
ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

ECE 576, Final Project: Programmable Discrete Graphics Hardware

Introduction

The goal of this final project was to create a programmable graphics processing unit with as

many aspect as possible to be coded in hardware, even with object and edge generation. The

main feature of the organization of this graphics unit is to be able to represent transformation

operations parametrically, creating a graphics co-processor capable of rendering procedural

motion. The graphics unit takes operations in a very-long instruction word format that has a

one-to-one representation to a high-level scripting language, which provides a mean to moving

objects and features in a scene to dynamically during run-time. The original inspiration was

to create a physics simulator on an FPGA that followed Lagrangian constraints, which, if

there were to have been more hardware than software, would have required being able to

manipulate a set of objects in a parametric fashion. The high-level design shares many

similarities multi-cycle pipelines, such as intermediate memories and registers. However,

unlike a regular processor, the co-processor has one pipeline that operates on multiple pieces

of data in parallel, much like a vector processor does in a single-instruction multiple-data

fashion.

There are three components of the circuit: an object generation pipeline to generate edges

of the target shape; a transformation pipeline that performed transformations on the unit

objects1; and a rastering pipeline that generates the points for the VGA controller to display.

The design has made certain tradeoffs due to the constraints imposed by the FPGA we used

to synthesize the circuit. First, the transformation pipeline does not employ a generalized

4x4 matrix multiply because the limited number of multipliers on the FPGA. Instead, the

transformation pipeline is currently designed as a operate-and-accumulate module, with

intermediate data values stored in registers. This most definitely impacts the performance

of the overall system since n transformations take n operations per data set. Alternatively

with more available multipliers, by first generating a reduced matrix transformation, one

data set can be transformed in one cycle. Second, the available memory on the FPGA is

limited to 8.5 megabytes at most, of which about 512 kilobytes are available memory that are

designed to be read from within a single cycle of exerting the desired address. If a different

memory type that provides more storage is made available, several key points of the circuit

would have to be redesigned to adhere to Valid memory lines.

Since this lab was the final project of a one semester course, due to the limited time

available, many other decisions were made to favor rapid development and testing. We

1Unit objects is used in this paper to designate objects that whose sizes are of a single unit of length or volume, whose center
or a specific point to be at the origin of the coordinate system. Further transformations enable the relocation and reshaping of
the object from its unit specification.

Final Project Report 1 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

present the decisions that, if were made differently, have the most potential to improve the

efficiency of the circuit. One such decisions was to represent the inter-pipeline data using

an exhaustive edges list. This simplified the memory organization at the cost of increase

memory usage, simplified the object generation modules used in the first pipeline2, and

reduced the complexity of the data fetching mechanisms for each pipeline.

High Level Design

The graphics platform was designed to be able to generate shapes and objects by computing

the edges for the object, perform a number of transformations, and to rasterize the scene

into a VGA buffer. The module houses three concurrent pipelines: one to generate an

edge list, one to compute the transformations, and one to rasterize the transformed points.

These three pipelines are implicit consumer-producer constructs, with one waiting for the

completion of the previous before continuing.

The Altera Cyclone II FPGA on the Altera DE2 board was used to synthesize the Verilog

designs. The software used to program the FPGA and organize the DE2 was the Altera

Quartus II. Additionally, a the NIOS II CPU was also available to run software specified in

C to interact with the hardware.

One of the constraints was where to store the edge list, since its the most consumed

resource in an organization of this kind. With the three available memories on board -

SRAM, SDRAM, and M4K blocks3 - M4K blocks were chosen to hold the edge list. This

allowed the memory to be fully simulated in an independent development environment and

did not require waiting a cycle for memory to respond.

Communication between two consumer-producer objects were maintained by having all

the pipelines advance on the same clock, and by having a producer pipeline atomically

incrementing the global count of produced objects. The consumer pipeline maintained its

own counter/iterator as it consumed the data. This way the larger three pipeline dealt with

data stalls implicitly and without a centralized dispatch logic.

From the beginning, the design of the project included as little software as possible in order

to emphasize writing and testing Verilog.4 For the original specification, it was believed that

it would have been possible to completely implement the desired system within the realms

of hardware. Thus, the hardware is especially general, and lends itself to quick and simple

feature extensions. For example, the implied consumer-producer setup allows any additional

pipelines to be quickly created and inserted without having to modify any dispatch logic.

Although this decision has greatly simplified initial development, further development could
2The most notable exception to this is generating the edges for a sphere/torus.
3Flash may also have been available but the group was unfamiliar with its operation on the DE2 board.
4Additionally, a pre-requisite for this course, ECE476, had already heavily emphasized software and C programming in

microcontrollers.

Final Project Report 2 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

demand more memory to store the intermediate data between pipelines, which may exhaust

the memory capacity available on the DE2 board, in which case it would be beneficial

to create a stalling mechanism and multiple VGA buffers in order to compensate for the

decreased resilience of the whole circuit.

There was no known industry standard relevant to this project. There is intellectual

property protection relevant to this project. There is Verilog made public by Terasic for

many of the common designs for the Altera DE2 board. There is Altera’s NIOS II CPU

that, while the current iteration of the circuit does not employ, future extensions will.

Hardware Design

As described in the high level design, there are three pipelines to generate the edges to

objects, to compute transformations on the points, and to rasterize the computed elements.

Since the DE2 hardware also drives the VGA signal through the third rastering pipeline,

which must modifies VGA screen buffer and must be clocked to the VGA control clock, the

other two pipelines are also clocked to the VGA control clock.

The first two pipelines need to store all its data in M4K blocks in order to make them to

the pipeline downstream. Since the last pipeline also serves the VGA controller, the third

pipeline stores its data in SRAM.

Prior considerations to quickly and simply verify the Verilog for any of these pipelines led

to the division between any two producer-consumer pipelines. It is much simpler to test the

first two pipelines, which operate in constant/O(1) complexity, without having deal with the

data stalls imposed by the rastering pipeline, which currently operates with O(n) complexity

and behaves sequentially.

Object Pipeline

As many edge generators for objects can be incorporated into the design. For now, only

a circle and a cube have been implemented.5 Although the edge generators aim to always

generate a valid edge once per cycle, the pipeline can deal with pauses that are inherent to

the algorithm and only save edges when the busy line for each corresponding generator is

high.

The pipeline selects one generator - currently tied to the onboard switches on the DE2 -

initializes the arguments to the generator, and raises the init line for that generator. The

generator will raise its busy line when there is a few valid edge available through its output

lines [(Ax, Ay, Az), (Bx, By, Bz)], and raise done when it is done. done is asserted for

as long as init is high. Deasserting init and waiting one cycle will reset the module. As

5A sphere/torus generator was also begin worked on.

Final Project Report 3 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

long as the generator is designed with this format and communication method, the generator

will work with the driving circuitry in the objects pipeline.

For each edge that is generated and saved, edge count is incremented.

Computation Pipeline

The computation pipeline consumes edges generated by the object pipeline, and monitors

edge count for new edges to operate on. It maintains its own counter, edge iterator,

which it uses to fetch the edge from the edge list and to save the computed edge into its own

memory.

Unfortunately, there were not enough multipliers on the DE2 to have two concurrent 4x4

matrix multiplies for 18-bit wide operands6. Thus, the individual types of transformations

were implemented which would operate on a intermediate register file store the 4x1 vector

of points. Although this used fewer multipliers, the computation time for each edge was

linear compared to the number of transformations instead of being a single 4x4 collapsed

transformation matrix multiply.

