Using the SDRAM Memory on Altera’s DE2 Board
with Verilog Design

This tutorial explains how the SDRAM chip on Altera’s DE2 Réspment and Education board can be used
with a Nios Il system implemented by using the Altera SOPQdgi The discussion is based on the assumption
that the reader has access to a DE2 board and is familiar kdtimaterial in the tutoridhtroduction to the Altera
SOPC Builder Using Verilog Design

The screen captures in the tutorial were obtained using treet@® 11 version 7.1; if other versions of the
software are used, some of the images may be slightly differe

Contents:

Example Nios Il System

The SDRAM Interface

Using the SOPC Builder to Generate the Nios Il System
Integration of the Nios Il System into the Quartus Il Project
Using a Phase-Locked Loop

The introductory tutorialntroduction to the Altera SOPC Builder Using Verilog Desigxplains how the
memory in the Cyclone Il FPGA chip can be used in the contexa afmple Nios Il system. For practical
applications it is necessary to have a much larger memorg Altera DE2 board contains an SDRAM chip
that can store 8 Mbytes of data. This memory is organized ax 118 bitsx 4 banks. The SDRAM chip
requires careful timing control. To provide access to th&8M chip, the SOPC Builder implements &SDRAM
Controller circuit. This circuit generates the signals needed to déhltive SDRAM chip.

1 ExampleNiosl|l System

As an illustrative example, we will add the SDRAM to the Nidsystem described in thiatroduction to the
Altera SOPC Builder Using Verilog Desiduatorial. Figure 1 gives the block diagram of our exampldeys

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Nios II processor

Avalon switch fabric

On-chi SDRAM Switches LEDs
memorl})/ controller parallel input parallel output
interface interface
L) ' L) ‘
—_ SW7 SWO0 LEDG7 LEDGO
chip

Figure 1. Example Nios Il system implemented on the DE2 hoard

The system realizes a trivial task. Eight toggle switchetherDE2 boardSW 7 — 0, are used to turn on or off
the eight green LEDY, EDG7 — 0. The switches are connected to the Nios Il system by meanpafadlel 1/O

interface configured to act as an input port. The LEDs areedrby the signals from another parallel I/0O interface
configured to act as an output port. To achieve the desirechtipe, the eight-bit pattern corresponding to the
state of the switches has to be sent to the output port tocedetilie LEDs. This will be done by having the Nios II
processor execute an application program. Continuoustipetis required, such that as the switches are toggled
the lights change accordingly.

The introductory tutorial showed how we can use the SOPCdButio design the hardware needed to imple-
ment this task, assuming that the application program wkeells the state of the toggle switches and sets the
green LEDs accordingly is loaded into a memory block in th&BRhip. In this tutorial, we will explain how the
SDRAM chip on the DE2 board can be included in the system inf€id, so that our application program can be
run from the SDRAM rather than from the on-chip memory.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to include an SDRAM interface for adNiebased system
e Timing issues with respect to the SDRAM on the DE2 board

e Using a phase-locked loop (PLL) to control the clock timing

2 The SDRAM Interface

The SDRAM chip on the DE2 board has the capacity of 64 Mbits {8/tds). It is organized as 1M 16 bitsx

4 banks. The signals needed to communicate with this chigtayen in Figure 2. All of the signals, except the
clock, can be provided by the SDRAM Controller that can beegated by using the SOPC Builder. The clock
signal is provided separately. It has to meet the clock-gkgirements as explained in section 5. Note that some
signals are active low, which is denoted by the suffix N.

Clock
CLK
Clock Enable
CKE
Address
ADDRJ11:0]
Bank Address 1
BAl
Bank Address 0
BAO
Chip Select
SDRAM CS_N SDRAM
controller Column Address Strobe CAS N chip

Row Address Strobe

RAS N
Write Enable
WE_N
Data

DQJ[15:0]

High-byte Data Mask
UDQM

Low-byte Data Mask
LDQM

Figure 2. The SDRAM signals.

3 Usingthe SOPC Builder to Generatethe Nios |l System

Our starting point will be the Nios Il system discussed inltiteoduction to the Altera SOPC Builder Using Ver-
ilog Designtutorial, which we implemented in a project callégghts. We specified the system shown in Figure 3.

