAM Controller Subsystem
The SDRAM controller subsystem is MASTERED by HPS MASTERS and FPGA FABRIC MASTERS. It supports
DDR2, DDR3, and LPDDR2 devices. It is composed of 2 parts:

e SDRAM controller
e DDR PHY (interfaces the single port memory controller to the HPS 1/0)

The DE1-SoC contains DDR3 SDRAM
7.3.3 Support Peripherals

7.3.3.1 System Manager
This is one of the most essential HPS components. It offers a few important features:

e PIN MULTIPLEXING (term used for the SOFTWARE configuration of the HPS I/O PINS by the
PRELOADER)

e Freeze controller that places I/O elements into a safe state for configuration

e Low-level control of peripheral features not accessible through the control and status registers (CSRs)

The low-level control of some peripheral features that are not accessible through the CSRs is NOT externally
documented. You will see this type of code when you generate your custom preloader, but must NOT use the
constructs in your own code.

7.3.3.2 FPGA Manager
The FPGA manager offers the following features:

e Manages the configuration of the FPGA portion of the device
e Monitors configuration-related signals in the FPGA
e Provides 32 general-purpose inputs and 32 general-purpose outputs to the FPGA fabric

22/06/2016 Page |18

DE1-SoC Guide

7.3.4 Interface Peripherals

7.3.4.1 GPIO Interfaces
The HPS provides three GPIO interfaces and offer the following features:

e Supports digital de-bounce

e Configurable interrupt mode

e Supports up to 71 1/0 pins and 14 input-only pins, based on device variant
e Supports up to 67 I/0 pins and 14 input-only pins

The DE1-SoC has 67 1/0 pins and 14 input-only pins

7.3.5 On-Chip Memory
The following on-chip memories are DIFFERENT from any on-chip memories located in the FPGA fabric.

7.3.5.1 On-Chip RAM
The on-chip RAM offers the following features:

e 64 KBsize
e High performance for all burst lengths

7.3.5.2 Boot ROM
The boot ROM offers the following features:

e 64 KBsize
e Contains the code required to support HPS boot from cold or warm reset
e Used EXCLUSIVELY for booting the HPS

The code in the boot ROM CANNOT be changed.

7.4 HPS-FPGA INTERFACES

The HPS-FPGA interfaces provide a variety of communication channels between the HPS and the FPGA fabric.
The HPS-FPGA interfaces include:

e FPGA-to-HPS bridge — a high performance bus with a configurable data width of 32, 64, or 128 bits. It
allows the FPGA fabric to master transactions to slaves in the HPS. This interface allows the FPGA
fabric to have full visibility into the HPS address space.

e HPS-to-FPGA bridge — a high performance bus with a configurable data width of 32, 64, or 128 bits. It
allows the HPS to master transactions to slaves in the FPGA fabric. | will sometimes call this the
“heavyweight” HPS-to-FPGA bridge to distinguish its “lightweight” counterpart (see below).

o Lightweight HPS-to-FPGA bridge — a bus with a 32-bit fixed data width. It allows the HPS to master
transactions to slaves in the FPGA fabric.

e FPGA manager interface — signals that communicate with FPGA fabric for boot and configuration.

e Interrupts — allow soft IP to supply interrupts directly to the MPU interrupt controller.

e HPS debug interface — an interface that allows the HPS debug control domain to extend into the FPGA.

7.5 HPS ADDRESS MAP

7.5.1 HPS Address Spaces
The HPS address map specifies the address of slaves, such as memory and peripherals, as viewed by the HPS
masters. The HPS has 3 address spaces:

22/06/2016 Page |19

DE1-SoC Guide

Name Description Size
MPU MPU subsystem 4 GB
L3 L3 interconnect 4 GB
SDRAM | SDRAM controller subsystem | 4 GB

Table 7-2. HPS Address Spaces [2, pp. 1-13]

The following figure shows the relationships between the different HPS address spaces. The figure is NOT to
scale.

4GB
Peripheral Region Lightweight | Peripheral Region
1T ——FPGA
FPGA Slaves FPGA
Slaves Slaves
Region Region
: d f S 3GB
A
| SDRaM 2GB
Region
SDRAM
Window
SDRAM
Window — [oeesNeprel o e e 1GB
\/
RAM / SDRAM > 0GB
L3 MPU SDRAM

Figure 7-3. HPS Address Space Relations [2, pp. 1-14]

The window regions provide access to other address spaces. The thin black arrows indicate which address
space is accessed by a window region (arrows point to accessed address space).

The SDRAM window in the MPU can grow and shrink at the top and bottom (short blue vertical arrows) at the
expense of the FPGA slaves and boot regions. The ACP window can be mapped to any 1 GB region in the MPU
address space (blue vertical bidirectional arrow), on gigabyte-aligned boundaries.

The following table shows the base address and size of each region that is common to the L3 and MPU address
spaces.

Region Name Description Base Address Size
FPGA slaves FPGA slaves connected to the HPS-to-FPGA bridge | 0xC0000000 960 MB
HPS peripherals Slaves directly connected to the HPS (corresponds | OxFCO00000 64 MB
to all orange colored elements on Figure 6-4 and
Figure 6-3)

Lightweight FPGA slaves | FPGA slaves connected to the lightweight HPS-to- 0xFF200000 2 MB
FPGA bridge

Table 7-3. Common Address Space Regions [2, pp. 1-15]

22/06/2016 Page |20

DE1-SoC Guide

7.5.2 HPS Peripheral Region Address Map
The following table lists the slave identifier, slave title, base address, and size of each slave in the HPS

peripheral region. The Slave Identifier column lists the names used in the HPS register map file provided by
Altera (more on this later).

Slave Identifier Slave Title Base Address Size
STM STM 0xFC000000 48 MB
DAP DAP OxFFO00000 2 MB
LWFPGASLAVES FPGA slaves accessed with lightweight HPS-to-FPGA 0xFF200000 2 MB

bridge
LWHPS2FPGAREGS | Lightweight HPS-to-FPGA bridge GPV OxFF400000 1 MB
HPS2FPGAREGS HPS-to-FPGA bridge GPV 0xFF500000 1 MB
FPGA2HPSREGS FPGA-to-HPS bridge GPV OxFF600000 1 MB
EMACO EMACO 0xFF700000 8 KB
EMAC1 EMAC1 O0xFF702000 8 KB
SDMMC SD/MMC 0xFF704000 4 KB
QSPIREGS Quad SPI flash controller registers O0xFF705000 4 KB
FPGAMGRREGS FPGA manager registers OxFF706000 4 KB
ACPIDMAP ACP ID mapper registers O0xFF707000 4 KB
GPIOO GPIOO 0xFF708000 4 KB
GPIO1 GPIO1 OxFF709000 4 KB
GPIO2 GP102 O0xFF70A000 4 KB
L3REGS L3 interconnect GPV OxFF800000 1 MB
NANDDATA NAND controller data 0xFF900000 1 MB
QSPIDATA Quad SPI flash data OxFFA00000 1 MB
USBO USBO OTG controller registers 0xFFB0O0O000 256 KB
USB1 USB1 OTG controller registers OxFFB40000 256 KB
NANDREGS NAND controller registers OxFFB80000 64 KB
FPGAMGRDATA FPGA manager configuration data OxFFB90000 4 KB
CANO CANO controller registers 0xFFC00000 4 KB
CAN1 CANL1 controller registers O0xFFC01000 4 KB
UARTO UARTO O0xFFC02000 4 KB
UART1 UART1 O0xFFC03000 4 KB
12C0 12C0 OxFFC04000 4 KB
12C1 12C1 OxFFC05000 4 KB
12C2 12C2 O0xFFC06000 4 KB
12C3 12C3 OxFFC07000 4 KB
SPTIMERO SP Timer0 0xFFC08000 4 KB
SPTIMER1 SP Timerl OxFFC09000 4 KB
SDRREGS SDRAM controller subsystem registers 0xFFC20000 128 KB
OSCI1TIMERO OSC1 Timer0O OxFFDO0000 4 KB
OSC1TIMER1 OSC1 Timerl 0xFFD01000 4 KB
LAWDO Watchdog0 OxFFD02000 4 KB
LAWD1 Watchdogl 0xFFD03000 4 KB
CLKMGR Clock manager 0xFFD04000 4 KB
RSTMGR Reset manager OxFFD0O5000 4 KB
SYSMGR System manager OxFFD0O8000 16 KB
DMANONSECURE DMA nonsecure registers OxFFEOO000 4 KB
DMASECURE DMA secure registers OxFFE01000 4 KB
SPISO SPI slave0O O0xFFE02000 4 KB
SPIS1 SPI slavel OxFFEO3000 4 KB
SPIMO SPI master0 OxFFFO0000 4 KB
SPIM1 SPI masterl OxFFF01000 4 KB
22/06/2016 Page |21

DE1-SoC Guide

SCANMGR Scan manager registers OxFFF02000 4 KB
ROM Boot ROM OxFFFDOO00 64 KB
MPUSCU MPU SCU registers OxFFFECO00 8 KB
MPUL2 MPU L2 cache controller registers OxFFFEFO00 4 KB
OCRAM On-chip RAM OxFFFFO000 64 KB

Table 7-4. HPS Peripheral Region Address Map [2, pp. 1-16]

The programming model for accessing the HPS peripherals in Table 7-4 is the same as for peripherals created
on the FPGA fabric. That is, every peripheral has a base address at which a certain number of registers can be
found. You can then read and write to a certain set of these registers in order to modify the peripheral’s
behavior.

When using a HPS peripheral in
Table 7-4, you do not need to hard-code any base address or peripheral register map in your programs, as
Altera provides a header file for each one.

Three directories contain all HPS-related HEADER FILES:

1. “<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
deJ)

Contains HIGH-LEVEL header files that typically contain a few FUNCTIONS which facilitate control over
the HPS components. These functions are all part of Altera’s HWLIB, which was created to make
programming the HPS easier. This directory contains code that is common to the Cyclone V, Arria V,
and Arria 10 devices.

2. ‘“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de/soc_cv_av”

Same as above, but more specifically for the Cyclone V and Arria V FPGA families.

3. “<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de/soc_cv_av/socal”

Contains LOW-LEVEL header files that provide a peripheral’s BIT-LEVEL REGISTER DETAILS. For
example, any bits in a peripheral’s register that correspond to undefined behavior will be specified in
these header files.

To illustrate the differences among the high and low-level header files, we can compare the ones related to the
FPGA manager peripheral:

1. “../hwlib/include/soc_cv_av/alt_fpga_manager.h”

ALT_STATUS_CODE alt_fpga_reset_assert(void);
ALT_STATUS_CODE alt_fpga_configure(const void* cfg_buf, size_t cfg_buf_len);

2. “../hwlib/include/soc_cv_av/socal/alt_fpgamgr.h”

/* The width in bits of the ALT_FPGAMGR_CTL_EN register field. */

#define ALT_FPGAMGR_CTL_EN_WIDTH 1

/* The mask used to set the ALT_FPGAMGR_CTL_EN register field value. */
#define ALT_FPGAMGR_CTL_EN_SET_MSK 0x00000001

/* The mask used to clear the ALT_FPGAMGR_CTL_EN register field value. */
#define ALT_FPGAMGR_CTL_EN_CLR_MSK oxfffffffe

An important header file is ““.../hwlib/include/soc_cv_av/socal/hps.h”. It contains the HPS component’s
full REGISTER MAP, as provided in
Table 7-4.

Note however, that there exists NO HEADER FILE for the “heavyweight” HPS-to-FPGA bridge, as it is not
located in the “HPS peripherals” region in Figure 7-3. Indeed, the “heavyweight” HPS-to-FPGA bridge is not

22/06/2016 Page |22

DE1-SoC Guide

considered a HPS peripheral, whereas the “lightweight” HPS-to-FPGA bridge is. Therefore, in order to use the
“heavyweight” HPS-to-FPGA bridge, you will have to define a macro in your code, as follows:

#define ALT_HWFPGASLVS_OFST 0xC0000000

Note that HWLIB can only be directly used in a BARE-METAL APPLICATION, as it directly references physical
addresses. The library can unfortunately NOT be used directly in a LINUX DEVICE DRIVER, because it uses
standard header files that are not available in the kernel. Needless to say that a userspace linux program
cannot use the library either, as the linux kernel would terminate a user process that tries to access any of

these physical addresses directly.

7.6 HPS BoOTING AND FPGA CONFIGURATION
Before being able to use the Cyclone V SoC, one needs to understand how the HPS boots and how the FPGA is
configured. We'll first take a look at the ordering between the HPS and FPGA.

7.6.1 HPS Boot and FPGA Configuration Ordering

The HPS BOOT starts when the processor is released from reset (for example, on power up) and executes code
in the internal boot ROM at the reset exception address. The boot process ends when the code in the boot
ROM jumps to the next stage of the boot software. This next stage of the boot software is referred to as the
preloader. Figure 7-4 illustrates this initial incomplete HPS boot flow.

Reset —®» BootROM |—> Preloader

Figure 7-4. Simplified HPS Boot Flow [2, pp. A-3]
The processor can boot from the following sources:

e NAND flash memory through the NAND flash controller

e SD/MMC flash memory through the SD/MMC flash controller

e SPland QSPI flash memory through the QSPI flash controller using Slave Select 0
e FPGA fabric on-chip memory

The choice of the boot source is done by modifying the BOOTSEL and CLKSEL values BEFORE THE DEVICE IS
POWERED UP. Therefore, the Cyclone V device normally uses a PHYSICAL DIP SWITCH to configure the
BOOTSEL and CLKSEL.

The DE1-SoC can ONLY BOOT from SD/MMC flash memory, as its BOOTSEL and CLKSEL values are hard-wired
on the board. Although its HPS contains all necessary controllers, the board doesn’t have a physical DIP switch
to modify the BOOTSEL and CLKSEL values. The actual location of the DIP switch is present underneath the
board, as can be seen in Figure 6-3, but a switch isn’t soldered.

CONFIGURATION OF THE FPGA portion of the device starts when the FPGA portion is released from reset state
(for example, on power up). The control block (CB) in the FPGA portion of the device is responsible for
obtaining an FPGA configuration image and configuring the FPGA. The FPGA configuration ends when the
configuration image has been fully loaded and the FPGA enters user mode. The FPGA configuration image is
provided by users and is typically stored in non-volatile flash-based memory. The FPGA CB can obtain a
configuration image from the HPS through the FPGA manager, or from another external source, such as the
Quartus Prime Programmer.

The following three figures illustrate the possible HPS boot and FPGA configuration schemes. Note that
Cyclone V devices can also be fully configured through a JTAG connection.

22/06/2016 Page |23

DE1-SoC Guide

Configuration
Sources

PCle
Altera SoC Device
FPGA Portion HPS Portion
Quad SPI
Flash Controller [
.] MPU
~ Agtlve Se_nal/ SDIMMC | o
Active Serial x4 Flash Controller|
FPGA
Passive Fabric NAND <
Serial Flash Controller|
Passive Boot On-Chip
Parallel ROM RAM

Figure 7-5. Independent FPGA Configuration and HPS Booting [2, pp. A-2]

Boot
Sources

Figure 7-5 shows the scheme where the FPGA configuration and the HPS boot occur independently. The FPGA
configuration obtains its image from a non-HPS source (Quartus Prime Programmer), while the HPS boot
obtains its configuration image from a non-FPGA fabric source.

Boot &
Configuration
Sources

Figure 7-6. FPGA Configuration before HPS Booting (HPS boots from FPGA) [2, pp. A-2]

—p PCle
Altera SoC Device
FPGA Portion HPS Portion
MPU
Active Serial/
- Active Serial x4 T
FPGA
Passive Fabric > HPS-tg-FPG A
™ Serial Bridge

Passive Boot
Parallel ROM

Figure 7-6 shows the scheme where the FPGA is first configured through the Quartus Prime Programmer, then
the HPS boots from the FPGA fabric. The HPS boot waits for the FPGA fabric to be powered on and in user
mode before executing. The HPS boot ROM code executes the preloader from the FPGA fabric over the HPS-
to-FPGA bridge. The preloader can be obtained from the FPGA on-chip memory, or by accessing an external

interface (such as a larger external SDRAM).

22/06/2016

Page |24

DE1-SoC Guide

Altera SoC Device

FPGA Portion HPS Portion
Quad SPI
Flash Controller <
MPU
SD/MMC < Boot
Flash Controller Sources
FPGA
X || FPGA
Fabric < M
anager NAND

Flash Controller

EMAC g Configuration Source

Figure 7-7. HPS Boots and Performs FPGA Configuration [2, pp. A-3]

Figure 7-7 shows the scheme under which the HPS first boots from one of its non-FPGA fabric boot sources,
then software running on the HPS configures the FPGA fabric through the FPGA manager. The software on the
HPS obtains the FPGA configuration image from any of its flash memory devices or communication interfaces,
such as the SD/MMC memory, or the Ethernet port. The software is provided by users and the boot ROM is
not involved in configuring the FPGA fabric.

7.6.2 Zooming In On the HPS Boot Process

User Software
Operating o
Reset —»| BootROM —»{| Preloader Boot Loader —>| System —» Application
Baremetal
Application

Figure 7-8. HPS Boot Flows [2, pp. A-3]

Booting software on the HPS is a multi-stage process. Each stage is responsible for loading the next stage. The
first software stage is the boot ROM. The boot ROM code locates and executes the second software stage,
called the preloader. The preloader locates, and IF PRESENT, executes the next software stage. The preloader
and subsequent software stages are collectively referred to as user software.

The reset, boot ROM, and preloader stages are always present in the HPS boot flow. What comes after the
preloader then depends on the type of application you want to run. The HPS can execute 2 types of
applications:

e Bare-metal applications (no operating system)
e Applications on top of an operating system (linux)

Figure 7-8 shows the HPS’ available boot flows. The Reset and Boot ROM stages are the only fixed parts of the
boot process. Everything in the user software stages can be customized.

Although the DE1-SoC has a DUAL-processor HPS (CPUO and CPU1), the boot flow only executes on CPUO and
CPU1 is under reset. If you want to use both processors of the DE1-SoC, then USER SOFTWARE executing on
CPUQ is responsible for releasing CPU1 from reset.

22/06/2016 Page |25

DE1-SoC Guide

7.6.2.1 Preloader

The preloader is one of the most important boot stages. It is actually what one would call the boot “source”, as
all stages before it are unmodifiable. The preloader can be stored on external flash-based memory, or in the
FPGA fabric.

The preloader typically performs the following actions:

Initialize the SDRAM interface

Configure the HPS I/0 through the scan manager

Configure pin multiplexing through the system manager

Configure HPS clocks through the clock manager

Initialize the flash controller (NAND, SD/MMC, QSPI) that contains the next stage boot software
Load the next boot software into the SDRAM and pass control to it

The preloader does NOT release CPU1 from reset. The subsequent stages of the boot process are responsible
for it if they want to use the extra processor.

22/06/2016 Page |26

DE1-SoC Guide

8 USING THE CYCLONE V - GENERAL INFORMATION

8.1 INTRODUCTION

The HPS component is a SOFT component, but it does NOT mean that the HPS is a softcore processor. In fact,
the HPS exclusively contains HARD LOGIC. The reason it is considered a softcore component originates from
the fact that it enables other soft components to interface with the HPS hard logic. As such, the HPS
component has a small footprint in the FPGA fabric, as its only purpose is to connect the soft and hard logic
together.

Therefore, it is possible to use the Cyclone V SoC in 3 different configurations:

e FPGA-only
e HPS-only
e HPS & FPGA

We will look at the FPGA-only and HPS & FPGA configurations below. We will not cover the HPS-only
configuration as it is identical to the HPS & FPGA one where you simply don’t load any design on the FPGA
fabric. The configurations using the HPS are more difficult to set up than the FPGA-only one.

8.2 FPGA-ONLY

Exclusively using the FPGA part of the Cyclone V is easy, as the design process is identical to any other Altera
FPGA. You can build a complete design in Quartus Prime & Qsys, simulate it in ModelSim-Altera, then program
the FPGA through the Quartus Prime Programmer. If you instantiated a Nios Il processor in Qsys, you can use
the Nios Il SBT IDE to develop software for the processor.

The DE1-SoC has a lot of pins, which makes it tedious to start an FPGA design. It is recommended to use the
ENTITY in [3] for your TOP-LEVEL VHDL FILE, as it contains all the board’s FPGA and HPS pins.

After having defined a top-level module, it is necessary to map your design’s pins to the ones available on the
DE1-SoC. The TCL SCRIPT in [4] can be executed in Quartus Prime to specify the board’s device ID and all its
PIN ASSIGNMENTS. In order to execute the TCL script, place it in your quartus working directory, then run it
through the “Tools > Tcl Scripts..” menuitem in Quartus Prime.

8.3 HPS & FPGA

8.3.1 Bare-metal Application

On one hand, bare-metal software enjoys the advantage of having no OS overhead. This has many
consequences, the most visible of which are that code executes at native speed as no context switching is ever
performed, and additionally, that code can directly address the HPS peripherals using their PHYSICAL memory-
mapped addresses, as no virtual memory system is being used. This is very useful when trying to use the HPS
as a high-speed microcontroller. Such a programming environment is very similar to the one used by other
microcontrollers, like the TI MSP430.

On the other hand, bare-metal code has one great disadvantage, as the programmer must continue to
configure the Cyclone V to use all its resources. For example, we saw in 7.6.2.1 that the preloader does not
release CPU1 from reset, and that it is up to the user software to perform this, which is the bare-metal
application itself in this case. Furthermore, supposing CPU1 is available for use, it is still difficult to run multi-
threaded code, as an OS generally handles program scheduling and CPU affinity for the programmer. The
programmer must now manually assign code fragments to each CPU.

22/06/2016 Page |27

DE1-SoC Guide

8.3.2 Application Over an Operating System (Linux)

Running code over a linux operating system has several advantages. First of all, the kernel releases CPU1 from
reset upon boot, so all processors are available. Furthermore, the kernel initializes and makes most, if not all
HPS peripherals available for use by the programmer. This is possible since the linux kernel has access to a
huge amount of device drivers. Multi-threaded code is also much easier to write, as the programmer has
access to the familiar Pthreads system calls. Finally, the linux kernel is not restricted to running compiled C
programs. Indeed, you can always run code written in another programming language providing you first
install the runtime environment required (that must be available for ARM processors).

However, running an “EMBEDDED” application on top of an operating system also has disadvantages. Due to
the virtual memory system put in place by the OS, a program cannot directly access the HPS peripherals
through their physical memory-mapped addresses. Instead, one first needs to map the physical addresses of
interest into the running program’s virtual address space. Only then will it be possible to access a peripheral’s
registers. Ideally, the programmer should write a device driver for each specific component that is designed to
have a clean interface between user code, and device accesses.

At the end of the day, bare-metal applications and applications running code on top of linux can do the same
things. Generally speaking, programming on top of linux is superior and much easier compared to bare-metal
code, as its advantages greatly outweigh its drawbacks.

8.4 GoALS

Let’s start by defining what we want to achieve in this tutorial. We want to create a system in which both the
HPS and FPGA can do some computation simultaneously. More specifically, we want the following
capabilities:

1. A Nios Il processor on the FPGA must be able to use the 10 LEDs and 10 switches connected to the
FPGA PORTION of the device. The Nios Il processor will create a strobing light effect on the 10 LEDs,
with the 10 switches acting as enable signals for the corresponding LEDs.

2. The Nios Il processor will use its SDRAM instead of any form of on-chip memory.

3. The HPS must be able to use the LED and button that are directly connected to the HPS PORTION of
the device. Pressing the button should toggle the LED.

4. The HPS must be able to use 2 buttons and the six 7-segment displays connected to the FPGA
PORTION of the device. The HPS will increment and decrement a counter that will be shown on the 7-
segment displays. Pressing the first button should invert the counting direction, and pushing the
second button should reset the counter to 0.

5. The HPS must be able to use the ethernet port on the board.

6. The HPS must be able to use the microSD card port on the board to which we will write anything we
want.

8.5 PROJECT STRUCTURE

The development process creates a lot more files compared to an FPGA-only design. We will use the folder
structure shown in Figure 8-1 to organize our project. In this demo, we will use “DE1_SoC_demo” as the
project name.

e The “hw” directory contains all hardware-related files.

e The “sw” directory contains all software-related files.

e The “sdcard” directory contains all final targets needed to create a valid sdcard from which the DE1-
SoC can boot.

22/06/2016 Page |28

DE1-SoC Guide

project
name

‘modelsim‘ ‘ quartus ‘ hdl ‘ ‘ a2 ‘ ‘ fat32 ‘

preloader

‘application

‘application

u-boot H linux ‘

/N

‘ source ‘ ‘ rootfs ‘

Figure 8-1. Project Folder Structure
Many steps have to be performed in order to configure the Cyclone V before you can use the HPS.

e The HARDWARE design is IDENTICAL whether you want to write bare-metal applications, or linux HPS
applications.
e The SOFTWARE design is DIFFERENT for bare-metal and linux HPS applications.

The complete design for this tutorial can be found in DE1_SoC_demo. zip [5].

Note that a trimmed down design is also available for the more recent DEO-Nano-SoC board in
DE@_Nano_SoC_demo.zip [6].