The computation pipeline would fetch the operation control word for every cycle, select

the proper hardware, and save the results back to the intermediate register. Each trans-

formation could take up to three 16-bit arguments. Also, in order to support parametrized

transformations, a scaling multiplier would operate on each of the three 16-bit arguments be-

fore reaching the transformation hardware. The three transformations currently supported

are scaling, translation, and rotation on x, y, z axises. Their general types are represented

below:

• Translation:
1 0 0 k ·Dx

0 1 0 k ·Dy

0 0 1 k ·Dz

0 0 0 1



x

y

z

1

 =


x+ k ·Dx

y + k ·Dy

z + k ·Dz

1


• Scaling:

k · Sx 0 0 0

0 k · Sy 0 0

0 0 k · Sz 0

0 0 0 1



x

y

z

1

 =


xkSx

ykSy

zkSz

1


• Rotation about the x-axis:

6There are only 35 18-bit multipliers on the Cyclone II FPGA, and many have been reserved for other purposes, including
for object generation and for the NIOS II, if and when instantiated.

Final Project Report 4 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)


1 0 0 0

0 cos(kθ) − sin(kθ) 0

0 sin(kθ) cos(kθ) 0

0 0 0 1



x

y

z

1

 =


x

y cos(kθ)− z sin(kθ)

y sin(kθ) + z cos(kθ)

1


• Rotation about the y-axis:

cos(kθ) 0 sin(kθ) 0

0 1 0 0

− sin(kθ) 0 cos(kθ) 0

0 0 0 1



x

y

z

1

 =


x cos(kθ) + z sin(kθ)

y

−x sin(kθ) + z cos(kθ)

1


• Rotation about the z-axis:

cos(kθ) − sin(kθ) 0 0

sin(kθ) cos(kθ) 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 =


x cos(kθ)− y sin(kθ)

x sin(kθ) + y cos(kθ)

z

1


In all, the five transformation modules use 10.57 18-bit multipliers for two points (one

edge), compared with the 17.5 18-bit multipliers if 4x4 matrix multiplies were employed.

Since we transform an edge at a time, we use 21 of the 35 18-bit multipliers on the FPGA.

The computation pipeline also addresses operations that could take more than one cycle,

and if the transformation module does not assert the done signal in one cycle, the pipeline

will stall before proceeding to load the next operation.

Once it completes all the operations for each data set (the two points), the pipeline

saves the results from the temporary registers into the second memory bank, and increments

comp count.

Rastering pipeline

This pipeline houses the Bresenhem module that computes the pixels to be written to

the VGA screen buffer. It receives edges from the computation pipeline, and monitors

comp count for more edges. Before sending the points to the Bresenhem module, the points

are translated to the middle of the screen by adding half the width and height of the view-

able screen. This allows the transformations to remain centered around the origin for the

duration of the edge before having to rasterize.

71.5 multipliers come from the parametric scaling of the operation arguments which are shared for both points.

Final Project Report 5 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

Implementation Details

Number representation

The number representation we chose was the 18-bit (or 16-bit, depending on the part of the

meta-pipeline) fixed point. Originally we attempted to implemented a simpler version of

IEEE floating point specification (IEEE754) - specifically without infinity and NaN support

- so that number conversions from software on the NIOS II could be as easy as a cast in C.

However, the idea was scrapped in the interests of time, since a prior lab in the class already

introduced us to the 18-bit fixed point format.

Function tables

Two function tables were pre-calculated. A sine and a cosine table, each with 512 evaluation

points, were generated in C and ported over to 16-bit fixed point notations, and then actuated

in M4K blocks. While a cosine table was explicitly not required, one was generated in order

to fix a bug that presented itself when a sine table was used even though the argument was

offset by π/2.

Graphics operation word format

Currently the graphics operation word is 56 bits long. The significance of the bits are

described below:

• Bits 55 to 53: The opcode. With five different types of operations, we used three bits to

represent the desired operation. 0b000 is rotation about the x-axis, 0b001 is rotation

about the y-axis, 0b010 is rotation about the z-axis, 0b100 is translation, 0b101 is

scaling.

• Bits 52 to 48: An index to a parametrized value. Updating parametrized values was

not implemented, but 5 bits were reserved to index into a structure or table of values

that would be updated upon very frame. Specifying 0b00000 would be always return a

value of 1 (no parametrization).

• Bits 47 to 32, 31 to 16, and 15 to 0: The three 16-bit arguments to the transformations.

For translation and scaling, all three values are used for the x-, y-, and z-transformations.

For rotation, only the first is used as θ, the degree of rotation, represented as units of

2π/512 radians.

Final Project Report 6 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

Testing and Verification

Most of the modules were developed without downloading the code onto the DE2 board.

Thus, the source code has many $display and $finish calls embedded throughout the

circuit.

Additionally, since the number representation is 16-bit fixed-point, several helper C pro-

grams were written generate the sine and cosine tables and to ensure that other portions of

the Verilog were functioning correctly. These programs have been included in the source zip

file.

A sample target scripting language

The graphics operation word format was inspired by a motion description language8. If there

were more time available, a NIOS II CPU would have been implemented in order to parse

the input and write the opwords to the graphics unit. The hardware would handle the rest

and display the result on VGA.

The commands that would be immediately relevant in this circuit are described below:

• square [dx dy dz [sx sy sz]] - Without the optional arguments denoted in square

brackets, a square of unit size would be placed at the origin. (dx, dy, dz) denotes the

center of the square in the global coordinate frame. (sx, sy, sz) denotes the scale of

each dimension of the square, so any rectangular prism can be actuated.

• circle [dx dy dz [sx sy]] - Similar to the square command, circle would gener-

ate a two-dimensional circle at the specified origin and scale, so ellipses can be realized.

• vary knobname v0 v1 f0 f1 - This command will vary any variable with same name

as knobname in linear steps starting from frame number f0 to frame number f1 be-

tween values v0 and v1. With proper support in the parser, the square and circle

commands can be represented using knob values. For example, the hardware already

has preliminary support for parametric values for any graphical transformation, so a

command list such as square 0 k1 0 and vary k1 0 10 0 10 will display a square

whose center moves from (0, 0, 0) to (0, 10, 0) in 10 frames.

Many more scripting commands can be incorporated, including, but not limited to: spec-

ifying coordinate systems whose displacement (dx, dy, dz) is relative to that coordinate

system; specifying a camera angle, which can also be controlled by knobs; and generating

even more shapes, such as a sphere or torus with adjustable minor and major radii.

8The motion description language (MDL) is used in Michael Zamansky’s MCS6 graphics class. In its fully-featured form, it
can describe and animate a scene of objects. Stuyvesant MCS6 home page.

Final Project Report 7 December 2, 2007

http://cs.stuy.edu/mcs6/

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

Documentation

First unzip the Lab5.zip file, which has had all the intermediate files removed. Launch

Quartus II, compile the circuit, and download onto the DE2 board.

Currently, the switches and buttons are used to control simple operations. SW[17:16]

is used to control which object is generated. Use 0b00 for a circle and 0b10 for a cube.

SW[9:0] is used to indicate the step size for the circle generator, in units of 2π/512. KEY[3]

is used to reset the whole pipeline and the screen buffer.

The eight seven segment displays display the four points that were last entered into the

Bresenhem module.

Potential Improvements

This project allows room for more improvements and features.

• Formally create a graphics operation cache that would be manipulated on the fly from

software running on a NIOS II.

• Create a NIOS II specifically to generate edges for more complicated objects, and to

place them directly into the edge list.

• Improve the computation pipeline’s speed by collapsing all pending transformations

into one matrix, and then finding a way to fit all the necessary multipliers. This may

involve computing only one point in one edge at a time, which requires fewer multipliers

to be synthesized.

• Create an abstract model in order to be able to use Flash, SRAM, and SDRAM. The

state machines in the pipelines may need to be modified to support waiting for results

from memory to return, since M4K blocks respond with one cycle later. For slow

memories, multiple read ports can be wired and a cache can be created, amortizing

most of the delay in the memory accesses.

