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Abstract:

“Make no little plans; they have no magic to stir men’s blood and probably will themselves not be
realized. Make big plans; aim high in hope and work, remembering that a noble, logical diagram
once recorded will not die.”
— Daniel Burnham

The goal of the Big Red Chip (BRC) group, a new project team for Cornell students, is to design a
microprocessor starting with a high-level architectural specification and ending with post-Silicon testing and
debugging. In addition, the microprocessor can be tailored to provide Cornell research groups with a low-
power solution for system-on-a-chip (SoC) designs. Our group has designed the first revision of the BRC
microprocessor as an efficient software radio for baseband GPS computations which will be used to develop
a full system around the MEMS RF GPS front-end designed by students in the Bhave research group.

The BRC group has designed a 16-bit architecture targeted for power constrained embedded applica-
tions. The architecture is implemented with a three stage pipeline capable of running at approximately
50 MHz and 35 mW of power, in under an area of 4mm2, and with no DRC, IR, or hold time issues. In
addition, the design includes several special instructions to optimize the efficiency of GPS signal acquisi-
tion and tracking. The group has produced a full layout for the design which is currently in queue to be
fabricated using the IBM 0.13um 8RF process. The design will eventually allow for the integration of a
full GPS system-on-a-chip, using the custom software algorithms to enable GPS tracking. The BRC group
also completed a full port of the GCC compiler, including the assembler, linker, and all necessary libraries.
The team also developed several other custom scripts to test verification, including a random case genera-
tor, a software simulator for our architecture, and an automated Verilog testing and coverage tracking system.
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1 Executive Reports

“Early in life I had to choose between honest arrogance and hypocritical humility. I chose honest
arrogance and have seen no occasion to change.”
— Frank Lloyd Wright

Contributing authors:

D. Davis Abstract, Design Decisions for GPS (3.4), ADC (4.2.11), Gold Code (4.2.10), Software GPS on
the Big Red Chip (5), GPS Results (6.1), In-line ASM for Correlations (G)

S. Ghose Register Decode (4.2.2), Clock State Machine (4.2.9), JTAG portion of DFT Range of Solutions
(3.5)

M. Kotler ISA (3.1, 4.1), Pipeline (3.2, 4.2), ALU (4.2.3), Break (4.2.6), Bypass (4.2.7), Memory Controller
(4.2.8), Simulator (4.5.2), Random Test Code Generator (4.5.3), Timing Fixes (6.2), and Appendix
Sections for the ISA (A), GPS ISA (B), Boot Sequence (C), Debug Sequence (D), Scan Chain (E)

M. Mahajan Toolchain (3.6, 4.7), GNU Binutils (4.7.1), GCC (4.7.2), Newlib (4.7.3)

J. Maxwell Abstract, General Purpose ISA for Use at Cornell(2.1), Write Back(4.2.5), Memory Sys-
tem(4.3), Tools(4.6), Synthesis Results(6.3), DesignVision User Guide(8), Encounter User Guide(9)

H. McCreary DFT Range of Solutions(3.5), DFT Design Choice(4.4), Verification Methodology(4.5.1),
Future Work(7), Coverage Document(F)

K. Parmar Toolchain (3.6, 4.7), GNU Binutils (4.7.1), GCC (4.7.2), Newlib (4.7.3)

J. Sicilia Memory System Range of Solutions(3.3), Instruction Fetch(4.2.1), Memory(4.2.4), Future Work(7)
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1.1 Daniel Davis

I started work towards my Master of Engineering degree in Spring of 2007 working for Professor Bhave with
the goal of creating an SoC solution incorporating current research in MEMS GPS radio-frequency front-end
receivers. During that semester I researched a number of options but a clear challenge emerged: although
there are a number of available open source solutions, verification of these cores is extremely difficult. This
problem is magnified if the final design requires that any changes be made to the architecture. The Big Red
Chip project became the optimal solution to these problems.

My primary goal in working on the Big Red Chip project team has been to ensure that the core will
meet the minimum required specifications to eventually function as the GPS baseband processor to be
integrated with the RF front-end from the Bhave research group. Because we could only expect frequencies
of approximately 100MHz from the first iteration of the BRC architecture and because our primary goal
was low power I also designed and implemented several special functional units designed to optimize the
efficiency of GPS baseband computations.