22/06/2016 Page |29

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=941

DE1-SoC Guide

9 USING THE CYCLONE V - HARDWARE

The details below give step-by-step instructions to create a full system from scratch.

9.1 GENERAL QUARTUS PRIME SETUP

1. Create a new Quartus Prime project. You only need to specify the project name and destination, as all
other settings will be set at a later stage by a TCL script. For this demo, we will call our project
“DE1_SoC_demo” and will store it in “DE1_SoC_demo/hw/quartus®”.

2. Download DE1_SoC_top_level.vhd [3] and save it in “DE1_SoC_demo/hw/hd1”. We will use this file
as the project’s top-level VHDL file, as it contains a complete list of pin names available on the DE1-
SoC for use in your designs. Add the file to the Quartus Prime project by using “Project >
Add/Remove Files in Project..” and set it as your design’s top-level entity.

3. Download pin_assignment_DE1_SoC.tcl [4] and save it in “DE1_SoC_demo/hw/quartus®”. This
script assigns pin locations and 1/0O standards to all pins names in “DE1_SoC_top_level.vhd”.
Execute the TCL script by using “Tools > Tcl Scripts..” in Quartus Prime.

At this stage, all general Quartus Prime settings have been performed, and we can start creating our
design. We want to use the HPS, as well as a Nios Il processor in our design, so we will use the Qsys tool to
create the system.

4. Launch the Qsys tool and create a new system. Save it under the name “soc_system.gsys”.

9.2 SYSTEM DESIGN WITH QsYS - N10s 11
In this section, we assemble all system components needed to allow the Nios Il processor to create a strobing
light effect on the 10 LEDs with the 10 switches acting as enable signals for the corresponding LEDs.

We want to use a Nios Il processor with an SDRAM. To use an SDRAM, we need 2 things:

e An SDRAM controller.

e APLLto generate a clock for the softcore SDRAM controller and a phase-shifted clock for the off-chip
SDRAM component. The reference clocks and timings needed for the SDRAM can be found on its
datasheet: IS42R16320D. pdf [7].

5. Addan “Altera PLL” to the system.

e Reference Clock Frequency: 50 MHz
e Operation Mode: normal
e Uncheck “Enable locked output port”
We need to generate 3 clocks:
a. 50 MHz clock for the Nios Il processor and all its peripherals.
b. 100 MHz clock for the SDRAM controller.
c. 100 MHz, -3758 ps phase-shifted clock for the off-chip SDRAM component.

In Qsys’ “System Contents” tab:

e Export “pll_@.outclk2” under the name “pll_@_ sdram”, as shown in Figure 9-1. Exporting
the pll_0.outclk2 Signal. This clock will be used for the off-chip SDRAM component.

22/06/2016 Page |30

DE1-SoC Guide

= pll 0 Altera PLL
refclk Clock Input
reset FReset Input
outclkd Clock Output
outclkl Clock Output
outclk2 Clock Output pll 0 sdram
pll_0.outclk2

Clock Output [clock source 14.1]
Associated clock: None (asynchronous)

Figure 9-1. Exporting the pll_0.outclk2 Signal

6. Add an softcore SDRAM controller to the system. Use the following settings (taken from the SDRAM'’s

datasheet):
a. Memory Profile
= Data Width
e Bits: 16
= Architecture
e Chipselect: 1
e Banks: 4
= Address Width
e Row:13
e Column: 10
b. Timing

= CAS latency cycles: 3
= |nitialization refresh cycles: 2
= |ssue one refresh command every: 7.8125 us
= Delay after powerup, before initialization: 100.0 us
= Duration of refresh command (t_rfc): 70.0 ns
= Duration of precharge command (t_rp): 15.0 ns
= ACTIVE to READ or WRITE delay (t_rcd): 15.0 ns
= Accesstime (t_ac):5.4 ns
= Write recovery time (t_wr, no auto precharge): 14.0 ns
In Qsys’ “System Contents” tab:
e Rename “new_sdram_controller_0” to “sdram_controller_0”.
e Export “sdram_controller 0.wire” under the name “sdram_controller 0 wire”.
7. Add a Nios Il processor to the system. You can choose any variant. In this demo, we use the “Nios II
(classic)” processor, with configuration “Nios II/f”.
8. Add a System ID Peripheral to the system. In Qsys’ “System Contents” tab:
e Rename the component to “sysid”
9. Add aJTAG UART to the system. This serial console will be used to be able to see the output
generated by the printf() function when programming the Nios Il processor.
10. Connect the system as shown in Figure 9-2 below:

22/06/2016 Page |31

DE1-SoC Guide

I= system contents

i | Address Map &

System: soc_system Path: clk_0

Interconnect Requirements &

Parameters £

an| | Use Connections Mame Description Export Clock Base End IRQ
Hy O ck 0 Clock Source
= clk_in Clock Input clk exported
x = clk_in_reset Reset Input reset
= clk Clack Output clk_0
O T E— clk_reset Reset Output
B pli_0o Altera PLL
¢ refelk Clock Input clk_0
= reset Reset Input
e outclko Clock output pll_0_out...
= — outclkl Clock Output pll_0_out...
H outclk2 Clock Output pll_0_sdram pll_0_out...
B sdram_controll... |SDRAM Controller
. clk Clock Input pll_0 ou...
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0400_0000 Oxo7ff_ffff
< wire Conduit sdram_controller_0_wire
E nios2_qsys_0 Mios Il (Classic) Processor
clk Clock Input pll_o_ou...
reset_n Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
— instruction_master|Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk] IRQ 0 IRO 31—
— jtag_debug_mod... |Reset Output [clk]
. jtag_debug_mod... [Avalon Memory Mapped Slave [clk] 0x0800_0800 0x0800_offf
custom_instructi,.. |Custom Instruction Master
= sysid System D Peripheral
clk Clock Input pll_0_ou...
reset Reset Input [clk]
contrel_slave Avalon Memory Mapped Slave [clk] 0x0800_1008 0x0800_1007
B jtag_uart_0 TAG UART
clk Clock Input pll_0 ou...
reset Reset Input [clk]
avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x0800_1008 0x0800_100f
_ — irg Interrupt Sender [clk] >—|§|
Figure 9-2. Basic Nios Il System with SDRAM and JTAG UART
11. Edit the Nios Il processor and set “sdram_controller_0.s1” as its Reset and Exception vectors.
12. Add a PIO component to the system for the LEDs. The DE1-SoC has 10 LEDs, so we will use a 10-bit PIO
component.
a. Width: 10 bits
b. Direction: Output
c. Output Port Reset Value: 0x00
In Qsys’ “System Contents” tab:
e Rename the component to “leds_0”
e Export “leds_0.external_connection”
13. Add a PIO component to the system for the switches. The DE1-SoC has 10 Switches, so we will again
use a 10-bit PIO component.
a. Width: 10 bits
b. Direction: Input
In Qsys’ “System Contents” tab:
c. Rename the component to “switches_o”
d. Export “switches_©.external connection”
14. Connect the system as shown in Figure 9-3 below (we don’t show the full system to make figures hold
on one page):
22/06/2016 Page |32

DE1-SoC Guide

Use Connections MName Description Export Clock Base End IRQ
UL, TUCR LT P uCsarant sl lovn
B sdram_controll... [SDRAM Controller
clk Clock Input pll_0_ou...
reset Reset Input [clk]
sl Avalon Memeory Mapped Slave [elk] 0x0400_0000 oxe7ff_ffff
= wire Conduit sdram_controller_0_wire
B nios2_gsys_0 Nios Il (Classic) Processor
clk Clock Input pll_0_ou...
reset_n Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
— % instruction_master|Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk] IRQ O IRQ 31—
< jtag_debug_mod... Reset Output [clk]
jtag_debug_mod... |Avalon Memory Mapped Slave [clk] 0x0800_0800 Oxos00_offf
custom_instructi... [Custom Instruction Master
B sysid System ID Peripheral
clk Clock Input pll_0_ou...
reset Reset Input [elk]
control_slave Avalon Memory Mapped Slave [elk] 0x0800_1020 0xB800_1027
B jtag_uart_0 TAG UART
clk Clock Input pll_0_ou...
reset Reset Input [clk)]
avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x0800_1028 oxes00_loz2f
irg Interrupt Sender [clk)] >—|§|
B leds_0 PIO (Parallel 10}
clk Clock Input pll_0_ou...
reset Reset Input [clk]
sl Avalon Memeory Mapped Slave [elk] 0x0800_1010 0x@800_101f
= external_connec... |Conduit leds_0_external_conne...
B switches 0 PIO (Parallel If0)
clie Clock Input pll_0 ou...
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0800_1000 Ox0800_loaf
i external_connec... |Conduit switches 0 external_c...

Figure 9-3. Adding LEDs and Switches to the System

At this stage, we have created a system that satisfies goals 1 and 2 defined in 8.4.

9.3 SYSTEM DESIGN WITH Qsys - HPS

In this section, we assemble all system components needed to allow the HPS to access a button and LED
connected directly to itself, as well as a button and the 7-segment displays connected to the FPGA portion of
the device.

Note: When using Qsys to manipulate any signal or menu item related to the HPS, the GUI will seem as though
it is not responding, but this is not the case. The GUI is just checking all parameters in the background, which
makes the interface hang momentarily. It is working correctly behind the scenes.

9.3.1 Instantiating the HPS Component
15. To use the HPS, add an “Arria V/Cyclone V Hard Processor System” to the system.
16. Open the HPS’ parameters and have a look around. There are 4 tabs that control various aspects of
the HPS’ behaviour, as shown on Figure 9-4.

System Contents &% | Address Map &3 ‘ Interconnect Requirements &3 ‘ Device Family &3 _

soc_system > hps_0

- 5|

Arria V/Cyclone V Hard Processor System

altera_hps

FPGA Interfaces f peripheral Pins | HPS Clocks | sSDRAM |

|~ General

Enable MPU standby and event signals

[] Enable general purpose signals

Figure 9-4. HPS Component Parameters

9.3.1.1 FPGA Interfaces Tab
This tab configures everything related to the interfaces between the HPS and the FPGA. You can configure
which bridges to use, interrupts, ...

17. We want to use the HPS to access FPGA peripherals, so we need to enable one of the following buses:
a. HPS-to-FPGA AXI bridge
b. Lightweight HPS-to-FPGA AXI bridge
Since we are not going to be using any high performance FPGA peripherals in this demo, we’ll choose
to enable the Lightweight HPS-to-FPGA AXI bridge.
e Set the FPGA-to-HPS interface width to “Unused”.

22/06/2016 Page |33

DE1-SoC Guide

e Set the HPS-to-FPGA interface width to “Unused”.
By default, Qsys checks “Enable MPU standby and event signals”, but we are not going to use
this feature, so

e Uncheck “Enable MPU standby and event signals”.
Qsys also adds an FPGA-to-HPS SDRAM port by default, which we are not going to use either, so

e Remove the port listed under “FPGA-to-HPS SDRAM Interface”.

9.3.1.2 Peripheral Pins Tab
This tab configures the physical pins that are available on the device. Most device pins have various sources,
and are multiplexed. The pins can be configured to be sourced by the FPGA, or by various HPS peripherals.

9.3.1.2.1 Theory

We want to use the HPS to access the button and LED that are directly connected to it. These HPS peripherals
correspond to pins “HPS_KEY_N” and “HPS_LED” on the device’s top-level entity. We need to know how
these 2 pins are connected to the HPS to access them. To find out this information, we have to look at the
board’s schematics. You can find the schematics in DE1-SoC. pdf [8].

The right side of Figure 9-5 shows the area of interest on the DE1-SoC’s schematics. We see that “HPS_KEY_N”
and “HPS_LED” are respectively connected to pins G21 and A24.

-
TRACE_D5/SPIS1_MOSI/CAN1_TX/HPS_GPIO54 fzzl 2626 ﬂgg EEE; K
TRACE D4/SPIST CLK/CAN1 RX/HPS GPIO53 { >

I .
Figure 9-5. HPS_KEY & HPS_LED on DE1-SoC Schematic

Figure 9-5 allows us to explain what Qsys’ Peripheral Pins tab does. The Qsys GUI doesn’t make any reference
to pins G21 and A24, as they depend on the device being used, and cannot be generalized to other Cyclone V
devices. However, the GUI does have references to what is displayed on the left side of Figure 9-5. We will
examine the details of pin G21, to which “HPS_KEY_N” is connected. The schematic shows that pin G21 is
connected to 4 sources:

TRACE_D5
SPIS1_MOSI
CAN1_TX
HPS_GPIO54

S D a 0

This can be seen in Qsys, as shown in Figure 9-6.

TRACE_D4 [canT R (sem) |SPIS1.CLK (SetD) |TRACE DA (Sem) c GFILY | LOANI!] |
TRACE_DS [cant.Tx sem) |SPIS1.MOSI (Setl) |TRACE.DS (Setm) e GFILES [LOANIO5S] |

Figure 9-6. HPS_KEY & HPS_LED on Qsys Peripheral Pins Tab

22/06/2016 Page |34

DE1-SoC Guide

Depending on how you configure the Peripheral Pins tab, you can configure pin G21 to use any of the sources
above. For example, if you want to use this pin as an SPI slave control signal, you would use the configuration
shown in Figure 9-7.

[* SPI Controllers

SPIMO pin: Unused -
SPIMO mode: .NJ',.:., - .
SPIMI pin: Unused -
SPIMI1 mode: .N."-':'- - .
SPISO pine Unused -
SPIS0 mode: .N A .

SPIS1 pin: HPS IO Set 0w

SPIS1 mode: SPL -

Figure 9-7. Using Pin G21 for SPI

However, if you don’t want to use any of the peripherals available at the top of the Peripheral Pins tab, then
you can always use one of the 2 buttons on the right side of Figure 9-6:

e GPIOXY: Configures the pin to be connected to the HPS’ GPIO peripheral.
e LOANIOXY: Configures the pin to be connected to the FPGA fabric. This pin can be exported from
Qsys to be used by the FPGA.

9.3.1.2.2 Configuration
18. We want the HPS to directly control the “HPS_KEY_N” and “HPS_LED” pins. To do this, we will connect
pins G21 and A24 to the HPS’ GPIO peripheral.
a. Click on the “GPI053” button. This corresponds to pin A24, which is connected to “HPS_LED”.
b. Click on the “GPI054” button. This corresponds to pin G21, which is connected to
“HPS_KEY_N”.
19. We want to connect to our DE1-SoC with an SSH connection later in the tutorial, so we need to enable
the Ethernet MAC interface.
a. Configure “EMAC1 pin”to “HPS I/0 Set ©” and the “EMAC 1 mode” to “RGMII”, as shown
in Figure 9-8.
b. Click on the “GPI035” button. This corresponds to pin C19, which is connected to
“HPS_ENET_INT_N”.

[~ Ethernet Media Access Controller

EMACO pin: Unused -

EMACO mode: A

EMACI pin: HPS I/O Set O :
EMAC] mode: RGMII n

Figure 9-8. Ethernet MAC configuration

20. Our system will boot from the microSD card slot, so we need to enable the SD/MMC controller.
a. Configure “SDIO pin” to “HPS I/0 Set ©” and “SDIO mode” to “4-bit Data”, as shown in
Figure 9-9.

[~ SD/MMC Controller

SDIO pin: HFS /0 Set O | =

SDI0 mode: |4-bit Data |v|

Figure 9-9. SD/MMC configuration

22/06/2016 Page |35

DE1-SoC Guide

21. When initially configuring our system, we will need to connect a keyboard to our system. We will do
this through a serial UART connection, so we need to enable the UART controller.
a. Configure “UART® pin” to “HPS I/0 Set ©” and “UARTO mode” to “No Flow Control”, as
shown in Figure 9-10.

[~ UART controllers
UARTO pin; HPS 1/0 Set 0 | v |

UARTO mode: Mo Flow Control | w
fres]
UARTL mode: ﬂ

Figure 9-10. UART configuration

At this stage, you should have the same configuration shown in Figure 9-11.

[Ernrod

1BERIEL T

APTERVIG a0
AT (WA 1 ARIRLCLK (Sl

_CAMLTA (Km0l BPIEL MO Bk

1ZC0I08 (30t AP S0 e

Figure 9-11. Exported peripheral pins

22. Although not needed to satisfy the design goals defined in 8.4, we enable all the remaining HPS
peripherals so future designs can use any of them if needed. Adding these peripherals does not
increase FPGA resource usage as they are all hard peripherals connected directly to the HPS.

a. Configure the Quad SPI Flash controller, USB controllers, SPI controllers, and the 12C
controllers as shown in Figure 9-12.

b. Click on the “GPI009” button. This corresponds to pin B15, which is connected to
“HPS_CONV_USB_N”.

c. Click on the “GPI040” button. This corresponds to pin H17, which is connected to
“HPS_LTC_GPIO”.

d. Click on the “GPI048” button. This corresponds to pin B26, which is connected to
“HPS_I2C_CONTROL™.

e. Click on the “GPI061” button. This corresponds to pin B22, which is connected to
“HPS_GSENSOR_INT”.

[~ USB Controllers

USEO pin: Unused

&

USBO PHY interface mode: [pp
[~ Quad SPI Flash Controller

Q5P| pin: HPS /0 Set O = USB1 pin: HPS IO Set O =

SPISO pin: e 12€2 pin: Unused

Q5P mode: = USBL PHY interface mode: |SDR with PHY clock output mode |v|
[~ sPI controllers [=12C controllers

SPIMO pin: Unused - 12C0 pin: HPS /0 Set 0 |w

SPIMO mode: M/A : 12C0 mode: 12C

SPIML pin: HPS IJO Set 0 = 12C1 pin: HPS /O Set 0 :

SPIML mode: single Slave Select |v| 12€1 mode: 12C

unused [~
SPISO mode: N/A |w 12C2 mode; =
et [z onused ||

SPIS1 mode: = 12C3 mode:

H
=
Kl

22/06/2016 Page |36

DE1-SoC Guide
Figure 9-12. Quad SPI Flash, USB, SPI, and I°C peripheral pin configurations

23. In Qsys’ “System Contents” tab:
e Export “hps_0.hps_io” under the name “hps_0_io”. This is a conduit that contains all the
pins configured in the Peripheral Pins tab. We will connect these to our top-level entity later.

9.3.1.3 HPS Clocks Tab
This tab configures the clocking system of the HPS. We will generally use the default settings here, so no need
to change anything.

9.3.1.4 SDRAM Tab
This tab configures the memory subsystem of the HPS.

24. We need to configure all clocks and timings related to the memory used on our system. The DE1-SoC
uses DDR3 memory, so we need to consult its datasheet to find all the settings. The datasheet is
available at 43TR16256A-85120AL (ISSI).pdf [9] . Based on the memory’s datasheet, we can fill in
the following memory settings (you will soon see that it is quite tedious to enter these values):

e SDRAM Protocol: DDR3
e PHY Settings:
= Clocks:
e Memory clock frequency: 400.0 MHz
e PLL reference clock frequency: 25.0 MHz
= Advanced PHY Settings:
e Supply Voltage: 1.5V DDR3
e Memory Parameters:
= Memory vendor: Other
= Memory device speed grade: 800.0 MHz
= Total interface width: 32
= Number of chip select/depth expansion: 1
= Number of clocks: 1
= Row address width: 15
= Column address width: 10
= Bank-address width: 3
= Enable DM pins
= DQS# Enable
= Memory Initialization Options:
e Mirror Addressing: 1 per chip select: 0
e Mode Register 0:
O Burst Length: Burst chop 4 or 8 (on the fly)
O Read Burst Type: Sequential
O DLL precharge power down: DLL off
0 Memory CAS latency setting: 11
e Mode Register 1:
O Output drive strength setting: RZQ/7
O ODT Rtt nominal value: RZQ/4
e Mode Register 2:
0 Auto selfrefresh method: Manual
0 Selfrefresh temperature: Normal
0 Memory write CAS latency setting: 8
O Dynamic ODT (Rtt_WR) value: RzQ/4
e Memory Timing:
= IS (base): 180 ps

22/06/2016 Page |37

DE1-SoC Guide

= tIH (base): 140 ps

= DS (base): 30 ps

= tDH (base): 65 ps

= tDQSQ: 125 ps

= tQH:0.38 cycles

= tDQSCK: 255 ps

= tDQSS: 0.25 cycles

= tQSH: 0.4 cycles

= tDSH: 0.2 cycles

= tDSS: 0.2 cycles

= tINIT: 500 us

= tMRD: 4 cycles

= tRAS:35.0 ns

= tRCD:13.75ns

= tRP:13.75ns

= tREFI: 7.8 us

= tRFC:260.0 ns

= tWR:15.0ns

= tWTR: 4 cycles

= tFAW:30.0 ns

= tRRD:7.5ns

= tRTP:7.5ns

e Board Settings:

= Setup and Hold Derating:
e Use Altera's default settings

= Channel Signal Integrity:
e Use Altera's default settings

= Board Skews:
e Maximum CK delay to DIMM/device: 0.03 ns
e Maximum DQS delay to DIMM/device: 0.02 ns
e Minimum delay difference between CK and DQS: 0.06 ns
e Maximum delay difference between CK and DQS: 0.12 ns
e Maximum skew within DQS group: 0.01 ns
e Maximum skew between DQS groups: 0.06 ns
e Average delay difference between DQ and DQS: 0.05 ns
e Maximum skew within address and command bus: 0.02 ns
e Average delay difference between address and command and CK: 0.01 ns

25. In Qsys’ “System Contents®” tab:
e Export “hps_0.memory” under the name “hps_0_ddr”.

22/06/2016 Page |38

DE1-SoC Guide

26. Connect the system as shown in Figure 9-13 below:

E nios2 qsys_0 Mios Il (Classic) Processor
clk Clock Input pll_0_ou...
reset_n Reset Input [clk]
data_master \valon Memory Mapped Master [clk]
instruction_master|Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk] IRQ O IRQ 31
jtag_debug_mod... |Reset Output [clk]
' jtag_debug_mod... |Avalon Memory Mapped Slave [clk] 0x0800_0800 0x0800_0fff
custom_instructi... |Custom Instruction Master
B sysid System ID Peripheral
clk Clock Input pll_0 ou...
reset Reset Input [clk]
control_slave Bvalon Memory Mapped Slave [clk] 0x08608_1020 0x0800_1027
B jtag_uart_0 TAG UART
clk Clock Input pll_0_ou...
reset Reset Input [clk]
avalon_jtag_slave |Avalon Memory Mapped Slave [clk] 0x0800_1028 0x0800_102f
irg Interrupt Sender [clk]
& leds_0 P10 (Parallel 1/0)
clk Clock Input pll_0 ou...
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x08008_1010 0x0800_101F
external_connec... [Conduit leds_0_external_conne...
B switches 0 PIO (Parallel /0)
clk Clock Input pll_0_ou...
reset Reset Input [clik]
51 \Lwvalon Memory Mapped Slave [clk] 0x0800_1000 0x0800_l00f
external_connec... |Conduit switches_0_external_c...
B hps_0 Arria WiCyclone W Hard Proce...
memory Conduit hps_o_ddr
hps_io Conduit hps_0_io
hZf_reset Reset Output
h2f_lw_axi_clock |Clock Input pll_0 ou...
h2f lw_axi_master |AXI Master [h2f_lw_a...

Figure 9-13. Adding the "Standalone" HPS to the System

ey

At this stage, we have a functional HPS unit that can be programmed and that satisfies goals 1, 2, 3, 5, and 6
defined in 8.4. In our current system however, the HPS can only be used “standalone” and cannot access any
FPGA peripherals.

9.3.2

Interfacing with FPGA Peripherals

The next step is to connect the HPS to FPGA peripherals through one of its interface bridges. The setup we
have uses the Lightweight HPS-to-FPGA bridge to communicate with the FPGA.

27. Add a PIO component to the system for the buttons. The DE1-SoC has 4 buttons, so we will use a 4-bit

PIO component.
e Width: 4 bits
e Direction: Input
In Qsys’ “System Contents” tab:
e Rename the component to “buttons_0”
e Export “buttons_0.external_connection”

28. Add a PIO component for one of the 7-segment displays. We will use a 7-bit PIO component.

29.

30.

e Width: 7 bits

e Direction: Output

e OQutput Port Reset Value: Ox7f
In Qsys’ “System Contents” tab:

e Rename the component to “hex_0”

e Export “hex_0.external_connection”
Repeat step 28 five more times to obtain a total of six 7-segment displays “hex_0”, “hex_1”,
“hex_2”, “hex_3”, “hex_4”, and “hex_5”.
Connect the system as shown in Figure 9-14 below. Notice that we use “hps_0.h2f_reset” as the
reset signal for the components connected to the HPS. This is a design choice so we can separately
reset FPGA-only peripherals, and FPGA peripherals connected to the HPS.

