
Tips for Incremental Compilation

And LogicLock
Version 1.0 - February 6th, 2012 - Quartus II 11.1SP1 - by Ryan Scoville

Table of Contents
Introduction .. 3

Timing Analysis .. 3

Tip – Analyze paths from/to the source and destination of critical path ... 4

Tip – Locate multiple paths to the Chip Planner ... 6

Tip – Create a .tcl script to monitor critical paths across compiles .. 7

Incremental Compilation and LogicLock – Brief Overview ... 7

Tip – Monitor area and slack differences when adding partitions ... 8

Tip – Optimize Screen Space for LogicLock and Design Partition Windows ... 8

Basic Incremental Compilation Tips .. 9

Tip: Quick Block Stitch with Partitions .. 9

Tip: Create a Black-Box for Incomplete or Invalid Logic ... 11

Tip: Put Non-Altera IP into Empty Partition .. 12

Tip: Create Empty Partitions to Save Space .. 12

Tip: Put Hierarchy Being Modified into a Partition for Quick Compiles ... 13

Tip: Set the Top level partition to Post-fit when using SignalTap ... 13

Tip: Partition I/O Interfaces .. 14

Incremental Compilation for Isolating Hierarchies ... 14

Tip: Get as Much Margin as Possible When Designing Blocks .. 15

Tip: Hierarchy Isolation Method 1 - Set Partition Top to Empty .. 16

Tip: Hierarchy Isolation Method 2 - Set Adjacent Partitions to Empty ... 17

Incremental Compilation for Performance ... 18

Tip: When Preserving Performance of a Partition, Create a .qxp ... 19

Tip: Incremental Compilation for Performance Method 1: Building Up a Design 20

Tip: Incremental Compilation for Performance Method 2: Isolating Multiple Partitions 21

Tip: LogicLock when Preserving Performance with Incremental Compilation? 22

Floorplanning with LogicLock Regions .. 23

Tip: Floorplanning I/O Interfaces .. 24

Tip: Floorplan for Incremental Compilation on a Single Hierarchy... 25

Floorplanning the Entire Design for Incremental Compilation ... 26

Tip: Do not create too many Design Partitions or LogicLock Regions .. 27

Tip: Avoid over-using Floating or Auto-Sized LogicLock regions .. 27

Tip: Right-Click Locate Hierarchies from Project Navigator to Chip Planner 28

Floorplannining for Performance .. 29

Low-Level Floorplanning ... 29

Tip: Putting critical paths in a LogicLock Region usually does not improve timing 29

Tip: Over-Constraining .. 30

High-Level Floorplanning .. 31

Tip: Think Up-Front If Design Can Be Floorplanned .. 31

Tip: Use Block Diagram ... 33

Tip: Analyze the Unfloorplanned Fit ... 33

Tip: Keep It Simple .. 35

Tip: Over Floorplan when Obvious ... 36

Tip: Floorplan to Break Timing .. 37

Tip: Add set_false_path to Test How Potential Modifications Effect Overall Fit 38

Conclusion ... 39

© 2011 Altera Corporation. The material in this wiki page or document is provided AS-IS and is not
supported by Altera Corporation. Use the material in this document at your own risk; it might be, for
example, objectionable, misleading or inaccurate.

Introduction
 This document was put together based on my experiences(and many others) with Incremental
Compilation and LogicLock. I tried to explicitly put each “Tip” into its own section, so that the user could
easily identify them and understand them. That being said, a user will have the most success with this
document by reading most of it and trying to get an overall sense of what’s possible, and then applying
that knowledge to their specific design and their specific circumstance. Just randomly taking any specific
tip and saying, “Let’s try this” will unlikely be successful.

 My first overall recommendation is to proceed thoughtfully, understanding the trade-offs with
any particular approach, and using intelligence to see if it will work for their design. Then, no matter if
the results are better or worse, analyzing the results to determine why. Quite often, I find an approach
that fails will give me valuable information for my next step, as long as I take the time to analyze it. For
example, let’s say I floorplan a design but get worse timing results. Some users will see a worse slack,
say the approach didn’t work and move on. But a careful analysis of why it didn’t work might show
what paths broke, how they broke, and if the user can fix them. Sometimes they reveal an unknown
connection in the design that pulls many hierarchies together, making them all worse, and by fixing that
one pressure point, the user is able to loosen the design so the fitter can better optimize other blocks.

 It is this type of analysis that is the most difficult to do, but can often provide the most value.
Because of that, before even discussing Incremental Compilation or LogicLock, it’s worth starting with a
bit about timing analysis.

Timing Analysis
 TimeQuest is where we start when analyzing critical paths. TimeQuest’s macro “Report All
Summaries” is what I usually run first, to see failing setup, hold, recovery and removal paths. Most
failures fall under setup analysis, and the user will right-click on the worst domain and run “Report
Timing”. They now have a detailed analysis of the worst paths. This is an excellent place to do low-level
analysis, which is where to start. If the logic can be reduced, register’s added, logic duplicated, timing
requirements modified, or any of the myriad of tricks that allow a path to meet timing more easily, then
please try those first. But once those methods are exhausted, user’s can analyze the placement and
routing and wonder if they can improve upon it.

 Most likely, the placement of the critical path is not ideal. There will hops between LABs, the
distances may seem further than expected, and users often wonder why the fitter couldn’t do a better
job. It is important to remember that, of the hundreds of thousands of paths in the design, they all can’t
have perfect placement, and this is the worst one. Just as importantly, any path with multiple levels of
logic will have other paths to/from these registers, all pulling in their own direction, and the fitter must
balance timing between all these requirements.

Tip – Analyze paths from/to the source and destination of critical path
 Sometimes I like to analyze what else is pulling all the nodes in my critical path, which can be
achieved with the following Tcl commands, which can be put into a .tcl file in the project’s directory.
Only the names in red must be changed:

set wrst_src {insert_source_of_worst_path_here}
set wrst_dst {insert_destination_of_worst_path_here}
report_timing -setup -npaths 50 -detail path_only -from $wrst_src -panel_name "Worst Path||wrst_src -> *"
report_timing -setup -npaths 50 -detail path_only -to $wrst_dst -panel_name "Worst Path||* -> wrst_dst"
report_timing -setup -npaths 50 -detail path_only -to $wrst_src -panel_name "Worst Path||* -> wrst_src"
report_timing -setup -npaths 50 -detail path_only -from $wrst_dst -panel_name "Worst Path||wrst_dst -> *"

I would copy the node name from the columns “From Node” and “To Node” of my worst path
into the first two variables, and then source the .tcl script from TimeQuest’s Scripts pull-down menu:

Here is a simplified example of what these reports analyze:

The critical path of the design is in red and has already been analyzed between the worst source
and destination registers. The script’s first report_timing analyzes this path plus every other path that
the source is driving, shown in green. The second report_timing analyzes the critical path plus every
other path going to the destination, shown in yellow. In essence, they show everything inside these two
endpoints that are pulling them in different directions. The last two report_timing commands show
everything outside of the endpoints pulling them in other directions. If any of these reports have slacks
near that of the critical path, then there is a good chance the fitter is balancing these paths with the
critical one, trying to achieve the best slack. This diagram is quite simple compared to the critical path in
most designs, but it’s easy to see how this can get very complicated very quickly.

Note that you don’t need a script to do this, as it is quite easy to right-click on a path and do
Report Timing. For the first command, just delete the To: option, so that all paths from the source are
reported. Repeat, but then delete the From: option instead. For the last two commands, you just cut
the From: option and paste it into the To: option, and then do the reverse. Be sure to give the reports
distinct names.

These timing reports are very useful for analyzing what is competing with the critical path, but
not always good for examining how they might pull in different directions.

Tip – Locate multiple paths to the Chip Planner
 Within a timing report, multiple paths can be shown in the Chip Planner at the same time.

1) Run report_timing to show multiple paths. (See above script)
2) Select multiple rows of timing report. (Only a single column needs to be selected. In the picture

below, I selected 50 rows from the From Node column.)
3) Right-click -> Locate Path -> Chip Planner
4) The selected paths will now show up in the Locate History window of Chip Planner, with the

worst one shown in the Chip Planner.
5) Double-click the “Locate 50 Paths” to show all 50 paths at once, or select individual paths to

view them in the Chip Planner.

 So what does a user do with this information? It depends. In many cases, I’ve not seen an
obvious next step to improving timing, but I do develop a much better sense of what else is pulling on
my critical path. In some cases unexpected requirements jump out quite clearly. Examples include
connections to other hierarchies/critical paths the user did not expect, or perhaps something physical

requiring logic to be spread out, such as logic feeding many embedded memory blocks that are spread
out in the die.

