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I. Introduction: 
 The goal of this final project was to create a sound spatialization system.  A sound 

spatialization system makes a sound source appear to originate from different points in space 

when listened to using headphones.  For example, this system can make the music coming from a 

normal music player sound like it is coming from some point in space to the listener’s right, 

simply through signal processing.  The main components of this project were the Altera DE2 

development board, Quartus II web edition, the NIOS II IDE, and a high quality set of 

earphones.  This system could vary the azimuth position of the sound source from 0 to 360 

degrees in 5-degree increments.  The apparent elevation of the sound source could also be varied 

between -20 degrees, 0 degrees, and +20 degrees anywhere along the azimuth positions.  Fig. 1 

shows the definition of azimuth and elevation in the context of this system.  

 

 
Figure 1: Definition of elevation and azimuth 

 There were two ways to choose the desired azimuth: using switches SW[0] to SW[6] to 

enter a binary number between 0 and 71 (which when multiplied by 5 would represent azimuths 

from 0 to 355), or using the four keys – KEY[0], KEY[1], KEY[2], and KEY[3].  KEY[3] 

incremented the azimuth by 5 degrees, KEY[2] decremented the azimuth by 5 degrees, KEY[1] 

incremented the azimuth by 90 degrees, and KEY[0] decremented the azimuth by 90 degrees.  

The elevation was chosen using switches SW[8] and SW[9].  When SW[8] was low, an elevation 



of 0 was chosen.  When SW[8] was high, the elevation could be chosen by setting SW[9] high 

(elevation of +20) or setting SW[9] low (elevation of -20).   

 
 
II. Design and Testing Methods: 
 Humans use a variety of methods to determine where a sound is coming from.  The 

simplest are interaural time differences (ITDs) and interaural level differences (ILDs).  Interaural 

time differences represent the difference in arrival times of sound waves from a sound source to 

the left and right ears.  For example, sounds waves from a sound source located at an azimuth of 

45 degrees will reach the right ear earlier than the left ear.  In addition, the sound waves that 

reach the left ear will be slightly attenuated compared to the left ear because of shadowing 

effects from the listener’s head – this represents interaural level differences.   

 It is possible to create a rudimentary sound spatialization system based on ITDs and ILDs 

alone.  However, there are certain issues that arise when using only these two localization cues.  

First, ILDs are not linear with respect to frequency.  This is because sound waves with 

frequencies of about 1500 Hz have wavelengths that are on the order of the diameter of the 

human head.  Thus, frequencies lower than 1500 Hz are not attenuated much by the head at all, 

while frequencies above 1500 Hz are attenuated a great deal.  Thus, ILDs are the dominant cues 

at high frequencies.  Additionally, above 1500 Hz, ITDs are greater than one period of the 

incoming wave, which leads to aliasing errors.  Thus, ITDs are the dominant cues at lower 

frequencies.   

 The problem is exacerbated once elevations are taken into account.  Very often, sounds 

from sources at elevations that are similar to each other will have the same ITDs and ILDs, 

leading to a so called “cone-of-confusion” in which the sound source cannot be determined 

accurately.  Another problem is that a sound signal that is processed using only ITDs and ILDs 

appears to originate from inside the listener’s head, which is a disturbing effect.  

 Because humans have become very good at localizing sound sources, it is apparent that 

there are other mechanisms used to provide cues besides ITDs and ILDs.  It is believed that 

incoming sound waves have their spectral content altered by reflections from the listener’s head, 

shoulders, and torso, which the human brain processes to extract more localization cues.  This 

filtering effect is referred to as the Head Related Transfer Function (HRTF).  Since every 

person’s body dimensions and ear shapes are different, every person has a unique set of HRTFs 



that the brain is tuned for.  The HRTFs contain both ITD and ILD cues, as well as the spectral 

filtering effects.   

 Luckily for us, the Media Lab at MIT has already made a multitude of HRTF 

measurements using a dummy named KEMAR.  KEMAR is a faithful representation of a human 

torso, head, and ear canal.  Different ears can be attached to create different responses.  A tiny 

microphone was placed deep inside the ear canal to make recordings as the sound source was 

moved around.  The resulting information was processed to create the HRTFs.   

 We used the diffuse field equalized HRTFs from the MIT Media Lab website after 

consulting with Bill Gardner, who took the measurements.  This was a reduced data set of 128-

point, 16-bit signed integer HRTFs derived from the left ear KEMAR responses.  For example, 

the left ear response for an azimuth of 90 degrees was derived from the 90 degree response of the 

left ear KEMAR data set, while the right ear response for the same azimuth was derived from the 

270 degree left ear KEMAR data set.  Because there was so much data to process (128 HRTF 

coefficients for each ear for each of the 72 azimuth increments, at three different elevations), a 

Matlab script was written to manipulate the data, as shown in Fig. 2. 