The intended embedded GPS application ultimately defined the required specifications for the micropro-
cessor and through my role in defining these specifications I became highly involved many of the architectural
decisions. In addition, I performed system-level verification of our GPS algorithm using MatLab programs
which simulated the structure of the final embedded code as well as the functionality of the GPS-specific
functional units. With the results of these simulations and the architecture-level verification of the resulting
hardware the result of my efforts has been that the BRC team has confidence that our system will be able
to meet the requirements necessitated by the final purpose as a GPS software receiver system.

6



1.2 Saugata Ghose

My role on this project was as member of the architecture design team. I was involved in making a number
of design decisions for the processor design, and helped to develop the initial pipeline structure.

I have written the Register-Transfer Logic (RTL) for the Register Decode (RD) block of the pipeline,
and was the chief architect of the clocking system for the processor, which I also wrote the RTL for. As
part of this work, I had to determine what functional units belonged in the RD stage, and then implement
a hierarchical design in VHDL to tie these functional units into a single block. For the clock state machine
(CSM), I was responsible for determining the various clocks that would need to be input to the system,
and had to design a system that would allow for seamless transitions between these clock domains. I also
contributed to work done on debugging interface for the FPGA.

As part of my initial research contributions to the project, I was responsible for trying to determine the
various pipelining options available to the project, and for suggesting and providing an adaptation of the
three-stage pipeline with dual-phase clocks for the project (see Section 4.2). I also extensively researched
the JTAG interface standard for use with the project. As discussed in Section 3.5, it was determined that
the interface was too complex for use with our project.

I was also one of the main proponents for finding and suggesting architectural changes and modifications
in order to provide first-order reductions in the power dissipation of the processor. Some of my work in this
area includes the successful proposal of a major change to the ISA, which allowed for a significant reduction
in the decoding logic required, and the use of a dual-phase clock to allow our project to effectively double
the throughput of the pipeline without requiring a corresponding scaling of power consumption.
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1.3 Mitchell Kotler

I was the design lead for the project. This involved holding design meetings in order to discuss architectural
changes, assigning people to write RTL, and making sure people were making progress on their blocks.

I was mainly responsible for designing the instruction set architecture. It was based on the MIPS ISA
and modified for our requirements, which was mainly low power (see Section 3.1). Broad decisions were
made as a team, but I wrote out the specifics of the ISA, including full documentation of the ISA, included
in Appendix A. I also helped in deciding the microarchitecture of the processor, including the pipeline and
memory architecture.

I wrote the RTL for the ALU stage of the processor (see Section 4.2.3). This included the RTL for the
ALU itself, along with decoding logic to set the control signals for the ALU. This also includes adding custom
instructions to the ALU in order to get I/O from other on chip subsystems in the overall GPS system, such
as the gold code generator and an ADC. I wrote the RTL for common modules for the CPU, such as a scan
register. I wrote the RTL for break logic, used for stopping and resuming execution while debugging (see
Section 4.2.6). I wrote the top level RTL, which instantiates the other modules and wires them together.
This includes inserting pipelining registers between modules as appropriate based on the team’s decided
pipeline architecture. I also wrote bypass logic to forward data in the pipeline. I also wrote the RTL for the
memory controller which is used to read or write to memory from the off chip interface (see Section 4.2.8).

I wrote a software simulator for the architecture (see Section 4.5.2). It loads binary executables and
simulates them in order to have a working copy of the architecture to test our RTL. It is programmed in
Python. I also wrote a very simple assembler to be used in conjunction with the simulator while our software
team is working on finishing the full compiler. The assembler simply replaces mnemonic assembly code with
binary machine code and calculates labels. I also wrote a program which generates random test code in
assembly, which can be used in conjunction with the other software I wrote to perform random testing of our
RTL, along with a bash script to automatically generate, run, compare and log any errors of these random
test cases (see Section 4.5.3).