Tip – Create a .tcl script to monitor critical paths across compiles
 Many designs have the same critical paths show up after each compile, but some suffer from
having critical paths bounce around between different hierarchies, changing with each compile. There
are many reasons this occurs. Designs that run at very high-speeds must have few levels of logic on all
paths, and hence none of them have very much slack. A sub-optimal placement on any one of them can
cause them to miss timing when they were making it before. I have also seen paths that have lots of
long connections between various hierarchies have problems, since timing closure is dependent on
many long hops all competing for better placement and faster routes. It may not be consistent who gets
these better resources with each compile, making it seem like the critical path is bouncing around.

 In designs like this, I might create a file called “TQ_critical_paths.tcl” in the project directory.
For a given compile, I will look at the critical paths and try to write a generic report_timing command to
capture those paths. For example, if a lot of paths fail in a low-level hierarchy I might add:

report_timing –setup –npaths 50 –detail path_only –to “main_system: main_system_inst|app_cpu:cpu|*”
–panel_name “Critical Paths||s: * -> app_cpu”

 If there is a specific path, such as a bit of a state-machine going to a bunch of registers called
count_sync, I might add something like so:

report_timing –setup –npaths 50 –detail path_only –from “main_system:
main_system_inst|egress_count_sm:egress_inst|update” –to “*count_sync*”
–panel_name “Critical Paths||s: egress_sm|update -> count_sync”

 The goal is to write something with a relatively broad stroke that captures a group of similar
failing paths. With complex designs, I might end up with eight or more different groups I’m monitoring.
The benefit of this is that I can source this file in TimeQuest after every compile, and I can add new
report_timing commands as new critical paths pop up. This helps give a sense of what consistently fails
and should have the highest priority, while also watching what is marginal. Again, this is really only
necessary when a design’s critical paths seem to change compile to compile.

Incremental Compilation and LogicLock – Brief Overview
 Incremental Compilation, at its most basic, allows the user to put a hierarchy of their design into
a partition. Just the act of creating a partition means the logic will be synthesized independently of logic
outside of the region. Parameters will still be passed in to make sure the synthesis is correct, but there
will be no logic reduction across boundaries. This allows a partition to be put into Post-Synthesis mode,
whereby Quartus II does not have resynthesize the logic if there were no changes to the source code.
The major benefit of Post-Synthesis is to save synthesis time. The user can also put a partition into Post-
Fit, in which case the logic will not only re-use the previous synthesis results, but also its previous place

and route information. This can be done independently of using LogicLock regions, although more often
than not they are used together. One last important setting for partitions is Empty, which will remove
the logic inside without having upstream/downstream logic getting synthesized out. We will study this
in more detail in just a moment.

LogicLock is basically floorplanning. It allows the user to draw rectangles onto the floorplan and
have logic remain in that rectangle. (LogicLock does allow non-rectangular shapes, but I find this seldom
necessary and will not delve into that in this guide.) The Quartus II handbook has a good chapter about
Incremental Compilation and LogicLock that I recommend reading first, called “Best Practices for
Incremental Compilation Partitions and Floorplan Assignments” found in the Quartus II Handbook
Volume 1:

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf

 The Best Practices chapter gives many examples of how partitions prevent synthesis across
boundaries and how to get around these limitations. This is good to be aware of when writing new
code, but quite often partitions are put onto code that has already been written. In those cases, the
designer is seldom aware of how preventing synthesis across boundaries will affect their design.

Tip – Monitor area and slack differences when adding partitions
 When adding partitions, I recommend keeping track of the Logic Utilization and timing slack
before and after the partitions are added. If the area goes up significantly or the design gets much
slower, than it’s worth examining if there is an optimization across partition boundaries that is no longer
occurring. If the design doesn’t change much, then adding the partition has not harmed the design.
Note that partitions will generally always make the design a little bit larger, but if it’s more than a
percentage or so, then most likely logic that previously had been getting optimized out is now being
kept.

Tip – Optimize Screen Space for LogicLock and Design Partition Windows
The Design Partition window, LogicLock window and pretty much every other window can be

dragged so that it’s tabbed with other windows. For example, I usually drag my Tasks window behind
the Project Navigator, and put the LogicLock and Design Partition windows behind the Messages
window, like so:

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf�

 A layout like this makes it much easier to keep the Design Partition Window and LogicLock
Window accessible, rather than constantly opening and closing them through the Assignments pull-
down menu.

Basic Incremental Compilation Tips
 There are a number of quick tricks that can be done with partitions. A lot of these use the often
overlooked option of Empty, which will have empty contents inside the hierarchy, but the partition
boundaries will still be preserved so that nothing else gets synthesized out.

Tip: Quick Block Stitch with Partitions
 Early in the design phase, a user may know they will need to stitch together various blocks that
previously had not been connected(perhaps multiple FPGAs are being merged into one) along with
other IP such as a DDR3 controllers and maybe a PCI Express block. The designer may want to do a
place-and-route of all these blocks together to get a better estimate of logic utilization and timing, but
since they have not written the logic that stitches them together, it may seem a daunting task.

 Note that Quartus II will synthesize out a partition if none of its outputs drive anything(either
logic in another partition or a top-level I/O). But as long as a single output is connected, then the entire
partition is kept. Knowing this, it is easy to create a top-level that only hooks up the minimum number

of connections, as well as the major control inputs, specifically clocks. For example, if the user had two
blocks called ingress and outgress, then they might create a top-level file to stitch them together like so:

module top_stich (
 // Ingress
 input ingress_clk,
 ouput ingress_out,

// Egress
input egress_clk,
output egress_out);

ingress ingress_inst (
 .sys_clk(ingress_clk),
 .rxp_data(),
 .rxp_parity(),
 .token(),
 .cal_err(),
 .burst(),
 .active(ingress_out),
 .rxp_calc());
egress egress_inst (
 .sys_clk(egress_clk),
 .carrier(),
 .prism_fold(),
 .thunder_data(),
 .thunder_address(),
 .thunder_write(),
 .thunder_read(),
 .thunder_r_data(),
 .thunder_busy(egress_out),
 .slip(),
 .rough());
endmodule

 This module hooks up only two ports from each block to top-level I/O, an input clock and a
single, randomly picked output. All other I/O are unconnected, but since each block will be put into a
partition, none of the logic inside these hierarchies will be removed. There is flexibility with this
method, as I could have driven both blocks with the same input clock, or if some connections between
the blocks or to the top-level were known, I could add those in while leaving other ports unconnected.
This method allows one to quickly instantiate many components without requiring any logic to stitch
them together or any virtual pin assignments to make sure it fits without running out of I/O.

 After creating the top-level verilog or VHDL file, the user would go to Processing -> Start -> Start
Hierarchy Elaboration. This will add all the hierarchies to the Project Navigator. The user then right-
clicks on each hierarchy and “Set as Design Partition”:

 The partition type should be either Source or Post-Synthesis. This method is quite
straightforward for general RTL. Where it gets more difficult is logic that uses hard logic in the FPGA.
For example, PCI Express uses dedicated transceivers that MUST feed top-level I/O, and so for those
cases the user must also bring these I/O to the top-level. For something like an Altera DDR3
interface(UniPHY), the user must also bring out the I/O that interface with the memory, as well as make
the I/O standard assignments, as the <memory_name>_pin.tcl assignments dictate, which is created
along with the UniPHY IP.

Tip: Create a Black-Box for Incomplete or Invalid Logic
 Another issue early in the design is that the user may be working on a new block that is
incomplete. It is hooked up to other blocks in the hierarchy, but the actual contents may not exist, may
cause synthesis errors, or may cause logic to be synthesized out. An easy fix is to create a Design
Partition on that Hierarchy. If the contents are empty, the user only needs an HDL file that contains the
ports and nothing else, like so:

module new_block (
 input clk,
input [31:0] din,
input [11:0] addr,
output [31:0] dout);
// Empty Contents
endmodule

or:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY new_block IS
PORT(clk : IN STD_LOGIC;
 din : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 addr : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 dout : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END new_block;

ARCHITECTURE arch OF new_block IS
BEGIN
--Empty Contents
END arch;

 The user should run Processing -> Start -> Start Hierarchy Elaboration to get the hierarchy, and
then put a Design Partition on this hierarchy. The Partition should be set to type Empty. Note that the
file does not necessarily have to have empty contents, but can’t have any syntax errors in it.