 

 
Figure 2: Example Matlab script to process data 

 The data for all of the azimuth increments was put into 2D arrays for each of the three 

possible elevations.  Each of these arrays was 72x128, representing 128 HRTF coefficients for 

each of the 72 possible azimuth increments.   

There were three main components of this lab – Verilog code for the hardware, a NiosII/e 

CPU, and C code for the CPU to run.  All three files were necessary to provide the hardware and 

processing support needed to handle the large number of coefficients and constants needed for 

each ear at each elevation and azimuth.   

 

Verilog Code 

The Verilog code was spread among three main files: DE2_Default, Audio_ADC_DAC, 

and I2C_AV_config.  DE2_Default wires together the reset generator, PLL audio clock 



generator, I2C codec configuration module, and the audio module.  This file also determined the 

azimuth angle and elevation angle.  When switch SW[17] was low, switches SW[6] to SW[0] 

were interpreted as the azimuth angle.  Because 7-bits could represent numbers greater than 71, 

code was written to make the maximum value of the azimuth angle 71, even if a higher number 

was selected.  When switch SW[17] was high, buttons KEY[3] to KEY[0] selected the azimuth 

angle.  KEY[3] increased the azimuth angle by 5 degrees, KEY[2] decreased the azimuth angle 

by 5 degrees, KEY[1] increased the azimuth angle by 90 degrees, and KEY[0] decreased the 

azimuth angle by 90 degrees.  Instead of having the angles display  a value greater than 360 

degrees code was written to cause the azimuth angle to wrap around if the current angle was 

increased above 355 degrees or decreased below 0 degrees so that the operator will know the 

direction the sound is coming from in a 360 degree span around his/her head.  For example, if the 

current azimuth angle was 290 degrees and KEY[1] was pressed to increase the azimuth angle by 

90 degrees, the new azimuth angle was 20 degrees (i.e. 290o + 90o).   

The I2C codec configuration module configured the audio codec to our specifications.  

Because the KEMAR HRTFs were sampled at 44.1 kHz, our input and output sample rate also 

had to be set to 44.1 kHz.  We chose to use the line-in input as opposed to the microphone input 

so that we could have control over the gain of the input.  The line-out output was used because 

the DE2 board did not have headphone outputs, though the audio codec supported it.  The 

specifics of the configuration registers can be determined by downloading the data sheet for the 

Wolfson Microelectronics WM8731 audio codec.  The values of our configuration registers are 

shown in Fig. 3.  Note that one word of dummy data must be sent across the I2C interface before 

the first actual setup parameter to allow the audio codec to initialize.   

 

 
Figure 3: Audio codec configuration 

The Audio_ADC_DAC is the main file for this project.  The bulk of this file was 

occupied by the state machine, which acts as a finite impulse response filter.  For each given 



azimuth and elevation, the current input and the past 127 inputs have to be convolved with the 

128 HRTF coefficients.  This is done for each ear.  This is represented in Fig. 4. 

 

 
Figure 4: 128-point finite impulse response filter 

Because there is too much data and it would require too many multipliers to do all of the 

multiplications at once, a state machine was used to do only one multiply and accumulate at a 

time.  Once all 128 multiply and accumulates were done, the result was outputted to the audio 

codec.   

 The HRTF coefficients were stored in separate m4k blocks for each ear.  The ROM 

module was based on the code on the DE2 hardware page, as shown in Fig. 5. 

 

 
Figure 5: ROM module 

 In each step of the state machine, the memory address to be accessed was sequentially 

incremented, because the HRTFs were stored in order.  It takes two state machine steps for the 

HRTF coefficient to be read from memory, at which point the HRTF coefficient for each ear was 

sent to separate multiplier modules along with the registered value of the input.  The input was 

sent to both the left and right multipliers because only one channel of the input was used.  A 

separate module was used for the multiply function because it greatly reduced the compilation 

time.  The result from the multiplier was ready after two state machine steps, at which time it 



was accumulated.  Fig. 6 shows the code that accomplished this, and Fig. 7 is a pictorial 

representation of the state machine.  At startup, the state machine takes 132 steps because of the 

additional cycles needed to read from memory and get the result from the multiplier module.  