• After such an abstract memory model is implemented, then the edge list can be trans-

formed into indices into a point list. This would reduce the number of transformations

needed for objects that are highly connected such as spheres.

• Implement a structure to update parametrized values for each frame.

• Compress the bits in the screen buffer. Currently, we use 16 bits per pixel, which, for

a wireframe, is 16 times more than necessary.

Final Project Report 8 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

• If frames are to be implemented, then at least an additional VGA display buffer would

be needed - one to serve current requests from the VGA controller, and another to be

rasterized from the new points coming from the three pipelines.

Code

The name of the top level module in this project is Lab5. For any modules that have not

been inlined into the report, please refer to the source zip file. For Lab5.v, the DE2 port

declarations were not included.

Lab5.v

module Lab5 (
parameter SCREEN_TOP = 10’d1,

SCREEN_DOWN = 10’d238,
SCREEN_LEFT = 10’d3,
SCREEN_RIGHT = 10’d319,
SCREEN_XHALF = 158,
SCREEN_YHALF = 118;

// LCD ON
assign LCD_ON = 1’b0;
assign LCD_BLON = 1’b0;

// All inout port turn to tri-state
assign DRAM_DQ = 16’hzzzz;
assign FL_DQ = 8’hzz;
assign SRAM_DQ = 16’hzzzz;
assign OTG_DATA = 16’hzzzz;
assign SD_DAT = 1’bz;
assign ENET_DATA = 16’hzzzz;
assign GPIO_0 = 36’hzzzzzzzzz;
assign GPIO_1 = 36’hzzzzzzzzz;

// VGA wires
wire [9:0] mVGA_R, mVGA_G, mVGA_B; // wires to the VGA controller
wire [19:0] mVGA_ADDR; // output from the VGA conntroller
wire [9:0] coord_x, coord_y; // the requested coordinates from VGA controller

// VGA wiring ///
assign mVGA_R = { SRAM_DQ[15:12], 6’h0 };
assign mVGA_B = { SRAM_DQ[11:8], 6’h0 };
assign mVGA_G = { SRAM_DQ[7:4], 6’h0 };

wire VGA_CTRL_CLK;
wire AUD_CTRL_CLK;
wire DLY_RST;

//Allow 27 MHz
assign TD_RESET = 1’b1;

Final Project Report 9 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

wire reset_all;
assign reset_all = ~KEY[3];

wire pause_all;
assign pause_all = ~KEY[2];

VGA_Audio_PLL v0(.areset(~DLY_RST),
.inclk0(CLOCK_27),
.c0(VGA_CTRL_CLK),
.c1(AUD_CTRL_CLK),
.c2(VGA_CLK));

Reset_Delay r0(.iCLK(CLOCK_50),
.oRESET(DLY_RST));

VGA_Controller c0(.iCursor_RGB_EN(4’b0111),
.oAddress(mVGA_ADDR),
.oCoord_X(coord_x),
.oCoord_Y(coord_y),
.iRed(mVGA_R),
.iGreen(mVGA_G),
.iBlue(mVGA_B),
.oVGA_R(VGA_R),
.oVGA_G(VGA_G),
.oVGA_B(VGA_B),
.oVGA_H_SYNC(VGA_HS),
.oVGA_V_SYNC(VGA_VS),
.oVGA_SYNC(VGA_SYNC),
.oVGA_BLANK(VGA_BLANK),
.iCLK(VGA_CTRL_CLK),
.iRST_N(DLY_RST));

// vga lock
reg lock;

// SRAM data goes to NIOS data in line
reg we;
reg [17:0] addr_reg;
reg [15:0] data_reg;
assign SRAM_ADDR[17:0] = addr_reg[17:0];
assign SRAM_DQ[15:0] = (we) ? data_reg[15:0] : 16’hzzzz;
// SRAM CONTROL ///
assign SRAM_UB_N = 0; // hi byte select enabled
assign SRAM_LB_N = 0; // lo byte select enable
assign SRAM_OE_N = 0; // output enable overriden by WE
assign SRAM_WE_N = ~we; // write enable
assign SRAM_CE_N = 0; // chip enable

assign LEDR[15:12] = object_state[3:0];
assign LEDR[11:08] = comp_state[3:0];
assign LEDR[07:04] = raster_state[3:0];
assign LEDR[03:00] = 4’d0;
assign LEDG[3:0] = ~KEY[3:0];

// state counters

Final Project Report 10 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

reg [3:0] object_state;
reg [3:0] comp_state;
reg [3:0] raster_state;

// edge list
reg signed [15:0] edge_Ax[0:255], edge_Ay[0:255], edge_Az[0:255],

edge_Bx[0:255], edge_By[0:255], edge_Bz[0:255];
reg [7:0] edge_count;
reg [7:0] edge_iterator;
// computed edges
reg signed [15:0] comp_Ax[0:255], comp_Ay[0:255], comp_Az[0:255],

comp_Bx[0:255], comp_By[0:255], comp_Bz[0:255];
reg [7:0] comp_count;
reg [7:0] comp_iterator;

// bresenhem wires
reg bresenhem_init;
reg [9:0] bre_Ax, bre_Ay, bre_Bx, bre_By;
wire bresenhem_busy, bresenhem_done;
wire bresenhem_we;
wire [8:0] bresenhem_addr_reg_x, bresenhem_addr_reg_y;
wire [1:0] bresenhem_data_reg;

bresenhem bresenhem_instance(.CLK(VGA_CTRL_CLK),
.reset(reset_all),
.init(bresenhem_init),
.lock((~VGA_VS | ~VGA_HS) & ~pause_all),
.busy(bresenhem_busy),
.done(bresenhem_done),
.Ax_in(bre_Ax),
.Ay_in(bre_Ay),
.Bx_in(bre_Bx),
.By_in(bre_By),
.we(bresenhem_we),
.addr_reg_x(bresenhem_addr_reg_x),
.addr_reg_y(bresenhem_addr_reg_y),
.data_reg(bresenhem_data_reg));

// circle wires
reg circle_init;
wire circle_busy, circle_done;
wire [15:0] circle_Ax, circle_Ay, circle_Az, circle_Bx, circle_By, circle_Bz;
reg [15:0] circle_stepsize;

circle_gen circle_generator(.CLK(VGA_CTRL_CLK),
.reset(reset_all),
.init(circle_init), .lock(1’b1),
.busy(circle_busy), .done(circle_done),
.Ax(circle_Ax), .Ay(circle_Ay), .Az(circle_Az),
.Bx(circle_Bx), .By(circle_By), .Bz(circle_Bz),
.stepsize(circle_stepsize));

// cube wires
reg cube_init;
wire cube_busy, cube_done;

Final Project Report 11 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

wire [15:0] cube_Ax, cube_Ay, cube_Az, cube_Bx, cube_By, cube_Bz;

cube_gen cube_generator(.CLK(VGA_CTRL_CLK),
.reset(reset_all),
.init(cube_init), .lock(1’b1),
.busy(cube_busy), .done(cube_done),
.Ax(cube_Ax), .Ay(cube_Ay), .Az(cube_Az),
.Bx(cube_Bx), .By(cube_By), .Bz(cube_Bz));