I also helped with writing test benches, synthesizing RTL, fixing timing violations and debugging the
system. I worked on debugging the top level RTL by comparing random test cases between our RTL and
software simulations. I also thoroughly tested the scan chain and DFT features of the chip. Through my
debugging I recorded the correct boot up sequence and debugging sequence (see Appendix C and D).

8



1.4 Mehak Mahajan

I was a part of the tools team, which was essentially the Software team. This team was responsible for the
porting of the toolchain for the architecture. At the inception of the project, I was responsible for researching
the various memory subsystems, particularly the instruction cache, in various low power architectures.

According to the first distribution of the software team responsibilities, I was responsible for porting the
debugger. I decided on porting GDB because its the most popular and widely used open source debugger.
Being new to the toolchains, I spent the first couple of months studying GDB from a porting perspective.
However, owing to changes in the team structure, I was allocated the task of porting binutils and the port
of GDB was postponed until later.

I studied the GNU Binutils which is a collection of programming tools for manipulation of object code
in various object file formats. I started off with porting of the Binary File Descriptor (bfd). I also helped
port the opcodes. This involved using CGEN, the Cpu Tools Generator. I wrote the architecture description
in the CGEN description language. Subsequently, I helped in porting gas and the linker. At this point, I
took complete onus of binutils. I wrote out the testcases for the purpose of testing each instruction of the
ISA. I also tested the testsuite on the simulator to ensure correct functionality. I was supporting the other
members in the porting the other tools by actively fixing the bugs and making changes to binutils as and
when required.
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1.5 James Maxwell

I served as the nominal project lead for the Big Red Chip project team. My primary technical responsibilities
included writing Verilog RTL, Verilog test benches, taking the chip through the synthesis flow, and writing a
user’s guide for the synthesis flow. Managerial responsibilities included team recruitment, coordinating the
team leads, deadline scheduling, and funding requests from AMD.

The Verilog that I personally owned included the write back stage RTL (see Section 4.2.5), and the test
benches for the ADC unit and the memory subsection (see Sections 4.2.4, 4.2.11, 4.5). As the test benches
uncovered bugs, unintended results, and occasionally simply broken code, I also worked closely with the
owners, helping them fix the Verilog until we achieved correct functionality. In addition to my duties I
worked closely with the team to develop the ISA.

I served as one of the primary workers with the synthesis tools, including both Synopsys DesignVision and
Cadence Encounter (see Section 4.6). Fabricating the chip involved two distinct stages: converting the high
level RTL to a gate level equivalent, and then creating a layout from this gate level Verilog. DesignVision,
the tool for gate level synthesis, often required rewriting the RTL to fix critical timing paths, and I worked
closely with the team so that they understood these timing paths and that we could fix them. Occasionally
other RTL changes were required for synthesis outside of critical timing paths, so I worked with the team
to resolve these issues as well. Place and route with this gate level Verilog was done using the Encounter
toolkit, and I was responsible for many of the design choices in the backend of the flow, including the layout,
power grids, IO Pad implementation and DRC fixes. This work included both automation from Encounter
and my personal hand layout.

In addition to the technical segments discussing various parts of the architecture, my large contribution to
the document are the DesignVision and Encounter User Guides, in Sections 8 and 9. Since the project team
will hopefully be continued, with future revisions of the chip to incrementally improve upon our design, future
team members, and other researchers at Cornell using these tools, can use these guides as a supplementary
reference.
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1.6 Harrison McCreary

I was the verification lead for the project. This involved holding verification team meetings to discuss issues
that arose during the verification effort, assigning people to interface with the designers of the blocks of
Verilog they were verifying, and making an effort to keep verification on time. Furthermore, Mitch the
design lead and I came up with a standardized test bench for testing block level and CPU level blocks.

I was responsible for researching different Design For Testing techniques (see Section 3.5) including how
to incorporate the scan chain within our design. I looked into the BIST option before deeming it too
complicated, while Saugata researched JTAG, before we came to the conclusion as a team to include the
scan chain with boundary control logic for externally injected tests.