Tip: Put Non-Altera IP into Empty Partition

 Another scenario I have used this for is when doing a quick analysis for converting a design from
another technology (such as a Xilinx FPGA or an ASIC). Although most of the design may be basic RTL,
there might be some very device-specific IP, such as a memory controller or transceiver interface, which
Quartus II synthesis will not recognize. Rather than converting this IP, I may just comment out the
contents of the top-file in that IP, turning it into a black-box, and put it into an Empty Partition, as just
shown. This allows me to quickly analyze the size and timing of the rest of the design, and if it looks
good, then worry about converting the IP.

Tip: Create Empty Partitions to Save Space
 There are multiple reasons for creating an Empty Design Partition on modules that have logic in
them. Here are some of the ones I’ve done or heard of:

- I worked on a Stratix IV design with ~97% Logic Utilization. It fit but did not meet timing,
and critical paths kept jumping around. We took a section of the design that easily met
timing and created a Design Partition out of it and set it to Empty. The Logic Utilization
dropped to 92% and the design began making timing. This helped show that the problem
was not the logic being too slow, but that we were just putting too much into the device.
We changed our timing closure methodology to look for logic that could be
reduced/removed, rather than trying to make the critical paths run more quickly.

- If a design has an Empty Partition in it, Quartus will still write out a programming file for the
FPGA. Obviously, the section of logic that is empty will no longer work, but this can still be
useful. I saw one design that used 100% of the FPGA memory blocks. The designer took a
section of logic that used a lot of internal memory and put it into an Empty Partition. They
were then able to use this physical memory for their SignalTap II file. The major caveat is
that, since a section of logic was now Empty, the portion of the design being tapped had to
work independently of the section put into the Empty partition.

- Quick Compiles. It’s easy to create an empty partition on logic outside of what you’re
interested in. This basically removes the logic from being synthesized, placed and routed,
which can significantly improve compile times. When testing something specific in a design,
such as seeing if a Maximum Fanout constraint in the assignment editor applies to a specific

node, I may turn a lot of the other major hierarchies into Empty Partitions. Once I have
confirmed it works, I will delete the Partitions so everything is compiled like before.

- Similar to quick compiles, is the ability to isolate portions of a design to get the best
performance, and then lock it down. This will be described in the section Incremental
Compilation for Performance.

Tip: Put Hierarchy Being Modified into a Partition for Quick Compiles
 If there is a small section of code the user knows they are going to be making changes on, they
may want to make a partition just on that block. They can set the Top partition to Post-Fit, and hence
only this small block will be re-synthesized, placed and routed. This can make for quick compiles as the
user tries different HDL changes. For example, there might be a state-machine that is not working
correctly, and putting that hierarchy into a partition while the top is locked down allows quick iterations
for the user to try different code.

 The user might want to also put the hierarchy into a LogicLock region with the Reserved option,
which prevents other logic from the top-level from being placed inside the region. This basically
preserves a section of the die for the fitter to work with on subsequent re-fits of that hierarchy. This is
probably only necessary if the hierarchy is pretty large or timing critical.

 Once that section of code has been debugged, the user can simply delete the partition and
LogicLock region for it and set the top-level back to Post-Synthesis or Source. Note: The user does not
have to delete the Partition or LogicLock region, it’s just an option if they do not need it anymore.

Tip: Set the Top level partition to Post-fit when using SignalTap
 Whether the user knows it or not, by default their design has one partition in it called Top,
which contains all the logic in their design. SignalTap logic is actually created in other partitions. The
following screenshot is from a simple design called test, which is using a SignalTap file:

 The bottom Design Partitions Window shows that only the default Top partition exists and I
have not added any others. Yet the Partition Merge Report shows three extra Auto-generated Partitions
exist, which contain the SignalTap II logic. Now I can set the partition Top to Post-Fit, so that it is locked
down, and keep modifying the SignalTap II file, whether it be tapping different points in the design,
changing buffer sizes, modifying trigger conditions, etc. This has a number of advantages:

- SignalTap II compile times will be faster.
- The design won’t change. This can be an extremely important when debugging a sporadic

issue that comes and goes from compile to compile, allowing the user to work with a
consistently failing build.

The only major down-side to post-fit is that the user must select nodes from the filter SignalTap
II: Post Fitting. Only combinatorial logic that has been synthesized to be the output of an LUT will be
accessible, and most combinatorial node names will be pretty difficult to understand. Whenever
possible, the recommendation is to try and tap registers, since they have the most stable and
understandable names.

Tip: Partition I/O Interfaces
 One design methodology is to put all the major I/O interfaces into partitions, specifically
interfaces that have a lot of logic and/or that have trouble meeting timing. Examples include memory
interfaces such as UniPHY(DDR3, QDRII+, RLDRAM, etc.) and transceiver interfaces(PCIe, XAUI, SRIO,
Interlaken, etc.). Interfaces tend to have two major advantages that make this easy. First, their code is
often complete early on. Once the user has determined the interface is working, they may never modify
the code and hence a Post-Synthesis partitions means it will never have to be synthesized again, and a
Post-Fit setting means it will never have to be fit again. Second, these interfaces are placed on the
edges, so locking down their placement usually does not cause any problems with other logic in the
design. For example, if a large block of logic were put in the middle of the device and set to Post-Fit, this
would most likely impact other logic that needs to be placed around it and route through it. But I/O
interfaces can be relegated to the I/O edges so they do not disturb internal logic.

 When putting I/O interfaces into partitions, the user must decide if they want to floorplan. This
is discussed in more detail in the LogicLock section.

 Personally, I don’t use this option very often. I find it doesn’t save a significant enough amount
of compile time, and once most I/O interfaces meet timing, they continually do. That being said,
designers tend to like this flow if for no other reason than it locks down a significant portion of the
design, giving the same results compile after compile, and therefore something the user does not have
to worry about.

Incremental Compilation for Isolating Hierarchies
 When it comes to timing closure, it’s safe to say that a design won’t meet timing if the
hierarchies within it don’t meet timing by themselves. Because of this, it is often easiest and quickest to
optimize a sub-hierarchy of the design and try to get the best performance out of it, before working on

the project as a whole. The conventional method for doing this is to build a custom Quartus II project
with this hierarchy as the top level, make Virtual Pin assignments so the device doesn’t run out of I/O,
and create a custom .sdc to match the new hierarchy names. There are often other difficulties, such as
clocks coming from PLLs or transceivers outside of the block, and the user must find a way to
accommodate these issues.

 Empty Partitions allow two methods that are much quicker and easier for analyzing a sub-
hierarchy. Before covering those two methods, I want to emphasize a design suggestion. When
designers are writing new code, they are primarily concerned with getting the correct functionality, and
secondarily closing timing. That’s the correct prioritization, but when it comes to closing timing,
designers often just aim for positive slack and then consider it done. For example, if they have a
200Mhz requirement and find a compile comes in at 205MHz, their block is officially done and they
move on to integration. Yet I think we all know that when a block is merged with other blocks, the
performance tends to drop, sometimes a tiny amount and sometimes a substantial amount. There are
many causes for this, such as competition for placement or routing wires, new critical connections that
pull apart hierarchies or paths, or just a slightly worse fit because the fitter’s solution space has grown
so much when everything is put together.

Tip: Get as Much Margin as Possible When Designing Blocks
 The best time to improve performance on a block is when the user is originally designing it.
They have a good understanding of how the code works, and hence changes are easy to make. The
code usually has not been integrated into the system, so changing the latency or something like that is
often much more acceptable. Once a hierarchy has been integrated into the full design, the test
benches have been written and interfaces have been tested, so it is much more difficult to make
changes to help timing, just because they can affect so much more.

 I strongly recommend trying to optimize each block to run as fast as it can by itself. The major
downside is that this takes time, but working on an individual block is often much faster than optimizing
the full design at the end of the project. If it’s possible to take the code that barely meets the 200MHz
requirement and optimize it to run at 250MHz, there can be large benefits:

- Timing Closure - Integration into the rest of the design is much more likely to close timing
right away.

- Compile Times - Compile times may be faster. This may just because the fitter, when set to
Auto mode, can close timing more quickly, but quite often, it’s because the user does not
have to enable algorithms that hurt compile time, such as Physical Synthesis or the
Placement Effort Multiplier.

- Density - The user can often pack more logic into a device, and even if the timing degrades a
little, it will still close timing.

- Power - The designer can enable more options for saving power, even if they are at the
expense of performance. (See Tools -> Advisors -> Power Optimization Advisor)

- Cost - The designer may be able to target a slower speed grade device and save money.

- Future Proofing - When the next generation comes around, and the specs inevitably require
the design to run faster, that block is ready to go.