// transformation wires
reg [55:0] graphic_word;
reg translater_init, scaler_init, rotater_init;
wire [4:0] knob_addr;
reg [15:0] knob_val; // obvious
wire [15:0] transarg_x, transarg_y, transarg_z; // non-knob-multiplied
wire [17:0] knobmult_x, knobmult_y, knobmult_z;
// processed op (knob-multiplied or not)
wire [15:0] transop_x, transop_y, transop_z;
wire [1:0] rotate_axis;
// status wires per module
wire translater_busy_A, translater_done_A;
wire translater_busy_B, translater_done_B;
wire scaler_busy_A, scaler_done_A;
wire scaler_busy_B, scaler_done_B;
wire rotater_busy_A, rotater_done_A;
wire rotater_busy_B, rotater_done_B;
// all status wires
wire translater_busy, translater_done;
wire scaler_busy, scaler_done;
wire rotater_busy, rotater_done;
// if either are busy, don’t advance
assign translater_busy = translater_busy_A | translater_busy_B;
assign scaler_busy = scaler_busy_A | scaler_busy_B;
assign rotater_busy = rotater_busy_A | rotater_busy_B;
// if both aren’t done, not done
assign translater_done = translater_done_A & translater_done_B;
assign scaler_done = scaler_done_A & scaler_done_B;
assign rotater_done = rotater_done_A & rotater_done_B;
// temporary registers
reg [15:0] transform_Ax, transform_Ay, transform_Az;
reg [15:0] transform_Bx, transform_By, transform_Bz;
wire [15:0] next_Ax, next_Ay, next_Az;
wire [15:0] next_Bx, next_By, next_Bz;
// transformation and rotation selection
wire [2:0] transform_sel;
assign rotate_axis[1:0] = transform_sel[1:0];
// transform ops
reg [55:0] graphic_ops [0:4];
reg [4:0] graphic_ops_count;
reg [4:0] graphic_ops_iterator;
// 56-bit control word
// opcode 3 bits wide
// 3x16 transformation arguments
// 5 bit knob handler

‘define G_OPCODE 55:53

Final Project Report 12 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

‘define G_KNOB 52:48
‘define G_XARG 47:32
‘define G_YARG 31:16
‘define G_ZARG 15:0

assign transform_sel[2:0] = graphic_word[‘G_OPCODE];
assign knob_addr[4:0] = graphic_word[‘G_KNOB];
assign transarg_x[15:0] = graphic_word[‘G_XARG];
assign transarg_y[15:0] = graphic_word[‘G_YARG];
assign transarg_z[15:0] = graphic_word[‘G_ZARG];

signed_mult transop_xer(knobmult_x[17:0],
{ transarg_x[15:0], 2’b00 },
{ knob_val[15:0], 2’b00 });

signed_mult transop_yer(knobmult_y[17:0],
{ transarg_y[15:0], 2’b00 },
{ knob_val[15:0], 2’b00 });

signed_mult transop_zer(knobmult_z[17:0],
{ transarg_z[15:0], 2’b00 },
{ knob_val[15:0], 2’b00 });

assign transop_x[15:0] = (knob_addr == 0) ?
transarg_x[15:0] : knobmult_x[17:2];

assign transop_y[15:0] = (knob_addr == 0) ?
transarg_y[15:0] : knobmult_y[17:2];

assign transop_z[15:0] = (knob_addr == 0) ?
transarg_z[15:0] : knobmult_z[17:2];

rotate rotaterA(.CLK(VGA_CTRL_CLK), .reset(reset_all),
.lock(1’b1), .init(rotater_init),
.busy(rotater_busy_A), .done(rotater_done_A),
.Ax(transform_Ax), .Ay(transform_Ay), .Az(transform_Az),
.theta(transop_x), .axis(rotate_axis),
.Bx(next_Ax), .By(next_Ay), .Bz(next_Az));

translate translaterA(.CLK(VGA_CTRL_CLK), .reset(reset_all),
.lock(1’b1), .init(translater_init),

.busy(translater_busy_A), .done(translater_done_A),

.Ax(transform_Ax), .Ay(transform_Ay), .Az(transform_Az),

.Dx(transop_x), .Dy(transop_y), .Dz(transop_z),

.Bx(next_Ax), .By(next_Ay), .Bz(next_Az));
scale scalerA(.CLK(VGA_CTRL_CLK), .reset(reset_all),

.lock(1’b1), .init(scaler_init),

.busy(scaler_busy_A), .done(scaler_done_A),

.Ax(transform_Ax), .Ay(transform_Ay), .Az(transform_Az),

.Sx(transop_x), .Sy(transop_y), .Sz(transop_z),

.Bx(next_Ax), .By(next_Ay), .Bz(next_Az));

rotate rotaterB(.CLK(VGA_CTRL_CLK), .reset(reset_all),
.lock(1’b1), .init(rotater_init),
.busy(rotater_busy_B), .done(rotater_done_B),
.Ax(transform_Bx), .Ay(transform_By), .Az(transform_Bz),
.theta(transop_x), .axis(rotate_axis),
.Bx(next_Bx), .By(next_By), .Bz(next_Bz));

translate translaterB(.CLK(VGA_CTRL_CLK), .reset(reset_all),
.lock(1’b1), .init(translater_init),
.busy(translater_busy_B), .done(translater_done_B),

Final Project Report 13 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

.Ax(transform_Bx), .Ay(transform_By), .Az(transform_Bz),

.Dx(transop_x), .Dy(transop_y), .Dz(transop_z),

.Bx(next_Bx), .By(next_By), .Bz(next_Bz));
scale scalerB(.CLK(VGA_CTRL_CLK), .reset(reset_all),

.lock(1’b1), .init(scaler_init),

.busy(scaler_busy_B), .done(scaler_done_B),

.Ax(transform_Bx), .Ay(transform_By), .Az(transform_Bz),

.Sx(transop_x), .Sy(transop_y), .Sz(transop_z),

.Bx(next_Bx), .By(next_By), .Bz(next_Bz));

parameter draw_circle = 4’d0,
wait_circle = 4’d1,
draw_lines = 4’d2,
wait_lines = 4’d3,
keyok_lines = 4’d8,
transform_prep = 4’d4,
transform_exec = 4’d5,
transform_wait = 4’d6,
transform_save = 4’d7;

parameter debug_transform = 1’b0;

// consumer of objects, producer of edge list
always @(posedge VGA_CTRL_CLK) begin

if (reset_all) begin
edge_count <= 8’d0;
object_state <= draw_circle;

end
else if (object_state == draw_circle) begin

//circle_stepsize <= 16’d100;
//circle_stepsize <= 16’d32;
//circle_stepsize <= 16’d8;
circle_stepsize <= SW[9:0];

if (SW[17:16] == 2’b00) begin
circle_init <= 1’b1;
cube_init <= 1’b0;

end
else if (SW[17:16] == 2’b10) begin

circle_init <= 1’b0;
cube_init <= 1’b1;

end

object_state <= wait_circle;
end
else if (object_state == wait_circle) begin

if (circle_busy | cube_busy) begin
edge_Ax[edge_count] <= (SW[17:16] == 2’b00) ? circle_Ax : cube_Ax;
edge_Ay[edge_count] <= (SW[17:16] == 2’b00) ? circle_Ay : cube_Ay;
edge_Az[edge_count] <= (SW[17:16] == 2’b00) ? circle_Az : cube_Az;
edge_Bx[edge_count] <= (SW[17:16] == 2’b00) ? circle_Bx : cube_Bx;
edge_By[edge_count] <= (SW[17:16] == 2’b00) ? circle_By : cube_By;
edge_Bz[edge_count] <= (SW[17:16] == 2’b00) ? circle_Bz : cube_Bz;
edge_count <= edge_count + 8’d1;

end // if (circle_busy)

Final Project Report 14 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

else if (circle_done | cube_done) begin
circle_init <= 1’b0;

end
end // if (object_state == wait_circle)

end // always @ (posedge VGA_CTRL_CLK)

// consumer of edge list, producer of computed edges
always @(posedge VGA_CTRL_CLK) begin

if (reset_all) begin
edge_iterator <= 8’d0;
comp_count <= 8’d0;

graphic_ops_iterator <= 0;