At the block level of verification, I was responsible for testing the RD block, the Gold Code block, and
the WB block. This involved writing test benches for each module that would test each possible input and
matching that to a pre-computed correct output. At the CPU level of verification, I was responsible for
testing the “simple core” to ensure that the blocks functioned correctly wired together. At this point, I was
still using directed test cases and generating test cases manually.

When the full core, complete with pipelining and the GPS modules, was completed, I used the software
simulator (see Section 4.5.2) and the random test case generator (see Section 4.5.3) to debug the top level
RTL by comparing the output from random test cases run on the RTL with the results from the software
simulator.

I was also responsible for introducing coverage metrics for our design (see Section F). This involved looking
through VCS’s coverage manual and compiling the relevant information for our project into a document for
the rest of the team. Furthermore, to automate the process, I revised some of our existing bash scripts to run
with coverage. These revised scripts allow the user to kick off a random test case sequence on the processor
which automatically compiles coverage reports, as well as the ability to merge coverage from different runs.
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1.7 Kunal Parmar

I was the lead for the tools team for the project. My responsibilities included holding team meetings to
discuss work, assigning tasks to team members, co-ordinating with other teams, helping team members with
their technical difficulties, releasing toolchains and solving problems associated with the same. Our original
goal was to port a compiler, assembler and a debugger for our processor. We completed porting GCC, GNU
Binutils and Newlib. We postponed the porting of the debugger (GDB) until we have some underlying
support for debugging.

I started off by researching which compiler and assembler to port (see Section 3.6) for our processor. I
also helped with the Instruction Set Architecture (ISA) design. Along with John Sicilia, I researched the
various ISAs to help decide our ISA. I suggested the addition of the break instruction and a single stepping
mode for debugging purposes.

I then started work on the development of our toolchain. I started by porting GNU Binutils (see Sec-
tion 4.7.1) along with my team member Mehak Mahajan. After we had a basic assembler in place, I began
work on GCC (see Section 4.7.2). After completing the port for GNU Binutils and GCC, I ported Newlib
and Libgloss (see Section 4.7.3) for our processor.
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1.8 John Sicilia

I was on the design team for this project, though towards the end of year, my work was more focused on
the verification of the processor. I was involved in researching different types of instruction set architectures
and with creating the original ISA that we decided on. When we began to turn our high-level designs into
Verilog code, my focus was on the sections of the pipeline involved memory. I wrote the original RTL and
was in charge of the design of the IF and MEM modules.

I was also in charge of the memory system in the processor. I learned how to use the memory generator
and explored the different options available to us, then consulted with Dan to decide on an optimum size
for each of the memories. Since the memories were only word-accessible, I researched alternatives in order
to enable byte-level memory loads and stores. Finally, I revised the MEM and IF stages to reflect these
changes.

At the block level, I was in charge of testing the write back, break, bypass, and memory controller
modules. This involved writing Verilog test benches for each of these modules, testing the common case
thoroughly, and coming up with as many corner cases as was possible. Toward the end of the semester,
as new functionality was added to the GPS blocks later than expected, I took charge of verifying this new
functionality in the ADC and gold code modules. I edited the original test benches and also wrote new
ones. At the CPU level of verification, I wrote directed assembly tests of the GPS modules, most notably
the ADC. I wrote many assembly tests and worked with Dan in order to fix bugs I found in the code.
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2 Design Problem and System of Requirements

“Computers are useless. They can only give you answers.”
— Pablo Picasso

2.1 General Purpose ISA for Use at Cornell

With the increasing computational power of microprocessors and a decreasing area and power cost, the desire
to use these processors in embedded design is increasing due to their high flexibility and programmability.
Tasks that may have been too complicated for FPGAs or even microcontrollers can be accomplished using
a processor. One of the major goals of the Big Red Chip project was to be modular, yet simple, enough to
enable any research group to integrate the chip into their systems effortlessly. The BRC group has designed a
fully custom architecture ISA for 16-bit embedded processors, and when customizing the ISA have chosen to
implement five user definable instructions. All the functionality of a MIPS architecture has been preserved
with both registers and memory, but in addition also includes several unique functional blocks including
an on chip ADC unit. With an open architecture, BRC seeks to allow easy implementation of additional
custom units, suited to whatever a particular research team might need. Any interested research group will
not only have Verilog of such an ISA, but with this document have all the references necessary to recreate
the synthesis of such a design if they choose.