¥ Altera SOPC Builder. - nios_system.sopc (D:\sopc_builder_tutorialinios_system.sopc)

File Edit Module System “iew Tools Niosll Help
System Corterts | System Genetation|
Aftera SOPC Builder Taroet Clock Seftings
Create newy cofmponent... a— - T 1
Mo+l Piosassar Device Family:| Cyclone | ~ | Mame Source MHz Fipeline | [add
= etk [External 50.0 " H =
nterface Protocols
Legacy Componerits
Metories and Memary Controllers
Use Ty} Module Mame: Descrlptinn Clock Base End |
7]
+--Debug and Performance instruction_aster ,Avalon Master elk
Display data_master ,Avalon Master Ing O IR 31
icrocontroller Peripherals Jtag_debug_tnodule Avalon Slave 000002800 |0x0000Z££f
- & Irterval Timer =] [onchip_mem On Chip bemmory (RAM or ROM) |clk 03200001000 |UxUUUUl 333
o PIO (Parallel 110 | [Switches P\O (Parallel 110] lelk 03200003000 (0x0000300F
Multipracessor Coordination | l LEDs |P\O (Parallel 113) clk 0300003010 |DxDDDD3le
PLL [+ |JTaG usRT ek 000003020 |0x00003027
W - A Move L [7 Move Down I [Address Map...] l Filter...]
. Warning: Switches: PIO inputs are not hardwired in test bench. Undefined values will be read fram PIO inputs during simulation.
e | Genr] [ommme)

Figure 3. The Nios Il system defined in the introductory tiatior

If you saved thdights project, then open this project in the Quartus Il softward #ren open the SOPC
Builder. Otherwise, you need to create and implement thgegroas explained in the introductory tutorial, to
obtain the system shown in the figure.

To add the SDRAM, in the window of Figure 3 selédemories and Memory Controllers > SDRAM >
SDRAM Controller and clickAdd. A window depicted in Figure 4 appears. Sel€ctstomfrom the Presets
drop-down list. Set the Data Width parameter to 16 bits aaddehe default values for the rest. Since we will
not simulate the system in this tutorial, do not select thigoopgnclude a functional memory model in the
system testbench. Click Finish. Now, in the window of Figure 3, there will be adram module added to
the design. Select the commaBygstem > Auto-Assigh Base Addresses to produce the assignment shown in
Figure 5. Observe that the SOPC Builder assigned the basesadaix00800000 to the SDRAM. To make use of
the SDRAM, we need to configure the reset vector and excepéotor of the Nios Il processor. Right-click on
the cpu and then seledEdit to reach the window in Figure 6. Selesdram to be the memory device for both
reset vector and exception vector, as shown in the figurek Elnish to return to the System Contents tab and

regenerate the system.

I® SDRAM Controller - sdram

SDRAM Controller

Version 7.1

Presets: } Custom v

~Data

jdth

Bits: |15

rArchitecture 1

Chip select: |4 v | Banks |4 v |
~Address widths -
R Ug | Calumn; |,E,

~Bhare ping ¥ia tristate bridge

[Contraller shares doidgmsaddr 0 pins

Tristate bridge selection: |

-Generic rermaty made| (Sirmulation onky

O

Memory size = § MBytes
4184304 % 16
64 MBits

Documentation

Figure 4. Add the SDRAM Controller.

I® Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutorialinios_system.sopc)

Description
oz |l P

| instruction_master [Avalon Master
data_master Avalon Master

jtag_debug_module [Avalon Slave

onchip_mem Oh-Chip Mermory (RAM or ROM)

Switches PICr (Parallel 1100
LEDs PO (Parallel 11070
ehug and Performance Jtag_uart UTAG LART
[— sdram |SDRAM Cortroller

File Edit Module System Yiew Toolz HNosll Help
System Cortents | System Gereration|
[Attera SOPC Builder ~ Tardet Clock Settings
1 Create new component P
= Mios Il Processor Device Family| Cyclone I v Name Source hHz Pipeling
clk External 50.0 | O
[#-Interface Protocols
Legacy Components
Memories and Memory Controller)
Use | Con Module Name Clock Base Enct l.