However, once the state machine ran it took 128 steps because memory was being read at every 

step.  In order to have audio with no artifacts, static, or other anomalies, the state machine has to 

multiply and accumulate all 128 inputs before the DAC is sampled to be output.  This was easily 

accomplished because the state machine was run at a clock rate of 50 MHz, compared to the 

sample rate of 44.1 kHz.   

 
 

          
Figure 6: Partial state machine code                 Figure 7: Pictorial representation of state machine 

 



 Because the HRTF coefficients did not add up to one, the accumulated value had to be 

normalized before being outputted.  Failing to do so resulted in an output that was garbled and 

unusable.  To get around this issue, the final accumulated value was checked against a maximum 

value that was saved.  If the accumulated value was larger than the previous maximum value, the 

maximum value was updated.  The final accumulated value was divided by the maximum value, 

then shifted to the left by 15 places because the DAC input was a 16-bit signed integer.  When 

testing, we found that the output creating a clicking noise, implying that the resulting value was 

overflowing.  This was remedied by adding 35 to the maximum value that was saved thus 

preventing this overflow.  We also found out that when there was no input, there was still a low 

level distorted sound being outputted (i.e. noise).  This was solved by setting any input that was 

between -8 and 8 to 0 thus changing the threshold value for the input signal and eliminating 

random noise.  It was important to make the accumulator register at least 39 bits wide.  This was 

because both the input and the HRTFs were 16 bit values, leading to a maximum value that was 

32 bits wide.  Also, since there were 128 values being accumulated, the maximum possible value 

for the accumulation was 39 bits.   

 

Audio_ADC_DAC  

The Audio_ADC_DAC file was based off of the example on the DE2 hardware page.  

The only other changes that had to be made were to change the reference clock and the sample 

rate.  The sample rate was set to 44.1 kHz because that was the frequency at which the HRTFs 

were sampled.  The reference clock was changed to 16.9344 MHz because this is what the audio 

codec data sheet specified for a sample rate of 44.1 kHz.   

 

NiosII/e CPU 

 The next large piece of this project was the CPU.   A NiosII/e CPU was used because we 

did not need the features of the higher level versions.  The CPU was created using the document 

called “Introduction to the Altera SOPC Builder Using Verilog Design.”  Besides adding the 

CPU, JTAG UART protocol, and the on-board memory, the following input and output ports 

were created (Fig. 8): 

 a) addycpu: 8-bit output to represent the memory address to write to 

 b) ledg: 8-bit output to aid in debugging by using the green LEDs 



 c) leftdatacpu: 16-bit signed output representing the HRTFs to be written to memory for 

   the left ear 

 d) rightdatacpu: 16-bit signed output representing the HRTFs to be written to memory for 

   the right ear 

 e) sw: 8-bit volatile input representing the desired azimuth angle 

 f) sw8: 1-bit input representing whether a flat sound source was desired 

 g) sw9: 1-bit input representing whether an elevation of -20 or +20 degrees was desired 

 h) we: 1-bit output that determined whether or not the ROM that was instantiated in  

Audio_ADC_DAC was written to 

 

Figure 8: Screenshot of SOPC Builder 

Since there was so much data to be stored, we decided to use the SDRAM that was 

present on the DE2 board.  SDRAM was instantiated using the document called “Using the 

SDRAM Memory on Altera’s DE2 Board with Verilog Design.”  This required the creation of a 

phase locked loop, because of the requisite set-up time of the SDRAM chips.  The PLL was 

instantiated in the DE2_Default file and advanced the clock being fed to the SDRAM chips by 3 

ns in relation to the 50 MHz clock for the rest of the system.  Because SDRAM was used, a few 

more parameters had to be passed to the CPU when it was instantiated in Audio_ADC_DAC.  

These parameters can be found in the nios_system.v file.   

  

C Code 

 The C code less complex than the Verilog code.  The majority of this file was taken up by 

the HRTF data.  Whenever the azimuth of elevation angle was changed, the write enable was 

asserted to write the new HRTF values to the ROMs for the left and right ears.  A loop then 



outputted the data from one of the three sets of data (elevations of -20, 0 and +20).  The address 

was incremented at the same time.  For example, if switch SW[8] was low, the 128 HRTFs from 

the appropriate row of righthrir and lefthrir would be outputted.  If SW[8] was high and SW[9] 

was high, the HRTFs from righthrirpos20 and lefthrirpos20 would be outputted.  If SW[8] was 

high and SW[9] was low, the HRTFs from righthrirneg20 and lefthrirneg20 would be outputted.   