This architecture is currently in queue for fabrication in the MOSIS 130nm process technology. The tools
necessary to take the high level RTL Verilog and produce a layout have been documented in Sections 4.6, and
a tutorial for new users can be found in Sections 8 and 9 for Synopsys DesignVision and Cadence Encounter,
respectively. This chip is predicted to run up to 50MHz at 35mW, which will be sufficient for most low
power processing needs at Cornell. In addition, the BRC team has developed a custom compiler to convert
user C code into assembly code compatible with the ISA, as described in Section 4.7. Other custom scripts
for system verification, as described in Section 4.5.2.

2.2 Customized Architecture for Low Power GPS

The first iteration of the BRC architecture has embraced the BRC project goal of enabling Cornell research
by targeting embedded software GPS applications. Cornell has been heavily involved in the GPS system
architecture almost from its conception but has recently become very involved in researching how software
algorithms can be employed to perform baseband calculations in flexible platforms. Although these software
systems have already realized commercial viability, the typical implementation requires a number of discrete
integrated circuits and consumes more power than an ASIC-based approach.

Recently, students in the Bhave research group have begun to explore how MEMS technology can provide
a low power solution for the radio-frequency front-end of a GPS receiver. The specific goal of the first iteration
of the BRC architecture is to provide a baseband processing system that will expand the MEMS receiver
from the Bhave group into a fully integrated low-power GPS system. The BRC system for performing GPS
baseband computations and computing pseudo-ranges is based on bit-wise software algorithms developed by
Cornell’s software GPS research groups. In addition, the BRC system uses its reserved operation code space
to employ several special functional units designed to increase the efficiency of calculations and reduce the
required power for the system.
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3 Range of Solutions

“Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch
of genius—and a lot of courage—to move in the opposite direction.”
— E. F. Schumacher

3.1 ISA

One of the first decisions we had to make was what instruction set architecture, or ISA, to use for our chip.
As our main design constraint was power, as described in Section 2.2, we decided on a 16-bit ISA. Having
a smaller instruction and data size would reduce dynamic power by having fewer bits to transmit across
the chip, having less information to decode, and having smaller data on which to perform operations. The
other quality we wanted in our ISA was simplicity and regularity in order to increase the power efficiency of
decoding the instructions.

We researched existing 16-bit ISAs including 16-bit versions of MIPS[6], an ISA we are familiar with from
class, and ARM[1], an ISA popular for use in embedded processors. These ISAs are both actually hybrids of
16 and 32 bit instructions, with ways of switching between modes. Both also were more extensive than we
thought necessary for our purposes. Also, due to our GPS requirements (see Section 2.2) we needed some
custom instructions. Due to these reasons we considered designing a custom ISA, by using ideas from the
16 bit ISAs we studied, in order to fit our needs. Designing our own ISA had some disadvantages however,
including the increased design time and not having any tools or software available for the ISA.

We decided that the extra design time would be justified, since the existing ISAs did not adequately
satisfy our needs. The tools and software we needed would mainly be a compiler and assembler, as we were
not planning any operating system support, and the software team would be able to handle that in parallel
to our design efforts. The design of our custom ISA is discussed more in Section 4.1.

3.2 Pipeline

One of our main microarchitecture decisions was deciding how to pipeline our processor. Pipelining allows for
greater throughput, but as you increase the amount of pipelining you increase the amount of time required
to flush it due to hazards. As we are designing for low power, (see Section 2.2) we decided to research the
pipeline architecture of other low power chips in order to determine what would be optimal for our use.

One design we considered was the Razor[4] architecture. This is a six stage pipeline design which uses
circuit level timing speculation and dynamic voltage scaling in order to be low power. It used the five
pipeline stages from the traditional MIPS pipeline, with an extra stage at the end for stabilizing the data.
This allows it to run very fast, with implementations running in the gigahertz range. However, as we wanted
to keep our design basic, the custom circuit techniques used in this design seemed beyond the scope of our
project. We also were looking to use less pipeline stages in order to avoid branch delay slots or the need for
a branch predictor, as these would add more complexity than we wanted.