IRQ O
0x01002800
0x01001000
001003000
001003010
001003020
0200200000

IRQ 31
Ox0LO0ZELE
Ox0LO0LEfE
Ox0l00200£
Ox0l00201f
O0x01002027
OxO0ffffff

7 Move Dowen J

[Address Map. ..]

[Fiter. |

© Warning: Switches: PIO inputs are not hardwired in test bench. Undefined values wil be read from PIC inputs during simulation.

[Mext |] [Generate]

Figure 5. The expanded Nios Il system.

1= Nios Il Processor - cpu

Nios II Processor

Version 7.1 il ‘

» Caches and Memory Interfaces \} Advanced Features > ITAG Debug Module \: Custom Instructions

rCore Mios |l

Select a Hios Il core:

|@Ninsllle ONios Il/s ONios IIFf

- RISC RIZC RIZC
Nios Il 32-bit 32-4it 32-hit
Selzctor Guide Instruction Cache Inztruction Cache
Family: Cyclone Il Branch Prediction Branch Prediction
Hardware Multiphy Hardweare Multiply
fsystem: 30.0 MHz Hardware Divide Hardwware Divice
" Barrel Shifter
ERUIY Data Cache
Mynamic Branch Prediction
Performance at 50.0 MHz tlp’-lc.SDMlF.‘S ~Up to 25 DMIPS Upto 51 DMIPS
Logic Usage G00-700 LEs 1200-1400 LEs 1400-1500 LEs
Memary Usags T_W.'n M}_ﬁs_:'go_r aqi_givq Twed M4z + cache Three Maks + cache
Hardweare Muttiply: | T
Reset Vectar: MEMONY | sogram w |Offseti| o 0x00800000
Exception Yector: Memory. sueam 4 | Offsel | g | Dx00800020

Figure 6. Define the reset vector and the exception vector.

The augmented Verilog module generated by the SOPC Buidier the filenios_system.in the directory
of the project. Figure 7 depicts the portion of the code tledings the input and output signals for the mod-
ule nios_system As in our initial system that we developed in the introdugttutorial, the 8-bit vector that
is the input to the parallel po$witchesis calledin_port_to_the_SwitchesThe 8-bit output vector is called
out_port_from_the_LEDsThe clock and reset signals are caltdkl andreset_n respectively. A new module,
calledsdram is included. It involves the signals indicated in FigureFor example, the address lines are re-
ferred to as th@utput vectorzs_addr_from_the_sdram[11:0The data lines are referred to as theut vector
zs_dq_to_and_from_the sdram[15:0his is a vector of thénout type because the data lines are bidirectional.

3397 Hwodule nios_system | A
3398 f4 11 global signals:

3399 clk,

3400 reset_n,

3401

3402 // the_ LEDs

3403 out_port_from the LEDs,
3404

3405 #/ the_Switches

3408 in port_to_the_Switches,
3407

3408 /¢ the_sdram

3409 z3_addr_frow_the_sdram,
3410 z5_ba_from the_sdram,

3411 z8_cas_n from the sdram,
3412 z5_cke from the sdram,

3413 z3_cs_n from the sdram,
3414 z3_dog to_and from the sdrem,
3415 z3_depn from_the sdram,

3416 z5_ras_n_from the sdram,
3417 z5_we_n_from_the_sdram

3418 1

3418 ;

3420

3421 output [7: 0] out_port_from the LEDs;

3422 output [11: 0] =s_addr from the_sdram;

3423 output [1: 0] z=_ba from_the_sdram:

3424 output 22_cas_n from the =dram:

3425 output 22_cke_from the =drem:?

34Z6 output z3_cs_n from_the sdram:

34z7 inouc [15: 0] =z=_dg to_sand from the sdram;
3428 output [1: 0] =s_degn from_the sdram:

3429 output zs_ras_n_from_the_sdram;

3430 output z5_we_n_from_the_sdram:

3431 input clk; w
< >

Figure 7. A part of the generated Verilog module.