22/06/2016

Page |39

DE1-SoC Guide

@ [1] | |]]

115

mEmary

hps_io

hzf_reset

hzf_lw_axi_clock

hzf_lw_axi_master
buttons_0

clk.

reset

51

external_connection
hex_0

clk.

reset

s1

external_cannection
hex_1

clk.

reset

s1

external_connection
hex_2

clk.

reset

s1

external_caonnection
hex_3

clk.

reset

s1

external_connection
hex_4

clk

reset

51

external_connection
hex_5

clk.

reset

s1

external_connection

Conduit

Reset Output

Clack Input

Ak Master

PIO (Parallel Ijor)

Clack Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel Ij0)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel Ij0)

Clack Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel Ij0)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel Ij0)

Clack Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel 1j0r)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel Ijo)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

hps_0_ddr
hps_0_io

buttons_0_external_co...

hex_0_external_connec...

hex_1_external_connec...

hex_2_external_connec...

hex_3_external_connec...

hex_4_external_connec...

hex_5_external_connec...

pll_0_outcl...
[hzf_lw_axi...

pll_0_outcl...

[clk]
[clk]

pll_0_outcl...

[cl]
[cl]

pll_0_outcl...

[clk]
[clk]

pll_0_outcl...

[cl]
[clk]

pll_0_outcl...

[clk]
[cl]

pll_0_outcl...

[clk]
[clk]

pll_0_outcl...

[ck]
[clk]

030000_0060

0x0000_0050

0x0000_0040

0x0000 0030

0z:0000_0020

030000_0010

Figure 9-14. Adding Buttons and 7-segment Displays to the Lightweight HPS-to-FPGA Bridge

0x0000_006£

Ox0000_005f

0x0000_004f

0x0000_003f

Ox0000_00Zf

0x0000_001£

Ox0000_000f

31. In the main Qsys window, select “System > Assign Base Addresses” to getrid of any error

messages regarding memory space overlaps among the different components in the system.

At this stage, we finally have a system that satisfies all goals defined in 8.4. Our design work with Qsys is now

done.

9.4 GENERATING THE QSYS SYSTEM
32. Click on the “Generate HDL” button.
33. Select “VHDL” for “Create HDL design files for synthesis”.
34. Click on the “Generate” button to generate the system.
35. Save the design and exit Qsys. When asked if you want to generate the design, select “No”, as we
have already done it in the previous step.

22/06/2016

Page |40

DE1-SoC Guide

[~ synthesis

Synthesis files are used to compile the system in a Quartus Prime project.

Create HOL design files for synthesis: jyypL u

[] Create timing and resource estimates for third-party EDA synthesis tools.

[create block symbal file {.bsf)

[~ simulation |

The simulation model contains generated HDL files for the simulator, and may include simulation-only features.
Simulation scripts for this component will be generated in a vendor-specific sub-directory in the specified output directory.

Follow the guidance in the generated simulation scripts about how to structure your design's simulation scripts and how to
use the jp-setup-simulation and jp-make-simscript command-line utilities to compile all of the files needed for simulating all of

the IP in your design.

Create simulation model: None u

|

[~ Output Directory

Path: [home/sahand/Documents/Development/github/DE1 -SoC/DEL_SoC demofhwfquartusfsdlz

Figure 9-15. Generate Qsys System

9.5 INSTANTIATING THE QSYS SYSTEM

Generate || Cancel |

You now have a complete Qsys system. The system will be available as an instantiable component in your

design files. However, in order for Quartus Prime to see the Qsys system, you will have to add the

system’s files to your Quartus Prime project.

36. Add “DE1_SoC_demo/hw/quartus/soc_system/synthesis/soc_system.qip” to the Quartus Prime

project by using “Project > Add/Remove Files in Project..”.

37. To use the Qsys system in your design, you have to declare its component, and then instantiate it.
Qsys already provides you with a component declaration. You can find it among the numerous files
that were generated. The one we are looking for is

“DE1_SoC_demo/hw/quartus/soc_system/soc_system.cmp”.

38. Copy the component declaration code in “DE1_SoC_demo/hw/hd1/DE1_SoC_top_ level.vhd”. Be
sure to instantiate the component and assign all the correct pins of the DE1-SoC board. For our demo
project, we would use the instantiation shown in Figure 9-16.

soc_system_inst : component soc_system
port map(

buttons_0_external_connection_export => KEY_N,
clk_clk => CLOCK_5@,
hex_0@_external_connection_export => HEXO_N,
hex_1_external_connection_export => HEX1_N,
hex_2_external_connection_export => HEX2_N,
hex_3_external_connection_export => HEX3_N,
hex_4_external_connection_export => HEX4_N,
hex_5_external_connection_export => HEX5_N,
hps_0_ddr_mem_a => HPS_DDR3_ADDR,
hps_©_ddr_mem_ba => HPS_DDR3_BA,
hps_0@_ddr_mem_ck => HPS_DDR3_CK_P,
hps_©_ddr_mem_ck_n => HPS_DDR3_CK_N,
hps_6_ddr_mem_cke => HPS_DDR3_CKE,
hps_©_ddr_mem_cs_n => HPS_DDR3_CS_N,
hps_0_ddr_mem_ras_n => HPS_DDR3_RAS_N,
hps_©_ddr_mem_cas_n => HPS_DDR3_CAS_N,
hps_@_ddr_mem_we_n => HPS_DDR3_WE_N,
hps_0_ddr_mem_reset_n => HPS_DDR3_RESET_N,
hps_©_ddr_mem_dq => HPS_DDR3_DQ,

22/06/2016

Page |41

DE1-SoC Guide

hps_@_ddr_mem_dqgs
hps_@_ddr_mem_dqs_n
hps_@_ddr_mem_odt
hps_0_ddr_mem_dm
hps_©@_ddr_oct_rzqin
hps_0_io_hps_io_emacl_inst_TX_CLK
hps_@ _io_hps_io_emacl_inst_TX_CTL
hps_@_io_hps_io_emacl_inst_TXDo
hps_© _io_hps_io_emacl_inst_TXD1
hps_0_io_hps_io_emacl_inst_TXD2
hps_©_io_hps_io_emacl_inst_TXD3
hps_@_io_hps_io_emacl_inst_RX_CLK
hps_©_io_hps_io_emacl_inst_RX_CTL
hps_@_io_hps_io_emacl_inst_RXD®@
hps_© _io_hps_io_emacl_inst_RXD1
hps_@_io_hps_io_emacl_inst_RXD2
hps_©_io_hps_io_emacl_inst_RXD3
hps_@ _io_hps_io_emacl_inst_MDIO
hps_0@_io_hps_io_emacl_inst_MDC
hps_@ _io_hps_io gspi_inst_CLK
hps_@_io_hps_io_gspi_inst_SSe
hps_@ _io_hps_io gspi_inst_IO@
hps_@_io_hps_io_gspi_inst_IO1
hps_@ _io_hps_io _gspi_inst_I02
hps_@_io_hps_io_gspi_inst_IO3
hps_©_io_hps_io_sdio_inst_CLK
hps_@_io_hps_io_sdio_inst_CMD
hps_© _io_hps_io_sdio_inst_D@
hps_@_io_hps_io_sdio_inst_D1
hps_© _io_hps_io_sdio_inst_D2
hps_@_io_hps_io_sdio_inst_D3
hps_©_io_hps_io_usbl_inst_CLK
hps_@_io_hps_io_usbl_inst_STP
hps_@_io_hps_io_usbl_inst_DIR
hps_0_io_hps_io_usbl_inst NXT
hps_@_io_hps_io_usbl_inst_De
hps_@ _io_hps_io usbl_inst D1
hps_@_io_hps_io_usbl_inst_D2
hps_@ _io_hps_io_usbl_inst_D3
hps_@_io_hps_io_usbl_inst_D4
hps_@ _io_hps_io_usbl_inst_D5
hps_@_io_hps_io_usbl_inst_D6
hps_© _io_hps_io_usbl_inst_D7
hps_0_io_hps_io_spiml_inst_CLK
hps_© _io_hps_io_spiml_inst_MOSI
hps_@_io_hps_io_spiml_inst_MISO
hps_© _io_hps_io_spiml_inst_SSe
hps_@_io_hps_io_uart®_inst_RX
hps_©_io_hps_io_uarte_inst_TX
hps_0_io_hps_io_i2c@_inst_SDA
hps_@_io_hps_io_i2c@_inst_SCL
hps_@ _io_hps_io_i2cl_inst_SDA
hps_@_io_hps_io_i2cl_inst_SCL
hps_@ _io_hps_io_gpio_inst_GPI009
hps_@_io_hps_io_gpio_inst_GPIO035
hps_@ _io_hps_io gpio_inst_GPIO40
hps_@_io_hps_io_gpio_inst_GPI048
hps_@ _io_hps_io_gpio_inst_GPIO53
hps_@ io_hps_io gpio_inst_GPIO54

HPS_DDR3_DQS_P,
HPS_DDR3_DQS_N,
HPS_DDR3_ODT,
HPS_DDR3_DM,
HPS_DDR3_RZQ,
HPS_ENET_GTX_CLK,
HPS_ENET_TX_EN,
HPS_ENET_TX_DATA(®),
HPS_ENET_TX_DATA(1),
HPS_ENET_TX_DATA(2),
HPS_ENET_TX_DATA(3),
HPS_ENET_RX_CLK,
HPS_ENET_RX_DV,
HPS_ENET_RX_DATA(®),
HPS_ENET_RX_DATA(1),
HPS_ENET_RX_DATA(2),
HPS_ENET_RX_DATA(3),
HPS_ENET_MDIO,
HPS_ENET_MDC,
HPS_FLASH_DCLK,
HPS_FLASH_NCSO,
HPS_FLASH_DATA(®),
HPS_FLASH_DATA(1),
HPS_FLASH_DATA(2),
HPS_FLASH_DATA(3),
HPS_SD_CLK,
HPS_SD_CMD,
HPS_SD_DATA(®),
HPS_SD_DATA(1),
HPS_SD_DATA(2),
HPS_SD_DATA(3),
HPS_USB_CLKOUT,
HPS_USB_STP,
HPS_USB_DIR,
HPS_USB_NXT,
HPS_USB_DATA(®),
HPS_USB_DATA(1),
HPS_USB_DATA(2),
HPS_USB_DATA(3),
HPS_USB_DATA(4),
HPS_USB_DATA(5),
HPS_USB_DATA(6),
HPS_USB_DATA(7),
HPS_SPIM_CLK,
HPS_SPIM_MOSI,
HPS_SPIM_MISO,
HPS_SPIM_SS,
HPS_UART_RX,
HPS_UART_TX,
HPS_I2C1_SDAT,
HPS_I2C1_SCLK,
HPS_I2C2_SDAT,
HPS_I2C2_SCLK,
HPS_CONV_USB_N,
HPS_ENET_INT_N,
HPS_LTC_GPIO,
HPS_I2C_CONTROL,
HPS_LED,

HPS_KEY_N,

22/06/2016

Page | 42

DE1-SoC Guide

hps_@ _io_hps_io_gpio_inst_GPIO61 => HPS_GSENSOR_INT,
leds_0_external_connection_export => LEDR,
pll @ sdram_clk => DRAM_CLK,
reset_reset_n => '1",
sdram_controller_0_wire_addr => DRAM_ADDR,
sdram_controller_0_wire_ba => DRAM_BA,
sdram_controller_0_wire_cas_n => DRAM_CAS N,
sdram_controller_0_wire_cke => DRAM_CKE,
sdram_controller_© wire_cs_n => DRAM_CS_N,
sdram_controller_0_wire_dq => DRAM_DQ,
sdram_controller_0_wire_dqm(1) => DRAM_UDQM,
sdram_controller_0_wire_dqm(0) => DRAM_LDQM,
sdram_controller_@ wire_ras_n => DRAM_RAS_N,
sdram_controller_0_wire_we_n => DRAM_WE_N,
switches_©_external_connection_export => SW

)s

Figure 9-16. Qsys Component Instantiation

39. After finishing the design, REMOVE all unused pins from the top-level VHDL file. Your top-level entity
should look like the one shown in Figure 9-17.

entity DE1_SoC_top_level is
port(

-- CLOCK
CLOCK_50 : in std_logic;
-- SDRAM
DRAM_ADDR : out std_logic_vector(12 downto 0);
DRAM_BA : out std_logic_vector(l downto 9);
DRAM_CAS_N : out std_logic;
DRAM_CKE . out std_logic;
DRAM_CLK : out std_logic;
DRAM_CS_N . out std_logic;
DRAM_DQ : inout std_logic_vector(1l5 downto 0);
DRAM_LDQM . out std_logic;
DRAM_RAS_N : out std_logic;
DRAM_UDQM . out std_logic;
DRAM_WE_N : out std_logic;
-- SEG7
HEXO@_N : out std_logic_vector(6 downto 0);
HEX1_N : out std_logic_vector(6 downto 9);
HEX2_N : out std_logic_vector(6 downto 0);
HEX3_N : out std_logic_vector(6 downto 9);
HEX4_N : out std_logic_vector(6 downto 0);
HEX5_N : out std_logic_vector(6 downto 9);
-- KEY_N
KEY_N : in std_logic_vector(3 downto 0);
-- LED
LEDR : out std_logic_vector(9 downto 0);
-- SW
SW : in std_logic_vector(9 downto 0);
-- HPS
HPS_CONV_USB_N ¢ inout std_logic;
HPS_DDR3_ADDR : out std_logic_vector(14 downto 0);

22/06/2016 Page |43

DE1-SoC Guide

HPS_DDR3_BA : out
HPS_DDR3_CAS_ N : out
HPS_DDR3_CK_N : out
HPS_DDR3_CK_P : out
HPS_DDR3_CKE : out
HPS_DDR3_CS_N : out
HPS_DDR3_DM : out
HPS_DDR3_DQ ¢ inout
HPS_DDR3_DQS_N : inout
HPS_DDR3_DQS_P : inout
HPS_DDR3_0ODT : out
HPS_DDR3_RAS_N : out
HPS_DDR3_RESET_N : out
HPS_DDR3_RZQ : in
HPS_DDR3_WE_N : out
HPS_ENET_GTX_CLK : out
HPS_ENET_INT_N : inout
HPS_ENET_MDC : out
HPS_ENET_MDIO : inout
HPS_ENET_RX_CLK : in
HPS_ENET_RX_DATA : in
HPS_ENET_RX_DV : in
HPS_ENET_TX_DATA : out
HPS_ENET_TX_EN : out
HPS_FLASH_DATA : inout
HPS_FLASH_DCLK : out
HPS_FLASH_NCSO : out
HPS_GSENSOR_INT : inout
HPS_I2C_CONTROL : inout
HPS_I2C1_SCLK : inout
HPS_I2C1_SDAT : inout
HPS_I2C2_SCLK : inout
HPS_I2C2_SDAT : inout
HPS_KEY_N ¢ inout
HPS_LED : inout
HPS_LTC_GPIO ¢ inout
HPS_SD_CLK : out
HPS_SD_CMD ¢ inout
HPS_SD_DATA : inout
HPS_SPIM CLK : out
HPS_SPIM_MISO ¢ in
HPS_SPIM_MOSI : out
HPS_SPIM_SS ¢ inout
HPS_UART_RX : in
HPS_UART_TX : out
HPS_USB_CLKOUT : in
HPS_USB_DATA : inout
HPS_USB_DIR : in
HPS_USB_NXT : in
HPS_USB_STP . out
)
end entity DE1_SoC_top_level;

std_logic_vector(2 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(3 downto 0);
std_logic_vector(3 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(7 downto 0);
std_logic;

std_logic;

std_logic

Figure 9-17. Final Top-level Entity

22/06/2016

Page | 44

DE1-SoC Guide

9.6 HPS DDR3 PIN ASSIGNMENTS
In a normal FPGA design flow, you would be able to compile your design at this stage. However, this isn’t
possible at the moment in our design. The reason is that the HPS’ DDR3 pins assignments have not been
performed yet.

How is this possible? We said earlier that our TCL script assigns pin locations and 1/0 standards to all pins
names in “DE1_SoC_top_level.vhd”. The truth is that it assigns values for all pin names, except those
related to the HPS’ DDR3 memory. The reason is that the DDR3 pin assignments depend on how you
parameterize the HPS memory timings in Qsys. Our TCL script could not have known what timings you
were going to use, so it doesn’t set those pin locations and 1/0O standards.

However, Qsys knows what the parameters are (since you provided it with all the necessary information),
and it has generated a custom TCL script for the HPS DDR3 pin assignments.

40. Start the “Analysis and Synthesis” flow to perform a preliminary analysis of the system.
41. Goto “Tools > Tcl Scripts..” in Quartus Prime.

IF AT THIS POINT YOU DO NOT SEE THE SAME THING AS ON Figure 9-18, THEN CLOSE AND
RELAUNCH QUARTUS PRIME AGAIN. SOME VERSIONS OF QUARTUS PRIME SUFFER FROM A BUG,
WHERE THE PROGRAM DOESN’T CORRECTLY DETECT TCL FILES GENERATED BY QSYS. YOU SHOULD
SEE THE SAME THING AS ON Figure 9-18.

Tel Scripts

Libraries:

=] Project Edit

= db
=] sld57baccdf
alt_sld_fab_wrapper_hw.tcl
pin_assignment_DE1_SoC.tcl
= soc_system
=] synthesis
& submodules

hps_sdram_p0_parameters.tcl

hps_sdram_p0_pin_assignments.tcl
hps_sdram_p0_pin_map.tcl
hps_sdram_p0_report_timing.tcl
hps_sdram_p0_report_timing_core.tcl
hps_sdram_p0_timing.tcl

Preview:

(C) 2001-2015 Altera Corporation. All rights reserved.
#Your use of Altera Corporation’s design tools, logic functions and other

software and tools, and its AMPP partner logic functions, and any output

files any of the foregoing (including device programming or simulation

files), and any associated documentation or information are expressly subject

to the terms and conditions of the Altera Program License Subscription

Agreement, Altera MegaCore Function License Agreement, or other applicable @

AT T T [T I T i T

[Crm][cose |[vep |

Figure 9-18. Correct HPS DDR3 Pin Assignment TCL Script Selection

42. Execute “hps_sdram_p®_pin_assignments.tcl”.
43. You can now start the full compilation of your design with the “Start Compilation” flow.

At this point, we have finished the hardware design process and can proceed to programming the FPGA.

9.7 WIRING THE DE1-SoC
Connect the DE1-SoC as shown in Figure 9-19. We connect the

e Power cable

22/06/2016 Page |45

DE1-SoC Guide

e USB-Blaster cable
e Ethernet cable
e UART cable

(AR

Figure 9-19. DE1-SoC Wiring

Note that the microSD card is NOT plugged in at this point.

9.8 PROGRAMMING THE FPGA
44. Open the Quartus Prime Programmer.

File Edit VMiew Processing JTools Window Help :edba

l | @

_3‘ Hardware Setup... DE-SoC [2-1.2] Mode: |JTAG

| Enable real-time ISP to allow background programming when available

[T File : Device : ChecksumE Usercode . Program/ . Verify

. Blank- . Examine . Security Erase. ISP
Configure © Check ° : Bit

clamp -
ah stop

i auto Detect
{ Delete
M add File...
& change File..|
e save File
% Add Device. .
i up
Ji pown

Figure 9-20. Quartus Prime Programmer

45. Choose the “Auto Detect” button on the left of Figure 9-20, then choose “5CSEMA5”, as shown in
Figure 9-21.

22/06/2016 Page | 46

DE1-SoC Guide

ﬂ’@ Select Device @k @'
' with shared JTAG ID for device 1. Please select

Figure 9-21. FPGA Selection

You should now see 2 devices on the JTAG scan chain, as shown in Figure 9-22.

TDI N H H H
— L N
SCSEMAS SOCVHPS

TDO

F Y

Figure 9-22. JTAG Scan Chain

46. Right-click on the “S5CSEMA5” device shown in Figure 9-22 and choose “Edit > Change File”. Then,
select “DE1_SoC_demo/hw/quartus/output_files/DE1_SoC_demo.sof” through the file browser.

47. Enable the “Program/Configure” checkbox for device “5CSEMA5F31”, then press the “Start”
button, as shown in Figure 9-23.

File Edit View Processing Tools Window Help :edba .
& rortvre st REGETAA T s o) orogress: [rom (e

D Enable real-time ISP to allow background programming when available

output_files/DEl_S. SCSEMASF3L 0159CFBE 0158CFBE
<none= SOCVHPS 00000000 <none=

|E
(]
-
(]
-
-
-

Figure 9-23. Programming the FPGA

We are now done with the Quartus Prime program, and will no longer need it for the rest of this tutorial.

22/06/2016 Page |47

DE1-SoC Guide

9.9 CREATING TARGET SDCARD ARTIFACTS
Later in this tutorial, we will sometimes want to avoid having to manually program the FPGA through the
Quartus Prime programmer, and would instead like the HPS to take care of this programmatically.

Quartus Prime generates an SRAM Object File (.sof) as its default FPGA target image. However, the HPS can
only program the FPGA by using a Raw Binary File (.rbf). Therefore, we must convert our .sof filetoa .rbf
to later satisfy this requirement.

48. Execute the following command to convert the . sof file to a . rbf file
$ quartus_cpf -c \
DE1_SoC_demo/hw/quartus/output_files/DE1_SoC_demo.sof \
DE1_SoC_demo/sdcard/fat32/socfpga.rbf

22/06/2016 Page |48

DE1-SoC Guide

10USING THE CYCLONE V - FPGA - N10S Il - BARE-METAL

10.1PROJECT SETUP

1. Launch the Nios Il SBT IDE by executing the following command.
$ eclipse-nios2

2. Choose “File > New > Nios II Application and BSP from Template”.

a. Allthe information needed to program a Nios Il processor is contained within the
“.sopcinfo” file created by Qsys. For the “SOPC Information File name” use
“DE1_SoC_demo/hw/quartus/soc_system.sopcinfo”.

b. Use “DE1_SoC_demo_nios” as the project name.

c. Disable the “Use default location” checkbox

d. Use “DE1_SoC_demo/sw/nios/application/DE1_SoC_demo_ nios” as the project location.

e. Choose the “Blank Project” template.

f. Click on the “Finish” button to create the project.

3. Right-click on the “DE1_SoC_demo_nios” project folder and select “New > Source file”. Use the
default C source template, and set “nios.c” as the file name.

4. Right-click on the “DE1_SoC_demo_nios_bsp” project, and select “Build Project”. Once the build is
completed, a number of files will be generated, the most useful of which is the “system.h” file. This
file contains all the details related to the Nios Il processor’s various peripherals, as defined in Qsys in
9.2.

10.2Ni10s II PROGRAMMING THEORY — ACCESSING PERIPHERALS

The Nios Il processor can be programmed in C similarly to any other microcontroller. However, care must be
taken when accessing any of the processor’s peripherals. Depending on which version of the Nios Il you
instantiated in Qsys, you may not be able to correctly read data at a peripheral’s address space using pointers.
The issue arises when your Nios Il processor has a data cache.

Suppose we use the code in Figure 10-1 to read data from the switches of our Qsys design.

#include <stdbool.h>
#include <inttypes.h>
#include "system.h"

int main() {
uint32_t *p_switches = SWITCHES_©_BASE;
while (true) {

alt_u32 switches_value
printf("switches_value

*p_switches;
%" PRIX32 "\n", switches_value);

}

return 0;

Figure 10-1. Incorrect Nios Il Peripheral Access in C

When this code is run, the initial value of the “switches_value” variable, as obtained from the first iteration
of the while loop, will be the correct representation of the switches’ state. However, at each iteration of the
while loop, the “switches_value” variable will NEVER change again, even if the switches are flipped
between each iteration. The issue is that each successive access is being served by the data cache, which
doesn’t see that the switches have been modified.

The solution to this issue is to use special instructions that bypass the data cache when reading or writing to
peripherals. These instructions are part of the |0 family of load and store instructions and bypass all caches.

22/06/2016 Page |49

DE1-SoC Guide

The available instructions are listed below, and an example of how to correctly access Nios Il peripherals is
shown in Figure 10-2.

e Reading

= TORD_SDIRECT(BASE, OFFSET)
= TORD_16DIRECT(BASE, OFFSET)
= TORD_32DIRECT(BASE, OFFSET)

o Writing

= TIOWR_8DIRECT(BASE, OFFSET, DATA)
= TOWR_16DIRECT(BASE, OFFSET, DATA)
= TOWR_32DIRECT(BASE, OFFSET, DATA)

#include <stdbool.h>
#include <inttypes.h>
#include "system.h"
#include “io.h”

int main() {
while (true) {
uint32_t switches_value = IORD_32DIRECT(SWITCHES_©_BASE, 0);
printf("switches_value = %" PRIx32 "\n", switches_value); }
return 0;

Figure 10-2. Correct Nios Il Peripheral Access in C

10.3Ni10s Il PROGRAMMING PRACTICE
5. Write the code provided in Figure 10-3 in “nios.c”. The code instructs the Nios Il processor to create
a strobing light effect on its 10 peripheral LEDs. The processor’s 10 peripheral switches are used as
enable signals for each corresponding LED. This corresponds to specification 1 in 8.4.