The next architecture we looked at was the CoolRISC[7] architecture, a popular architecture among low
power designs. It uses a three stage pipeline corresponding to a fetch/decode stage, an execution/memory
stage, and a write back stage. This one did not run as fast as Razor, but by using both edges of the clock
could be run at approximately 100MHz, which was in the order of magnitude of what we thought we would
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need for our GPS application (see Section 2.2). A problem with this approach is the inability to halt the
processor, but if we can keep the processor busy with useful work then halting becomes unimportant.

The last architecture we considered was the Smart Dust[9] architecture. This had no pipelining, but used
an eight phase clock in order to segment the various stages of execution. This eliminated the need to register
data in between stages. This was also a very low power design, as it also was able to halt, which made it a
good candidate for systems that do periodic sampling. It only runs one instruction at a time though, and
ran slower than the other choices, at about 100kHz.

We decided on a microarchitecture based on CoolRISC. We made some changes to it as described in
Section 4.2, but decided that a three stage pipeline was best for our needs. The Razor approach was too
complicated at the circuit level for our uses. Since the Smart Dust approach was slow and had complicated
clocking, the ability to halt did not seem necessary enough to justify it.

3.3 Memory System

When designing our memory system, we were focused on one goal: to minimize power while still retaining
the functionality needed to run correctly. Since we were aware from the beginning that memory was going
to consume a large portion of our allotted power consumption, efforts to minimize this as best as possible
were made. It was the most important benchmark we had when considering our two most fundamental
decisions with regard to the memory system: the type of memory architecture, and what kind of hierarchy
to implement.

When looking at the memory system with power-minimization in mind, it seems clear that the best
way to accomplish that goal is to be as small and as simple as possible. By moving memory off-chip,
more sophisticated circuitry would be needed in the memory controller and single-cycle access times become
infeasible. And if dealing with both an on-chip cache and off-chip main memory, the circuitry becomes even
more complex as blocks are moved into and out of cache and write-back policies need to be considered. The
question was whether or not the benefits gained by these more complex systems (vastly increased memory
space for off-chip memory and low memory-access time for the combination) were worth the power drawbacks.

Since our processor was going to be used with an embedded GPS program, we should know both the size
of the memory needed to contain the instructions and the average amount of data memory needed to run.
In addition, since the program is embedded, we will not have to worry about multiple processes running
in parallel, each of which needs to be stored in main memory. For these reasons, the choice was made to
implement a fast, small, on-chip cache without a secondary off-chip memory.

The second basic choice we had to make was the type of memory architecture to follow: Harvard or Von-
Neumann. While the Von-Neumann model is more flexible than the Harvard architecture, the embedded
nature of the Big Red Chip means that flexibility is not high on our list of wants. In addition, the Harvard
architecture has two very important features that make it far more desirable: the removal of structural
hazards and flexibility of address widths.

First, the Harvard architecture allows us to access the data and instruction memory in parallel, using
two different ports. Because we are able to access both at the same time, we are able to decrease the speed
at which the memories must be clocked, thereby reducing their power consumption. Secondly, the Harvard
architecture allows us to use different widths for the instruction and data memories. While we standardized
the widths of the data buses to 16-bits, varying the size of the address bus widths let us use almost exactly
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Figure 1: Power Consumption Performance of Different Memory Architectures

the size of instruction and data cache that we needed. By minimizing unused data and instruction cache
space, we once again minimized power consumption.

Having chosen on-chip memory and the Harvard architecture, our next step was to create the memory.
Streamlining this highly time-consuming task was the Artisan Standard Library SRAM Generator by ARM.
This tool allowed us to vary different settings, such as memory size and frequency, and created output files
that ranged from a documentary PDF to the Synopsys models. Since our choice of architecture allowed
us to change the instruction and data cache address widths independent of each other, we tested different
cache sizes at different frequencies. Our goal was to determine the maximum size and operating frequency
we could use and still be within our power consumption limits. Figure 1 demonstrates these results.