// initialize the graphics ops here
graphic_ops_count <= 4;
graphic_ops[0] = { 3’b101, 5’d0, 16’d1 << 13, 16’d1 << 13, 16’d1 << 13};
//graphic_ops[0] = { 3’b101, 5’d0, 16’d1 << 12, 16’d1 << 12, 16’d1 << 12};
graphic_ops[1] = { 3’b100, 5’d0, 16’d20, 16’d20, 16’d20 };
// rotate about x-axis 45 degrees
graphic_ops[2] = { 3’b000, 5’d0, 16’h0200, 16’d20, 16’d20 };
// rotate about y-axis 45 degrees
graphic_ops[3] = { 3’b001, 5’d0, 16’h0010, 16’d20, 16’d20 };
// scale by 0.5
//graphic_ops[0] = { 3’b101, 5’d0, 16’d1 << 13, 16’d1 << 13, 16’d1 << 13};
// translate by +20
//graphic_ops[1] = { 3’b100, 5’d0, 16’d20, 16’d20, 16’d20 };

// translate +20, +20, +20. works perfectly
// graphic_word[55:0] = { 3’b100, 5’d0, 16’d20, 16’d20, 16’d20 };
// for every unit of scale required, must right shift by 14
//graphic_word[55:0] = { 3’b101, 5’d0, 16’d2, 16’d2, 16’d2 };
// rotate 180 == 256 steps
//graphic_word[55:0] = { 3’b010, 5’d0, 16’d256, 16’d2, 16’d2 };
//graphic_word[55:0] = { 3’b010, 5’d0, 16’d128, 16’d0, 16’d0 };

comp_state <= transform_prep;
end // if (reset_all)
// blocking on edge_count.
else if (comp_state == transform_prep) begin

if (edge_iterator < edge_count) begin
if (debug_transform) begin

$display("op dump: %b", graphic_ops[0]);
$display("op dump: %b", graphic_ops[1]);

end
// load transform registers
transform_Ax <= edge_Ax[edge_iterator] >>> 8;
transform_Ay <= edge_Ay[edge_iterator] >>> 8;
transform_Az <= edge_Az[edge_iterator] >>> 8;
transform_Bx <= edge_Bx[edge_iterator] >>> 8;
transform_By <= edge_By[edge_iterator] >>> 8;
transform_Bz <= edge_Bz[edge_iterator] >>> 8;

// select none

Final Project Report 15 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

rotater_init <= 1’b0;
translater_init <= 1’b0;
scaler_init <= 1’b0;

// go to transform_exec
comp_state <= transform_exec;

// load graphics op word
graphic_word <= graphic_ops[graphic_ops_iterator];

end // if (comp_state == transform_prep)
else begin

//$display("in transform_prep waiting for more edges");
end

end
else if (comp_state == transform_exec) begin

if (graphic_ops_iterator < graphic_ops_count) begin
if (transform_sel == 3’b000 |

transform_sel == 3’b001 |
transform_sel == 3’b010) begin
// select rotation
rotater_init <= 1’b1;
translater_init <= 1’b0;
scaler_init <= 1’b0;

end
else if (transform_sel == 3’b100) begin

// select translation
rotater_init <= 1’b0;
translater_init <= 1’b1;
scaler_init <= 1’b0;

end
else if (transform_sel == 3’b101) begin

// select scaling
rotater_init <= 1’b0;
translater_init <= 1’b0;
scaler_init <= 1’b1;

end
else begin

$display("TRANSFORMATION DISPATCH: op %d of %d.",
graphic_ops_iterator, graphic_ops_count, transop_x);

$finish;
end

// wait for transformation to be finished
//$display("going to transform_wait");
comp_state <= transform_wait;

// increment to the next operation
graphic_ops_iterator <= graphic_ops_iterator + 1;

end // if (graphic_ops_iterator < graphic_ops_count)
else begin

$display("transform waiting on exec for more points");
$finish;

end
end // if (comp_state == transform_exec)

Final Project Report 16 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

else if (comp_state == transform_wait) begin
if (rotater_done | translater_done | scaler_done) begin

// save the intermediate values
transform_Ax <= next_Ax;
transform_Ay <= next_Ay;
transform_Az <= next_Az;
transform_Bx <= next_Bx;
transform_By <= next_By;
transform_Bz <= next_Bz;

// deselect all the transformation units
rotater_init <= 1’b0;
translater_init <= 1’b0;
scaler_init <= 1’b0;

if (graphic_ops_iterator < graphic_ops_count) begin
// load graphics op word
graphic_word <= graphic_ops[graphic_ops_iterator];

// go back to transform_exec
comp_state <= transform_exec;

end
else begin

// done state
comp_state <= transform_save;

end
end // if (rotater_done | translater_done | scaler_done)

end // if (comp_state == transform_wait)
else if (comp_state == transform_save) begin

// writeback
// save point into computed rf
comp_Ax[edge_iterator] <= next_Ax;
comp_Ay[edge_iterator] <= next_Ay;
comp_Az[edge_iterator] <= next_Az;
comp_Bx[edge_iterator] <= next_Bx;
comp_By[edge_iterator] <= next_By;
comp_Bz[edge_iterator] <= next_Bz;
comp_count <= comp_count + 8’d1;

// increment edge iterator
edge_iterator <= edge_iterator + 8’d1;

// reset graphics op iterator
graphic_ops_iterator <= 8’d0;

// go to transform_prep to wait for more edges
//comp_state <= transform_prep;
comp_state <= transform_prep;

end // if (comp_state == transform_save)
end // always @ (posedge VGA_CTRL_CLK)

always @(posedge VGA_CTRL_CLK) begin
if (reset_all) begin

// wipe all screen

Final Project Report 17 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

lock <= 1’b1;
addr_reg <= { coord_x[9:1], coord_y[9:1] };

if ({1’b0, coord_x[9:1]} <= SCREEN_LEFT |
{1’b0, coord_x[9:1]} >= SCREEN_RIGHT |
{1’b0, coord_y[9:1]} <= SCREEN_TOP |
{1’b0, coord_y[9:1]} >= SCREEN_DOWN) begin
data_reg <= 16’hffff;

end else begin
data_reg <= 16’h0000;

end

// active-hi save
we <= 1’b1;

// bresenhem vars
comp_iterator <= 8’d0;
raster_state <= draw_lines;
bresenhem_init <= 1’b0;

end
else if ((~VGA_VS | ~VGA_HS) & ~pause_all & ~circle_busy) begin

lock <= 1’b1;

// set the output to the data reg
addr_reg <= { bresenhem_addr_reg_x[8:0],

bresenhem_addr_reg_y[8:0] };
data_reg <= (bresenhem_data_reg == 2’b01) ? 16’hffff : 16’h0000;
we <= bresenhem_we;

if (raster_state == draw_lines) begin
if (comp_iterator < comp_count) begin

bre_Ax <= comp_Ax[comp_iterator] + SCREEN_XHALF;
bre_Ay <= comp_Ay[comp_iterator] + SCREEN_YHALF;
bre_Bx <= comp_Bx[comp_iterator] + SCREEN_XHALF;
bre_By <= comp_By[comp_iterator] + SCREEN_YHALF;
bresenhem_init <= 1’b1;

comp_iterator <= comp_iterator + 8’d1;

raster_state <= wait_lines;
end // if (comp_iterator < comp_count)

end // if (raster_state <= draw_lines)
else if (raster_state == wait_lines) begin

if (bresenhem_busy) begin
bresenhem_init <= 1’b0;

end
//else if (bresenhem_done & (1’b1 & ~KEY[0])) begin
else if (bresenhem_done) begin

bresenhem_init <= 1’b0;
raster_state <= draw_lines;

end
end // if (raster_state == wait_lines)
else if (raster_state == keyok_lines) begin