#include <stdio.h>

#include <stdint.h>

#include <unistd.h>

#include "io.h"

#include "altera_avalon_pio_regs.h"
#include "system.h"

#define LEDS_MAX_ITERATION (1000)
#define SLEEP_DELAY_US (100 * 1000)

void rotate_leds() {
int loop_count = 0;
int leds_mask = @x01;

// 8/1 = left/right direction
int led_direction = 0;

while (loop_count < LEDS_MAX_ITERATION) {
uint32_t switches_value = IORD_ALTERA_AVALON_PIO DATA(SWITCHES_© BASE);

uint32_t leds_value = ~leds_mask;

// only turn on leds which have their corresponding switch enabled
IOWR_ALTERA_AVALON_PIO_DATA(LEDS_© BASE, leds_value & switches_value);

usleep(SLEEP_DELAY_US);

if (led_direction == @) {

22/06/2016 Page |50

DE1-SoC Guide

leds_mask <<= 1;

if (leds_mask == (@x01 << (LEDS_@_DATA_WIDTH - 1))) {
led_direction = 1;

}

} else {

leds_mask >>= 1;

if (leds_mask == 0x01) {
led_direction = 0;
loop_count++;

int main() {
rotate_leds();
return 0;

Figure 10-3. nios.c

6. Right-click on “DE1_SoC_demo_nios” project, and select “Build Project”.

7. The code is now ready to be run on the FPGA. Right-click on “DE1_SoC_demo_nios” project, and

select “Run As > Nios II Hardware”. You should be able to see a strobing light effect on the 10

FPGA LEDs. You can use the 10 FPGA switches as enable signals for the corresponding LED.

8. Insome cases, it is possible that the program will not immediately run on the Nios Il processor, and

you will be prompted with a “Target Connection” dialog, as shown in Figure 10-4. If your Nios Il

CPU doesn’t appear in the list of available processors, then
a. Click on the “Refresh Connections” button on the right of Figure 10-4.
b. Click on the “Run” button to finish.

MName: DEl_SoC_demo_nios Nios II Hardware configuration

Project [Jll Target Conneckion s %5 Debugger| E Common| B Source

Connections
Processors:

Cable | Device | Device 1D | Instance ID| MName |Architecture |

Refresh Connections

DE-SoC on localhost [1-1.2] [SCSE(BAS... |1 [¢] [nios2 gs... [Nios2:3 |

Resolve Names

| Systemn ID Propertie. .. |

Byte Stream Dewvices:
Cable | Device | Device 1D | Instance D | Mame | Version

DE-SoC on localhost [1-1.2] [SCSE(BAS... |1 [¢] [1taguart @ [1

[| Disable 'Nios Il Console' view

Quartus Project File name:|= Using default .sopcinfo & jdi files extracted from ELF =
System ID checks

[]1gnore mismatched system 1D

[]lgnore mismatched system timestamp

Download

Download ELF to selected target system

Start processor
[| Reset the selected target system

Figure 10-4. Nios Il Target Connection Dialog

We now have a programmed Nios |l processor on the FPGA. Of course, the design we had specified didn’t
require the power of a Nios Il processor, and could have easily been done in pure VHDL. Nevertheless, the

22/06/2016 Page |51

DE1-SoC Guide

idea was to show that one can have a secondary programmable processor functioning on the FPGA parallely
to the HPS. We are now done with the Nios Il SBT IDE, and will no longer need it for the rest of this tutorial.

22/06/2016 Page |52

DE1-SoC Guide

11USING THE CYLONE V - HPS - ARM - GENERAL

11.1PARTITIONING THE SDCARD
The DE1-SoC needs to boot off of a microSD card, so we need to partition it appropriately before we can write
toit.

1. Plug your sdcard into your computer.
2. Find out the device’s identifier. When writing this tutorial, the sdcard was recognized as entry
“/dev/sdb” on my computer.

Please be careful and choose the correct /dev/sdX or /dev/mmcblkX entry for your sdcard. Failure to do so will
ensure that the following commands will WIPE THE WRONG PARTITION OFF OF YOUR MACHINE, which will
be a most unfortunate outcome!

3. Wipe the partition table of the sdcard by executing the following command.
$ sudo dd if=/dev/zero of=/dev/sdb bs=512 count=1

4. Manually partition the device by using the “fdisk” command. “fdisk” is an interactive program, so
you have to interactively provide the configuration of your device. You can do this by using the
following sequence of commands whenever “fdisk” prompts you for what to do.

The fdisk commands shown below were executed on version 2.27.1 of the fdisk utility. Other versions
of fdisk have different interfaces, and you will have to adapt the commands accordingly.

$ sudo fdisk /dev/sdx

use the following commands
n p 3 <default> 4095 t a2 (2048 is default first sector)
n p 1 <default> +32M t 1 b (4096 is default first sector)
n p 2 <default> +512M t 2 83 (69632 is default first sector)
#w

Figure 11-1. Partitioning the sdcard

5. Create the required filesystems on the device. We need a FAT32 partition for various boot-time files
(FPGA raw binary file, linux kernel zimage file, U-Boot configuration script ...), and an EXT3 partition
for the linux root filesystem.

$ sudo mkfs.vfat /dev/sdbl
$ sudo mkfs.ext3 -F /dev/sdb2

11.2 GENERATING A HEADER FILE FOR HPS PERIPHERALS
We need the HPS to be able to programmatically access peripherals that are part of the FPGA fabric. In order
to do this, we must generate a header file.

1. Execute the following command.
$ sopc-create-header-files \
DE1_SoC_demo/hw/quartus/soc_system.sopcinfo \
--single DE1_SoC_demo/sw/hps/application/hps_soc_system.h
--module hps_©

Figure 11-2 shows a short extract of the generated “hps_soc_system.h” header file. At the top of the file, it
says that macros for devices connected to master port “h2f_1w_axi_master” of module “hps_0” have been
generated.

/*
* This file contains macros for module 'hps_©' and devices

22/06/2016 Page |53

DE1-SoC Guide

* connected to the following master:

* h2f_lw_axi_master

*

* Do not include this header file and another header file created for a

* different module or master group at the same time.

* Doing so may result in duplicate macro names.

* Instead, use the system header file which has macros with unique names.
*/

/*
* Macros for device 'hex_5', class 'altera_avalon_pio'
* The macros are prefixed with 'HEX_5_"'.
* The prefix is the slave descriptor.
*/
#define HEX_5_COMPONENT_TYPE altera_avalon_pio
#define HEX_5_COMPONENT_NAME hex_5
#tdefine HEX_5_BASE 0x0
#define HEX_5_SPAN 16
#define HEX_5_END Oxf

Figure 11-2. hps_soc_system.h

11.3HPS PROGRAMMING THEORY
The HPS works just like any other “microcontroller”.

e |If you want to access a peripheral, you have to read/write at its address.
e If a peripheral is connected to a bus, its address is obtained by adding its offset in the bus to the bus’
address.

Altera provides useful utility functions in

“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/include/soc
_cv_av/socal/socal.h”, a few of which are listed below. Most functions exist for multiple sizes. These sizes
are summarized in Table 11-1. Note that “socal” means “SoC Abstraction Layer”.

e alt write_byte(dest_addr, byte data)

e alt read_byte(src_addr)

e alt_setbits_byte(dest_addr, byte_data)

e alt clrbits_byte(dest_addr, byte data)

e alt xorbits_byte(dest_addr, byte data)

e alt replbits_byte(dest_addr, msk, byte_data)

Name Size (bits)

byte 8
hword 16
word 32
dword 64

Table 11-1. Predefined Data Sizes in socal.h

Up until this point, the hardware and software design process has been IDENTICAL for both BARE-METAL and
LINUX HPS applications. This is where the design process DIVERGES between bare-metal and linux HPS
applications. If you want to write a bare-metal application for the HPS, then read section 12. If instead you
want to write a linux application for the HPS, then read section 13.

Note: In addition to the example used in this tutorial, you can find many more in
“<altera_install directory>/<version>/embedded/examples/software/”

22/06/2016 Page |54

DE1-SoC Guide

12USING THE CYCLONE V - HPS - ARM - BARE-METAL

12.1 PRELOADER

In Figure 7-8, we saw that a bare-metal application can only be launched after the preloader has setup the
HPS. So, the first thing that needs to be done for bare-metal applications is to generate and compile a
preloader for the HPS.

12.1.1 Preloader Generation
1. Execute the following command to launch the preloader generator.
$ bsp-editor

2. Choose “File > New BSP..”.

a. The preloader will need to know which of the HPS’ peripherals were enabled so it can
appropriately initialize them in the boot process. Under “Preloader settings directory?”,
select the “DE1_SoC_demo/hw/quartus/hps_isw_handoff/soc_system_hps_0” directory.
This directory contains settings relative to the HPS’ HARD peripherals, as configured in the
“Arria V/Cyclone V Hard Processor System” component in Qsys.

b. Disable the “Use default locations” checkbox and under the “BSP target directory”,
select the “DE1_SoC_demo/sw/hps/preloader” directory. You should have something similar
to Figure 12-1.

New BSFP

Hardware

Preloader settings directory: |:-CJ‘DEl_SoC_den'u:-fhwfql.|ar‘tuthps_isw_hand-:fffsoc_systen'u_hps_0| I:I

Software

Operating system: |U—Boot SPL Preloader (Cyclo. .. |v| Version: |default :

[] Use default locations

BSP target directory: |nt5fDeveI-:pment.“githul:-,’DEl-S-:C,’DEl_SoC_demofswfhps{preloader’| I:I

BSP Settings File name: |1ent,’githle,fDE1—SOC,fDEl_SOC_dem0,’5w,‘hps,fpreloaderfsettings.bsp| I:I

Enable Settings File relative paths

[]Enable Additional Tcl script

| O || Cancel

Figure 12-1. New BSP Dialog

c. Pressthe “OK” button. You should then arrive on a page with many settings, as shown on
Figure 12-2. Take some time to read through them to see what the preloader has the ability to
do.

22/06/2016 Page |55

DE1-SoC Guide

File Help
l/ Main |
SOPC Information ...
CPU name:
Operating system: Preloader Version: :
BSP target directory: ./
9 Eett\ngs ‘| spl.reset_assert =]
#- Common [Lawp1
7 spl ;
PRELOADER TGZ : (L] 0SCITIMERL T
CROSS_COMPILE [] SPTIMERD
¢~ boot : [SPTIMERL |
BOOT_FROM_QSPI E
BOOT_FROM_SDMMC : L erico
BOOT_FROM_NAND : [l Grio1
BOOT_FROM_RAM []arioz
QSPI_MEXT_BOOT_IMAGE [DMA
SOMMC_NEXT_BOOT_IMAGE E [soR
MAND_MEXT_BOOT_IMAGE q handshak
FAT_SUPPORT sSp .warm_reset_ andshake
FAT BOOT PARTITION : FPGA
FAT LOAD_PAYLOAD_NAME ETR
¢ Advanced :
o gpl : [[] SDRAM <
r Information r Problems r Processing
@ searching for BSP components with category: driver_element
@ Searching for BSP components with category: software_package_element
@ Added operating system component "spl:1.0"

Figure 12-2. Preloader Settings Dialog

3. On the main settings page of Figure 12-2, we will only need to modify 2 parameters for our design.

a. Under “spl.boot”, disable the “WATCHDOG_ENABLE” checkbox. This is necessary to prevent
the system from being automatically reset after a certain time has elapsed. Note that we only
disable this option since we intend on writing a bare-metal program and want to simplify the
code. Any operating system would periodically write to the watchdog timer to avoid it from
resetting the system, and this is a good thing.

b. Under “spl.boot”, enabled the “FAT_SUPPORT” checkbox. This option configures the
preloader to load the image of the next boot stage from the FAT32 partition of the sdcard
(instead of from a binary partition located immediately after the preloader on the sdcard).
The image of the next boot stage is named “u-boot.img” by default, but can be modified by
editing “spl.boot.FAT_LOAD PAYLOAD NAME”. We will leave the default name for this
tutorial.

c. Pressthe “Generate” button to finish. You can then exit the bsp-editor.

4. Execute the following command to build the preloader.

$ cd DE1_SoC_demo/sw/hps/preloader
$ make

IF YOU EVER DECIDE TO MOVE THE “DE1_SoC_demo” PROJECT DIRECTORY DEFINED IN FIGURE 8-1, YOU
WILL HAVE TO REGENERATE THE PRELOADER. UNFORTUNATELY, THE SCRIPT PROVIDED BY ALTERA WHICH
GENERATES THE PRELOADER HARD-CODES MULTIPLE ABSOLUTE PATHS DIRECTLY IN THE RESULTING FILES,

RENDERING THEM USELESS ONCE MOVED.

12.1.2 Creating Target sdcard Artifacts

5. Copy the preloader binary to the sdcard target directory. Execute the following command.
$ cp\
DE1_SoC_demo/sw/hps/preloader/preloader-mkpimage.bin \
DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin

12.2ARM DS-5

6. Launch the ARM DS-5 IDE by executing the following command.
$ eclipse

22/06/2016 Page |56

DE1-SoC Guide

12.2.1 Setting Up a New C Project
7. Create a new C project by going to “File > New > Project > C/C++ > C Project”.

a.
b.
C.

Use “DE1_SoC_demo_hps_baremetal” as the project name.

Disable the “Use default location” checkbox.

Set “DE1_SoC_demo/sw/hps/application/DE1_SoC demo_hps baremetal” as the target
location for the project.

We want to create a single output executable for our project, so choose “Executable >
Empty Project” as the project type.

Choose “Altera Baremetal GCC” asthe Toolchain.

You should have something similar to Figure 12-3. Then, press the “Finish” button to create
the project.

C Project

C Project

Project name: DEl_SoC demo_hps_baremetal

Use default locatien
Location: fhome/sahand/Documents/Development /github/DEl-SoC/DEL_SoC_demo/sw/hps, EBrowse. ..

Choose file system: |default =

Project type: Toolchains:
¥ &= Executable ARM Compiler 5 (DS-5 built-in)
® Empty Project ARM Compiler 6 (DS-5 built-in)
® Hello world ANSI C Project
b = Shared Library GCC 4.x [arm-linux-gnueabihf] (DS-5 built-in)
P (= Static Library GCC for ARM Bare-metal
> = Makefile project Linux GCC

& show project types and toclchains only if they are supported on the platform

@j = Back Next = Einish Cancel

Figure 12-3. New C Project Dialog

8. When programming the HPS, we will need access to a few standard header and linker files provided
by Altera. We need to add these files to the ARM DS-5 project.

a.
b.

Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “Properties™.

We are going to use Altera’s HWLIB to develop our bare-metal application, so we need to
define a macro that is needed by the library to know which board is being targetted.

Under “C/C++ Build > Settings > GCC C Compiler > Symbols”, add “soc_cv_av” to
the “Defined symbols (-D)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include” to the “Include paths (-I)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include/soc_cv_av” to the “Include paths (-I)” list.

Since we are not going to be running any operating system, we will need to use a linker script
in order to correctly layout our bare-metal program in memory. Altera provides linker scripts
for the HPS’ on-chip memory, as well as for it’'s DDR3 memory. We want our code to be
loaded in the HPS’ DDR3 memory and will not use any on-chip memory in our design, so we

22/06/2016

Page |57

DE1-SoC Guide

will use the DDR3 linker script.
Under “C/C++ Build > Settings > GCC C Linker > Image”, setthe linker script to
“<altera_install_directory>/<version>/embedded/host_tools/mentor/gnu/arm/bar
emetal/arm-altera-eabi/lib/cycloneV-dk-ram-HOSTED.1d”. The “hosted” script
allows the bare-metal application to use some of the host’s functionality. In this case, we use
the “hosted” script to be able to see the output of the printf() function on the host’s
console.

f. Click on the “Apply” button, then on the “Ok” button to close the project properties dialog.

12.2.2 Writing a DS-5 Debug Script
In Figure 7-8, we saw that a bare-metal application cannot run immediately upon boot, and that the HPS must

first go through the preloader. The preloader executes, and, before terminating, it jumps to the next stage of
the user software. In the case of a bare-metal application, the preloader jumps to the start of the bare-metal

code.

Jumping directly to the bare-metal code is useful for production environments, but it would be great if we
could use a debugger when testing our bare-metal code. To do this, we will use a DS-5 DEBUG SCRIPT to
instruct the DS-5 debugger exactly how to load our application in the HPS’ memory. This debugger script will
load and execute the preloader, then jump to our bare-metal code.

9.

10.

Create a new file for our DS-5 debug script and save it under
“DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal/debug_setup.ds”.
Populate the file with the code shown in Figure 12-4. This script tells the debugger to load the
prealoder, then to load our bare-metal application. This is performed by placing a breakpoint at the
very last function executed by the preloader prior to handing control of the cpu to the next boot
stage. This function is “spl_boot_device()”, which is responsible for choosing the next boot
medium on the DE1-SoC and jumping to it’s address. For bare-metal applications, we don’t want the
boot process to continue on towards another device. Instead, we want to load our bare-metal code
and jump to it’s address. This is exactly what the debug script in Figure 12-4 does.

Reset and stop the system.
stop

wait 5s

reset system

wait 5s

Delete all breakpoints.
delete breakpoints

Disable semihosting
set semihosting enabled false

Load the preloader.
loadfile "$sdir/../../preloader/uboot-socfpga/spl/u-boot-spl" ©xeo

Enable semihosting to allow printing even if you don't have a uart module
available.
set semihosting enabled true

Set a breakpoint at the "spl_boot_device()" function. This function is the

last step of the preloader. It looks for a boot device (gqspi flash, sdcard,

fpga), and jumps to that address. For our bare-metal programs, we don't want
to use any boot device, but want to run our own program, so we want the

processor to stop here. Then, we will modify its execution to make it run our
program.

tbreak spl_boot_device

22/06/2016 Page |58

DE1-SoC Guide

Set the PC register to the entry point address previously recorded by the
"load" or "loadfile" command and start running the target.

run

Instruct the debugger to wait until either the application completes or a
breakpoint is hit. In our case, it will hit the breakpoint.
wait

Load our bare-metal program.
loadfile "$sdir/Debug/DE1_SoC_demo_hps_baremetal.axf"

Set a breakpoint at our program's "main()" function.
tbreak main

Start running the target.

run

wait at main().
Wait

Figure 12-4. debug_setup.ds

For a comprehensive list of commands supported by the DS-5 debugger, please refer to [10].

12.2.3 Setting Up the Debug Configuration
11. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “Debug As > Debug
Configurations..”.
12. Choose to create a new debugger configuration by right-clicking on “DS-5 Debugger” on the left and
selecting “New”. Use “DE1_SoC_demo_hps_baremetal” as the name of the new debug configuration.
13. Under the “Connection” tab:
a. Use “Altera > Cyclone V SoC (Dual Core) > Bare Metal Debug > Debug Cortex-
A9_0” as the target platform.
b. Setthe “Target Connection” to “USB-Blaster”.
Use the “Browse” button to select the DE1-SoC that is connected to your machine.
d. You should have something similar to Figure 12-5.

Name: DEl_SoC demo_hps_baremetal

- i lles |8 Debugger| % - % Env
Connection . (@ Files | %8 Debugger | “& OS5 Awareness Arguments Environment

"=

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Altera / Cyclone V SoC (Dual Core) / Bare Metal Debug / Debug Cortex-A9_0

¥ Altera -
B ArriaV SoC
¥ CycloneV SoC (Dual Core)
¥ Bare Metal Debug

Debug Cortex-A9_0

Debug Cortex-A9_1
Debug Cortex-A%9x2 SMP

Target Connection | USB-Blaster 2
DTSL Options Edit... Configure USB-Blaster trace or other target options. Using "default” configuratior
DS-5 Debugger will connect to an Altera USB-Blaster to debug a bare metal application.

Connections

Bare Metal Debug | Connection DE-SoC on localhost [1-1.1]:DE-SeC 1-1.1 Browse...

Apply Revert

22/06/2016 Page |59

DE1-SoC Guide
Figure 12-5. Debug Configuraton “Connection” Tab

14. Under the “Files” tab:

a. Leavethe “Application on host to download” empty. We do this since we are using a
debug script to instruct the debugger how to load our application.

b. In9.3.2, we configured our HPS to use some FPGA peripherals. We can instruct the debugger
about this so it can show more detailed information when debugging. To do this, set the
combobox to “Add peripheral description files from directory” and setitto the
“DE1_SoC_demo/hw/quartus/soc_system/synthesis” directory, as shown in Figure 12-6.
This directory contains a file called “soc_system_hps_0_hps. svd” which has information on
all of the HPS’ peripherals which are in the FPGA fabric.

Mame: DEl_SoC_demo_hps_baremestal
<= Connection . [i Files | % Debugger| @ OS Awareness | ®- Argurnents | B§ Environment
Target Configuration

Application on hest to download:

File System... | | Workspace...

Files
Add peripheral description files from directory 2
fhomefsahand/Documents/Development/github/DE1-SoC/DEL1_SoC_demo/hw/quartus/soc_system/synthesis

File System...| | Workspace...

Figure 12-6. Debug Configuration "Files" Tab

15. Under the “Debugger” tab:

a. Since we are going to use a debug script to launch the application, we don’t need to specify
any function to be loaded by the debugger. So, choose “Connect only” under “Run
control”.

b. Enable the “Run DEBUG initialization debugger script (.ds / .py)” checkbox. Set
the debug script to the one we defined for the project in 12.2.2. You should have something
similar to Figure 12-7.

16. Click on the “Apply” button, then on the “Close” button to save the debug configuration.

Name: DEl_SoC demo_hps_baremetal

<= Connection | [@ Files | # Debugger i %: OS Awareness| ®- Arguments | B Environment
Run conkrol
@® connect only Debug from entry point Debug from symbol

Run target initialization debugger script (.ds / .py)

& Run debug initialization debugaer script (.ds / .py)
$f{workspace_loc;/DE1_SoC_demo_hps_baremetal/debug_setup.ds} File System... | | Workspace...

Execute debugger commands

Figure 12-7. Debug Configuration "Debugger" Tab

12.2.4 Bare-metal Programming
We can now start writing bare-metal code for the HPS.

17. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “New > Source File”. Use
“hps_baremetal.c” as the file name, and click on the “Finish” button to create the new source file.

18. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “New > Header File”. Use
“hps_baremetal.h” as the file name, and click on the “Finish” button to create the new header file.

22/06/2016 Page |60

DE1-SoC Guide

The code for this part of the application is quite large to be inserted in this document. Therefore, we will just
go over a few practical aspects of the code which are worth paying attention to. The full source can be found
in DE1_SoC_demo.zip [5].

We are not going to implement any interrupts for the various buttons on the board at this time. Therefore, in
order to satisfy the HPS-related goals specified in 8.4, we will need to use an infinite loop and do some polling.

This can be seen in our application’s “main()” function, which is shown in Figure 12-8.

int main() {
printf("DE1-SoC bare-metal demo\n");

setup_peripherals();

uint32_t hex_counter = 0;

while (true) {
handle_hex_displays(&hex_counter);
handle_hps_led();
delay_us(ALT_MICROSECS_IN A SEC / 10);

return 0;

Figure 12-8. hps_baremetal.c main() function

12.2.4.1 Accessing FPGA Peripherals

Accessing the FPGA peripherals connected to the HPS’ lightweight HPS-to-FPGA bridge is quite simple, as no
libraries are needed. One can simply use the low-level functions listed in 11.3 to address the peripherals at an
offset from the lightweight HPS-to-FPGA bridge’s base address.

Figure 12-9 shows an example where the HPS accesses the buttons on the FPGA.

// fpga buttons can be found at an offset from the base of the lightweight HPS-to-FPGA bridge
void *fpga_buttons = ALT_LWFPGASLVS_ADDR + BUTTONS_ @ BASE;

bool is_fpga_button_pressed(uint32_t button_number) {
// buttons are active-low
return ((~alt_read_word(fpga_buttons)) & (1 << button_number));

Figure 12-9. Accessing FPGA Buttons from the HPS

A more sophisticated example can be found in Figure 12-10, where the HPS sets the value to be displayed on
the FPGA’s 7-segment displays.