The bottom line is that the more margin you can get on each sub-block in a design, the better
off you will be when integrating it all together. With that in mind, here are two methods for analyzing
and optimizing just a portion of the design:

Tip: Hierarchy Isolation Method 1 - Set Partition Top to Empty
 An oft overlooked strategy is to set the Top partition to Empty, while creating a lower-level
partition on the hierarchy or hierarchies the user wants to analyze. Here’s a screen-shot of a QSYS
system where I want to isolate the SDRAM interface:

 In the Design Partitions Window at the bottom, the top-level is set to Empty while the
ddr_sdram is set to Post-Synthesis(or Source). Looking at the Logic Cells and Registers across the
hierarchies, most of them are empty except for the ddr_sdram. This flow is easy to do, preserves the
hierarchy so .qsf/.sdc assignments still match, and allows for quick compiles. One interesting note is
that, even if a partition is set to empty, Quartus II will try to find clocks in it and preserve them. So, for

example, if there were a PLL inside the empty partition Top that creates clocks for the partition I am
analyzing, that PLL should still be instantiated. This keeps the physical clock structure intact, which
makes timing analysis more accurate. It also allows the .sdc’s derive_pll_clocks or
create_generated_clock commands to match the PLL in the design, and hence have proper names and
clock relationships.

 Once the design has been compiled, analyzed, and the user feels good about it, they will set the
top-level partition to something other than Empty, and they have the option of deleting the low-level
partition so that it is now synthesized with the rest of the design, or they can keep the partition if they
think they might revisit it. Of course they can set the partition to Post-Fit, which will lock down the
placement and preserve performance, but we will discuss that more in the next section, Incremental
Compilation for Performance.

Tip: Hierarchy Isolation Method 2 - Set Adjacent Partitions to Empty
 This is very similar to the previous method, except rather than setting the top-level to Empty,
the user will find some of the larger sister hierarchies and put them into partitions and set them to
Empty. I have used this method the most, since there was a good period of time where setting the Top
partition to Empty, which is used in Method 1, was not allowed in Quartus II.

There are a few other reasons to use this method:

- Sometimes setting the Top partition to Empty results in fitter errors. Hopefully these have
been resolved, but this is a somewhat new, seldom used feature, and occasionally results in
fitter errors, especially when dealing with hard IP like transceivers and memory interfaces.
For example, let’s say the user isolated a memory interface whose PLL, DLL and OCT blocks
are slaves driven from a master memory interface. I haven’t tested this scenario, but
there’s a good chance that if the master memory interface is in an empty partition, the
design will not fit, most likely due to missing OCT block. This second method would allow
the user to keep the master memory controller too.

- Just a different approach for determining what is synthesized, placed and routed. Method 1
set the Top partition to empty, thereby removing the whole design, and the user adds
partitions to lower levels they want to add back in. This method starts with everything in
the design existing and the user adds partitions to explicitly remove large chunks.

- By keeping the top-level and other hierarchies in the design, the fitter is now aware of them.
If another hierarchy is locked down in the floorplan(either with LogicLock or a Post-Fit
partition), the user would not put that logic into an Empty partition, allowing the fitter to be
aware of it and optimize any connecting paths.

Here is a screen-shot of the same design shown for the previous method, but the Top partition
is set to Post-Synthesis and two major components, the Nios CPU and a QSYS peripheral subsystem were
put into partitions and set to Empty:

As can be seen in the Project Navigator, the cpu hierarchy only uses 2 LUTs, where it normally
uses thousands. This layout has allowed me to isolate the ddr_sdram along with some other
components. I have run designs with more than thirty hierarchies put into Empty partitions to remove
them and isolate the hierarchy I want. Once I have optimized this hierarchy, I then go in and delete all
the Empty partitions so that everything can be synthesized, placed and routed together.

Incremental Compilation for Performance
 The previous section covered how to use Incremental Compilation to Isolate Hierarchies for
analysis and optimizations. The idea is the user would have quick compiles while they optimize the
design, and once done, they would then compile everything together in a flat place-and-route.
Incremental Compilation for performance relies on the same methodology, except the user sets the
isolated partition to Post-Fit once it meets timing, thereby preserving the place-and-route of the that
logic and having other logic fit around it.

 Interestingly, incremental compilation is not really designed to improve performance. As
mentioned earlier, just the act of adding partitions will usually make designs a little bit larger and could
possibly make them slower if critical paths cross partition boundaries. That being said, partitions can be
used to improve performance in two major ways:

- Performance Preservation. As discussed in the document on the Quartus II fitter, all designs
have variation:

http://www.alterawiki.com/wiki/The_Quartus_II_Fitter_and_Seed_Sweeps

If the critical portion of a design varies between passing timing and failing, it can be a huge
benefit to be able to lock down a block when it happens to place-and-route at the high-end
of its variance. For example, if a block runs off a 5ns clock, but on average that block only
meets 4.7ns with a standard deviation of ~250ps, then very few compiles are ever going to
meet timing. But if the user is able to run many compiles overnight or over a weekend and
then lock down results once it meets timing, they will have basically removed that variation
on all subsequent compiles.

- Isolation. As just discussed, being able to isolate a sub-hierarchy of the design allows for
quicker compiles, and just as importantly, allows the fitter to concentrate just on that
portion of the design, and often gives it the space it needs to get the best results. Also, by
isolating a portion of the design for the fitter, one significantly reduces the size of the
solution space, allowing the fitter to try more combinations and will hence be more likely to
get a better result.

Both of these methods require a Design Partition on the hierarchy the user wants to optimize,
and leverage the two methods just discussed for design isolation, either setting the Top partition to
Empty, or setting adjacent partitions to Empty. The major difference is that when good results are
achieved, the user will re-use those results in future compiles by setting the critical partition to Post-Fit.
This will direct the fitter to re-use the synthesis and place-and-route information from the previous
compile.

It is possible to set the partition to Placement Only(right-click on Partition and go to Properties),
which will only re-use the placement information but not the route information. This option can be
useful since locking down the routing of a block of logic can make it more difficult for new logic to route
from/to/through the locked down region. Setting a partition’s back-annotate level to Placement Only
will allow some variation on future compiles, but the router variation is significantly less than the placer
variation. I don’t recommend this to start with, but if it seems like the fitter is having trouble routing
other logic, this is a possiblitiy.

Tip: When Preserving Performance of a Partition, Create a .qxp
Although partition information is stored in the directory /incremental_db, a useful option is to

export the partition as a .qxp file(Quartus eXport Partition). This stores the synthesis, place and route
information in a single file and can be added to a project just like a source file, under Project -> Add

http://www.alterawiki.com/wiki/The_Quartus_II_Fitter_and_Seed_Sweeps�

Files. The user will want to remove the HDL that represented the original hierarchy to avoid synthesis
errors, as otherwise there will be two representations of the same module, one in HDL and one in the
.qxp, and Quartus II will not know which one is correct. The user should still put the hierarchy
represented by the .qxp in a Partition, which allows them to manually select how much of the .qxp
information they want to use, e.g. they could just use the synthesis information, the placement
information or the whole place-and-route.

Creating a .qxp adds a few steps to the user’s flow, so it is not recommended if the user is
constantly making changes to the partition and trying to preserve them. The .qxp flow works best when
the code is finalized, or at least changing very seldom, and the user wants to store the partition
information in a single file that can easily be archived.

Tip: Incremental Compilation for Performance Method 1: Building Up a Design
 This method consists of starting with a critical block, isolating it, and closing timing. Once that
has been achieved, the user sets the partition to Post-Fit, and then adds in another critical partition and
begins working on closing timing. (If there is only one truly critical block, then the user would just move
to compiling the rest of the design). This iterative approach can be done as often as the user needs. I
have seen DSP designs iterate over more than twenty instances as they work toward timing closure.

 There are several variations based on the previous examples of isolating a design. The user can
isolate by setting the partition Top to Empty like in the upcoming example, or by creating adjacent
partitions and setting them to Empty.

 In this example, Compile #1 isolates the egress and ingress hierarchies in Sector 0. Users
generally only compile one partition at a time but it is not a requirement. In this case, the ingress and
egress of Sector 0 may have critical paths between them, and so the user wants to make sure the fitter
is able to fit them together. Also note that two partitions can be merged into a single partition by
selecting them both and doing a right-click -> Advanced -> Merge, although I did not do that here. Once
these two hierarchies in Sector 0 meet timing, I set them to Post-Fit for Compile #2 and set Sector 1
blocks to Post-Synthesis so that they can be placed-and-routed. If they were not previously synthesized,
they will be synthesized too. Once Sector 1 is locked down, it will be set to Post-Fit and the next compile

will work on Sector 3. Finally, Compile #4 will use the post-fit information of all six partitions and fit the
rest of the logic around them.