if (KEY[0]) begin

Final Project Report 18 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

bresenhem_init <= 1’b0;
raster_state <= draw_lines;

end
end

end // if ((~VGA_VS | ~VGA_HS) & ~pause_all & ~circle_busy)
else begin

// drawing to the screen
lock <= 1’b0;
addr_reg <= { coord_x[9:1], coord_y[9:1] };
we <= 1’b0;

end
end

// show the addressing being asserted using HEX[7:4]
HexDigit Digit0(HEX0, bre_By[3:0]);
HexDigit Digit1(HEX1, bre_By[7:4]);
HexDigit Digit2(HEX2, bre_Bx[3:0]);
HexDigit Digit3(HEX3, bre_Bx[7:4]);
HexDigit Digit4(HEX4, bre_Ay[3:0]);
HexDigit Digit5(HEX5, bre_Ay[7:4]);
HexDigit Digit6(HEX6, bre_Ax[3:0]);
HexDigit Digit7(HEX7, bre_Ax[7:4]);
// show the contents of that address using HEX[3:0]

endmodule

bresenhem.v

module bresenhem (CLK, reset, init, Ax_in, Ay_in, Bx_in, By_in, lock, busy, done,
we, addr_reg_x, addr_reg_y, data_reg);

input CLK;
wire CLK;
// active-high reset
input reset;
wire reset;
// external signal to start. ax, ay, bx, by are set
input init;
wire init;
input signed [9:0] Ax_in, Ay_in, Bx_in, By_in;
wire signed [9:0] Ax_in, Ay_in, Bx_in, By_in;
// did we lose the lock?
input lock;
wire lock;
// SRAM (or data-store) control
output we;
output [8:0] addr_reg_x, addr_reg_y;
output [1:0] data_reg;

reg we; // write enable
reg [8:0] addr_reg_x, addr_reg_y;
reg [1:0] data_reg;

//reg [17:0] addr_reg;
//reg [15:0] data_reg;

Final Project Report 19 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

reg signed [9:0] Ax, Ay, Bx, By;
// signal raised to show that the algo. isn’t done
// only high if init is high.
// is never high when done is high.
output busy;
reg busy = 1’b0;
// signal raised to show that the ax,ay,bx,by line is drawn.
// only high for as long as init is not going posedge.
output done;
reg done = 1’b0;

reg signed [9:0] Ax_last, Ay_last, Bx_last, By_last;
reg signed [9:0] dX, dY, Xincr, Yincr;
reg signed [9:0] dPr, dPru, P, loop_end;

wire signed [9:0] Ax_incr, Ay_incr;
assign Ax_incr = Ax + Xincr;
assign Ay_incr = Ay + Yincr;

reg [3:0] state; // state machine variable for current state
//reg lock; // the hardware lock

parameter init_line = 4’d0,
lineDX = 4’d1,
lineDY = 4’d2,
done_line = 4’d3,
SCREEN_TOP = 10’d1,
SCREEN_DOWN = 10’d238,
SCREEN_LEFT = 10’d3,
SCREEN_RIGHT = 10’d319,
debug_drawing = 1’b1,
debug_bresenhem = 1’b1;

always @(posedge CLK) begin
if (reset) begin

// last lines?
Ax_last <= 10’d0;
Ay_last <= 10’d0;
Bx_last <= 10’d0;
By_last <= 10’d0;

busy <= 1’b0;
done <= 1’b0;
state <= done_line;
we <= 1’b0;

end else if (lock) begin
case (state)
done_line: begin

// progress only if there is new input
if (init == 1’b1) begin

// this may hang if the requester asks the module
// to draw the same points twice!
// requester must de-asserted init line for at least

Final Project Report 20 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

// one cycle in order to reset
if (Ax_in != Ax_last & Ay_in != Ay_last &

Bx_in != Bx_last & By_in != By_last) begin
// a new and different line was just requested thru ax,ay,bx,by

// saving to compare
Ax_last <= Ax_in;
Ay_last <= Ay_in;
Bx_last <= Bx_in;
By_last <= By_in;
// saving as state variables
Ax <= Ax_in;
Ay <= Ay_in;
Bx <= Bx_in;
By <= By_in;

// setting some differential variables
// dX gets abs (Bx - Ax)
// Xincr gets (Ax < Bx) or (Bx > Ax)
if (Bx_in > Ax_in) begin

dX <= Bx_in - Ax_in;
Xincr <= 10’d1;

end else begin
dX <= Ax_in - Bx_in;
Xincr <= -10’d1;

end
// dY gets abs (By - Ay)
// Yincr gets (Ay < By) or (By > Ay)
if (By_in > Ay_in) begin

dY <= By_in - Ay_in;
Yincr <= 10’d1;

end else begin
dY <= Ay_in - By_in;
Yincr <= -10’d1;

end

// start drawing this line
state <= init_line;

// not done drawing line. busy.
busy <= 1’b1;
done <= 1’b0;

end else begin
// done drawing the line. finished.
busy <= 1’b0;
done <= 1’b1;

end
end else begin

// communicate to software that we are reset and ready.

// here: nothing
busy <= 1’b0;
done <= 1’b0;

Final Project Report 21 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

Ax_last <= 10’d0;
Ay_last <= 10’d0;
Bx_last <= 10’d0;
By_last <= 10’d0;

end
end // case: done_line
init_line: begin

if (dX >= dY) begin
dPr <= (dY << 10’b1);
dPru <= (dY << 10’b1) - (dX << 10’b1);
P <= (dY << 10’b1) - dX;
loop_end <= dX;

state <= lineDX;
end else begin

dPr <= (dX << 10’b1);
dPru <= (dX << 10’b1) - (dY << 10’b1);
P <= (dX << 10’b1) - dY;
loop_end <= dY;

state <= lineDY;
end // else: !if(dX >= dY)

// draw the initial point?
if (Ax_incr >= SCREEN_LEFT & Ax_incr < SCREEN_RIGHT &

Ay_incr >= SCREEN_TOP & Ay_incr < SCREEN_DOWN) begin
// plot the thing
//lock <= 1’b1;
addr_reg_x <= Ax[8:0];
addr_reg_y <= Ay[8:0];
//data_reg <= 16’hffff;
data_reg <= 2’b01; // white dot
we <= 1’b1;
if (debug_drawing) begin

$display("Drawing (%d, %d).", Ax[8:0], Ay[8:0]);
end

end else begin
we <= 1’b0;

end // else: !if(Ax >= SCREEN_LEFT & Ax < SCREEN_RIGHT &...

end // case: init_line
lineDX: begin

// for the case when dX >= dY
if (loop_end > 0) begin

if (P > 0) begin
Ax <= Ax_incr;
Ay <= Ay_incr;
P <= P + dPru;

end else begin
Ax <= Ax_incr;
P <= P + dPr;

end // else: !if(P > 0)

// draw?