// The 7-segment display is active low
#define HEX_DISPLAY_CLEAR (Ox7F)
#define HEX_DISPLAY_ZERO (@x40)
#define HEX_DISPLAY_ONE (©x79)
#define HEX_DISPLAY_TWO (@x24)
#define HEX_DISPLAY_THREE (©x30)
#define HEX_DISPLAY_FOUR (@x19)
t#tdefine HEX_DISPLAY_FIVE (©x12)
#define HEX_DISPLAY_SIX (0x02)
t#tdefine HEX_DISPLAY_SEVEN (©x78)
#define HEX_DISPLAY_EIGHT (0x00)
t#tdefine HEX_DISPLAY_NINE (©x18)

#define HEX_DISPLAY_A (0x08)
#define HEX_DISPLAY_B (0x03)
#define HEX_DISPLAY C (0x46)
#define HEX_DISPLAY_D (ox21)

22/06/2016 Page |61

DE1-SoC Guide

#define HEX_DISPLAY E (0x06)
#define HEX_DISPLAY_F (Ox8E)

// The HPS will only use HEX_DISPLAY_COUNT of the 6 7-segment displays
#define HEX_DISPLAY_COUNT (6)
#define HEX_COUNTER_MASK ((1 << (4 * HEX_DISPLAY_COUNT)) - 1)

void *fpga_hex_displays[HEX_DISPLAY_COUNT] = {ALT_LWFPGASLVS_ADDR + HEX_@_BASE,
ALT_LWFPGASLVS_ADDR + HEX_1_BASE,
ALT_LWFPGASLVS_ADDR + HEX_2_BASE,
ALT_LWFPGASLVS_ADDR + HEX_3_BASE,
ALT_LWFPGASLVS_ADDR + HEX_4_BASE,
ALT_LWFPGASLVS_ADDR + HEX_5_BASE};

uint32_t hex_display_table[16] = {HEX_DISPLAY_ ZERO , HEX_DISPLAY_ONE,
HEX_DISPLAY_TWO , HEX_DISPLAY_ THREE,
HEX_DISPLAY_FOUR , HEX_DISPLAY_FIVE,
HEX_DISPLAY SIX , HEX_DISPLAY_ SEVEN,
HEX_DISPLAY_EIGHT, HEX_DISPLAY_NINE,
HEX_DISPLAY A, HEX_DISPLAY B,
HEX_DISPLAY_C , HEX_DISPLAY D,
HEX_DISPLAY E , HEX_DISPLAY F};

void set_hex_displays(uint32_t value) {
char current_char[2] = " \@";
char hex_counter_hex_string[HEX_DISPLAY_COUNT + 1];

// get hex string representation of input value on HEX_DISPLAY_COUNT 7-segment displays
snprintf(hex_counter_hex_string, HEX_DISPLAY_COUNT + 1, "%@*x", HEX_DISPLAY_COUNT, (unsigned int) value);

uint32_t hex_display_index = 0;
for (hex_display_index = @; hex_display_index < HEX_DISPLAY_COUNT; hex_display_index++) {

current_char[@] = hex_counter_hex_string[HEX_DISPLAY_COUNT - hex_display_index - 1];

// get decimal representation for this 7-segment display
uint32_t number = (uint32_t) strtol(current_char, NULL, 16);

// use lookup table to find active-low value to represent number on the 7-segment display
uint32_t hex_value_to_write = hex_display_table[number];

alt_write_word(fpga_hex_displays[hex_display_index], hex_value_to_write);

Figure 12-10. Setting the 7-Segment Displays from the HPS

12.2.4.2 Accessing HPS Peripherals
It is possible to do everything with the low-level functions listed in 11.3. However, a better way would be to
use Altera’s HWLIB, as discussed In 7.5.2. You can easily use HWLIB to access all the HPS’ HARD peripherals.

Note that some things may not be available in HWLIB, and you will then have to resort to using the low-level
functions. One example of this scenario which we have already seen is when accessing any FPGA peripherals
through the lightweight or heavyweight HPS-to-FPGA bus (as there is no standard header file for any FPGA
peripherals).

Since we already demonstrated how to use low-level functions to access peripherals in 12.2.4.1, we will
instead use Altera’s HWLIB to access the HPS' hard peripherals.

12.2.4.2.1 Using Altera’s HWLIB - Prerequisites
In order to be able to use HWLIB to configure a peripheral, 2 steps need to be performed:

22/06/2016 Page |62

DE1-SoC Guide

e You need to INCLUDE the HPS peripheral’s HWLIB HEADER FILE to your code.

e You must COPY the HPS peripheral’s HWLIB SOURCE FILE in your DS-5 project directory. The HWLIB
source files can be found in directory
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/src”,
and must be copied to “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal”.

12.2.4.2.2 Global Timer & Clock Manager

If you look closely at the code in Figure 12-8, you’ll see that we used a “delay_us()” function to slow the
counter down. It turns out that among all the code available for the HPS, Altera does not provide any
“sleep()” function (unlike for the Nios Il processor). Therefore, we will have to write the “delay_us()”
function ourselves.

The easiest way to create a delay in the HPS is to use one of it’s timers. There are numerous timers on Cyclone
V SoCs:

e One such timer is the GLOBAL TIMER. This timer is actually shared by both HPS cores, as well as by the
FPGA.

e In addition to the unique global timer, each HPS core also has 7 other timers which it can use
exclusively, if needed.

For simplicity, we will use the global timer to implement the “delay_us()” function.

As described in 12.2.4.2.1, we need to add the required HWLIB sources to our project, and their headers to
our code. To program the global timer, we will need information regarding the clock frequency, as well as any
timer-specific functions. We can access this information by using the following source and header files:

e alt_clock_manager.c
e alt_clock_manager.h
e alt _globaltmr.c
e alt_globaltmr.h

Figure 12-11 shows how we implement the “delay_us()” function using the global timer.

#include "alt_clock_manager.h"
#include "alt_globaltmr.h"

void setup_hps_timer() {
assert(ALT_E_SUCCESS == alt_globaltmr_init());

}

/* The HPS doesn't have a sleep() function like the Nios II, so we can make one
* by using the global timer. */
void delay_us(uint32_t us) {
uint64_t start_time = alt_globaltmr_get64();
uint32_t timer_prescaler = alt_globaltmr_prescaler_get() + 1;
uint64_t end_time;
alt_freq_t timer_clock;

assert(ALT_E_SUCCESS == alt_clk_freq_get(ALT_CLK_MPU_PERIPH, &timer_clock));
end_time = start_time + us * ((timer_clock / timer_prescaler) / ALT_MICROSECS_IN_A_SEC);

// polling wait
while(alt_globaltmr_get64() < end_time);

Figure 12-11. Programming the HPS Global Timer

22/06/2016 Page |63

DE1-SoC Guide

12.2.4.2.3 GPIO
Figure 12-12 shows how we implement the “handle_hps_led()” function. This function uses the HPS_KEY_ N
button to toggle HPS_LED.

Once again, we need to add the HWLIB source file for the GPIO peripheral to our DS-5 project directory. The
files we will use are listed below:

e alt_generalpurpose_io.c
e alt_generalpurpose_io.h

As stated in 12.2.4.2 previously, HWLIB is quite a broad library, but it sometimes lacks certain “obvious”
things. In such cases, you have to fall back on using lower-level functions to implement whatever you are
missing.

In our case, we see that HWLIB has functions that allow us to write to the GPIO peripheral’s “data” register,
but it doesn’t have any function to read the it back. We get around this issue by directly reading the register
with “alt_read_word(ALT_GPIO1_SWPORTA_DR_ADDR)”.

Note that we also need to include the “socal/alt_gpio.h” header file to have access to the lower-level
ALT_GPIO1_SWPORTA DR_ADDR macro.

#include "alt_generalpurpose_io.h"
#include "socal/alt_gpio.h"

// | Signal Name | HPS GPIO | Register/bit | Function |

// | HPS_LED | GPIO53 | GPIO1[24] | 1/0 |

// | HPS_KEY_N | GPIO54 | GPIO1[25] | 1/0 |

#define HPS_LED_IDX (ALT_GPIO_1BIT_53) // GPIO53

#define HPS_LED_PORT (alt_gpio_bit_to_pid(HPS_LED_IDX)) // ALT_GPIO_PORTB
#define HPS_LED_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_LED IDX)) // 24 (from GPIO1[24])
#define HPS_LED_MASK (1 << HPS_LED_PORT_BIT)

#define HPS_KEY_N_IDX (ALT_GPIO_1BIT_54) // GPIO54

#define HPS_KEY_N_PORT (alt_gpio_bit_to_pid(HPS_KEY_N_IDX)) // ALT_GPIO_PORTB
#define HPS_KEY_N_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_KEY_N_IDX)) // 25 (from GPIO1[25])
#define HPS_KEY_N_MASK (1 << HPS_KEY_N_PORT_BIT)

void setup_hps_gpio() {
uint32_t hps_gpio_config_len = 2;
ALT_GPIO_CONFIG_RECORD_t hps_gpio_config[] = {
{HPS_LED_IDX , ALT_GPIO_PIN_OUTPUT, ©, ©, ALT_GPIO_PIN_DEBOUNCE, ALT_GPIO_PIN_DATAZERO},
{HPS_KEY_N_IDX, ALT_GPIO_PIN_INPUT , @, ©, ALT_GPIO_PIN DEBOUNCE, ALT GPIO_PIN_DATAZERO}

s

assert(ALT_E_SUCCESS == alt_gpio_init());
assert(ALT_E_SUCCESS == alt_gpio_group_config(hps_gpio_config, hps_gpio_config_len));

void handle_hps_led() {
uint32_t hps_gpio_input = alt_gpio_port_data_read(HPS_KEY_N_PORT, HPS_KEY_N_MASK);

// HPS_KEY_N is active-low
bool toggle_hps_led = (~hps_gpio_input & HPS_KEY_N_MASK);

if (toggle_hps_led) {
uint32_t hps_led_value = alt_read_word(ALT_GPIO1_SWPORTA_DR_ADDR);
hps_led_value >>= HPS_LED_PORT_BIT;

22/06/2016 Page |64

DE1-SoC Guide

hps_led_value = !'hps_led_value;
hps_led_value <<= HPS_LED_PORT_BIT;
assert(ALT_E_SUCCESS == alt_gpio_port_data_write(HPS_LED_PORT, HPS_LED MASK, hps_led_value));

Figure 12-12. Programming the HPS GPIO Peripheral

12.2.4.3 Launching the Bare-metal Code in the Debugger
19. Once you have finished writing all the application’s code, right-click on the
“DE1_SoC_demo_hps_baremetal” project, and select “Build Project”.
20. Switch to the DS-5 Debug perspective, as shown in Figure 12-13.

== [

1eralpurpo = O gz Outlin &2 = B
3 % RN e T
o assert.h
%l stdboolh
o stdio.h

mE .ol L

Figure 12-13. Switching to the DS-5 Debug Perspective

21. In the “Debug Control” view, click on the “DE1_SoC_demo_hps_baremetal” entry, then click on the
“Connect to Target” button, as shown on Figure 12-14. Our debug script will load and execute the
preloader, then it will load and wait at our application’s “main()” function.

DebugC % |[5ProjectE #Remote = O
=N X %

=

% DE1_SoC_demo_hps_baremetal disconnected

&i DE1_SoC_demo_hps_baremetal disconnected
Mo OS5 Support

Figure 12-14. Debug Control View

22. You can the use the buttons in the “Debug Control” view to control the application’s execution.

22/06/2016 Page |65

DE1-SoC Guide

#F DebugC = = 8
alwvw % a2y pooa|

¥ ' DE1_SoC_demo_hps_baremetal connected
v ﬁCnrtex-Ag_B #1 stopped on breakpoint

main

__£s53 premain+0x30

_ 53 start_c+0x8C

S: OxFFFF4808

3 DE1_SoC_demo_hps_baremetal connected
Mo 05 Suppaork

Figure 12-15. DS-5 Debugger Controls
12.2.4.4 DS-5 Bare-metal Debugger Tour

12.2.4.4.1 “Registers” View
DS-5's greatest feature is its “Registers” view.

Recall that we provided the debugger with a PERIPHERAL DESCRIPTION FILE in 12.2.3. This file allows the
debugger’s “Registers” view to display information about all the HPS’ internal and FPGA peripherals, as
shown in Figure 12-16.

22/06/2016 Page | 66

DE1-SoC Guide

t=\ariables ®s Breakpoints m Registers &2

MName Value|S

[= Core

i

% Eiés &= gpiol _
= NEON g gp:!.ol_gp:!.o_swpo rt a_j; Ox00000000 32 R/W

" 1 - gplol_gplo_swporta_ddr 0x0000000Q 32 R/W

. 5 . © gpiol_gpio_inten 0x00000000 32 R/W
& cand @ gpiol_gpio_intmask 0x00000000 32 R/W
= canl ® gpiol gpio_inttype level 0x00000000 32 R/W
= clkmgr D GP}Ol_GP}o_}nt_polarlty 0x00Q00000 32 R/W
= dap @ QP}OI_QP:!.O_ln'tS'i_:a'tus OxQ00O0000 32 R/W
= dmanonsecure @ gpiol gpio_raw_intstatus 0x00000000 32 R/W
= dmasecure L GP}Ol_gp}o_debounce_ QxGGGGGGGG 32 R/W
= emacd © gpiol gple_porta_eol write only 32 WO
= emacl © gpiol gpio_ext_porta OX1FF7FFCF 32 RO
= fpgazhpsregs ® gpiol_gpio_ls_sync 0x00000000 32 R/W
= fpogamgrdata @ gp:!-"l_gp:!-o_ld_c?de Ox 00000000 32 RO
= fpgamgrregs 2 GP}Ol_gP;o_ver'_:_Ld_code Ox3230382A 32 RO
= gpio® @ gpiol_gpio_config_reg2 0x0003SCFC 32 RO
= gpiol @ gpiol_gpio_config_regl 0xGOLFFOFZ 32 RO
= gpio2
= hps2fpgaregs
(= i2cO
=iz2cl B = altera_awvalon_pio_hex 0 sl
= i2c2 @ altera_avalon_pio_hex_0_sl_DATA Ox00DOROFF 32 R/W
= 12c3 @ altera_avalon_pio_hex_0 sl DIRECTION 0x00000000 32 R/W
= 13regs @ altera_avalon_pio_hex 0 sl TRO MASK 0x00000000 32 R/W
= 14awdo @ altera_avalon_pio_hex_0 sl EDGE_CAP 0x00000ORE 32 R/W
= 14wdl @ altera_avalon_pio_hex 0 s1 SET_BIT write only 32 WO
= lwhps2fpgaregs @ altera_avalon_pio_hex 0 s1 CLEAR BITS write only 32 WO
= mpul 2
= mpuscu
= nandregs
& oscatiners 5 gpiol
& qspiregs @ gpiol_gpio_swporta_dr 0x00000000 32 R/W
= js:::mgrg @ gpiol_gpio_swporta_ddr 0x0lO00000 32 R/W
& scanngr @ gpiol _gpio_inten 0x00000000 32 R/W
&= sdmmc @ gpiol_gpio_intmask 0x00E00000 32 R/W
= sdr @ gpiol_gpio_inttype_level 0x00000000 32 R/W
= spim® @ gp}ol_gpu_}nt_polarlty 0x00000000 32 R/W
= spiml @ 99}01_99}0_1nt5’§atu5 0x00000000 32 R/W
= spisO @ gp:!.ol_gp:!.o_raw_lntstatus 0x00D0ODO0O, 32 R/W
& spisl @ gpiol_gpio_debounce 0x03000008 32 R/W
= sptimer® o 99}01_99}0_p0rta_eol write only 32 W0
& sptimerl @ gpiol gpio_ext porta 0x1EF7FFCF 32 RO
& stm @ gpiol_gpio_ls_sync 0x00000000 32 R/W
(= sysmgr @ gpiol_gpio_id_code 0x00000000 32 RO
= u:rtg ® gpiol gpio_ver_id code 0x3230382A 32RO
& uartl @ gpiol gpio_config reg2 0xG0039CFC 32 RO
(= usba @ gpiol_gpio_config_regl OxOOLFFBF2 32 RO
(= usbl

(= altera_avalon_pio_buttons 0 sl
(= altera_avalon_pio_hex 0 sl
= altera_avalon_pio_hex_1_sl
(= altera_avalon_pio hex 2 sl
(= altera_avalon_pio_hex_ 3 sl
= altera_avalon_pio_hex_4 sl
(= altera_avalon_pio_hex 5 sl

Figure 12-16. DS-5 Debugger Registers View

You can MODIFY any value in this view, and they will automatically be applied to the corresponding
peripheral. For example, you can manually switch on one of the 7-segment displays, or manually trigger a
button press of HPS_KEY_N (assuming you write the correct bit in the correct place).

The view also highlights the values that changed when stepping through the code while debugging, which
helps you track down invalid peripheral writes, side-effects, ...

However, there is one downside with the “Registers” view. With so many details in this view, one would
normally start browsing through each peripheral’s registers (much easier than reading the Cyclone V manual,
isn’t it?).

22/06/2016 Page |67

DE1-SoC Guide

The problem occurs when you expand a peripheral that has not been enabled in the preloader, or that has
side-effects when some of its registers are accessed.

Indeed, DS-5 will try to access an invalid address, and it will crash the debugging session, therefore leaving the
software on the board in an unrecoverable state. You will have to SWITCH OFF THE BOARD and reprogram it
to relaunch the application. Don’t forget to REPROGRAM THE FPGA FABRIC with your design as well.

12.2.4.4.2 App Console
Data sent to standard output is shown in the “App Console” view. Figure 12-17 shows the result of a
“printf()” call in our demo code shown in Figure 12-8.

B App Console 22 | B Console &3 Progress = O
'-':’-l] mg

Gé“} Linked: DEl_SoC_demo_hps_baremetal -
DE1-SoC bare-metal demo|

Figure 12-17. DS-5 App Console View

22/06/2016 Page |68

DE1-SoC Guide

13 USING THE CYCLONE V - HPS - ARM - LINUX

In Figure 7-8, we saw that there are 3 stages before a linux application can be launched:

e Preloader
e Bootloader
e Operating System

In this section, we detail each step needed to create such a linux system from scratch.

13.1PRELOADER
The first step is to generate and compile the preloader which sets up the HPS.

13.1.1 Preloader Generation
1. Execute the following command to launch the preloader generator.
$ bsp-editor

2. Choose “File > New BSP..”.

a. The preloader will need to know which of the HPS’ peripherals were enabled so it can
appropriately initialize them in the boot process. Under “Preloader settings directory”,
select the “DE1_SoC_demo/hw/quartus/hps_isw_handoff/soc_system_hps_@” directory.
This directory contains settings relative to the HPS” HARD peripherals, as configured in the
“Arria V/Cyclone V Hard Processor System” component in Qsys.

b. Disable the “Use default locations” checkbox and under the “BSP target directory?”,
select the “DE1_SoC_demo/sw/hps/preloader” directory. You should have something similar
to Figure 13-1.

MNew B5FP

Hardware

Preloader settings directory: |:|C,’DE1_50C_denw,fhw,fqL|ar‘tLls,fhps_isw_handofffsUc_system_hps_0| I:I

Software

Operating system: |U-Eloot SPL Preloader (Cyclo... |v| Version: |default ﬂ

[]use default locations

BSP target directory: |nts,’DeveIDpment,‘githle,fDEl—SOC,fDEl_SOC_demofsw,’hps,fpreloader| l:l

BSP Settings File name: |1e|'|t.‘githlefDE1—SoC,’DEl_SoC_demDJ‘swfhpsfprelnaden‘settings.bsp| I:I

Enable Settings File relative paths

[] Enable additional Tel script

I QK ” Cancel

Figure 13-1. New BSP Dialog

c. Pressthe “OK” button. You should then arrive on a page with many settings, as shown on
Figure 13-2. Take some time to read through them to see what the preloader has the ability to
do.

22/06/2016 Page |69

DE1-SoC Guide

File Help
l/ Main |
SOPC Information ...
CPU name:
Operating system: Preloader Version: :
BSP target directory: ./
9 Eett\ngs ‘| spl.reset_assert =]
#- Common [Lawp1
7 spl ;
PRELOADER TGZ : (L] 0SCITIMERL T
CROSS_COMPILE [] SPTIMERD
¢~ boot : [SPTIMERL |
BOOT_FROM_QSPI E
BOOT_FROM_SDMMC : L erico
BOOT_FROM_NAND : [l Grio1
BOOT_FROM_RAM []arioz
QSPI_MEXT_BOOT_IMAGE [DMA
SOMMC_NEXT_BOOT_IMAGE [soR
MAND_MEXT_BOOT_IMAGE q handshak
FAT_SUPPORT sSp .warm_reset_ andshake
FAT BOOT PARTITION : FPGA
FAT LOAD_PAYLOAD_NAME ETR
¢ Advanced :
o gpl : [[] SDRAM <
r Information r Problems r Processing
@ searching for BSP components with category: driver_element
@ Searching for BSP components with category: software_package_element
@ Added operating system component "spl:1.0"

Figure 13-2. Preloader Settings Dialog

3. On the main settings page of Figure 13-2, we will only need to modify 1 parameter for our design.

a. Under “spl.boot”, enabled the “FAT_SUPPORT” checkbox. This option configures the
preloader to load the image of the next boot stage from the FAT32 partition of the sdcard
(instead of from a binary partition located immediately after the preloader on the sdcard).
The image of the next boot stage is named “u-boot.img” by default, but can be modified by
editing “spl.boot.FAT_LOAD PAYLOAD NAME”. We will leave the default name for this
tutorial.

b. Pressthe “Generate” button to finish. You can then exit the bsp-editor.

4. Execute the following command to build the preloader.
$ cd DE1_SoC_demo/sw/hps/preloader
$ make

IF YOU EVER DECIDE TO MOVE THE “DE1_SoC_demo” PROJECT DIRECTORY DEFINED IN FIGURE 8-1, YOU
WILL HAVE TO REGENERATE THE PRELOADER. UNFORTUNATELY, THE SCRIPT PROVIDED BY ALTERA WHICH
GENERATES THE PRELOADER HARD-CODES MULTIPLE ABSOLUTE PATHS DIRECTLY IN THE RESULTING FILES,

RENDERING THEM USELESS ONCE MOVED.

13.1.2 Creating Target sdcard Artifacts
5. Copy the preloader binary to the sdcard target directory. Execute the following command.

$ cp\
DE1_SoC_demo/sw/hps/preloader/preloader-mkpimage.bin \
DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin

13.2BOOTLOADER

The second step is to obtain a bootloader that is capable of loading the linux kernel. Altera provides a copy of
the U-Boot bootloader alongside the preloader. However, this copy is quite old as it dates back to 2013.
Instead, we will download the official U-Boot sources online and use a more recent version.

13.2.1 Getting & Compiling U-Boot
6. Download the latest version of the U-Boot bootloader by executing the following command. This
command downloads the latest U-Boot sources and saves it to the “DE1_SoC_demo/sw/hps/u-boot”
directory.

22/06/2016 Page |70

DE1-SoC Guide

$ git clone \
git://git.denx.de/u-boot.git \
DE1_SoC_demo/sw/hps/u-boot

7. Change your current working directory to the U-Boot directory.
$ cd DE1_SoC_demo/sw/hps/u-boot

8. We need to compile U-Boot for an ARM machine, but are compiling on an x86-64 machine, so we
must cross-compile the bootloader. To cross-compile U-Boot, define the following environment

variable:
$ export CROSS_COMPILE=arm-linux-gnueabihf-

9. Clean up the source tree to be sure it is in a clean state before we compile it.
$ make distclean

10. Checkout the following U-Boot commit. This corresponds to the last commit against which the
instructions in this guide were tested. You can skip this step if you want to use a more recent version
of U-Boot, but keep in mind that there may be regressions that make some things not work.

commit b1l04b3dcldd99cdbf67ccf3c51b06e4f1592fe9l
Author: Tom Rini trini@konsulko.com

Date: Mon Jun 6 17:43:54 2016 -0400

#

Prepare v2016.07-rcl
#
Signed-off-by: Tom Rini trini@konsulko.com

$ git checkout b1@4b3dcldd90cdbf67ccf3c51b06e4f1592fe9l

11. Configure U-Boot for the Cyclone V SoC architecture.
$ make socfpga_cyclone5_config

By default, U-Boot loads some environment variables from a specific flash sector on the sdcard, then
continues executing the commands specified in the macro called “CONFIG_BOOTCOMMAND” (defined in the U-
Boot source code). If this flash sector is empty, then U-Boot emits the following error message.

*** Warning - bad CRC, using default environment

To get around this issue, we are going to patch U-Boot’s source code to ignore the empty flash sector (if it
exists), and instruct it to always load and execute the contents of a user-defined script that we will provide. As
we will see in 13.2.2, U-Boot can be scripted to perform steps of your choosing.

12. Open “DE1_SoC_demo/sw/hps/u-boot/include/configs/socfpga_cyclone5_ socdk.h" with a text

editor.

13. Replace the value of the “CONFIG_BOOTCOMMAND” macro with the following definition. This macro
contains the first instruction that will be executed by U-Boot when it boots. In our case, we are telling
U-Boot to execute the contents of the environment variable called “callscript”.

#define CONFIG_BOOTCOMMAND "run callscript”

The “callscript” environment variable does not yet exist in U-Boot, so we are going to set it in the source
code as an extra environment variable.

22/06/2016 Page |71

mailto:trini@konsulko.com
mailto:trini@konsulko.com

DE1-SoC Guide

14. Replace the value of the “CONFIG_EXTRA_ENV_SETTINGS” macro with the following definition. We
define the environment variables needed to load a user-defined script called “u-boot.scr” from

partition 1 of the sdcard (FAT32 partition) into memory, and to execute it.
#define CONFIG_EXTRA_ENV_SETTINGS \
"scriptfile=u-boot.scr" "\0" \
"fpgadata=0x2000000" "\0" \
"callscript=fatload mmc ©:1 $fpgadata $scriptfile;" \
"source $fpgadata" "\o"

15. At this point, we have finished modifying U-Boot’s source code, and we can compile the bootloader.
$ make

13.2.2 Scripting U-Boot
U-Boot can be scripted to perform steps of your choosing. We will use this ability to automate a few steps
before booting into linux.

16. Create a new file for our U-Boot script and save it under “DE1_SoC_demo/sw/hps/u-boot/u-
boot.script”.

17. Populate the file with the code shown in Figure 13-3. This script instructs U-Boot to
a. Define some environment variables.
b. Load the FPGA .rbf file from the FAT32 partition into memory.
c. Program the FPGA.
d. Enable the FPGA2HPS and HPS2FPGA bridges.
e. Load linux kernel image and devicee tree into memory.
f. Boot linux.
In our case, we use such a script to ensure that the FPGA is programmed BEFORE linux boots.