 The biggest challenges that we faced were bad design and long compile times.  In our 

first design, we did not use a CPU and instead placed all of the HRTFs into M4K blocks.  This 

design took over an hour to compile, at which point the compiler informed us that the design 

would not fit.  This problem was resolved using a CPU with SDRAM.  The second bad design 

was having the multiplies occur within the individual states of the state machine.  Once again, 

the compile times were extremely long and the compiler informed us again that the design would 

not fit.  This was remedied by having a separate module take care of the multiply function, with 

each state sending the multiplier module the numbers to be multiplied.  This reduced our compile 

times to about 25 minutes.  The compile time was further reduced to about 10 minutes by turning 

on the Smart Fit feature in the Quartus II program.   

 The final challenge was getting a clean output from the audio codec.  The first revision of 

the working project had an output that contained static and would produce pops every so often.  

The pops were fixed by changing the normalization values so that the accumulated number 

would not overflow.  The static was fixed by setting low signals (-8 to 8 in a range of -32768 to 

32767) to 0.   

  
 
III. Conclusions: 
 Our sound specialization system performed as designed.  The system was able to take a 

sound source as an input (i.e. from a microphone or music source like an Ipod), and output the 

sound at different spatial angles from the perspective of the listener.  For the user listening to the 

sound, changing the angle of the system made the sounds source appear as if it was changing in 

space along a 360 degree azimuth and a -20 to +20 degree elevation.  Music was inputted into 

the DE2 board’s line-in where it was processed by the hardware (i.e. Verilog code).  The audio 

codec sampled the input music at 44.1 kHz.  The switches and determined what angle the sound 

should appeared to be coming from.  With an 72 different azimuth positions (i.e. 360 degrees in 

5 degree increments) and 3 different elevation positions (i.e. -20, 0 and +20 degrees), our system 



provided 72 x 3 = 146 possible positions in space in which to position a sound.  Since each of the 

72 possible azimuth positions consisted of 256 different coefficients (i.e. 128 for the left ear and 

128 for the right ear) the NiosII/e CPU provided the processing power to handle the constant 

loading of these coefficients.  When a position is chosen the CPU loaded the 256 different 

coefficients in M4K blocks that the Verilog code would use to perform a convolution with the 

sampled sound input to produce the desired sound specialized output.  Even though our system 

worked as designed, it worked differently for every person that used it.  This is because the 

coefficients for the Head Related Transfer Function were calculated based on the shape of the 

KEMAR dummy head and ear canal.  Therefore, whenever anyone with dimensions much 

different from those of the KEMAR dummy use the system, their perception of the sound in 

space is slightly different.  This became apparent during our demonstration of the system.   

  
IV APPENDIX 
 The following is an abbreviated version of the c code used in this design.  Due to the 

large amount of coefficients the code was shortened to fit in this lab report.  The entire version of 

the Verilog and C code could be found on the 576 webpage for this project.  

 
 
******************************************************************************
****************************************************************************** 
 
 
int main () { 
        //coefficients omitted 
        char i;  //for for loop 
     char switch8 = *sw8; 
        char sw_old = 250;  //arbitrary, so that m4k blocks are intialized   
on startup 
        char sw8_old = 2; 
        char sw9_old = 2; 
        while(1) { 
                if ((sw_old != *sw) || (sw8_old != *sw8) || (sw9_old != 
*sw9)) {  //  
only update m4k blocks if angle has changed 
                        sw_old = *sw; 
                        sw8_old = *sw8; 
                        sw9_old = *sw9; 
                         
                        *we = 0xFF;  //enable writing to m4k blocks 
                        for (i=0; i < 127; i++) { 
                                *addycpu=i+10; 
                                if (*sw8) {  //output elevated coeffs if SW8 
high 



                                        if (*sw9) {  //output positive 
elevation if SW9 high 
                                                
*leftdatacpu=lefthrirpos20[*sw][i]; 
                                                
*rightdatacpu=righthrirpos20[*sw][i]; 
                                        } 
                                        else {  //output negative elevation 
if SW9 low 
                                                
*leftdatacpu=lefthrirneg20[*sw][i]; 
                                                
*rightdatacpu=righthrirneg20[*sw][i]; 
                                        } 
                                } 
                                else {  //output flat coeffs is SW8 low 
                                        *leftdatacpu=lefthrir[*sw][i]; 
                                        *rightdatacpu=righthrir[*sw][i]; 
                                } 
                        } 
                        *we = 0x00;  //disable writing to m4k blocks after 
all data loaded 
                }  //if (sw_old != *sw) 
                else { *we = 0x00; } 
        }  //while loop 
}  //main 
 
******************************************************************************
****************************************************************************** 
 