4 Integration of the Nios|| System into the Quartus|| Project

Now, we have to instantiate the expanded Nios Il system indhdevel Verilog module, as we have done in the
tutorial Introduction to the Altera SOPC Builder Using Verilog Dasid he module is namelights, because this
is the name of the top-level design entity in our Quartus ojgxt.

A first attempt at creating the new module is presented inr€i@u The input and output ports of the mod-
ule use the pin names for the 50-MHz clo€k, OCK_5Q pushbutton switcheXEY, toggle switchesSW and
green LEDsS,LEDG, as used in our original design. They also use the pin nddfi®&M_CLK DRAM_CKE
DRAM_ADDR DRAM_BA_1 DRAM_BA_Q DRAM_CS_NDRAM_CAS NDRAM_RAS _NDRAM_WE_N
DRAM_DQ DRAM_UDQM andDRAM_LDQM which correspond to the SDRAM signals indicated in Figure 2
All of these names are those specified in the DE2 User Manudathnallows us to make the pin assignments by
importing them from the file calleBE2_pin_assignments.c8vthe directoryDE2_tutorials,design_fileswhich
is included on the CD-ROM that accompanies the DE2 board anélso be found on Altera’s DE2 web pages.

Observe that the tw®ank Addresssignals are treated by the SOPC Builder as a two-bit vecttbedca
zs_ba_from_the_sdram[1:0hs seen in Figure 7. However, in tBE2_pin_assignments.céile these signals
are given as scalaBRAM_BA_landDRAM_BA_0 Therefore, in our Verilog module, we concatenated these
signals asDRAM_BA_1, DRAM_BA_0} Similarly, the vectorzs_dgm_from_the_sdram[1:@prresponds to
{DRAM_UDQM, DRAM_LDQM}

Finally, note that we tried an obvious approach of using vz system clockCLOCK_50Q as the clock
signal, DRAM_CLK for the SDRAM chip. This is specified by tlessign statement in the code. This approach
leads to a potential timing problem caused by the clock skethe DE2 board, which can be fixed as explained
in section 5.

/I 'mplements the augmented Nios Il system for the DE2 board.
/l'Inputs: SW7-0 are parallel port inputs to the Nios Il system.

I CLOCK_50 is the system clock.

I KEYO is the active-low system reset.

/I Outputs: LEDG7-0 are parallel port outputs from the Nios Il system.

1 SDRAM ports correspond to the signals in Figure 2; theinaa are those
1 used in the DE2 User Manual.

module lights (SW, KEY, CLOCK_50, LEDG, DRAM_CLK, DRAM_CKE,
DRAM_ADDR, DRAM_BA_1, DRAM_BA_0, DRAM_CS_N, DRAM_CAS_NDRAM_RAS_N,
DRAM_WE_N, DRAM_DQ, DRAM_UDQM, DRAM_LDQM);
input [7:0] SW;
input [0:0] KEY;
input CLOCK_50;
output [7:0] LEDG;
output [11:0] DRAM_ADDR,;
output DRAM_BA_1, DRAM_BA_0, DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;
output DRAM_CKE, DRAM_CS_N, DRAM_WE_N, DRAM_UDQM, DRAM_LDQM;
inout [15:0] DRAM_DQ;

/I Instantiate the Nios Il system module generated by theGB#lder
nios_system Niosll (
CLOCK_50,
KEYIO0],
LEDG,
SW,
DRAM_ADDR,
{DRAM_BA_1, DRAM_BA_ 0},
DRAM_CAS N,
DRAM_CKE,
DRAM_CS_N,
DRAM_DQ,
{DRAM_UDQM, DRAM_LDQM},
DRAM_RAS N,
DRAM_WE_N);
assign DRAM_CLK = CLOCK_50;

endmodule

Figure 8. A first attempt at instantiating the expanded Nigys$tem.

As an experiment, you can enter the code in Figure 8 into adilectlights.v. Add this file and all the *.v
files produced by the SOPC Builder to your Quartus Il proj&@dmpile the code and download the design into
the Cyclone Il FPGA on the DE2 board. Use the application gagfrom the tutorialntroduction to the Altera
SOPC Builder Using Verilog Desigmhich is shown in Figure 9. Notice in our expanded system atthdresses
assigned by the SOPC Builder are 0x0100300@&fwitches and 0x01003010 fdtEDs, which are different from
the original system. These changes are already reflectbé jprogram in Figure 9.