The three different technologies we were able to use were SRAM, RVT SRAM, and a register file. The
register file generator was only able to create small-sized caches (less than or equal to 512B with a 16-bit
word, and up to 2kB by increasing the word size), so while it gave the best performance in the tests it could
compete in, it was largely infeasible. Surprisingly, the RVT SRAM ended up giving us the best performance
at the sizes we needed, despite the fact that these devices are typically consume more power.

The smallest sizes that we could use without compromising the functionality of the program ended up
being a 16kB d-cache and a 2kB i-cache, both implemented with RVT SRAM. The estimated average current
drawn, assuming 100% reads, would then be 8.871mA for the i-cache and, assuming the memory is constantly
on and a 50/50 mix of reads and writes, 17.168mA for the d-cache.

One last concept that needed consideration was whether or not we could include the originally envisioned
instructions lb, lbu, and sb. The memory generator only includes addressing down to the word-level, not the
byte-level. As a result, we were unsure of whether or not we were going to be able to include byte-addressable
memory instructions. After reading the documentation more thoroughly however, we found that the memory
generator provided a solution to our problems. If we could byte-mask and shift inside of the memory stage
of the processor, then we were able to use a write-enable byte-mask that allowed us to only write a single
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WEn[1:0] Action
11 Read Word
10 Low-Byte Write
01 High-Byte Write
00 Write Word

Table 1: Byte-Addressable Write Enable

Figure 2: Memory System of BRC

byte of a word at a time. To do this, the write-enable line of our memory was extended to two bits, as shown
in Table 1.

While this ability allows us to keep the functionality of byte-level memory accesses, the fact that our
memory is still only word addressable introduces a few complications into the way we access our memory.
First, the internal memory address lines are one bit larger than what the memory modules will actually accept,
with the least-significant bit being the byte selection. The MEM stage module in the processor utilizes this
bit in order to calculate the write-enable, if it is a store, and shift the data left or right appropriately. Thus,
the actual memory address lines out of MEM and into the controller are one bit smaller than those going
in, and the write-enable line is one-bit wider.

With the main memory system in place, the final step was to add a simple memory controller. Since we
were dealing solely with an on-chip cache that was consistently accessible within a clock cycle, our memory
controller did not have to deal with the problem of a memory hierarchy or stalling if the data was not yet
available and a hazard was presented. Instead, it functioned largely as a multiplexer, allowing an off-chip
source to directly access i-cache or d-cache instead of IF or MEM. This allows for both initial programming
of the instruction cache and setting initial tables in data memory, and for reading out of memories in order
to test. A simple diagram illustrating the memory system with the widths of the buses involved is shown in
Figure 2.
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3.4 GPS

One of the largest challenges in implementing a software receiver is ensuring that all of the input data is
successfully received and processed. This problem is magnified for GPS applications because the input data
rate is largely determined by the GPS system and because the incoming data must be aligned nearly perfectly
with local representations of incoming signal components. Ensuring that the BRC system could meet the
data processing constraints required that the team decide how the system should be triggered to receive
incoming data early in the design process. We explored two options before deciding on the final data input
system: first, a timer-based interrupt to initiate data retrieval; and second, a direct memory access system
to allow the input data to write automatically into the data memory.

The most conventional way for a software-based system to perform any timing critical task is through
interrupts. Typical interrupt systems include both timer and externally triggered interrupts. Although the
most effective way to ensure that no data is lost would be to have some external system produce an interrupt
signal, this signal would not be synchronized with the operations taking place in the core. For this reason the
BRC team determined that an external interrupt system would be too difficult to fully verify. Timer-based
systems, however, use an internal system to produce the interrupt signal and can be synchronized to the
clock of the core. Because the input data rate could be computed by the processor a counter conservatively
set timer could be sufficient to avoid data loss. Unfortunately, a problem with all interrupt systems is that
they require the overhead of a function call whenever they execute. In addition, our final system varies the
rate at which data is processed based on the Doppler frequency of the current satellite. Since the system
must be able to track multiple satellites with different Doppler frequencies, it would be possible for an
interrupt from one satellite to occur during an ISR triggered by another. For this reason the team decided
to avoid interrupt-based systems; if an interrupt occurs during another interrupt then the timing cannot be
guaranteed for either.