B L s s s s s s g
echo --- Resetting Env variables ---

reset environment variables to default
env default -a

echo --- Setting Env variables ---

Set the kernel image
setenv bootimage zImage;

address to which the device tree will be loaded
setenv fdtaddr 0x00000100

Set the devicetree image
setenv fdtimage socfpga.dtb;

set kernel boot arguments, then boot the kernel

setenv mmcboot 'setenv bootargs mem=1024M console=ttyS@,115200 root=${mmcroot} rw rootwait; bootz
${loadaddr} - ${fdtaddr}’;

load linux kernel image and device tree to memory

setenv mmcload 'mmc rescan; ${mmcloadcmd} mmc 0:${mmcloadpart} ${loadaddr} ${bootimage}; ${mmcloadcmd}
mmc ©:${mmcloadpart} ${fdtaddr} ${fdtimage}’

command to be executed to read from sdcard
setenv mmcloadcmd fatload

sdcard fat32 partition number

22/06/2016 Page |72

DE1-SoC Guide

setenv mmcloadpart 1

sdcard ext3 identifier
setenv mmcroot /dev/mmcblkep2

standard input/output
setenv stderr serial
setenv stdin serial
setenv stdout serial

save environment to sdcard (not needed, but useful to avoid CRC errors on a new sdcard)
saveenv

echo --- Programming FPGA ---

load rbf from FAT partition into memory
fatload mmc 0:1 ${fpgadata} socfpga.rbf;

program FPGA
fpga load 0@ ${fpgadata} ${filesize};

enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges
bridge enable;

AR

echo --- Booting Linux ---

load linux kernel image and device tree to memory
run mmcload;

set kernel boot arguments, then boot the kernel

run mmcboot;

Figure 13-3. U-Boot Script

18. Convert the U-Boot script to binary form.

$ mkimage \
-A arm \
-0 linux \
-T script \
-C none \
-a 0\
-e 0\
-n DE1_SoC_demo \
-d DE1_SoC_demo/sw/hps/u-boot/u-boot.script \
DE1_SoC_demo/sw/hps/u-boot/u-boot.scr

13.2.3 Creating Target sdcard Artifacts
19. Copy the U-Boot image to the sdcard target directory.
$ cp\
DE1_SoC_demo/sw/hps/u-boot/u-boot.img \
DE1_SoC_demo/sdcard/fat32/u-boot.img

20. Copy the binary U-Boot script to the sdcard target directory.
$ cp \
DE1_SoC_demo/sw/hps/u-boot/u-boot.scr \
DE1_SoC_demo/sdcard/fat32/u-boot.scr

22/06/2016 Page |73

DE1-SoC Guide

13.3 LiNux KERNEL
The third step is to obtain and compile the linux kernel.

13.3.1 Getting & Compiling Linux

21.

22.

23.

24,

25.

26.

27.

28.

Download the latest version of the linux kernel by executing the following command. This command
downloads the latest linux sources and saves it to the “DE1_SoC-demo/sw/hps/linux/source”
directory.

Note that we are not going to use the sources directly from the mainline kernel branch, as it is
generally behind the various development branches maintained by Altera (which contain drivers for
most of the FPGA-related components specific to the socfpga architecture). Once Altera’s branches
are merged back into the mainline kernel, we can switch to that source tree, but for the moment, we
will continue to use Altera’s branch.

$ git clone \

https://github.com/altera-opensource/linux-socfpga.git \
DE1_SoC_demo/sw/hps/linux/source

Change your current working directory to the linux directory.
$ cd DE1_SoC_demo/sw/hps/linux/source

We need to compile linux for an ARM machine, but are compiling on an x86-64 machine, so we must
cross-compile the kernel. To cross-compile linux, define the following environment variables:

$ export ARCH=arm

$ export CROSS _COMPILE=arm-linux-gnueabihf-

Clean up the source tree to be sure it is in a clean state before we compile it.
$ make distclean

Checkout the following linux commit. This corresponds to the last commit against which the
instructions in this guide were tested. You can skip this step if you want to use a more recent version
of linux, but remember that there may be regressions that make some things not work.

commit ffea805b5209e0e6ad8645217f5ab742455a066b
Author: Dinh Nguyen dinguyen@opensource.altera.com
Date: Tue May 3 ©08:59:01 2016 -0500

#

ARM: dts: socfpga: add ethernet alias on Arriale

#

Without having an ethernet alias, ethernet will have a random MAC address,
versus take an address that was provided from the bootloader.

#

Signed-off-by: Dinh Nguyen dinguyen@opensource.altera.com

$ git checkout ffea805b5209e0@e6ad8645217f5ab742455a066b

Configure linux for the Cyclone V SoC architecture.
$ make socfpga_defconfig

Compile the linux kernel “zImage” binary, which corresponds to a self-extracting compressed version
of the linux kernel image.
$ make zImage

Compile the device tree blob for the Cyclone V Development Kit. This device tree does not exactly
correspond to the device tree needed for the DE1-SoC, but given that there are no predefined device

22/06/2016 Page |74

mailto:dinguyen@opensource.altera.com
mailto:dinguyen@opensource.altera.com

DE1-SoC Guide

trees available for the DE1-SoC, we will use the one provided for the (more feature-rich) Cyclone V
Development Kit.
$ make socfpga_cyclone5_socdk.dtb

13.3.2 Creating Target sdcard Artifacts
29. Copy the linux zlmage binary to the sdcard target directory
$ cp\
DE1_SoC_demo/sw/hps/linux/source/arch/arm/boot/zImage
DE1_SoC_demo/sdcard/fat32/zImage

30. Copy the linux device tree blob to the sdcard target directory.
$ cp \
DE1_SoC_demo/sw/hps/linux/source/arch/arm/boot/dts/socfpga_cyclone5_socdk.dtb \
DE1_SoC_demo/sdcard/fat32/socfpga.dtb

13.4UBUNTU CORE ROOT FILESYSTEM

At this stage, we technically have everything needed to have a fully-working linux machine. The machine,
however, is quite minimal. This is normal, as we merely have the linux KERNEL available at this point. If we
want to have more functionality, we need to install a linux DISTRIBUTION.

In this guide, we will install Ubuntu Core on our DE1-SoC. Ubuntu Core is the minimal root filesystem (rootfs)
needed to run Ubuntu. It consists of a very basic command-line version of the distribution, and can be
customized to eventually ressemble the desktop version of Ubuntu most people are familiar with. Most
importantly, it comes with a package manager.

13.4.1 Obtaining Ubuntu Core
31. Download the Ubuntu Core 14.04.4 rootfs for the armhf architecture from Canonical’s servers.

$ wget \
http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.4-

core-armhf.tar.gz \
-0 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-base-14.04.4-core-armhf.tar.gz

32. Create a directory where we will extract the root filesystem.
$ mkdir -p DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

33. Change your working directory to the previously created directory and extract the root filesystem.
Note that you need to extract the archive with root permissions to allow the “mknod” commands to
work.

$ cd DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs
$ sudo tar -xzpf ../ubuntu-base-14.04.4-core-armhf.tar.gz

13.4.2 Customizing Ubuntu Core
The Ubuntu Core rootfs is not very useful in its current state, as it is completely unconfigured. By
unconfigured, we mean that there is no user installed, no DNS configuration, no network interfaces ...

We must therefore configure the rootfs before we can use it. We will do this by means of the “chroot”
command. This command allows you to obtain an interactive shell in another root directory than is currently
available on your host machine. It is very practical for configuring the rootfs, as it will allow us to simulate
being in the Ubuntu Core rootfs while we configure it.

But, we will need to set up the environment before using the “chroot” command: the chroot environment
uses the resources of your host machine, so we need to make a few of these resources available in the rootfs
before we can use them.

22/06/2016 Page |75

http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.4-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.4-core-armhf.tar.gz

DE1-SoC Guide

Note that most chroot-related commands must be executed with admin rights, as we are manipulating system
resources.

13.4.2.1 Setup the chroot Environment
34. Mount your host’s “/dev”, “/sys”, and “/proc” directories in the chroot environment.
$ sudo mount -o bind \
/dev \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/dev
$ sudo mount -t sysfs \
/sys \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/sys
$ sudo mount -t proc \
/proc \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/proc

35. Copy your host’s “/proc/mount? file to the chroot environment. This file contains information about
all currently mounted directories on your host (including the 3 directories we just mounted above).
$ sudo cp \
/proc/mounts \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/etc/mtab

36. We want network connectivity when using “chroot”, so we copy our host’s “/etc/resolv.conf” file
to the chroot environment so DNS name resolution is available.
$ sudo cp \
/etc/resolv.conf \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/etc/resolv.conf

37. The Ubuntu Core rootfs is for armhf architectures (not x86-64), so we need to use gemu to emulate
the binaries available in the chroot environment.
$ sudo cp \
/usr/bin/gemu-arm-static \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/usr/bin/

38. Use the “chroot” command to enter the rootfs.
$ sudo chroot DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

13.4.2.2 Inside the chroot Environment
We are now inside the rootfs, and can start customizing the Ubuntu Core root filesystem.

39. Configure the locale to have proper language support.
$ localedef -i en_US -c -f UTF-8 en_US.UTF-8
$ dpkg-reconfigure locales

40. Configure the timezone.
$ echo "Europe/Zurich" > /etc/timezone
$ dpkg-reconfigure -f noninteractive tzdata

41. Set the machine’s hostname.
$ echo DE1-SoC > /etc/hostnhame
$ cat <<EOF > /etc/hosts
127.90.0.1 localhost
127.0.1.1 DE1-SoC
EOF

22/06/2016 Page |76

DE1-SoC Guide

42. Create the “/etc/network/interfaces” file that describes the network interfaces available on the
board.
$ cat <<EOF > /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)

The loopback network interface
auto lo

iface lo inet loopback

The primary network interface

auto etho
iface ethe inet dhcp
EOF

43. Configure Ubuntu Core to display a login shell on the serial console once the kernel boots. In Figure

13-3, we had configured U-Boot to supply appropriate command-line arguments to the linux kernel.
We can see that we had instructed the kernel to use serial console “ttyS@” as the boot shell, so we
choose to use the same one for the login shell.
$ cat <<EOF > /etc/init/ttySe.conf

ttySe - getty

#

This service maintains a getty on ttySe

description "Get a getty on ttySe"

start on runlevel [2345]
stop on runlevel [016]

respawn

exec /sbin/getty -L 115200 ttySe vtile2
EOF

44, Edit the “/etc/apt/sources.list” file to configure the package manager. This file contains a list of
mirrors that the package manager queries. By default, this file has all fields commented out, so the
package manager will not have access to any mirrors. You can either manually edit the file and
uncomment some entries, or you can execute the following command which will do it automatically.

uncomment the "deb" lines (no need to uncomment "deb src" lines)
$ perl -pi -e 's/~+\s+(deb\s+http)/$1/g' /etc/apt/sources.list

45. When writing our linux applications, we want to use ARM DS-5’'s remote debugging feature to
automatically transfer our binaries to the target device and to start a debugging session. The remote
debugging feature requires an SSH server and a remote gdb server to be available on the target. These

are easy to install as we have a package manager available.
$ apt-get update
$ apt-get install -y ssh gdbserver

46. Create a user and a password. In this example, we create a user called “sahand”. You will be

interactively prompted to input a password of your choice.
$ adduser sahand

47. Ubuntu requires administrators to be part of the “adm” and “sudo” groups, so add the previously-
created user to these 2 groups.
$ addgroup sahand adm

22/06/2016 Page |77

DE1-SoC Guide

$ addgroup sahand sudo

48. Set the root password: we do this so we can supply a password to ARM DS-5 when remote debugging
linux applications that require elevated rights.
$ passwd root

49. Allow the root user to login through SSH with a password. This is needed so we can use ARM DS-5 for
remote debugging linux applications.
$ perl -pi -e \
's/~(PermitRootLogin) without-password$/$1 yes/g' \
/etc/ssh/sshd_config

50. The configuration of Ubuntu Core is done at this point, so we can exit the chroot environment.
$ exit

13.4.3 Cleanup the chroot Environment

51. Unmount the “/dev”, “/sys”, and “/proc” directories that we had previously mounted.
$ sudo umount DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/proc
$ sudo umount DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/sys
$ sudo umount DE1 _SoC demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/dev

13.4.4 Creating Target sdcard Artifacts
52. Copy the customized root filesystem to the sdcard target directory. For the previous artifacts, we used
to simply copy files with the “cp” command. However, we will create an archive for the rootfs, as
there are many special files in some directories that the standard “cp” command does not copy
correctly.

$ cd DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs
Note: there is a “.” at the end of the next command
$ sudo tar -czpf DE1_SoC_demo/sdcard/ext3_rootfs.tar.gz .

13.5WRITING EVERYTHING TO THE SDCARD

If you have followed all the steps in sections 9 and 13 until this point, then you should have the file structure
shown in Figure 13-4 as your “DE1_SoC_demo/sdcard” directory.

sdcard/
I— a2
| L— preloader-mkpimage.bin
I— ext3_rootfs.tar.gz
L— fat32
}— socfpga.dtb
I— socfpga.rbf
}— u-boot.img
— u-boot.scr
L— zImage

Figure 13-4. Target sdcard directory
We now have all the files needed to create our final sdcard.

53. Create 2 directories where you will mount the FAT32 and EXT3 partitions of the sdcard.
$ mkdir -p DE1_SoC_demo/sdcard/mount_point_ fat32
$ mkdir -p DE1_SoC_demo/sdcard/mount_point_ext3

54. Mount the sdcard partitions.
$ sudo mount /dev/sdbl DE1 SoC_demo/sdcard/mount_point fat32

22/06/2016 Page |78

DE1-SoC Guide

55.

56.

57.

58.

59.

60.

$ sudo mount /dev/sdb2 DE1_SoC_demo/sdcard/mount point ext3

Write the preloader to the custom “a2” partition.

$ sudo dd \
if=DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin \
of=/dev/sdb3 \
bs=64K \
seek=0

Write the FPGA . rbf file, U-Boot . img file, U-Boot . scr file, linux zImage file, and linux .dtb file to
the FAT32 partition.
$ sudo cp \

DE1_SoC_demo/sdcard/fat32/* \

DE1_SoC_demo/sdcard/mount_point_fat32

Write the customized Ubuntu Core root filesystem to the EXT3 partition.
$ cd DE1_SoC_demo/sdcard/mount_point_ext3
$ sudo tar -xzf ../ext3 rootfs.tar.gz

Flush all write buffers to target.
$ sudo sync

Unmount sdcard partitions.

$ cd DE1_SoC_demo

$ sudo umount DE1_SoC_demo/sdcard/mount_point_fat32
$ sudo umount DE1_SoC demo/sdcard/mount_point_ext3

Delete sdcard mount points.
$ rm -rf DE1_SoC_demo/sdcard/mount_point_fat32
$ rm -rf DE1_SoC _demo/sdcard/mount point ext3

The sdcard is now finally ready.

13.6SCRIPTING THE COMPLETE PROCEDURE

As previously stated, the full design used in this tutorial is available in DE1_SoC_demo.zip [5]. Due to the very
large number of steps required to build the current linux system from scratch, we provide a
“create_linux_system.sh” script that performs all steps described until now automatically. The script
performs the following tasks:

Compile the Quartus Prime hardware project.

Generate, configure, and compile the preloader.
Download, configure, and compile U-Boot.

Download, configure, and compile Linux.

Download and configure the Ubuntu Core root filesystem.
Partition the sdcard.

Write the sdcard.

The script has a large number of constants at the beginning that you can modify to tailor the process to your
needs. The default linux user account created is “sahand” and the password is “1234”. The root password is
also set to “1234”,

22/06/2016 Page |79

DE1-SoC Guide

usage: create_linux_system.sh [sdcard_device]

positional arguments:
sdcard_device path to sdcard device file [ex: "/dev/sdb", "/dev/mmcblke"]

IT IS RECOMMENDED TO USE THE SCRIPT TO AUTOMATE THE FULL SYSTEM CREATION PIPELINE, AND TO GO
GET A SNACK WHILE YOU WAIT FOR IT TO FINISH ©

13.7 TESTING THE SETUP
61. Wire up the DE1-SoC as described in Figure 9-19.
62. Plug in the microSD card.

BE SURE YOU ARE PART OF THE “dialout” GROUP BEFORE YOU CONTINUE, OTHERWISE YOU WON’T BE
ABLE TO ACCESS THE SERIAL CONSOLE ON YOUR MACHINE IN ORDER TO CONNECT TO THE DE1-SOC.

63. Launch a serial console on your host machine by executing the following command.
$ minicom --device /dev/ttyUSBe

64. Configure the serial console as shown below.

T T e T TP PP +
| A - Serial Device : /dev/ttyUSBO |
| B - Lockfile Location : /var/lock |
| ¢ - Ccallin Program

| D - Callout Program

| E - Bps/Par/Bits : 115200 8N1 |
| F - Hardware Flow Control : No |
| G - Software Flow Control : No |
| |
| Change which setting? |
i m e e e e +

BE SURE TO SET THE MSEL SWITCH ON THE BOTTOM SIDE OF THE DE1-SOC TO “00000” BEFORE
CONTINUING.

65. Power-on the DE1-SoC.

You should see the messages shown in Figure 13-5, and after roughly 30 seconds you will arrive at the linux
login prompt. You can log in with the username and password you set in 13.4.2.2.

U-Boot SPL 2013.01.01 (Jun 15 2016 - 10:41:25)
BOARD : Altera SOCFPGA Cyclone V Board
CLOCK: EOSC1 clock 25000 KHz

CLOCK: EOSC2 clock 25000 KHz

CLOCK: F2S_SDR_REF clock @ KHz

CLOCK: F2S_PER_REF clock © KHz

CLOCK: MPU clock 925 MHz

CLOCK: DDR clock 400 MHz

CLOCK: UART clock 100000 KHz

CLOCK: MMC clock 50000 KHz

CLOCK: QSPI clock 370000 KHz

RESET: COLD

INFO : Watchdog enabled

SDRAM: Initializing MMR registers

SDRAM: Calibrating PHY

SEQ.C: Preparing to start memory calibration

22/06/2016 Page |80

DE1-SoC Guide

SEQ.C: CALIBRATION PASSED
SDRAM: 1024 MiB

ALTERA DWMMC: ©

reading u-boot.img
reading u-boot.img

U-Boot 2016.07-rcl-dirty (Jun 15 2016 - 10:42:03 +0200)

CPU: Altera SoCFPGA Platform
FPGA: Altera Cyclone V, SE/A5 or SX/C5 or ST/D5, version 0x0
BOOT: SD/MMC Internal Transceiver (3.0V)

Watchdog enabled

I2C: ready

DRAM: 1 GiB

MMC: dwmmco@ff704000: ©

In: serial

Out: serial

Err: serial

Model: Altera SOCFPGA Cyclone V SoC Development Kit
Net:

Error: ethernet@ff702000 address not set.

No ethernet found.

Hit any key to stop autoboot: ©

reading u-boot.scr

1778 bytes read in 5 ms (346.7 KiB/s)

Executing script at 02000000

--- Resetting Env variables ---

Resetting to default environment

--- Setting Env variables ---

Saving Environment to MMC...

Writing to MMC(@)... done

--- Programming FPGA ---

reading socfpga.rbf

7007204 bytes read in 389 ms (17.2 MiB/s)

--- Booting Linux ---

reading zImage

4018912 bytes read in 222 ms (17.3 MiB/s)

reading socfpga.dtb

31348 bytes read in 9 ms (3.3 MiB/s)

Kernel image @ ©x1000000 [©x000000 - 0x3d52e0]

Flattened Device Tree blob at 00000100
Booting using the fdt blob at ©x000100
reserving fdt memory region: addr=0 size=1000
Loading Device Tree to 03ff5000, end 03fffa73 ... OK

Starting kernel ...

0.000000] Booting Linux on physical CPU ©x©

0.000000] Linux version 4.5.0-00160-gffea805 (sahand@thinkpad) (gcc version 4.8.3 20140401 (prerelease)
crosstool-NG linaro-1.13.1-4.8-2014.04 - Linaro GCC 4.8-2014.04)) #1 SMP Wed Jun 15 10:49:49 CEST 2016

0.000000] CPU: ARMv7 Processor [413fc090] revision © (ARMv7), cr=10c5387d

.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
.000000] Machine model: Altera SOCFPGA Cyclone V SoC Development Kit

.000000] Truncating RAM at Ox00000000-0x40000000 to -0x30000000

.000000] Consider using a HIGHMEM enabled kernel.

.000000] Memory policy: Data cache writealloc

.000000] PERCPU: Embedded 13 pages/cpu @ef9c3000 s21824 r8192 d23232 u53248

.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 195072

® ® ®© ®© ® ®© ©®

[
[
(
[
[
[
[
[
[
[
[

22/06/2016 Page |81

DE1-SoC Guide

®© ®© ®© © ®©O O ®© ®©O 0O ®© O O ®© O O ®© O O O O OO O

0

®© 0®© ®© ®© ®© © ®© O ®© ®O O ®© 0O O ©O ®O O O O O OGO O

[
[
[
[
[
b
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
(
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

0.
0.
Q.
0.

0.
ss, 15904K reserved, 0K cma-reserved)

0.000000] Virtual kernel memory layout:
0.
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000006]
.000017]
.000362]

.000381]
1pj=1000000)

0.
.000481]
.000492]
.001010]
.001039]
.031702]
.031929]
.033308]
.033369]
.033384]
.033389]
.034056]
.040817]
.041100]
.042050]
.042772]
.049057]
.049070]
.082040]
.082313]
.082375]
.082433]
.082579]
.089797]
.090093]
0.

000000
000000]
000000]
000000]
000000]

000000]

000394]

099764]

Kernel command line: mem=1024M console=ttyS0,115200 root=/dev/mmcblkOp2 rw rootwait

PID hash table entries: 4096 (order: 2, 16384 bytes)

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

Memory: 770528K/786432K available (6131K kernel code, 423K rwdata, 1532K rodata, 452K init, 140K

vector : Oxffffooee - oxffff1000 (4 kB)
fixmap : Oxffco00e® - Oxfffoeeeo (3072 kB)
vmalloc : Oxf0800000 - Oxff800000 (240 MB)
lowmem : OxcO0000OO - OxfOOLOOOO (768 MB)
modules : Oxbf0000RO - OxCOOOOVOO (16 MB)
.text : Oxco008000 - OxcO78423c (7665 kB)
.init : Oxc@785000 - OxcO7f6000 (452 kB)
.data : OxcO7f6000 - 0xco85fe3c (424 kB)
.bss : @xc@85fe3c - Oxc0882eb4 (141 kB)
SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1
Hierarchical RCU implementation.
Build-time adjustment of leaf fanout to 32.
NR_IRQS:16 nr_irgs:16 16
L2C: platform provided aux values permit register corruption.
L2C-310 erratum 769419 enabled
L2C-310 enabling early BRESP for Cortex-A9
L2C-310 full line of zeros enabled for Cortex-A9
L2C-310 ID prefetch enabled, offset 1 lines
L2C-310 dynamic clock gating enabled, standby mode enabled
L2C-310 cache controller enabled, 8 ways, 512 kB
L2C-310: CACHE_ID 0x410030c9, AUX_CTRL 0x76460001
clocksource: timerl: mask: Oxffffffff max_cycles: oxffffffff, max_idle_ns: 19112604467 ns
sched_clock: 32 bits at 100MHz, resolution 1@ns, wraps every 21474836475ns
Switching to timer-based delay loop, resolution 10ns
Console: colour dummy device 80x30
Calibrating delay loop (skipped), value calculated using timer frequency.. 200.00 BogoMIPS

pid_max: default: 32768 minimum: 301

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)

CPU: Testing write buffer coherency: ok

ftrace: allocating 20284 entries in 60 pages

CPUO: thread -1, cpu 0, socket 0, mpidr 80000000

Setting up static identity map for 0x8280 - 0x82d8

CPU1l: thread -1, cpu 1, socket @, mpidr 80000001

Brought up 2 CPUs

SMP: Total of 2 processors activated (400.00 BogoMIPS).

CPU: All CPU(s) started in SVC mode.

devtmpfs: initialized

VFP support v@.3: implementor 41 architecture 3 part 30 variant 9 rev 4
clocksource: jiffies: mask: Oxffffffff max_cycles: oOxffffffff, max_idle_ns: 19112604462750000 ns
NET: Registered protocol family 16

DMA: preallocated 256 KiB pool for atomic coherent allocations
hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
hw-breakpoint: maximum watchpoint size is 4 bytes.