.include "nios_macros.s"

.equ Switches, 0x01003000
.equ LEDs, 0x01003010

.global _start
_start:
movia r2, Switches
movia r3, LEDs
loop: Idbio r4, 0(r2)
stbio r4, 0(r3)
br loop

Figure 9. Assembly language code to control the lights.

Use the Altera Debug Client, which is described in the tadokitera Debug Clientto assemble, download,
and run this application program. If successful, the ligitishe DE2 board will respond to the operation of the
toggle switches.

Due to the clock skew problem mentioned above, the Nios Itgseor may be unable to properly access the
SDRAM chip. A possible indication of this may be given by théeta Debug Client, which may display the
message depicted in Figure 10. To solve the problem, it issszey to modify the design as indicated in the next
section.

Info & Errors =
Using cable "U3E-Elaster [U3E-0]", dewice 1, instance O0x00

Resetting and pausing target processor: 0E

Initializing CPU cache (if present)

124

[x]

Dovmloading 00800000 (O%) —
Downloaded 1EE in 0.0s

Verifying 00300000 [0%)
Verify failed between addressz 0DxS00000 and 0xS0001E
Leaving target processor paused

Possible causes for the SPEC werification failure:

1. Not enough mewory in wour Nios IT systew to contain the SREC file,

2. The locations in your SBEC file do not correspond to a wemory dewvice.

3. You may need a properly configured PLL to access the 3DRAM or Flash mewmory.

-

Figure 10. Error message in the Altera Debug Client that neagite to the SDRAM clock skew problem.

5 Using aPhase-Locked Loop

The clock skew depends on physical characteristics of th2 ixfard. For proper operation of the SDRAM chip,
it is necessary that its clock sign8IRAM_CLK leads the Nios Il system clociGLOCK_5Q by 3 nanoseconds.
This can be accomplished by usingphase-locked loop (PLLjircuit. There exists a Quartus Il Megafunction,
calledALTPLL, which can be used to generate the desired circuit. Theitoan be created, by using the Quartus
Il MegaWizard Plug-In Manager, as follows:

1. Selecflools > MegaWizard Plug-In Manager. This leads to the window in Figure 11. Choose the action
Create a new custom megafunction variation and clickNext.

MegaWizard Plug-In Manager [page 1] E|

The Megawizard Plug-n Manager helps pou create o modify
design files that contain custom wvariations of megafunctions.

\ Which action do you want ta perfarm?
& Create a new custom megafunction variation
" Edit an existing custom megatunction variation

" Copy an existing custom megafunction variation

Copyright 2 1931-2007 Altera Corporation

Cancel | | Mest > ‘ |

Figure 11. The MegaWizard.

2. In the window in Figure 12, specify that Cyclone Il is thevide family used and that the circuit should be
defined in Verilog HDL. Also, specify that the generated oitfyerilog) file should be calleddram_pll.v
From the list of megafunctions in the left box selé@ > ALTPLL. Click Next.

MegaWizard Plug-In Manager, [page Za] E|
Which megafunction would you lke to custamize? W_hic%; device family will you be Cyclone 11 -
Select a megafunction from the list below i)

+- {8 Arthmetic ~ Which type of output file do you want to create?
+- &8 Communications " AHDL
+ @@ DSP WHDL
+ - Gates i
& Verilog HDL
“what name do you want for the output file? Browse...
-] ALTASMI_PARALLEL |D'\DEZ_Sdram_tulnnal\sdlam_p\lv
] ALTCLECTRL
] ALTCLELOCK
-] 4LTDDIO_BICIR
] ALTDDIO_IN [Return to this page for anather create operation
-] ALTDDIO_OUT
| ALTDO Note: To compile a project successfully in the Quartus || software,
1 ALTDAES your design files must be in the project directory, in the global user
libraries specified in the Options dialog box (Tools menul. o a user
library specified in the User Libraries page of the Settings dialog
box [Assighments menu).
] ALTLVDS
Your current user library directories are:
afALTPLL
+ & Interfaces i

Cancel | < Back | Mext > | |

Figure 12. Select the megafunction and name the output file.