Final Project Report 22 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

if (Ax_incr >= SCREEN_LEFT & Ax_incr < SCREEN_RIGHT &
Ay_incr >= SCREEN_TOP & Ay_incr < SCREEN_DOWN) begin
// plot the thing
//lock <= 1’b1;
//addr_reg <= { Ax_incr[8:0], (P > 0) ? Ay_incr[8:0] : Ay[8:0] };
addr_reg_x <= Ax_incr[8:0];
addr_reg_y <= (P > 0) ? Ay_incr[8:0] : Ay[8:0];
//data_reg <= 16’hffff;
data_reg <= 2’b01;
we <= 1’b1;

end else begin
we <= 1’b0;

end // else: !if(Ax >= SCREEN_LEFT & Ax < SCREEN_RIGHT &...

loop_end <= loop_end - 1;
end // if (loop_end > 0)
else begin

state <= done_line;
busy <= 1’b0;
done <= 1’b1;

end // else: !if(loop_end > 0)
end // case: lineDX

lineDY: begin
// for the case when dX < dY
if (loop_end > 0) begin

if (P > 0) begin
if (debug_bresenhem) begin

$display("lineDY_a: Ax = %d, Xincr = %d, Ax + Xincr = %d",
Ax, Xincr, Ax_incr);

end
Ax <= Ax_incr;
Ay <= Ay_incr;
P <= P + dPru;

end else begin
if (debug_bresenhem) begin

$display("lineDY_b: Ax = %d, Xincr = %d, Ax + Xincr = %d",
Ax, Xincr, Ax_incr);

end
Ay <= Ay_incr;
P <= P + dPr;

end

// draw?
if (Ax_incr >= SCREEN_LEFT & Ax_incr < SCREEN_RIGHT &

Ay_incr >= SCREEN_TOP & Ay_incr < SCREEN_DOWN) begin
// plot the thing
//lock <= 1’b1;
//addr_reg <= { (P > 0) ? Ax_incr[8:0] : Ax[8:0], Ay_incr[8:0] };
addr_reg_x <= (P > 0) ? Ax_incr[8:0] : Ax[8:0];
addr_reg_y <= Ay_incr[8:0];
//data_reg <= 16’hffff;
data_reg <= 2’b01; // white dot
we <= 1’b1;

Final Project Report 23 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

end else begin
we <= 1’b0;

end // else: !if(Ax >= SCREEN_LEFT & Ax < SCREEN_RIGHT &...

loop_end <= loop_end - 1;
end else begin // if (loop_end > 0)

state <= done_line;
busy <= 1’b0;
done <= 1’b1;

end // else: !if(loop_end > 0)
end // case: lineDY

endcase // case (state)
end

end // always @ (posedge CLK)
endmodule

circle.v

module circle_gen(CLK, reset, lock, init, busy, done,
Ax, Ay, Az, Bx, By, Bz, stepsize);

input CLK, reset, lock, init;
wire CLK, reset, lock, init;
output busy, done;
reg busy, done;
output [15:0] Ax, Ay, Az, Bx, By, Bz;
wire [15:0] Ax, Ay, Az, Bx, By, Bz;

reg [15:0] prev_x, prev_y, prev_z;
reg [15:0] next_x, next_y, next_z;
reg [15:0] first_x, first_y, first_z;

assign Ax[15:0] = prev_x;
assign Ay[15:0] = prev_y;
assign Az[15:0] = prev_z;
assign Bx[15:0] = next_x;
assign By[15:0] = next_y;
assign Bz[15:0] = next_z;

input [15:0] stepsize;
wire [15:0] stepsize;

reg [3:0] state;
reg [15:0] d_step;
reg [15:0] cur_step;

parameter done_looping = 4’d0,
looping = 4’d1,
wait_for_init_low = 4’d2,
debug_circle = 1’b0;

wire [8:0] sine_addr;
assign sine_addr[8:0] = cur_step[8:0];
wire [15:0] sine_out;
wire [8:0] cos_addr;

Final Project Report 24 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

assign cos_addr[8:0] = cur_step[8:0] + 9’d128;
wire [15:0] cos_out;
sineTable9x16bit sineTable(CLK, sine_addr, sine_out);
sineTable9x16bit cosTable(CLK, cos_addr, cos_out);

always @(posedge CLK) begin
if (reset) begin

cur_step <= 16’d0;

prev_x <= 16’d0;
prev_y <= 16’d0;
prev_z <= 16’d0;
next_x <= 16’d0;
next_y <= 16’d0;
next_z <= 16’d0;

busy <= 1’b0;
done <= 1’b0;

state <= done_looping;
if (debug_circle) $display("circle_gen: being reset");

end
else if (lock) begin

case (state)
done_looping: begin

if (init == 1’b1) begin
// start querying the sine table now
cur_step <= stepsize;

// delta step. 1, 2, 3, ...
d_step <= stepsize;

// not busy yet (no valid results out)
busy <= 1’b0;
// not done yet
done <= 1’b0;

state <= looping;
end // if (init == 1’b1)
else begin

busy <= 1’b0;
done <= 1’b0;

end
end
looping: begin

if (cur_step > 512) begin
// not done yet.
busy <= 1’b1;
done <= 1’b0;

// advance prev_[xyz]
prev_x[15:0] <= next_x[15:0];
prev_y[15:0] <= next_y[15:0];
prev_z[15:0] <= next_z[15:0];

Final Project Report 25 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

// set next_[xyz] to 0
next_x[15:0] <= first_x[15:0];
next_y <= 16’d0;
next_z <= 16’d0;

state <= wait_for_init_low;
end
else begin

// initial case
prev_x[15:0] <= next_x[15:0];
prev_y[15:0] <= next_y[15:0];
prev_z[15:0] <= next_z[15:0];

next_x[15:0] <= cos_out[15:0];
next_y[15:0] <= sine_out[15:0];
next_z[15:0] <= 16’d0;

// turn busy on after the first line. don’t draw center
if (cur_step != stepsize) begin
busy <= 1’b1;

end
else if (cur_step == stepsize) begin

// save the first point so we can complete circle in the end
first_x[15:0] <= cos_out[15:0];
first_y[15:0] <= sine_out[15:0];
first_z[15:0] <= 16’d0;

end
// not done
done <= 1’b0;
// advance
cur_step <= cur_step + d_step;

end // else: !if(cur_step > 512)
end // case: looping
wait_for_init_low: begin

// now we’re done
busy <= 1’b0;
done <= 1’b1;

if (~init) begin
state <= done_looping;

end
end

endcase // case (state)
end

end // always @ (posedge CLK)

endmodule // circle_gen

cube.v

module cube_gen(CLK, reset, lock, init, busy, done,
Ax, Ay, Az, Bx, By, Bz);

input CLK, reset, lock, init;
wire CLK, reset, lock, init;

Final Project Report 26 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

output busy, done;
reg busy, done;
output [15:0] Ax, Ay, Az, Bx, By, Bz;
reg [15:0] Ax, Ay, Az, Bx, By, Bz;

reg [3:0] state;
reg [15:0] d_step;
reg [15:0] cur_step;

parameter done_looping = 4’d0,
looping = 4’d1,
wait_for_init_low = 4’d2;

reg [4:0] counter;

always @(posedge CLK) begin
if (reset) begin

cur_step <= 16’d0;

Ax <= 16’d0;
Ay <= 16’d0;
Az <= 16’d0;
Bx <= 16’d0;
By <= 16’d0;
Bz <= 16’d0;

busy <= 1’b0;
done <= 1’b0;

state <= done_looping;
$display("cube_gen being reset");

end
else if (lock) begin

case (state)
done_looping: begin

if (init == 1’b1) begin
// not busy yet (no valid results out)
busy <= 1’b0;
// not done yet
done <= 1’b0;

counter <= 3’b0;

state <= looping;
$display("cube_gen: done_looping with init high");

end // if (init == 1’b1)
else begin

$display("cube_gen: done_looping with init low");
busy <= 1’b0;
done <= 1’b0;

end
end
looping: begin

// not done yet.