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

soc:usbphy@® supply vcc not found, using dummy regulator
lcd_load_custom_fonts: i2c_master_send returns -121

lcd_cmd_no_params: i2c_master_send returns -121

lcd_cmd_one_param: i2c_master_send returns -121

22/06/2016

Page | 82

DE1-SoC Guide

.109810]
.109838]
.110222]
.110232]
.110261]
.110413]
.111173]
.140402]
.140914]
.140993]
.141098]
.141243]
.141316]
.141508]
.141825]
.141835]
.141841]
.141846]
.142964]
.154153]
.154193]
.154201]
.154261]
.154561]
.155917]
.162142]
.163373]
.163406]
.738234]
.742364]
.753157]
.756281]
.763914]
.773564]
.780757]
.787386]
.795617]
.800089]
.809405]
.814461]
.817503]
.822020]
.826366]
.830355]
.835826]
.840076]
.845746]
.857841]
.861267]
.868036]
.874687]
.161180]
.261270]
.265979]
.273035]
.278581]
.285355]
.292554]
.297238]

L T s e T e W e O M e W e T e W e T T e M e T e W e O e M e B e R e W e M e U T e e s e e W T T e B e T e M e e P M e W e e M e B e T e T e T e T T R T e T R T e I I T
P PR PR P PP OO O OO0 0 0 0O 0O O @ 0O 0O 0O 0O 0O 0O 0O 0O 0O O 0O 0O O ©® © ®© ®O O 0 0O O 0O OO OO OO OO O OO OO

lcd_cmd_no_params: i2c_master_send returns -121

lcd-comm ©-0028: LCD driver initialized

pps_core: LinuxPPS API ver. 1 registered

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <giometti@linux.it>
PTP clock support registered

FPGA manager framework

clocksource: Switched to clocksource timerl

NET: Registered protocol family 2

TCP established hash table entries: 8192 (order: 3, 32768 bytes)

TCP bind hash table entries: 8192 (order: 4, 65536 bytes)

TCP: Hash tables configured (established 8192 bind 8192)

UDP hash table entries: 512 (order: 2, 16384 bytes)

UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)

NET: Registered protocol family 1

RPC: Registered named UNIX socket transport module.

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

RPC: Registered tcp NFSv4.1 backchannel transport module.

futex hash table entries: 512 (order: 3, 32768 bytes)

NFS: Registering the id_resolver key type

Key type id_resolver registered

Key type id_legacy registered

ntfs: driver 2.1.32 [Flags: R/W].

jffs2: version 2.2. (NAND) €© 2001-2006 Red Hat, Inc.

io scheduler noop registered (default)

Serial: 8250/16550 driver, 2 ports, IRQ sharing disabled

console [ttyS@] disabled
f£c02000.serial@: ttySe at MMIO Oxffc@2000 (irqg
console [ttyS@] enabled
ffc03000.seriall: ttyS1l at MMIO Oxffc@3000 (irq = 46, base_baud = 6250000) is a 16550A
brd: module loaded

at24 0-0051: 4096 byte 24c32 EEPROM, writable, 32 bytes/write

cadence-qspi ff705000.spi: Read data capture delay for 100000000 baud calibrated to 8 (@ - 15)
cadence-qspi ff705000.spi: unrecognized JEDEC id bytes: ff, ff, ff

cadence-gspi ff705000.spi: Cadence QSPI NOR probe failed -2

cadence-qspi: probe of ff705000.spi failed with error -2

45, base_baud = 6250000) is a 16550A

CAN device driver interface

c_can_platform ffc@0000.can: c_can_platform device registered (regs=f08ee000, irq=26)
stmmac - user ID: 0x10, Synopsys ID: 0x37

Ring mode enabled

DMA HW capability register supported

Enhanced/Alternate descriptors

Enabled extended descriptors

RX Checksum Offload Engine supported (type 2)

TX Checksum insertion supported

Enable RX Mitigation via HW Watchdog Timer

socfpga-dwmac f£702000.ethernet ethe: No MDIO subnode found
libphy: stmmac: probed
etho: PHY ID 00221611 at 1 IRQ POLL (stmmac-0:01) active
ffb40000.usb supply vusb_d not found, using dummy regulator
ffb40000.usb supply vusb_a not found, using dummy regulator
dwc2 ffb40000.usb: EPs: 16, dedicated fifos, 8064 entries in SPRAM
dwc2 ffb40000.usb: DWC OTG Controller
dwc2 ffb40000.usb: new USB bus registered, assigned bus number 1
dwc2 ffb40000.usb: irq 47, io mem ©x00000000

usb usbl: New USB device found, idVendor=1dé6b, idProduct=0002

usb usbl: New USB device strings: Mfr=3, Product=2, SerialNumber=1
usb usbl: Product: DWC OTG Controller

usb usbl: Manufacturer: Linux 4.5.0-00160-gffea805 dwc2_hsotg

22/06/2016

Page | 83

DE1-SoC Guide

.304004]
.309123]
.312905]
.317445]
.323796]
.330134]
.335841]
.340117]
.346398]
.353039]
.359199]
.364360]
.373701]
.411260]
.417148]
.423350]
.428900]
.432987]
.439884]
.448516]
.457125]
.463383]
.467821]
.473185]
.478322]
.483546]
.487998]
.492447]
.498653]
.503108]
.507365]
.513023]
.518705]
.522940]
.527269]
.531544]
.537445]
.539954]
.544852]
.548920]
.581562]
.591323]
.597192]
.603298]
.662365]
.721175]
.931328]
.938005]
.945687]
.949494]
.924905]
.387998]
.397177]
.405279]
.422408]
.425690]

.—.
B A DDA D WR R RBRRRRRBRRRRBRRRRRRBRRBRRRRRRBRRRRRRBRRRRRRRRRBRRRRBRRBRR R

usb usbl: SerialNumber: ffb40000.usb
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 1 port detected
usbcore: registered new interface driver usb-storage
mousedev: PS/2 mouse device common for all mice
rtc-ds1307: probe of 0-0068 failed with error -5
i2c /dev entries driver
Synopsys Designware Multimedia Card Interface Driver
dw_mmc f£704000.dwmmcO: IDMAC supports 32-bit address mode.
dw_mmc ff704000.dwmmcO: Using internal DMA controller.
dw_mmc f£704000.dwmmcO: Version ID is 24@a
dw_mmc ff704000.dwmmcO: DW MMC controller at irq 34,32 bit host data width,1024 deep fifo
dw_mmc f£704000.dwmmcO: Got CD GPIO
dw_mmc ff704000.dwmmcO: 1 slots initialized
ledtrig-cpu: registered to indicate activity on CPUs
usbcore: registered new interface driver usbhid
usbhid: USB HID core driver
fpga_manager fpgad: Altera SOCFPGA FPGA Manager registered
altera_hps2fpga_bridge ff400000.fpga_bridge: fpga bridge [lwhps2fpga] registered
altera_hps2fpga_bridge ff500000.fpga_bridge: fpga bridge [hps2fpga] registered
fpga-region soc:base_fpga_region: FPGA Region probed
oprofile: no performance counters
oprofile: using timer interrupt.
NET: Registered protocol family 10
sit: IPv6 over IPv4 tunneling driver
NET: Registered protocol family 17
NET: Registered protocol family 15
can: controller area network core (rev 20120528 abi 9)
NET: Registered protocol family 29
can: raw protocol (rev 20120528)
can: broadcast manager protocol (rev 20120528 t)
can: netlink gateway (rev 20130117) max_hops=1
8021q: 802.1Q VLAN Support v1.8
Key type dns_resolver registered
ThumbEE CPU extension supported.
Registering SWP/SWPB emulation handler
of_cfs_init
of_cfs_init: OK
ttySe - failed to request DMA
Waiting for root device /dev/mmcblkep2...
mmc_host mmcO: Bus speed (slot @) = 50000000Hz (slot req 50000000Hz, actual 50000000HZ div
mmcO: new high speed SDHC card at address 0007
mmcblk@: mmcO:0007 SD8GB 7.42 GiB
mmcblk@: pl p2 p3
EXT4-fs (mmcblk@p2): mounting ext3 file system using the ext4 subsystem
usb 1-1: new high-speed USB device number 2 using dwc2
usb 1-1: New USB device found, idVendor=0424, idProduct=2512
usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
hub 1-1:1.0: USB hub found
hub 1-1:1.0: 2 ports detected
random: nonblocking pool is initialized
EXT4-fs (mmcblk@p2): recovery complete
EXT4-fs (mmcblk@p2): mounted filesystem with ordered data mode. Opts: (null)
VFS: Mounted root (ext3 filesystem) on device 179:2.
devtmpfs: mounted
Freeing unused kernel memory: 452K (c©785000 - c@7f6000)

Mount failed for selinuxfs on /sys/fs/selinux: No such file or directory

[4.847646]
[4.855850]

init: plymouth-upstart-bridge main process (639) terminated with status 1
init: plymouth-upstart-bridge main process ended, respawning

0)

22/06/2016

Page | 84

DE1-SoC Guide

.890717] init: plymouth-upstart-bridge main process (649) terminated with status 1
.898831] init: plymouth-upstart-bridge main process ended, respawning

.922300] init: hwclock main process (641) terminated with status 1

.936132] init: plymouth-upstart-bridge main process (652) terminated with status 1
.944074] init: plymouth-upstart-bridge main process ended, respawning

.971422] init: plymouth-upstart-bridge main process (654) terminated with status 1

F N N N N NS

.979432] init: plymouth-upstart-bridge main process ended, respawning

L B B e B e T e B B e B |

5.046143] init: ureadahead main process (642) terminated with status 5
* Stopping Send an event to indicate plymouth is up[OK]
* Starting Mount filesystems on boot[OK]
* Starting Signal sysvinit that the rootfs is mounted[OK]
* Starting Populate /dev filesystem[OK]
* Stopping Populate /dev filesystem[OK]
* Starting Clean /tmp directory[OK]
* Starting Populate and link to /run filesystem[OK]
* Stopping Clean /tmp directory[OK]
* Stopping Populate and link to /run filesystem[OK]
* Stopping Track if upstart is running in a container[OK]
* Starting Initialize or finalize resolvconf[OK]
* Starting set console keymap[OK]
* Starting Signal sysvinit that virtual filesystems are mounted[OK]
* Starting Signal sysvinit that virtual filesystems are mounted[OK]
* Starting Bridge udev events into upstart[OK]
* Starting Signal sysvinit that local filesystems are mounted[OK]
* Starting device node and kernel event manager[OK]
* Starting Signal sysvinit that remote filesystems are mounted[OK]
* Stopping set console keymap[OK]
* Starting load modules from /etc/modules[OK]
* Starting cold plug devices[OK]
* Starting log initial device creation[OK]
* Stopping load modules from /etc/modules[OK]
* Starting flush early job output to logs[OK]
* Stopping Mount filesystems on boot[OK]
* Stopping cold plug devices[OK]
* Stopping log initial device creation[OK]
* Stopping flush early job output to logs[OK]
* Starting configure network device security[OK]
* Starting save udev log and update rules[OK]
* Starting userspace bootsplash[OK]
* Stopping save udev log and update rules[OK]
* Stopping userspace bootsplash[OK]
* Starting configure network device security[OK]
* Starting Send an event to indicate plymouth is up[OK]
* Starting configure network device security[OK]
* Stopping Send an event to indicate plymouth is up[OK]
* Starting configure network device[OK]
* Starting system logging daemon[OK]
* Starting configure network device security[OK]
* Starting configure network device security[OK]
* Starting configure network device[OK]
* Starting configure network device[OK]
* Starting Mount network filesystems[OK]
* Starting Failsafe Boot Delay[OK]
* Stopping Mount network filesystems[OK]
* Starting Bridge socket events into upstart[OK]
* Starting Bridge file events into upstart[OK]
Waiting for network configuration...
Waiting up to 60 more seconds for network configuration...
Booting system without full network configuration...

22/06/2016 Page |85

DE1-SoC Guide

* Stopping Failsafe Boot Delay[OK]

* Starting System V initialisation compatibility[OK]

* Stopping System V initialisation compatibility[OK]

* Starting System V runlevel compatibility[OK]

* Starting save kernel messages[OK]

* Starting Get a getty on ttySe[OK]

* Starting regular background program processing daemon[OK]
* Stopping System V runlevel compatibility[OK]

* Stopping save kernel messages[OK]

Ubuntu 14.04.4 LTS DE1-SoC ttySe

DE1-SoC login: sahand

Password:

Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.5.0-00160-gffea805 armv7l)
* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

sahand@DE1-SoC:~$

Figure 13-5. DE1-SoC Boot Messages

Now that full system is up and running, we can move on towards building a linux application.

13.8ARM DS-5

66. Launch the ARM DS-5 IDE by executing the following command.
$ eclipse

13.8.1 Setting Up a New C Project
67. Create a new C project by goingto “File > New > C Project”.

a. Use “DE1_SoC_demo_hps_linux” as the project name.

b. Disable the “Use default location” checkbox.

c. Set“DE1_SoC _demo/sw/hps/application/DE1_SoC_demo_hps_linux” as the target
location for the project.

d. We want to create a single output executable for our project, so choose “Executable >
Empty Project” asthe project type.

e. Choose “GCC 4.x [arm-linux-gnueabihf] (DS-5 built-in)?* asthe Toolchain.

f. You should have something similar to Figure 13-6. Then, press the “Finish” button to create
the project.

22/06/2016 Page | 86

DE1-SoC Guide

C Project

C Project

Project name: DEl_SoC_demo_hps_linux

Use default locatien
Location: shome/sahand/Documents/Development fgithub/DEL-S0C/DEL_SoC_demo/sw/hps, | Browse... |

Choose file system: | default 2

Project type: Toolchains:
¥ = Executable ARM Compiler 5 (DS-5 built-in)
® Empty Project ARM Compiler 6 (DS-5 built-in)
® Hello World ANSI C Project Altera Baremetal GCC
P = Shared Library GCC 4.x [arm-linux-gnueabihf] (D5-5 built-in)
b = Static Library GCC for ARM Bare-metal
B (= Makefile project Linux GCC

& Show project types and toclchains only if they are supported on the platform

P R
|\‘?)| Next = Einish Cancel

Figure 13-6. New C Project Dialog

68. When programming the HPS, we will need access to a few standard header and linker files provided
by Altera. We need to add these files to the ARM DS-5 project.

a.
b.

e.

Right-click on the “DE1_SoC_demo_hps_linux” project, and go to “Properties”.

We are going to use a RESTRICTED SUBSET of Altera’s HWLIB to develop our linux application,
so we need to define a macro that is needed by the library to know which board is being
targetted. The reason we use a restricted subset of the library is due to the fact that the
library is not fully usable in a user application, as many physical peripheral addresses are
employed. We will only use the library to compute offsets and to use the non-intrusive
functions it has available.

Under “C/C++ Build > Settings > GCC C Compiler > Symbols”, add “soc_cv_av” to
the “Defined symbols (-D)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include” to the “Include paths (-I)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include/soc_cv_av” to the “Include paths (-I)” list.

Click on the “Apply” button, then on the “Ok” button to close the project properties dialog.

69. In order to unlock a few settings later in this tutorial, we will create a C file that simply contains an
empty “main()” function for the moment.

a. Right-click on the “DE1_SoC_demo_linux” project, and go to “New > Source File”. Use
“hps_1linux.c” as the file name, and click on the “Finish” button to create the new source
file.

b. Right-click on the “DE1_SoC_demo_1linux” project, and go to “New > Header File”. Use
“hps_1linux.h” as the file name, and click on the “Finish” button to create the new header
file.

c. Fill “hps_linux.c” with the code shown in Figure 13-7.

22/06/2016 Page | 87

DE1-SoC Guide

int main(void) {
return 0;

}

Figure 13-7. hps_linux.c with an empty main() function.
d. Right-click on the “DE1_SoC_demo_1linux” project and select “Build Project”.
13.8.2 Creating a Remote Debug Connection to the Linux Distribution

13.8.2.1 Find the Linux Distribution’s IP Address

Later in this tutorial, we will need to know the IP address assigned to the DE1-SoC so ARM DS-5 can
automatically use an SSH connection to transfer linux binaries and launch gdb debug sessions for us. In this
step, we will use a serial terminal to manually connect to the linux distribution running on the board and find
out its IP address.

70. Although we can continue to use the “minicom” program as we previously did in Figure 13-5, we will
use the built-in serial terminal available in ARM DS-5 to have all development windows in one area.
Go to “Window > Show View > Other.. > Terminal > Terminal” to open ARM DS-5’s the built-in
serial terminal. You should see the terminal shown in Figure 13-8.

A8 Terminal 33 I3 u:' = < = 8
Serial: (COM1, 115200, &, 1, Mone, None - CLOSED] - Encoding: (I50-8859-1)

Figure 13-8. ARM DS-5 Serial Terminal

71. Modify the serial terminal’s settings to match those shown in Figure 13-9, then press “OK” to start the
connection.

% Terminal Settings AN EI NS

View Settings

View Title: |DE1-SoC

Encoding: |1S0-8859-1 v

Connection Type

Serial =
Settings

Port: Jdewv/ttyUSBO v
Baud Rate: 115200 =
Data Bits: 8 =
Stop Bits: 1 =
Parity: MNone =

Flow Control: | None

Timeouk (sec): |5

Cancel 0K

22/06/2016 Page |88

DE1-SoC Guide
Figure 13-9. ARM DS-5 Serial Terminal Settings

72. You should see the linux login prompt. Log with the username and password we defined in 13.4.2.2.
You should see something similar as Figure 13-10.

= 4% pEL-S0C 22 & B 5 B8 - =
Serial: ({devittyUSBO, 115200, 8, 1, None, None - CONMECTED) - Encoding: (IS0-8859-1)
* Starting System V initialisation compatibility [OK]
¥ Starting configure virtual network devices [oK 1]
* Stopping Mount network filesystems [OK]
* Stoppilng System V initialisation compatibility [oK 1]
* Starting System V runlevel compatibility [oK 1]
* Starting save kernel messages [OK]
¥ Starting Get a getty on ttyso [oK 1]
* Starting regular background program processing daemon [OK]
¥ Stopping System V runlevel compatibility [oK 1]
* Stopping save kernel messages [OK]

Ubuntu 14.04.4 LTS DE1-SoC ttyS0

DEl-SoC Llogin: sahand

Password:

Last login: Mon Apr 18 08:17:22 CEST 2016 on ttysS0
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 4.6.0-rc2 armv7l)

* Documentation: https://help.ubuntu.com/

sahand@DEL-SoC: ~5 i

Figure 13-10. ARM DS-5 Serial Terminal Linux Prompt

73. Type “ifconfig ethe | grep inet” to obtain the IP address attributed to the device. You should
get something similar to Figure 13-11. If you don’t see an IP address listed, then run the following
command to try to get one automatically through DHCP.
$ sudo dhclient etho

o 5 DE1-50C 2 o B 5 AE v = 8
Serial: (fdevttyUSBO, 115200, 8, 1, None, None - CONNECTED) - Encoding: (IS0-8859-1)

sahand@DEl-SoC: ~§ ifconfig eth® | grep inet
inet addr;10.42.0.200 Bcast:10.42.0.255 Mask:255,255,255.0
inete addr: fe80::acd3:31ff:feab:29df/64 Scope:Link
sahand@DELl-SoC: ~§ |}

Figure 13-11. Obtaining the DE1-SoC's IP Address through ARM DS-5’s Serial Terminal

13.8.2.2 Create an SSH Remote Connection
74. Goto “File > New > Other.. > Remote System Explorer > Connection”.
75. Choose to create an “SSH Only” connection.
76. Enter the IP address you found in 13.8.2.1 as the “Host name”.
77. Enter “DE1-SoC” as the “Connection name”. You should have something similar to Figure 13-12.
78. Click on “Finish” to create the connection.

22/06/2016 Page |89

DE1-SoC Guide

MNew Connection

FRemote SSH Only System Connection

Define connection information

Parent profile: sahand-thinkpad =
Host name: 10.42.0.200 v
Connection name: DE1-SoC

Description: |

Verify host name

Configure proxy settings

@- = Back Next = FEinish Cancel

Figure 13-12. New SSH Only Connection

79. You should be able to see the remote system in ARM DS-5’s “Remote Systems?” view, as shown in
Figure 13-13.

25 DebugC [5ProjectE | #§Remote 3| = O
£ & B & ¥
¥ Ef Local
» *% Local Files
% Local shells
v (5 DE1-SoC
» T Sftp Files
% Ssh shells
4B 55k Terminals

Figure 13-13. New SSH Connection In "Remote Systems" View

13.8.2.3 Setting Up the Debug Configuration
80. Right-click on the “DE1_SoC_demo_linux” project, and go to “Debug As > Debug
Configurations..”.
81. Choose to create a new debugger configuration by right-clicking on “DS-5 Debugger” on the left and
selecting “New”. Use “DE1_SoC_demo_hps_1linux” as the name of the new debug configuration.
82. Under the “Connection” tab:
a. Use “Altera > Cyclone V SoC (Dual Core) > Linux Application Debug > Download
and debug application” as the target platform.
b. Setthe “RSE connection” to “DE1-SoC”. This is the remote system connection we created
earlier. You should have something similar to Figure 13-14.

22/06/2016 Page |90

DE1-SoC Guide

Name: |DE1_SoC_demo_hps_linux

<= Connection Files| # Debugger| & OS Awareness| ®: Arguments | B§ Environment

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Altera / Cyclone V SoC (Dual Core) / Linux Application Debug / Download and debug application

¥ Altera
¥ Arria V SoC
¥ Cyclone Vv SoC (Dual Core)
P Bare Metal Debug
¥ LinwxApplication Debug
Conneck to already running gdbserver

Download and debug application
Start gdbserver and debug target resident application
b Linuwx Kernel and/or Device Driver Debug

DS-5 Debugger will download your application to the target system and then start a new gdbserver session to debug the
application. This configuration requires ssh and gdbserver on the target platForm.

Connections

RSE connection | DE1-SoC -

Address: Use RSE Host

gdbserver (TCP) Part: 5000

[Use Extended Mode

Figure 13-14. Debug Configuraton “Connection” Tab

83. Under the “Files” tab:

a. Set“Application on host to download” to the built binary of our project. Use the
“Workspace” button to choose the binary. You should have something similar to
“${workspace_loc:/DE1_SoC_demo_hps_linux/Debug/DE1_SoC_demo_hps_ linux}”.

b. Setthe “Target download directory” to your user directory. In my case it is
“/home/sahand”.

c. Setthe “Target working directory” to your user directory. In my case it is
“/home/sahand”. You should have something similar to Figure 13-15.

Name: DEl_SoC_demo_hps_linux
<= Connection IE Files &% Debugger ‘.” 0S Awareness| (- Arguments E Environment

Target Configuration

Application on host te download:

s{workspace_locDE1 SoC_demo_hps_linux/Debug/DEL_SoC_dermo_hps_linux}
File System...| ‘Workspace... | @ Load symbols

Target download directory:

thorme/sahand

Target working directory:

fhomefsahand

Files

Load symbols from file =
File Systerm... | |Workspace...

Figure 13-15. Debug Configuration "Files" Tab

84. Under the “Debugger” tab, make sure that “Debug from symbol” is selected and that “main” is the
name of the symbol, as shown in Figure 13-16.

22/06/2016 Page |91

DE1-SoC Guide

85. Click on the “Apply” button, then on the “Close” button to save the debug configuration.

Name: |DE1_SoC_demo_hps_linux
<~ Connection [l Files (% Debuggeny, % OS5 Awareness| ® Arguments | B Environment
Run control
Conneck only Debug from entry point @ Debug from symbel | main

Run target initialization debugger script (.ds / .py)
| Run debug initialization debugger script (.ds /.py)

Execute debugger commands

Host working directory

B use default

Figure 13-16. Debug Configuration "Debugger" Tab

13.8.3 Linux Programming

The interrupt-driven nature of operating systems requires that error-prone processes be unable to harm the
correct operation of the computer. Modern processors provide a hardware solution to this issue by means of
a DUAL-MODE operating state. CPUs define two modes which operating systems can then use to implement
protection mechanisms among processes they are handling.

The linux operating system calls these modes USER MODE and KERNEL MODE. Processors remain in user
mode when executing harmless code in user applications, whereas they transition to kernel mode when
executing potentially dangerous code in the system kernel. Examples of dangerous code are handling an
interrupt from a peripheral, copying data from a peripheral’s registers to main memory, ...

User code cannot be executed in kernel mode. When a user process needs to perform an action that is only
allowed in kernel mode, it performs a system call and asks the operating system to take care of the task in its
place. What this boils down to is that USER CODE CANNOT ACCESS THE HARDWARE DIRECTLY, as there is too
much of a risk for the code to have an error and cause the system to crash. User code must always ask the
operating system to perform dangerous operations in its place.

The main advantage of Cyclone V SoCs is the ability to have the HPS and FPGA communicate with each other
easily. This is simple to accomplish in a standard bare-metal application as there are absolutely no protection
mechanisms implemented. However, this is not possible while the HPS is running linux, as user code doesn’t
have the right to access hardware directly.

There are 2 solutions to this problem:

o If developers are knowledgeable enough, they can write a device driver for the target peripheral they
want to access in their user code, and package this in a loadable linux kernel module. This is the
correct way to access hardware in linux, but it requires that the developer know how to write a device
driver. Administrative users can load the kernel module, then any standard user code can interact
with the peripheral.

e Asimpler technique often used in embedded linux environments is to leverage the virtual memory
system in order to access any MEMORY-MAPPED peripherals (peripherals and operations that are
only accessible through priviledged machine instructions cannot be accessed with this method).
Unfortunately, this method requires code to be run with root privileges. However, it does not require
any kernel code to be written.