 One benefit of this flow is that all the additional compiles will be aware of the locked down
partitions. If there are any paths between them, the fitter can optimize placement to try and meet that
timing. Note that the partitions have the LogicLock symbol by them, showing that the logic is also in a
LogicLock region. This is not a requirement with this flow, but is often recommended, and discussed
shortly.

 If the design is not floorplanned, it is much more difficult to go back and compile one of the
earlier sections. If the user knows they will be making changes to the timing critical portions, this flow
can become quite cumbersome to repeat. If the critical partitions have been verified and are unlikely to
change, then most changes would only require the last compile or two to be repeated, and this flow can
be very useful for achieving performance and having quick compiles

Between this method and the next one, this is by far the more commonly used approach.

Tip: Incremental Compilation for Performance Method 2: Isolating Multiple Partitions
 This method takes advantage of a little known feature of Empty partitions. Basically, if a
partition has been compiled once so the /incremental_db has synthesis, placement and routing
information, setting it to Empty and re-compiling will not remove the previous compilation information
on that partition, it just doesn’t use it. A user could isolate a partition, close timing, and then set that
partition to Empty while they go work on another partition. Then, when the user wants, they just set
that partition to Post-Fit, and the synthesis, place and route information is used from when it had
previously met timing.

 Taking advantage of this behavior, the user is able to isolate a hierarchy using the previously
described method 1 or method 2, close timing, and then set that partition to Empty so they can go and
isolate another partition and closing timing on that. They can repeat this as many times as necessary.
Then, once they have each critical partition meeting timing in isolation, the user sets them all to Post-Fit,
sets the Top to Source or Post-Synthesis, and compiles everything together. Each partition that was
compiled in isolation will use that compilation’s synthesis, placement and routing information, while the
rest of the design fits around it. The benefit is that multiple partitions are truly isolated for their
compiles, resulting in fast compiles and extreme focus from the fitter.

 The above example shows the ingress and egress for Sector 0 placed-and-routed first. Most
likely they are placed in the same LogicLock region. After that, they are set back to Empty and Sector 1
is compiled. This flow is repeated for Sector 2. On the last compile, all of the sector partitions are set to
Post-Fit so the partition information from Compiles #1, #2 and #3 will be used for Compile #4, and the
rest of the design will fit around these locked down partitions.

 Notice that the partitions are in LogicLock regions. This is a must for this flow, since each
individual compile is unaware of where the logic from another compile was placed, so without LogicLock
regions there is a decent chance they will overlap locations and Compile #4 will fail. Another drawback
to this method is that any paths between the different sectors will not be optimized, since they were
placed without any knowledge of the other sector locations. Ideally there are few connections between
these blocks and they can easily meet timing, so they still meet timing with sub-optimal placement.

Tip: LogicLock when Preserving Performance with Incremental Compilation?
An important question when using Incremental Compilation for Performance is if the user

should floorplan their design with LogicLock. We will discuss floorplanning in more detail in the next
section, but will briefly touch on examples here. LogicLock is not always required, but when a hierarchy
is isolated, it has the whole floorplan to work with, which may be too much freedom considering the
rest of the design still needs to be fit. Here are some cases on when to use LogicLock when preserving
performance:

- A very full design. If the design is very full, say over 90% Logic Utilization, then isolating a
portion of the design might allow the fitter to spread it out too much. This might be good
for timing on that hierarchy, but it might use too many resources so that the rest of the
design will need to be packed even more tightly, making those results worse. In this case, a
compact LogicLock region on the partition will direct the fitter to pack it more tightly.

- A general location. When a hierarchy is isolated, the fitter can put it just about anywhere,
which may not be optimal when the rest of the design is fit into it. In this case, a LogicLock
region may direct the fitter to a better general location. The LogicLock region does not have
to be tight, as the user is just trying to maintain a general location. This location may be
because the user thinks they will have better performance at that location, because they
want to avoid having it placed where they know other logic should go, or they just want
consistent placement over multiple compiles. One option is to see where it was placed on a

previous compile, by locating to the Chip Planner, and making a LogicLock region that
overlaps that area.

- Method #2 absolutely requires LogicLock regions, since multiple partitions are isolated and
hence fit without any knowledge of where the other partitions are being fit. LogicLock
ensures they are not placed in overlapping locations, which would cause a fit failure once
the partitions are all brought together as Post-Fit partitions.

In summary, if I am just isolating a design to analyze how fast it runs, I usually do not LogicLock
it. The only caveat is if the design is very full and I want to try and mimic the constraints of having to
pack the logic together very tightly. If I am isolating partitions for better performance which will be
preserved in the full design, I generally recommend floorplanning, even if it’s just a general location.

Floorplanning with LogicLock Regions
 Technically, floorplanning is quite simple. The user draws rectangles (or other shapes) onto the
Chip Planner and tells logic to stay within those boundaries. Yet with that simple explanation,
floorplanning can be one of the more complex methodologies for closing timing. Let’s look at a few
reasons why:

- The FPGA resources of logic, memory blocks and DSP are spread somewhat uniformly
throughout the device, yet design hierarchies may non-uniformly use these resources,
making it difficult to draw rectangles that match the user’s requirements. (Right-click on a
LogicLock region and select Properties, select a Design Element and then Edit, and the user
can exclude different types of resources, allowing for some creativity, such as having a small
LogicLock region for a hierarchy’s logic and a large overlapping LogicLock region for the
many memory blocks it feeds.)

- Full designs are especially difficult. If a design’s Logic Utilization is at 93%, and the user
makes a LogicLock region that is under-utilized, say 85%, then other regions will have to be
over-utilized. It is very difficult to keep each region’s utilization at 93%. This is only true if
the entire design is floorplanned though. If some blocks are not in LogicLock regions, the
fitter can place them where there is open space.

- Designs change. A good floorplan that helps the user may suddenly become invalid as some
of the logic outgrows the region it is in. The user must then expand that LogicLock region
while shrinking others and try to maintain the benefits LogicLock was providing. Users can
LogicLock too early, spending a lot of time developing floorplans that constantly change.

- LogicLock spreads logic out. Users tend to think of what it’s grouping together, but it is also
spreading out logic between different regions. It is easy for paths between LogicLock
regions, which previously met timing, to start failing, because the user forces a long hop on
paths between regions.

That being said, designers will floorplan for different reasons, and in some conditions the flow
can be quite straightforward. These cases do not require that everything in the design be floorplanned,
just some specific sub-blocks. A few examples:

Tip: Floorplanning I/O Interfaces
 This strategy is employed when using partitions to lock down I/O interfaces. From designs I
have looked at, the Quartus II fitter tends to place interface logic pretty close to the I/O ports it hooks
up to, and so a LogicLock region would not do a whole lot. One way to check this is to locate the
hierarchies to the Chip Planner. If the layout is not what the user wants, then LogicLock regions may
make sense. Another reason to use LogicLock regions is for a very full design, in which the user may
compact the I/O interfaces as tight as possible while still making timing. Here’s a quickly done example
floorplan(it’s not a real design so I don’t know if the dimensions are correct for the logic):

Tip: Floorplan for Incremental Compilation on a Single Hierarchy
 This scenario is for when the user has a specific hierarchy in the design they are working on, and
hence they know that for a while, all code changes will be contained within that hierarchy. This strategy
is used for quick compiles, since only the hierarchy in question will be synthesized and fit for each new
compile. The user will put the hierarchy they’re working on into a Design Partition and a LogicLock
Region that has been marked Reserved, so that no other logic floats into the region. This gives a nice

open section of the device for this logic to be fit and re-fit into. The user sets the Top partition (and any
other partitions besides the one being worked on) to Post-Fit. This will lock down all the logic except the
portion being worked on. Now the user can quickly do iterations on this section of logic. If they are
unsure where to put the floorplan, they can locate it to the Chip Planner on a previous fit and use that
for guidance.

 In the attached example, a single hierarchy was put into a Partition and a LogicLock Region,
which was set to Reserved. The Top partition is set to Post-Fit. The user can now make source changes
to that hierarchy and only it will be synthesized and fit, making for fast compiles.

Floorplanning the Entire Design for Incremental Compilation
 Using LogicLock to floorplan a single hierarchy or two can be pretty straightforward, but
floorplanning many hierarchies can quickly become complicated, as previously mentioned. One major
reason a designer would go down this path is to use Incremental Compilation on their full design. The
concept is similar to the just mentioned option of Incremental Compilation on a single hierarchy, except
future modifications could be anywhere in the design and hence nearly all hierarchies will be in a Design
Partition and LogicLock region.