Final Project Report 27 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

busy <= 1’b1;
done <= 1’b0;
if (counter == 0) begin

Ax <= 16’h4000;
Ay <= 16’h4000;
Az <= 16’h4000;
Bx <= 16’hc000;
By <= 16’h4000;
Bz <= 16’h4000;

end
else if (counter == 1) begin

Ax <= 16’h4000;
Ay <= 16’h4000;
Az <= 16’h4000;
Bx <= 16’h4000;
By <= 16’hc000;
Bz <= 16’h4000;

end
else if (counter == 2) begin

Ax <= 16’h4000;
Ay <= 16’h4000;
Az <= 16’h4000;
Bx <= 16’h4000;
By <= 16’h4000;
Bz <= 16’hc000;

end
else if (counter == 3) begin

Ax <= 16’hc000;
Ay <= 16’h4000;
Az <= 16’hc000;
Bx <= 16’h4000;
By <= 16’h4000;
Bz <= 16’hc000;

end
else if (counter == 4) begin

Ax <= 16’h4000;
Ay <= 16’hc000;
Az <= 16’hc000;
Bx <= 16’h4000;
By <= 16’h4000;
Bz <= 16’hc000;

end
else if (counter == 5) begin

Ax <= 16’hc000;
Ay <= 16’h4000;
Az <= 16’h4000;
Bx <= 16’hc000;
By <= 16’h4000;
Bz <= 16’hc000;

end
else if (counter == 6) begin

Ax <= 16’h4000;
Ay <= 16’hc000;
Az <= 16’h4000;

Final Project Report 28 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

Bx <= 16’h4000;
By <= 16’hc000;
Bz <= 16’hc000;

end
else if (counter == 7) begin

Ax <= 16’h4000;
Ay <= 16’hc000;
Az <= 16’h4000;
Bx <= 16’hc000;
By <= 16’hc000;
Bz <= 16’h4000;

end
else if (counter == 8) begin

Ax <= 16’hc000;
Ay <= 16’hc000;
Az <= 16’h4000;
Bx <= 16’hc000;
By <= 16’hc000;
Bz <= 16’h4000;

end
else if (counter == 9) begin

Ax <= 16’hc000;
Ay <= 16’hc000;
Az <= 16’hc000;
Bx <= 16’hc000;
By <= 16’hc000;
Bz <= 16’h4000;

end
else if (counter == 10) begin

Ax <= 16’hc000;
Ay <= 16’hc000;
Az <= 16’hc000;
Bx <= 16’hc000;
By <= 16’h4000;
Bz <= 16’hc000;

end
else if (counter == 11) begin

Ax <= 16’hc000;
Ay <= 16’hc000;
Az <= 16’hc000;
Bx <= 16’h4000;
By <= 16’hc000;
Bz <= 16’hc000;
state <= wait_for_init_low;

end

counter <= counter + 1;
end // case: looping
wait_for_init_low: begin

// now we’re done
busy <= 1’b0;
done <= 1’b1;

if (~init) begin

Final Project Report 29 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

state <= done_looping;
end

end
endcase // case (state)

end
end // always @ (posedge CLK)

endmodule // cube_gen

transform.v

module translate(CLK, reset, lock, init, busy, done,
Ax, Ay, Az, Dx, Dy, Dz, Bx, By, Bz);

input CLK, reset, lock, init;
wire CLK, reset, lock, init;
output busy, done;
reg busy, done;

input [15:0] Ax, Ay, Az, Dx, Dy, Dz;
wire [15:0] Ax, Ay, Az, Dx, Dy, Dz;

output [15:0] Bx, By, Bz;
reg [15:0] Bx, By, Bz;

initial begin
// we always have single cycle response
busy <= 1’b0;

end

always @(posedge CLK) begin
if (init) begin

done <= 1’b1;

Bx <= Ax + Dx;
By <= Ay + Dy;
Bz <= Az + Dz;

end
else begin

done <= 1’b0;
Bx <= 16’hzzzz;
By <= 16’hzzzz;
Bz <= 16’hzzzz;

end
end // always @ (posedge CLK)

endmodule // translate

module scale(CLK, reset, lock, init, busy, done,
Ax, Ay, Az, Sx, Sy, Sz, Bx, By, Bz);

input CLK, reset, lock, init;
wire CLK, reset, lock, init;
output busy, done;
reg busy, done;

input [15:0] Ax, Ay, Az, Sx, Sy, Sz;

Final Project Report 30 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

wire [15:0] Ax, Ay, Az, Sx, Sy, Sz;

output [15:0] Bx, By, Bz;
reg [15:0] Bx, By, Bz;

initial begin
// we always have single cycle response
busy <= 1’b0;

end

wire [17:0] scaled_x, scaled_y, scaled_z;
signed_mult multiplier_x(scaled_x, {Ax, 2’b00}, {Sx, 2’b00});
signed_mult multiplier_y(scaled_y, {Ay, 2’b00}, {Sy, 2’b00});
signed_mult multiplier_z(scaled_z, {Az, 2’b00}, {Sz, 2’b00});

always @(posedge CLK) begin
if (init) begin

done <= 1’b1;

Bx <= scaled_x[17:2];
By <= scaled_y[17:2];
Bz <= scaled_z[17:2];

end
else begin

done <= 1’b0;
Bx <= 16’hzzzz;
By <= 16’hzzzz;
Bz <= 16’hzzzz;

end
end // always @ (posedge CLK)

endmodule // scale

module rotate(CLK, reset, lock, init, busy, done,
Ax, Ay, Az, theta, axis, Bx, By, Bz);

input CLK, reset, lock, init;
wire CLK, reset, lock, init;
output busy, done;
reg busy, done;

input [15:0] Ax, Ay, Az, theta;
wire [15:0] Ax, Ay, Az, theta;
// 2’b00 for x, 2’b01 for y, 2’b10 for z, 2’b11 for idk
input [1:0] axis;
wire [1:0] axis;

output [15:0] Bx, By, Bz;
reg [15:0] Bx, By, Bz;

initial begin
// we always have single cycle response
busy <= 1’b0;

end

wire [15:0] sin_out, cos_out;

Final Project Report 31 December 2, 2007

ECE 576, Advanced Microcontroller Design Brian Chu (bc226)

sineTable9x16bit sineTable(CLK, theta[8:0], sin_out);
sineTable9x16bit cosTable(CLK, theta[8:0] + 9’d128, cos_out);

wire [17:0] x_cos, x_sin, y_cos, y_sin, z_cos, z_sin;
signed_mult multiplier_xcos(x_cos, {Ax, 2’b00}, {cos_out[15:0], 2’b00});
signed_mult multiplier_xsin(x_sin, {Ax, 2’b00}, {sin_out[15:0], 2’b00});
signed_mult multiplier_ycos(y_cos, {Ay, 2’b00}, {cos_out[15:0], 2’b00});
signed_mult multiplier_ysin(y_sin, {Ay, 2’b00}, {sin_out[15:0], 2’b00});
signed_mult multiplier_zcos(z_cos, {Az, 2’b00}, {cos_out[15:0], 2’b00});
signed_mult multiplier_zsin(z_sin, {Az, 2’b00}, {sin_out[15:0], 2’b00});

always @(posedge CLK) begin
if (init) begin

done <= 1’b1;

if (axis == 2’b00) begin
// rotate about x-axis
Bx <= Ax;
By <= y_cos[17:2] - z_cos[17:2];
Bz <= y_sin[17:2] + z_cos[17:2];

end
else if (axis == 2’b01) begin

// rotate about y-axis
Bx <= x_cos[17:2] + z_sin[17:2];
By <= Ay;
Bz <= -x_sin[17:2] + z_cos[17:2];

end
else if (axis == 2’b10) begin

// rotate about z-axis
Bx <= x_cos[17:2] - y_sin[17:2];
By <= x_sin[17:2] + y_cos[17:2];
Bz <= Az;

end
else begin

// i don’t know. undefined operation
Bx <= Ax;
By <= Ay;
Bz <= Az;

end // else: !if(axis == 2’b10)
end // if (init)
else begin

done <= 1’b0;
Bx <= 16’hzzzz;
By <= 16’hzzzz;
Bz <= 16’hzzzz;

end
end // always @ (posedge CLK)

endmodule // rotate

Final Project Report 32 December 2, 2007