22/06/2016 Page |92

DE1-SoC Guide

Writing a linux device driver is outside the scope of this tutorial, so we will use the memory mapping
technique here.

The code for this part of the application is quite large to be inserted in this document. Therefore, we will just
go over a few practical aspects of the code which are worth paying attention to. The full source can be found
in DE1_SoC_demo.zip [5].

Recall that we cannot handle interrupts in linux user mode. Therefore, in order to satisfy the HPS-related goals
specified in 8.4, we will need to use an infinite loop and do some polling. This can be seen in our application’s
“main()” function, which is shown in Figure 13-17.

int main() {
printf("DE1-SoC linux demo\n");

open_physical_memory_device();
mmap_peripherals();

setup_hps_gpio();
setup_hex_displays();

uint32_t hex_counter = 0;

while (true) {
handle_hex_displays(&hex_counter);
handle_hps_led();
usleep(ALT_MICROSECS_IN_A SEC / 10);

munmap_peripherals();
close_physical_memory_device();

return 0;

Figure 13-17. hps_linux.c main() Function

13.8.3.1 Using Altera’s HWLIB - Prerequisites
We will use a SUBSET of Altera’s HWLIB in this tutorial. In order to be able to use HWLIB to configure a
peripheral, 2 steps need to be performed:

e You need to INCLUDE the HPS peripheral’s HWLIB HEADER FILE to your code.

e You must COPY the HPS peripheral’s HWLIB SOURCE FILE in your DS-5 project directory. The HWLIB
source files can be found in directory
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/src”,
and must be copied to “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_linux”.

In the example used in this linux programming tutorial, we use some HWLIB functions related to the HPS’
GPIO peripheral, so you must copy “alt_generalpurpose_io.c” to your DS-5 project directory.

13.8.3.2 Accessing Hardware Peripherals from User Space

13.8.3.2.1 Opening the Physical Memory File Descriptor

In Figure 7-3 we saw that the FPGA slaves and HPS peripherals are visible to the MPU unit and are therefore
subject to memory-mapped I0. We need to be able to access these peripherals’ addresses in order to interact
with them.

Unfortunately, a process can only interact with the virtual address space it is assigned by the linux kernel. Any
attempt to access memory outside this region will cause the process to be terminated. Nevertheless, it is
possible for a process to gain access to another virtual memory region by using the “mmap ()” function. The

22/06/2016 Page |93

DE1-SoC Guide

mmap () function maps another memory region into the running process’ virtual address space. Therefore, all
we need to do is to mmap () the FPGA slaves and HPS peripherals’ memory regions into our address space.

The mmap () function’s prototype is shown in Figure 13-18. Note that it memory maps a FILE into the running
process’ address space, so we need to find a file that “represents” our peripherals.

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

Figure 13-18. Prototype of the mmap() Function

By design, linux represents everything as a file, including all devices. In particular, the special “/dev/mem” file
represents the content of the system’s physical memory. This is the file we will mmap () in order to access the
memory regions we are interested in.

Since we are memory-mapping a file, the first step is to open this file. Figure 13-19 shows how to open the
/dev/mem file. Remember that /dev/mem grants access to physical memory, so a user requires elevates rights
in order to open it. Therefore, don’t forget to launch this code as the root user in order to have enough
privileges.

// physical memory file descriptor
int fd_dev_mem = 0;

void open_physical_memory_device() {
fd_dev_mem = open("/dev/mem", O _RDWR | O_SYNC);

if(fd_dev_mem == -1) {
printf("ERROR: could not open \"/dev/mem\"...\n");
printf(" errno = %s\n", strerror(errno));

exit(EXIT_FAILURE);

Figure 13-19. open_physical_memory_device() Function

13.8.3.2.2 Accessing HPS Peripherals

Now that we have opened the physical memory file, we can memory-map a subset of it into our process’
virtual address space. Figure 13-20 shows how this is done for memory-mapping the HPS’ GPIO peripheral.
Note that you must know the offset of your peripheral within the physical memory file, as well as the amount
of memory you want to be memory-mapped from that offset. In our case, we will start memory-mapping
from the GPIO1 peripheral’s offset, and we choose to map the size of the full peripheral.

void *hps_gpio = NULL;
size_t hps_gpio_span = ALT_GPIO1_UB_ADDR - ALT_GPIO1_LB_ADDR + 1;
size_t hps_gpio_ofst = ALT_GPIO1_OFST;

void mmap_hps_peripherals() {
hps_gpio = mmap(NULL, hps_gpio_span, PROT_READ | PROT_WRITE, MAP_SHARED, fd_dev_mem, hps_gpio ofst);
if (hps_gpio == MAP_FAILED) {
printf("Error: hps_gpio mmap() failed.\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);

Figure 13-20. mmap_hps_peripherals() Function

Finally, after having memory-mapped the HPS’ GPIO peripheral, we can access any of its internal registers
with the low-level functions we saw in 11.3. Figure 13-21 shows how we configure the HPS’ GPIO peripheral,
and Figure 13-22 shows how we can toggle HPS_LED on the DE1-SoC by using the HPS_KEY_N button.

void setup_hps_gpio() {
// Initialize the HPS PIO controller:

22/06/2016 Page |94

DE1-SoC Guide

// Set the direction of the HPS_LED GPIO bit to "output"

// Set the direction of the HPS_KEY_N GPIO bit to "input"

void *hps_gpio_direction = ALT_GPIO_SWPORTA_DDR_ADDR(hps_gpio);
alt_setbits_word(hps_gpio_direction, ALT_GPIO_PIN_OUTPUT << HPS_LED_PORT_BIT);
alt_setbits_word(hps_gpio_direction, ALT_GPIO_PIN_INPUT << HPS_KEY_N_PORT_BIT);

Figure 13-21. setup_hps_gpio() Function

void handle_hps_led() {
void *hps_gpio_data = ALT_GPIO_SWPORTA_DR_ADDR(hps_gpio);
void *hps_gpio_port = ALT_GPIO_EXT_PORTA_ADDR(hps_gpio);

uint32_t hps_gpio_input = alt_read_word(hps_gpio_port) & HPS_KEY_N_MASK;

// HPS_KEY_N is active-low
bool toggle_hps_led = (~hps_gpio_input & HPS_KEY_N_MASK);

if (toggle_hps_led) {
uint32_t hps_led_value = alt_read_word(hps_gpio_data);
hps_led_value >>= HPS_LED_PORT_BIT;
hps_led_value = !hps_led_value;
hps_led_value <<= HPS_LED_PORT_BIT;
alt_replbits_word(hps_gpio_data, HPS_LED _MASK, hps_led_value);

Figure 13-22. handle_hps_led() Function

The key to doing memory-mapped 10 in linux is to use HWLIB’s OFFSET-based macros with the virtual address
returned by mmap() as the base address. Note that HWLIB also has macros with ABSOLUTE addresses for
every device, but those can only be used in bare-metal or linux device driver code as they directly access
certain physical addresses.

In Figure 13-21 and Figure 13-22, we used three such offset-based macros to access the HPS GPIO peripheral’s
“Port A Data Register”, “Port A Data Direction Register”, and “External Port A Register”.
These macros were the following:

e ALT_GPIO_SWPORTA_DR_ADDR(base)
e ALT_GPIO_SWPORTA DDR_ADDR(base)
e ALT_GPIO_EXT_PORTA_ADDR(base)

13.8.3.2.3 Accessing FPGA Peripherals

Memory-mapping FPGA peripherals is identical to the process used for HPS peripherals. However, there is one
subtlety that must be taken care of. When using mmap () you must specify an offset within the file that is to be
mapped, as well as the amount of memory to be mapped. The mmap () manual page states that the offset
provided MUST BE A MULTIPLE OF THE SYSTEM’S PAGE SIZE, which is ©x1000 bytes in our case.

If you look closely at the addresses in Table 7-4, you will realize that this requirement always holds for the
HPS’ peripherals. However, this is not always true for the FPGA peripherals. For example, the design we used
in this tutorial puts the FPGA buttons at address 0xFF200060 (offset 0x60 from the base address of the
Lightweight HPS-to-FPGA bridge), which is not a multiple of the system’s page size.

This implies that it isn’t possible to memory-map the FPGA buttons alone, but we must instead use some
offset which Is a multiple of the system’s page size. To get around this issue, we will memory-map FPGA

peripherals from the HPS peripheral to which they are connected, as we are sure that the particular HPS
peripheral’s base addres is a multiple of the page size.

Figure 13-23 shows how we memory-map the FPGA peripherals in our design from the Lightweight HPS-to-
FPGA bridge, and Figure 13-24 shows how we can check if one of the FPGA buttons are being pressed.

22/06/2016 Page |95

DE1-SoC Guide

void *h2f_lw_axi_master NULL;
size_t h2f_lw_axi_master_span = ALT_LWFPGASLVS_UB_ADDR - ALT_LWFPGASLVS_LB_ADDR + 1;

ALT_LWFPGASLVS_OFST;

size t h2f_lw_axi_master_ofst

void *fpga_buttons NULL;
void *fpga_hex_displays[HEX_DISPLAY_COUNT] = {NULL, NULL, NULL, NULL, NULL, NULL};

void mmap_fpga_peripherals() {
h2f 1w_axi_master = mmap(NULL, h2f lw_axi_master_span, PROT_READ | PROT_WRITE, MAP_SHARED, fd_dev_mem,
h2f_lw_axi_master_ofst);

if (h2f_lw_axi_master == MAP_FAILED) {
printf("Error: h2f_lw_axi_master mmap() failed.\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);

fpga_buttons = h2f_lw_axi_master + BUTTONS_O_BASE;
fpga_hex_displays[@] = h2f_lw_axi_master + HEX_©_BASE;
fpga_hex_displays[1] = h2f_lw_axi_master + HEX_1_BASE;
fpga_hex_displays[2] = h2f_lw_axi_master + HEX_2_BASE;

+

+

+

fpga_hex_displays[3] = h2f_lw_axi_master + HEX_3_BASE;
HEX_4_BASE;

HEX_5_BASE;

fpga_hex_displays[4] = h2f_lw_axi_master
fpga_hex_displays[5] = h2f_lw_axi_master

Figure 13-23. mmap_fpga_peripherals() Function.

bool is_fpga_button_pressed(uint32_t button_number) {
// buttons are active-low
return ((~alt_read_word(fpga_buttons)) & (1 << button_number));

Figure 13-24. is_fpga_button_pressed() Function

13.8.3.2.4 Cleaning Up Before Application Exit

Although the operating system should take care of this for you, it is always a good practice to remove any
unneeded memory mappings and to close the physical memory file descriptor before your application
terminates.

Figure 13-25 shows how to unmap the GPIO peripheral’s memory-mapping, and Figure 13-26 shows how to
close the physical memory file descriptor.

void munmap_hps_peripherals() {
if (munmap(hps_gpio, hps_gpio_span) != 0) {
printf("Error: hps_gpio munmap() failed\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);

hps_gpio = NULL;

Figure 13-25. munmap_hps_peripherals() Function

void close_physical memory_device() {
close(fd_dev_mem);

Figure 13-26. close_physical_memory_device() Function

22/06/2016 Page |96

DE1-SoC Guide

13.8.3.3 Launching the Linux code in the Debugger
86. Once you have finished writing all the application’s code, right-click on the
“DE1_SoC_demo_hps_linux” project, and select “Build Project”.
87. Switch to the DS-5 Debug perspective, as shown in Figure 12-13.

==]

reralpurpo = 0 gz Outlin 2 ¢ = O
3 % R e T
B asserth
™ stdboolh
o stdioh

[B [F

Figure 13-27. Switching to the DS-5 Debug Perspective

88. In the “Debug Control” view, click on the “DE1_SoC_demo_hps_1linux” entry, then click on the
“Connect to Target” button, as shown on Figure 13-28. The debugger will start an SSH conection to
the linux distribution running on the DE1-SoC and will automatically transfer our binary file and wait
at our application’s “main()” function. If you are prompted to log in, then log in with the ROOT user
and password.

DebugC 2 |[(5ProjectE #8 Remote = A

=N % %

=4

& DE1_SoC_demo_hps linux disconnected

>3 DE1_SoC_demo_hps_linux disconnected
Mo OS5 Support

Figure 13-28. Debug Control View

89. You can the use the buttons in the “Debug Control” view to control the application’s execution.

DebugC 2 |[5ProjectE #8Remote = O
= @ % olvdvy B s

‘P DEL_SoC_demo_hps_linux connected

¥ [= Active Threads
¥ i Thread 306 #1 stopped on breakpoint
= main
= 0x76F14FDA [/1ib/1libc.s0.6]
P = Al1l Threads

& DE1_SoC_demo_hps_linux connected
Mo OS5 Support

22/06/2016 Page |97

DE1-SoC Guide
Figure 13-29. DS-5 Debugger Controls

13.8.3.4 App Console

Data sent to standard output is shown in the “App Console” view. Figure 13-30 shows the result of a

“printf()” call in our demo code shown in Figure 13-17.

B App Consol 28 f =
'-':'-' H BE

<}=={“> Linked: DEl1_SoC_demo_hps_linux-
DE1-SoC linux demo

Figure 13-30. DS-5 App Console View

13.8.3.5 DS-5 Linux Debugger Restrictions

In 12.2.4.4.1, we saw that the DS-5 BARE-METAL debugger had a “Registers” view which could show the
registers of all HPS and FPGA peripherals. This was a very handy tool, as it made it easy to verify if registers

were accessed and updated correctly.

Unfortunately, when it comes to debugging LINUX binaries, the DS-5 debugger is subject to the same
constraints our linux applications are. Namely, it cannot directly access physical hardware addresses directly.

As such, there is no “Registers” view when debugging linux applications, and you must resort to manually

memory-mapping and verifying peripheral accesses yourself.

22/06/2016 Page |98

DE1-SoC Guide

14TODO

e Explain MSEL when reprogramming the FPGA from the HPS.

e Talk about what the JTAG to Avalon masters are.

e Find out how to automatically program the FPGA when writing a bare-metal HPS application. Use
“tftp” command?

22/06/2016 Page |99

DE1-SoC Guide

15REFERENCES

[1] Terasic Technologies, "Terasic - DE Main Boards - Cyclone - DE1-SoC Board," [Online]. Available:
http://del-soc.terasic.com.

[2] Altera Corporation, "Cyclone V Device Handbook, Volume 3: Hard Processor System Technical Reference
Manual," 31 July 2014. [Online]. Available: http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf.

[3] S.Kashani-Akhavan, "DE1_SoC top_level.vhd," [Online]. Available:
https://github.com/sahandKashani/Altera-FPGA-top-level-files/blob/master/DE1-
SoC/DE1_SoC_top_level.vhd.

[4] S. Kashani-Akhavan, "pin_assignment_DE1_SoC.tcl," [Online]. Available:
https://github.com/sahandKashani/Altera-FPGA-top-level-files/blob/master/DE1-
SoC/pin_assignment_DE1_SoC.tcl.

[5] S.Kashani-Akhavan, "DE1_SoC_demo.zip," [Online]. Available: https://github.com/sahandKashani/DE1-
SoC/blob/master/DE1_SoC_demo.zip.

[6] S. Kashani-Akhavan, "DEO_Nano_SoC_demo.zip," [Online]. Available:
https://github.com/sahandKashani/DE1-SoC/blob/master/DEO_Nano_SoC_demao.zip.

[7] ISSI. [Online]. Available: https://github.com/sahandKashani/DE1-SoC/raw/master/Documentation/DE1-
SoC/SDRAM%20Datasheet.pdf.

[8] Terasic Technologies, [Online]. Available: https://github.com/sahandKashani/DE1-
SoC/blob/master/Documentation/DE1-SoC%20Schematic.pdf.

[9] ISSI. [Online]. Available: https://github.com/sahandKashani/DE1-SoC/raw/master/Documentation/DE1-
SoC/DDR3%20SDRAM%20Datasheet.pdf.

[10] ARM, "DS-5 Debugger Commands," [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0452¢c/CIHJIBIH.html.

[11] Altera Corporation, "Documentation: Cyclone V Devices," [Online]. Available:
http://www.altera.com/literature/lit-cyclone-v.jsp?In=devices_fpga&I3=Low-Cost%20FPGAs-
Cyclone%20V%20%28E,%20GX,%20GT,%20SE,%20SX,%20ST%29&|4=Documentation.

[12] Altera Corporation, "Address Map for HPS," [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/hps.html.

[13] Altera Corporation, "A Look Inside: SoC FPGAs Embedded Development Tools (Part 5 of 5)," 25
November 2013. [Online]. Available: http://www.youtube.com/watch?v=NxZznvf5EKc.

[14] Altera Corporation, "A Look Inside: SoC FPGAs Introduction (Part 1 of 5)," 25 November 2013. [Online].
Available: http://www.youtube.com/watch?v=RVM-ESUMOMU.

[15] Altera Corporation, "A Look Inside: SoC FPGAs Reliability and Flexibility (Part 3 of 5)," 25 November
2013. [Online]. Available: http://www.youtube.com/watch?v=cWIlaqt2RU84.

22/06/2016 Page |100

DE1-SoC Guide

[16] Altera Corporation, "A Look Inside: SoC FPGAs System Cost and Power (Part 4 of 5)," 25 November 2013.
[Online]. Available: http://www.youtube.com/watch?v=gUE669XKhUY.

[17] Altera Corporation, "A Look Inside: SoC FPGAs System Performance (Part 2 of 5)," 25 November 2013.
[Online]. Available: http://www.youtube.com/watch?v=Ssxf8ggmQk4.

[18] Altera Corporation, "Cyclone V Device Datasheet," July 2014. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/cv_51002.pdf.

[19] Altera Corporation, "Cyclone V Device Handbook, Volume 1: Device Interfaces and Integration," 22 July
2014. [Online]. Available: http://www.altera.com/literature/hb/cyclone-v/cv_5v2.pdf.

[20] ARM, "DS-5 Altera Edition: Bare-metal Debug and Trace," 21 October 2013. [Online]. Available:
http://www.youtube.com/watch?v=u_xKybPhcHI.

[21] ARM, "FPGA-adaptive debug on the Altera SoC using ARM DS-5," 16 December 2013. [Online]. Available:
http://www.youtube.com/watch?v=2NBcUv2Txbl.

[22] EE Journal, "OpenCL on FPGAs Accelerating Performance and Design Productivity -- Altera," 28
November 2013. [Online]. Available: http://www.youtube.com/watch?v=M6vpg6slh_A.

[23] Altera Corporation, "Bare-Metal Debugging using ARM DS-5 Altera Edition," 3 December 2013. [Online].
Available: http://www.youtube.com/watch?v=CJOEHJ90Q7Y.

[24] Altera Corporation, "Cyclone V Device Overview," 7 July 2014. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf.

[25] Altera Corporation, "Linux Kernel Debug using ARM DS-5 Altera Edition," 3 December 2013. [Online].
Available: http://www.youtube.com/watch?v=QcA39060fGw.

[26] Altera Corporation, "Architecting FPGAs beyond 1M LEs," Altera Corporation, 3 September 2014.
[Online]. Available: http://www.fpl2014.org/fileadmin/w00bpo/www/hutton.pdf.

22/06/2016 Page | 101

	2 List of Figures
	3 Table of Tables
	4 Prerequisites
	4.1 Hardware
	4.2 Software
	4.2.1 Software Versions Used in this Guide
	4.2.2 Licenses

	5 Introduction
	6 Terasic DE1-SoC Board
	6.1 Specifications
	6.1.1 FPGA Device
	6.1.2 Configuration and Debug
	6.1.3 Memory Device
	6.1.4 Communication
	6.1.5 Connectors
	6.1.6 Display
	6.1.7 Audio
	6.1.8 Video Input
	6.1.9 ADC
	6.1.10 Switches, Buttons and Indicators
	6.1.11 Sensors
	6.1.12 Power
	6.1.13 Block Diagram

	6.2 Layout

	7 Cyclone V Overview
	7.1 Introduction to the Cyclone V Hard Processor System
	7.2 Features of the HPS
	7.3 System Integration Overview
	7.3.1 MPU Subsystem
	7.3.2 SDRAM Controller Subsystem
	7.3.3 Support Peripherals
	7.3.3.1 System Manager
	7.3.3.2 FPGA Manager

	7.3.4 Interface Peripherals
	7.3.4.1 GPIO Interfaces

	7.3.5 On-Chip Memory
	7.3.5.1 On-Chip RAM
	7.3.5.2 Boot ROM

	7.4 HPS-FPGA Interfaces
	7.5 HPS Address Map
	7.5.1 HPS Address Spaces
	7.5.2 HPS Peripheral Region Address Map

	7.6 HPS Booting and FPGA Configuration
	7.6.1 HPS Boot and FPGA Configuration Ordering
	7.6.2 Zooming In On the HPS Boot Process
	7.6.2.1 Preloader

	8 Using the Cyclone V – General Information
	8.1 Introduction
	8.2 FPGA-only
	8.3 HPS & FPGA
	8.3.1 Bare-metal Application
	8.3.2 Application Over an Operating System (Linux)

	8.4 Goals
	8.5 Project Structure

	9 Using the Cyclone V – Hardware
	9.1 General Quartus Prime Setup
	9.2 System Design with Qsys – Nios II
	9.3 System Design with Qsys – HPS
	9.3.1 Instantiating the HPS Component
	9.3.1.1 FPGA Interfaces Tab
	9.3.1.2 Peripheral Pins Tab
	9.3.1.2.1 Theory
	9.3.1.2.2 Configuration

	9.3.1.3 HPS Clocks Tab
	9.3.1.4 SDRAM Tab

	9.3.2 Interfacing with FPGA Peripherals

	9.4 Generating the Qsys System
	9.5 Instantiating the Qsys System
	9.6 HPS DDR3 Pin Assignments
	9.7 Wiring the DE1-SoC
	9.8 Programming the FPGA
	9.9 Creating Target sdcard Artifacts

	10 Using the Cyclone V – FPGA – Nios II – Bare-metal
	10.1 Project Setup
	10.2 Nios II Programming Theory – Accessing Peripherals
	10.3 Nios II Programming Practice

	11 Using the Cylone V – HPS – ARM – General
	11.1 Partitioning the sdcard
	11.2 Generating a Header File for HPS Peripherals
	11.3 HPS Programming Theory

	12 Using the Cyclone V – HPS – ARM – Bare-metal
	12.1 Preloader
	12.1.1 Preloader Generation
	12.1.2 Creating Target sdcard Artifacts

	12.2 ARM DS-5
	12.2.1 Setting Up a New C Project
	12.2.2 Writing a DS-5 Debug Script
	12.2.3 Setting Up the Debug Configuration
	12.2.4 Bare-metal Programming
	12.2.4.1 Accessing FPGA Peripherals
	12.2.4.2 Accessing HPS Peripherals
	12.2.4.2.1 Using Altera’s HWLIB - Prerequisites
	12.2.4.2.2 Global Timer & Clock Manager
	12.2.4.2.3 GPIO

	12.2.4.3 Launching the Bare-metal Code in the Debugger
	12.2.4.4 DS-5 Bare-metal Debugger Tour
	12.2.4.4.1 “Registers” View
	12.2.4.4.2 App Console

	13 Using the Cyclone V – HPS – ARM – Linux
	13.1 Preloader
	13.1.1 Preloader Generation
	13.1.2 Creating Target sdcard Artifacts

	13.2 Bootloader
	13.2.1 Getting & Compiling U-Boot
	13.2.2 Scripting U-Boot
	13.2.3 Creating Target sdcard Artifacts

	13.3 Linux Kernel
	13.3.1 Getting & Compiling Linux
	13.3.2 Creating Target sdcard Artifacts

	13.4 Ubuntu Core Root Filesystem
	13.4.1 Obtaining Ubuntu Core
	13.4.2 Customizing Ubuntu Core
	13.4.2.1 Setup the chroot Environment
	13.4.2.2 Inside the chroot Environment

	13.4.3 Cleanup the chroot Environment
	13.4.4 Creating Target sdcard Artifacts

	13.5 Writing Everything to the sdcard
	13.6 Scripting the Complete Procedure
	13.7 Testing the Setup
	13.8 ARM DS-5
	13.8.1 Setting Up a New C Project
	13.8.2 Creating a Remote Debug Connection to the Linux Distribution
	13.8.2.1 Find the Linux Distribution’s IP Address
	13.8.2.2 Create an SSH Remote Connection
	13.8.2.3 Setting Up the Debug Configuration

	13.8.3 Linux Programming
	13.8.3.1 Using Altera’s HWLIB - Prerequisites
	13.8.3.2 Accessing Hardware Peripherals from User Space
	13.8.3.2.1 Opening the Physical Memory File Descriptor
	13.8.3.2.2 Accessing HPS Peripherals
	13.8.3.2.3 Accessing FPGA Peripherals
	13.8.3.2.4 Cleaning Up Before Application Exit

	13.8.3.3 Launching the Linux code in the Debugger
	13.8.3.4 App Console
	13.8.3.5 DS-5 Linux Debugger Restrictions

	14 TODO
	15 References