 First, let’s remember why floorplanning is generally required when putting most, if not all, of a
design into Design Partitions to reduce compile times. This is discussed in the handbook section “Why
Create a Floorplan” here:

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf

 The problem, as can be seen, is that the majority of the device needs to be floorplanned, which
is not a trivial task. If large parts of the design are not floorplanned, they will float into the areas the
partitions are fit into. Then, when a partition is re-fit and everything else is locked down, the partition
needs to be placed in between the holes of the locked down logic. We call this a swiss-cheese floorplan,
and it is a significantly more difficult fitting problem that is almost impossible to do and maintain good

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf�

results. If the whole design is floorplanned, then each partition will have a nice open rectangle of space
to fit into, which is what the fitter is good at doing. When floorplanning an entire device, I have some
basic recommendations:

Tip: Do not create too many Design Partitions or LogicLock Regions
 As a quick number, I would aim for having approximately four partitions. Why? Most
importantly, four LogicLock regions is usually pretty easy to do, so hopefully the designer doesn’t spend
too much time laying them out. Note that there is some overhead that can’t be reduced by Incremental
Compilation. Let’s say that is ~25% of the original compile time. So if the user locks down 3/4ths of
their design, their compile time would be 25% for what needs to be refit plus 25% overhead, or 50% of
the original compile time. Now let’s say they went through the trouble of making 8 partitions and
LogicLock regions. If only re-fitting one of those partitions, their compile time would be 12.5% to refit
that logic plus 25% overhead, or 37.5% of the original compile. This is not significantly better than the
50% savings, but make eight LogicLock regions can be significantly more difficult than four.

 This is not a hard rule though. Some designs have very clear boundaries that make for good
partitions and fit into an easy floorplan, but these tend to be the exception.

 Also, the designer should use what they know about the design to their advantage. If there are
some small blocks they know will change a lot, it may be worthwhile to add them as partitions and
LogicLock them. For example, the design might have four major partitions with LogicLock regions, but
three additional partitions on very small, hand-selected parts of the design. If one of those small parts
is only 5% of the device but they know they will change a lot, then whenever it changes they will be able
to keep the other 95% locked down. This is basically the strategy of Floorplanning a Single Hierarchy
being used in conjunction with floorplanning the whole design.

Tip: Avoid over-using Floating or Auto-Sized LogicLock regions
 When floorplanning, users often have trouble determining where to place LogicLock Regions
and how large to make them, so they try the Auto/Floating properties to let the fitter determine this.
These options work all right when there is only one or two LogicLock regions in the device, but even in
those cases I would recommend fixing the size and locking them down very soon, which can be done by
right-clicking on a LogicLock region and selecting “Set Size and Origin to Previous Fitter Results”. When
LogicLock regions are flexible, they’re basically like a large blob that the fitter tries to move around
during the fit. Anytime the region is moved, a large amount of other logic will be displaced, which is
very disruptive and can hurt results.

 For designs with many LogicLock regions that need to fit across most of the device,
Floating/Auto-Sized regions often result in a no-fit, or at least an inferior solution. For example, if 100%
of the design were in Auto/Floating LogicLock regions, there is a good chance the final layout would
have gaps in the floorplan that aren’t covered by LogicLock regions, forcing some regions to be over-
packed, while there are completely unused portions of the device.

 Floorplanning is one of those things humans are pretty good at and computers are not. Note
that most floorplanning tools are manual. If computers did a great job floorplanning, then most

floorplanning tools would have a button that says, “Floorplan Design”, and they would let it run before
fitting. So though that Auto/Floating options for LogicLock can work and have some good use cases,
they’re generally best to get started with something straightforward, and the user should quickly move
to a fixed size and location for their LogicLock Regions.

Tip: Right-Click Locate Hierarchies from Project Navigator to Chip Planner
 Another trick for determining where to create a LogicLock region is to look at where the fitter
placed the logic on the previous compile. As of Quartus II 11.1, users can highlight multiple hierarchies
in the Project Navigator and right-click -> Locate in Chip Planner. The hierarchies will now show up as
different colors, and along the left side of the Chip Planner the user can manually check/uncheck
hierarchy colors to help with visualization:

Note that this is a design I would probably not floorplan, even if I had the four major hierarchies
in partitions. There is plenty of room for them, and the fitter is doing a good job of segregating them, so

that if a single partition were re-fit, there would be a nice open area to work with. Of course, if
subsequent fits on partitions started causing problems, I might then move to adding LogicLock regions,
and being able to see where the fitter placed them might help me decide where to place the LogicLock
regions.

Floorplannining for Performance
 When floorplanning for performance, there are generally two approaches: low-level
floorplanning and high-level floorplanning. By low-level, I mean the user has a clear area of failing paths
and is trying to address that through small, controlled floorplanning. High-level floorplanning entails
large LogicLock regions that guide the fitter toward a better area in the overall solution space, from
which it can then make better low-level decisions. To understand this, it is important to think about
how the fitter works, which is described in the first section of this document:

http://www.alterawiki.com/wiki/The_Quartus_II_Fitter_and_Seed_Sweeps

 The section on “Hierarchy” is most important, in that the fitter does not look at the design from
a hierarchical perspective, and instead is always looking at low-level connections and timing
requirements. Pulling these low-level connections together results in a fit that usually groups
hierarchies together, but the fitter never does an overt act of high-level floorplanning. This correlates
with the results I have seen, in that the fitter generally does a good job at low-level fitting, and hence
low-level floorplanning does not help much, while high-level floorplanning often provides the best gains.

 As an aside, floorplanning has become less fruitful as the fitter has improved. There was a time,
almost ten years ago, when I could confidently gain improve performance by ten to twenty percent
through floorplanning. As the fitter has improved, it has become more and more difficult to improve
performance through floorplanning. Of course, having a good fitting algorithm is a good thing, but it can
be annoying when the user wants even better results.

 Low-Level Floorplanning
 The critical path in a design almost always looks to be poorly placed. It generally has multiple
levels of hierarchy and numerous hops that fan-out to more than one location. Remember though, the
worst path is usually part of a web of connections that are all critical, all fighting for better placement
and better routing, and the fitter is directly trying to balance those requirements.

Tip: Putting critical paths in a LogicLock Region usually does not improve timing
 I often see users look at a critical path, see that the placement is spread out, and think that
putting the hierarchy containing that path into a LogicLock region will “keep it together” so that it meets
timing. My experience is that this usually does not work. The fitter is already looking directly at critical
paths and trying to modify the placement to improve them. Without a LogicLock region, the fitter has
the entire die to work with, and is willing to move less critical paths out of the way in order to meet
timing. By drawing a rectangle and putting the critical path into it, the user is just limiting the options of
what the fitter is already optimizing.

http://www.alterawiki.com/wiki/The_Quartus_II_Fitter_and_Seed_Sweeps�

 I don’t want to say this never works. Forcing the logic close together early in the fit may point
the fitter down the road to a better solution. It’s also possible the placer may be over-estimating the
routing resources a path will have available or what their final timing will look like, and therefore place
them too far away. But more often than not, just confining the critical paths to a rectangle will not help,
and quite often, make things worse.

 If things do get worse, it may be worth examining why. Perhaps other paths that were not as
critical now get squeezed out so they have worse timing. It is worth seeing how these paths interact
with the original critical paths. Maybe the LogicLock region pulls nodes away from nodes they connect
to elsewhere. There may not be a direct “next step” to help close timing, but the more information the
user has and the better they understand how their critical paths interact, the more likely they will be
able to find a solution.

Tip: Over-Constraining
 One “low-level” technique I wanted to mention that might work better, or minimally be easier
to implement, is over-constraining. The basic premise is that by tightening the constraints on specific
paths, the fitter will see them as being more critical and work on them more. The .sdc syntax would be
something like so:

if {$::quartus(nameofexecutable) != "quartus_sta"} {
 set_max_delay –from {*egress:e_inst|control_sm:inst|*} -to {*|data_pipe[*]} 4.7
}

 If these paths were in a 5ns domain, these constraints would over-constrain them by 300ps
during all modules except TimeQuest. So synthesis and the fitter would see this over-constraint and see
these paths as being more critical and try to get better slack on them. The nice thing about this syntax is
that the over-constraint won’t be used during final timing sign-off, and instead the original 5ns will be
used. Without the conditional “if”, the path might run at 4.9ns, which would actually meet the user’s
requirements, would show up in red because it fails the over-constrained 4.7ns requirement.

 Note that this technique does not just tell the fitter to “try harder” on these paths, but that
these paths are more important than other paths that might have similar slacks. As a result, other paths
that might be competing for better placement or routing, will no longer have access to them. If the
fitter is doing its job, then it was already be working on these critical paths, and this technique will only
confuse the fitter’s goals and result in worse results. That is one of the reasons this technique is not
overly recommended by Altera.