3. In Figure 13, specify that the frequency of tinelockOinput is 50 MHz. Leave the other parameters as
given by default. ClickNext to reach the window in Figure 14.

10

MegaWizard Plug-In Manager [page 3 of 10]

ALTPLL

Yersion 7.1

Currently selected device Family: Cyclone IT
sdram_pll
Able ta implement the requested PLL
% inclldd fraqueney: 40,000 MHz \ockgi
Operation Mode: Normal e i
wuthich device speed grads wil you be Using?
Eyclone |l FE— —

what is the heduency of the inclockD input? soao | MHz [
PLL type

“wihich PLL type will you be using?

) Select the PLL type autamatically.

- Operation mode
How will the PLL outputs be generated?
! Use the Feedback path inside the PLL

* In Normal Mode

) In Source-Synchranaus Compensation Mode
) 1n Zevo Delay Buffer Mods

With no compensation

Which output clock will be compensated For?

| Cancel H < Back ” Mext = H Einish |

Figure 13. Define the clock frequency.

MegaWizard Plug-In Manager [page 4 of 10]

ALTPLL

GerieraljMc

Able to implement the requested PLL
sdrarn_pll

Tl
nel inoll) frequency 50000 hHz [B=EN
Dperation Moade: Normal

Tyelone |l

Optional inputs -

["] Create an 'pllena’ input ko selectively enable the PLL
["] Create an 'areset’ input to asynchronously reset the PLL

[Create an ‘pfdena’ input to selectively enable the phase/freq. detector

Lock aukput

- Advanced PLL parametsrs
Using these parameters is recommended for advanced users only
[Create output file(s) using the ‘Advanced' PLL parameters

- Configurations with output clock{s) that use cascade counters are not supported

[Cconcet [<tk | o> || 5oen |

Figure 14. Remove unnecessary signals.

11

4. We are interested only in the input sigimatlockOand the output signa0. Remove the other two signals
shown in the block diagram in the figure by de-selecting thioopl inputareset as well as thdocked
output, as indicated in the figure. Clickext on this page as well as on page 5, until you reach page 6
which is shown in Figure 15.

MegaWizard Plug-In Manager [page 6 of 10]

ALTPLL

Yersion 7.1

Documentation

| €0 - CorefExternal Output Clock.

sdrarm_pll Able taimplement the requested PLL
VR | frequeney: 50000 MHz (=N 1 Use this clock
Operation hade: Hormal Clock Tap Settings
[o[e) s it
(&) Enter output dock frequency; 50l |j MHz s {00000 |
Tyemone |l " Enter output clock parameters:
Clock mulkiplication Factor : |{ - 7|
<< Cp T =,
Clock divisian factor : it |
Clock phise shift = Bl B po
Clack duty cycle (%) s0.00 @ 50,00]

More Details >

Per Clack Feasibility Indicators

cd cl c2

| Cancel H % Back ” et = ” Einish ‘

Figure 15. Specify the phase shift.

5. The shifted clock signal is callex. Specify that the output clock frequency is 50 MHz. Also,a@fethat
a phase shift of-3 ns is required, as indicated in the figure. Cligkish, which advances to page 10.

6. Inthe summary window in Figure 16 cli¢knish to complete the process.

12

MegaWizard Plug-In Manager [page 10 of 10] -- Summary

3 ALTPLL
[t | powmision |
| Summary .
| Turn on the files you wish to generate. & gray checkmark indicates a File that is
automatically generated, and a red checkmark indicates an optional file. Click.
sdrarm_pll Finish to generate the selected Files. The state of each checkbox is maintained in
subsequent MegaWizard Plug-In Manager sessions,
Ve frequeney: 50.000 hHz (ML=
Operation hode: Hermal The MegaWwizard Plug-In Manager creates the selected Files in the Following
7 0 N S directary: D:\DE2_sdram_tutariall
[eo] i [-samo] o0 = —
Filz | Description
el [sdram_pll.v Wariation file
IS [A" sdram_pll. ppf PinFlanner ports PPF file
O zdram_pll.inc AHDL Include file
O sdram_pll.cmp WHDL component declaration file:
[sdram_pll.bst Quartus Il symbol file
O zdram_pll_inst.w Instantiation template file
O sdram_pll_bb.v “erilog HDL black-box file
[sdram_pll_wavetorms. html Sample waveloms in summary
e gdram_pll_wave®.jpg Sample wavetarm file[]
| Cancel H < Back | L | Finish ‘

Figure 16. The summary page.