 That being said, it does occasionally work. The cases I’ve seen are usually when the placer over-
estimates the routing resources that will be available or the final timing numbers those paths will have,
and so it thinks a path will meeting timing, but after routing and timing sign-off, it really is not. In this
scenario, the user is imparting this knowledge to the fitter. The other thing to watch is if other paths
suddenly get worse, try to understand how they relate to the original paths and if they’re competing for

performance. This information helps the user understand what the fitter is balancing when closing
timing.

High-Level Floorplanning
 Low-level floorplanning is just looking at the critical path and trying to squeeze it into a better
result. As mentioned, the fitter should already be aware of the critical paths and working on it, so low-
level floorplanning is unlikely to help. High-level floorplanning is taking into account how all the design
blocks fit together and trying to impart that information to the fitter. With high-level floorplanning, the
user is limiting the fitter’s solution space, but hopefully limiting it to a better solution space.

Tip: Think Up-Front If Design Can Be Floorplanned
 The ability to get better performance through floorplanning is very design dependent. Some
designs naturally fall into a nice, 2D layout, while others will break when the user tries to fence
hierarchies into distinct regions. Remember that floorplanning is moving logic apart just as much as it is
putting blocks together, and if the design can’t handle this spreading, results can get worse instead of
better. Two types of designs I often use as an example are DSP streaming designs versus a QSYS
memory-mapped design. Let’s look at a simple block diagram for each:

 The DSP design has processing blocks which are nicely self-contained, where most connections
are within each block and when done, sends the data to the next hierarchy. These data transfers are
usually pipelined, so the blocks can be spread out quite a bit and still not hurt performance. These
designs tend to work well when floorplanned. The critical paths are usually well contained within each
block, and the user’s floorplan guides the fitter into understanding this topology, rather than starting
with all the logic smeared across the device and making the fitter discover this layout.

The QSYS design, on the other hand, has a very complex interconnect between blocks, which
does address decoding, read/write handshaking, arbitration, etc. This logic often overlaps too, where
some of the address decode may be common to multiple blocks, another part of the address decode is
common to other blocks, and hence it is difficult to pin down which hierarchy a section of interconnect
is driving. Quite often, the critical path in a QSYS system is inside the interconnect instead of an
individual block. In these cases, fencing each hierarchy into separate regions just spreads the critical
paths out, often making the design run slower. Letting the Quartus II fitter work within an open
floorplan allows it to find a more subtle layout, where common address decoding may overlap, more
critical logic may be pulled closer to the source while less critical logic is squeezed out, and certain areas
of the device may contain blocks of logic from many hierarchies.

Note that I am only talking about high-level floorplanning, where the user is trying to put most
of the design into LogicLock regions. If a particular hierarchy is especially troublesome in closing timing,
isolating that block in the floorplan so the user can do Incremental Compilation for performance still
makes sense. The user might also be able to floorplan large chunks of the system, such as separating
the high-speed section in dark blue from the low-speed section in light blue. I have also seen systems
where the QSYS system is only a portion of the design, say 30%, and so putting the whole QSYS system
into a LogicLock region made sense.

Designs also don’t always split into such clear boundaries as those that can be floorplanned and
those that cannot. Some have a portion of DSP alongside a memory-mapped system. Some have a clear
data-flow portion that is overlapped with a control portion(see Floorplanning to Break Timing). There is
no clear indicator of what designs are good for floorplanning and which are not, but most users have a
good idea of how the major hierarchies in their design hook up, where the critical paths are, and how
floorplanning will most likely affect their design. From there, they can evaluate if floorplanning most of
the design will likely help.

Tip: Use Block Diagram
 Most large designs have a block diagram, if not many block diagrams. I find these are often the
best place to start when floorplanning. They tend to be drawn where most connections are contained
within a hierarchy, and designers often design to the block diagram, trying to maintain logic within each
block, only passing it on when it is ready to be processed by another block. The corollary to this is, if
there is no block diagram, try making one first, before worrying about floorplanning the whole design. If
the designer can’t take a blank sheet of paper and do a rough drawing that shows how blocks connect
and how data flows, they are unlikely to be successful doing it with their real design mapped onto real
hardware.

 Also, make sure the block diagram represents the I/O interfaces. If the DDR3 interface is on the
top edge, draw it there. If the XAUI interface is on the bottom of the left edge, draw it there. I worked
on one design where the block diagram clearly showed data received through transceivers on one side,
processed through various blocks in the middle, and then sent out the right side. Once we got into the
analyzing the design, I found they used the transmit and receive path of every transceiver in the device,
which are laid out along the left and right edges. So half the data came in on the left and half on the
right before being processed, and was then split again to be sent out the left and right sides. Until we
realized this, the initial attempts to floorplan the receive and transmit blocks failed miserably.

Tip: Analyze the Unfloorplanned Fit
 Users can select multiple hierarchies in the Project Navigator and right-click -> Locate -> Chip
Planner. Prior to Quartus II 11.1, they were all highlighted in the same color of blue. Starting with 11.1,
they now show up in an individual color, and the Reports window in the Chip Planner allows the user to
selectively check/uncheck each hierarchy. Although a new feature, improvements should also be
coming, such as the ability to script this procedure. Here is a screen-shot from two different designs in
an EP4S530GX device:

The designs are not complete, so there is a good amount of space in each. Note that the left
screen-shot shows the Located Entities folder, which if opened, would show each hierarchy that is being
displayed, its color, and the ability to select/deselect its view. The Chip Planner’s pull-down menu View
-> Report Window will access this window.

So starting with the design on the left, there were some very clear, large hierarchies in the
design. On the one hand, this design looks like it would be pretty straightforward to floorplan, and
hence might be a good candidate. If floorplanning so the design can use Incremental Compilation, this
layout looks promising. The flip-side is that the fitter seems to be doing a good job of understanding the
hierarchy and fitting to it, so going through the process of creating LogicLock regions that mimic the
pink, blue and yellow blocks won’t really impart a lot of information that Quartus II does not already
know. Also, floorplanning may break some of the subtle placement occurring. Notice the pink dots
inside the dark blue region. Notice the streak of green cutting through the yellow block. These may be
paths that are not timing critical and the fitter just put them there and never had a reason to take them
out. But they might also be part of critical paths between these major blocks, which the fitter was able
to intersperse and achieve better results. It is difficult to determine this upfront, but even when
floorplanning breaks timing, analyzing why can be very useful.

Now let’s look at the floorplan on the right. There were no large hierarchies in the design, and
so I highlighted the top twenty-three. This floorplan is a mess. If I had to layout these blocks into
distinct regions, I wouldn’t know where to start. So on the one hand, I would be very leery about
floorplanning this design, as there is a good chance it is just a rat’s nest of connections. On the flip-side,

the fitter may be doing a poor job of grouping hierarchies together, and a good floorplan could really
clean up the layout and let the fitter work within a better area of the solution space.

So there are two ways to view the fitter’s results. When it does a good layout, the design may
be easy to floorplan, but there may be less upside to floorplanning. When the fitter does not find a
clean layout, it may be because one does not exist, but if the user is able to create a good floorplan,
there may be more upside.

Tip: Keep It Simple
 The previous floorplan(on the right) looks like it would be extremely difficult to floorplan, but
remember, there is no requirement to have a LogicLock region for each major hierarchy. It would be
perfectly acceptable to floorplan the design into two LogicLock regions, and placing each hierarchy into
one of those two regions. For many designs, I recommend starting off with no more than four LogicLock
regions, and quite often will start with only two. This tends to keep the floorplanning process easy.
From that point, one can evaluate the results to see timing got better, stayed the same, or broke. If it
broke, they can evaluate why and hopefully learn from that. If it stayed the same or got better, they can
keep that simple floorplan(which I often do) or add more regions to refine the layout. Here are some
example floorplans:

 Though the user started with just two regions, they slowly added more and refined the layout.
To be honest, if I opened a project and saw the final floorplan, I would normally be skeptical, thinking
the user had added unnecessary LogicLock regions. Quite often nothing more than two or three
LogicLock regions is perfectly acceptable and more than enough to help guide the fitter to a better
solution.

Tip: Over Floorplan when Obvious
 The last tip said to keep the floorplanning simple. Although that is true most of the time, there
are occasions when a floorplan is obvious; in which case making many LogicLock regions makes sense.
As an example, I worked on a design that had a small processing block that needed to be repeated as
many times as possible and run as fast as possible. The block used 5 rows of DSP blocks and we found
that the closer those DSP blocks were put together, the better the result. When floorplanning, we came
up with the following layout:

 First, note that there are 12 blocks, but originally we had 13, since there were enough DSP
blocks. Once we started floorplanning, we found that one of those blocks would have to straddle the
two white columns of DSP blocks, and its performance would be considerably worse than the other 12
blocks. Since all blocks had to run at the same speed, it was deemed better to run with 12 fast blocks
instead of 13 slow blocks. Although it does not happen very often, in this case just the act of
floorplanning helped explain why the fitter was not giving the results we thought it could achieve.

 Going to 12 blocks still did not give nearly as good results as an individual block, but once we
floorplanned them like above, the results got significantly better. In the end, we isolated each block and
ran multiple seeds until it got the very best performance, then merged them altogether like the
previously described method for isolating multiple partitions. This achieved the desired results.

 The floorplan above is really just an example, as the original design was in a much larger device
and had more than 30 of the processing blocks, each in their own LogicLock region. So my advice to
start with less than 4 regions didn’t apply here, because there was a very clear layout for 30 high speed
blocks, all needing to be placed compactly around a few DSP blocks. Also, the rest of the logic around
these blocks was highly pipelined and could be placed after these blocks were locked down and still
meet timing. If the rest of the logic was timing critical, there is a decent chance this layout would cause
timing degradation on the logic fit around it.

 As can be seen, there are many factors in determining if to floorplan a design, and if so, how to
do it. My biggest recommendation is to put some thought into it up front, and be sure to spend time
analyzing the results. In fact, that leads to another tip that user’s seldom follow.

Tip: Floorplan to Break Timing
 This one may be done on purpose or accident, but the basic premise is that when a user
floorplans their design and timing gets worse, they try to figure out why. Let’s start with the simple DSP
block diagram show in the previous tip on floorplanning. We stated that this was an excellent
candidate for floorplanning, since timing critical signals are nicely contained within each block. So let’s
say the user floorplans these blocks across the die and finds that timing gets worse. But instead of just
stating that floorplanning made things worse, they spend time carefully analyzing what got worse and
why. They may look at the critical paths and see how they fit in an older, flat version of the design, as
well as see how critical paths from the flat compile fare in the new version. With careful analysis, they
find new critical paths that are part of a register mapped control plane. Going back to the block
diagram, they realize they neglected to show this control plane because it runs at half the rate of the
DSP blocks. A new block diagram may look like so:

 First off, this may help explain why the DSP blocks, which ran very fast when isolated, run so
slow with a flat compile. The fitter must now pull part of their logic toward the register map access
point, which then pulls the logic it’s connected to, and forces the fitter to overlap these components,
making the results much worse than when each block was isolated. Even though the critical paths might
still be in the 310Mhz domain, paths from the 155Mhz domain may have been near the top, since the

fitter is always balancing slack and trying to get the least slack across the whole design. By
floorplanning, the user has forced the 155Mhz domain to the top.

 I have seen cases where it may not even be anything so large as a memory map. For example, I
have seen registers with identical behavior get merged across distant hierarchies, which now forces
them to be pulled together. This is not something in the user’s original code, so they are unaware of it,
and these paths aren’t the worst case ones so they don’t show up at the top of timing reports, but they
still caused timing degradation. Once the user floorplanned these hierarchies apart, they became aware
of the problem and were able to fix it, alleviating this stress point on the design.

 Finally, in this example, the Register Map hierarchy is probably much easier to fix. The user
should be able to pipeline it without adversely affecting the design. They might try replicating the
addressing for each hierarchy, so the addressing logic can be spread out to each distinct endpoint.
There are probably a number of things they could do to the Register Map that could help timing, where
they had previously been working on the DSP blocks, which had already been highly optimized and had
little room for improvement. This analysis leads to another tip:

Tip: Add set_false_path to Test How Potential Modifications Effect Overall Fit
 In the previous example, the user thinks the low-speed Register Map block is hurting timing on
the rest of the design. Before modifying the code, they could add the following to their .sdc:

set_false_path -from {*|register_map:*} -to {*|NCO:*}
set_false_path -from {*|register_map:*} -to {*|complex_mix:*}
set_false_path -from {*|register_map:*} -to {*|decimation:*}
set_false_path -from {*|register_map:*} -to {*|channel_filter:*}

 These assignments are wrong, and hence the fit could never be used in hardware, but it would
be a real quick experiment to see if fixing timing on paths from the register_map to the DSP blocks helps
the overall design. If it has no effect, the user will probably have to pursue another method for
optimizing the design, but if the slack on blocks inside the DSP blocks get faster, then they know they’re
on a promising track and can start modifying the register map access.

 This method is most useful for “what if” scenarios, to quickly see how fixing one section of paths
might affect the overall design. Another scenario is to cut timing between various blocks the user wants
to LogicLock, with something like so in the user’s .sdc:

set hierarchies { \
 |ingress:ing_inst| \
 |egress:egr_inst| \
 |sopc_subsystem:sopc_inst| \
 |rf:rf_inst| \
}
soreach src_hier $hierarchies {
 foreach dst_hier $hierarchies {
 if {$src_hier != $dst_hier} {

 set_false_path -from $src_hier -to $dst_hier
 post_message -type info “Adding invalid constraint: Set_false_path -from $src_hier -to $dst_hier”
 }
 }
}

 This can be done before the user has floorplanned, which would allow the fitter to spread these
blocks apart and see if the results got better. It can also be done after the user has floorplanned to see
if their LogicLock sizes and locations can provide good results within each block, ignoring paths between
the blocks.

 This type of analysis can be useful, but it can also cut out quite a bit that the fitter has to work
on, and therefore may not always be representative of the real design. I would not recommend
spending too much time on this type of analysis, but it can open the door to interesting insights.

Conclusion
 A large number of strategies and tactics have been provided as “tips”. Users that blindly take
these tips and start pushing them onto their design are unlikely to have success. Most of these tips
require careful analysis of the design and its timing. From there, trying to do some up-front analysis of
which ones are most likely to satisfy the user’s goals is the most likely way to have success. Even when a
tip is tried and it hurts results, determining why it hurt results can be extremely useful and lead to the
next steps. Careful planning and detailed analysis of results are a must for having success.

	Introduction
	Timing Analysis
	Tip – Analyze paths from/to the source and destination of critical path
	Tip – Locate multiple paths to the Chip Planner
	Tip – Create a .tcl script to monitor critical paths across compiles

	Incremental Compilation and LogicLock – Brief Overview
	http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
	Tip – Monitor area and slack differences when adding partitions
	Tip – Optimize Screen Space for LogicLock and Design Partition Windows

	Basic Incremental Compilation Tips
	Tip: Quick Block Stitch with Partitions
	Tip: Create a Black-Box for Incomplete or Invalid Logic
	Tip: Create Empty Partitions to Save Space
	Tip: Put Hierarchy Being Modified into a Partition for Quick Compiles
	Tip: Set the Top level partition to Post-fit when using SignalTap
	Tip: Partition I/O Interfaces

	Incremental Compilation for Isolating Hierarchies
	Tip: Get as Much Margin as Possible When Designing Blocks
	Tip: Hierarchy Isolation Method 1 - Set Partition Top to Empty
	Tip: Hierarchy Isolation Method 2 - Set Adjacent Partitions to Empty

	Incremental Compilation for Performance
	Tip: When Preserving Performance of a Partition, Create a .qxp
	Tip: Incremental Compilation for Performance Method 1: Building Up a Design
	Tip: Incremental Compilation for Performance Method 2: Isolating Multiple Partitions
	Tip: LogicLock when Preserving Performance with Incremental Compilation?

	Floorplanning with LogicLock Regions
	Tip: Floorplanning I/O Interfaces
	Tip: Floorplan for Incremental Compilation on a Single Hierarchy
	Floorplanning the Entire Design for Incremental Compilation
	Tip: Do not create too many Design Partitions or LogicLock Regions
	Tip: Avoid over-using Floating or Auto-Sized LogicLock regions
	Tip: Right-Click Locate Hierarchies from Project Navigator to Chip Planner

	Floorplannining for Performance
	Low-Level Floorplanning
	Tip: Putting critical paths in a LogicLock Region usually does not improve timing
	Tip: Over-Constraining

	High-Level Floorplanning
	Tip: Think Up-Front If Design Can Be Floorplanned
	Tip: Use Block Diagram
	Tip: Analyze the Unfloorplanned Fit
	Tip: Keep It Simple
	Tip: Over Floorplan when Obvious
	Tip: Floorplan to Break Timing
	Tip: Add set_false_path to Test How Potential Modifications Effect Overall Fit

	Conclusion