The desired PLL circuit is now defined as a Verilog module ia fite sdram_pll.y which is placed in the
project directory. Add this file to thights project. Figure 17 shows the module ports, consisting afaiginclkO
andcO.

b sdram_pll.v

39 Emodule sdram pll -

40 inclko,

41 o)

42

43 input inclk0O;

44 output ci;

45

46 wire [5:0] sub_wire0;

47 wire [0:0] sub_wire4 = 1'h0;

43 wire [0:0] sub_wirel = sub_wireO[0:0];

49 wire c0 = sub_wirel;

50 wire sub_wirez = inclk0;

51 wire [1:0] sub wired = {sub wired4, sub wirei};

52

53 = altpll altpll component |

54 Linelk (sub_wired), ¥
£ >

Figure 17. The generated PLL module.

Next, we have to fix the top-level Verilog module, given in lig 8, to include the PLL circuit. The desired
code is shown in Figure 18. The PLL circuit connects the stliflock output0to the pinDRAM_CLK

13

/I 'mplements the augmented Nios Il system for the DE2 board.
/l'Inputs: SW7-0 are parallel port inputs to the Nios Il system.

I CLOCK_50 is the system clock.

I KEYO is the active-low system reset.

/I Outputs: LEDG7-0 are parallel port outputs from the Nios Il system.

1 SDRAM ports correspond to the signals in Figure 2; theinaa are those
1 used in the DE2 User Manual.

module lights (SW, KEY, CLOCK_50, LEDG, DRAM_CLK, DRAM_CKE,
DRAM_ADDR, DRAM_BA_1, DRAM_BA_0, DRAM_CS_N, DRAM_CAS_NDRAM_RAS_N,
DRAM_WE_N, DRAM_DQ, DRAM_UDQM, DRAM_LDQM);
input [7:0] SW;
input [0:0] KEY;
input CLOCK_50;
output [7:0] LEDG;
output [11:0] DRAM_ADDR,;
output DRAM_BA_1, DRAM_BA_0, DRAM_CAS_N, DRAM_RAS_N, DRAM_CLK;
output DRAM_CKE, DRAM_CS_N, DRAM_WE_N, DRAM_UDQM, DRAM_LDQM;
inout [15:0] DRAM_DQ;

/I Instantiate the Nios Il system module generated by theGB#lder
nios_system Niosll (
CLOCK_50,
KEYIO0],
LEDG,
SW,
DRAM_ADDR,
{DRAM_BA_1, DRAM_BA_ 0},
DRAM_CAS N,
DRAM_CKE,
DRAM_CS_N,
DRAM_DQ,
{DRAM_UDQM, DRAM_LDQM},
DRAM_RAS N,
DRAM_WE_N);

/I Instantiate the module sdram_pll (inclkO, c0)
sdram_pll neg_3ns (CLOCK_50, DRAM_CLK);

endmodule

Figure 18. Proper instantiation of the expanded Nios |leyst

Compile the code and download the design into the Cyclon®G A& on the DE2 board. Use the application
program in Figure 9 to test the circuit.

14

Copyright(©?2007 Altera Corporation. All rights reserved. Altera, Thegtammable Solutions Company, the
stylized Altera logo, specific device designations, anatder words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thenratts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicmes are the property of their respective holders.
Altera products are protected under numerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance oksémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitiiability arising out of the application or use of any
information, product, or service described herein excepmbaressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialeate specifications before relying on any published
information and before placing orders for products or smwi
This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdieunor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithesssd particular purpose, are specifically disclaimed.

15