Many digital signal processing (DSP) processors use data input systems with direct access to the core data
memory[3]. Although the goal for the BRC architecture was to be more general purpose than a typical DSP,
the GPS software receiver application follows a structure similar to the multiply-accumulate architecture
of a DSP. For this reason, direct memory access is compatible with the required functionality of the BRC
processor. The difficulty in DMA systems arises in structural hazards as the input system and core may
try to access the data memory simultaneously. However, because the BRC architecture has several reserved
instructions this problem can be solved by creating an entirely new hardware memory structure for each
input memory and access those memories through special instructions. The only real disadvantage to a
DMA system with partitioned memory that the processor core loses control over the operation of the input
memory system. A DMA system also provides the advantage of having almost no instructional overhead on
the core to retrieve input data, which is critical for a power-constrained system.

For the reasons detailed above, the BRC team ruled out an interrupt-based system and opted for a
modified direct memory access approach. To avoid structural hazards each trackable satellite has an inde-
pendently defined two-port register memory. This memory has separately clocked read and write ports to
eliminate any data hazards and is readable only through special instructions. In addition, special functions
are implemented within the system to allow the processor core to gather specific information about the state
of each memory to allow the processor to more closely monitor and control the input registers system.
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3.5 DFT

To ensure correct behavior in processors after fabrication, most modern microprocessors include hardware
that enables the designers to test for correct functionality on the physical chip. This idea of including extra
hardware to the design with the specific aim of making it easier to develop tests for post-manufacturing
is called Design for Testability (DFT). Our team looked at three options to incorporate DFT in our chip.
These included a Built in Self Test (BIST) solution, a JTAG solution, and a scan chain with a traditional
boundary-scan interface.

The BIST solution consists of an internal function that is able to verify all or part of the functionality
of the chip. BIST is a good option for DFT because it reduces the need for externally generated tests and
hardware associated with those tests. Furthermore, it reduces the number of I/O pins needed for external
tests to be run on the chip. Finally, BIST allows for diagnostics to be run on chips in the field as the tests
reside in the chip. For the scope of our project, however, BIST is too complex for what we will need to test
once the chip returns from fabrication. Because our chip’s design space is relatively small, the overhead for
including internal storage for BIST test patterns is quite large and not justifiable in terms of our space and
power requirements. Also, we have the option of using an FPGA as the external hardware needed to test
the chip, which is much less expensive than the external hardware needed to test more complex systems in
industry. Finally, our design has enough space for the I/O needed for external tests to make the storage of
an internal test pattern unnecessary.

The JTAG interface[8] is an IEEE standard used in industry to perform design verification. The interface
allows debuggers to control a device and read data stored in internal registers using a boundary scan chain.
Our initial goal was to use this interface to be able to read and write register values within the processor.
However, upon further research, we saw that the JTAG interface requires a significant amount of added
functionality, and would require that we design an internal controller for the interface. As our intent was
strictly to debug the registers, and not to affect the other operations of the processor, we decided to drop
the JTAG interface. Not only would the extra required functionality have taken up a significant portion of
design time for an unnecessary feature, but the extra power consumption and layout area were not justified
for the scope of our project.

The final design choice we considered was a scan chain with some boundary-scan interface and custom
control circuitry to externally inject test patterns. This option consists of wiring together all architectural
registers within the core together into a chain and adding control logic to the registers to allow the scan
chain to be serially read out of the core. This chain becomes the scan chain. Tests are generated external to
the chip and must be input using some type of hardware; for our purposes an FPGA would be an acceptable
solution. This option was the best for our purposes because it allowed us to include only the hardware that
we needed for simple register debug, which provided the lowest complexity, size, and power consumption of
the three options.

3.6 Toolchain

The adoption of any architecture is directly related to the quality of the compiler available for it. This
made the choice of the compiler critical to the success of our project. Given the available time line and the
feasibility concerns, writing a compiler from scratch was quickly ruled out. Hence we decided to port one of
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the existing compilers to support our new architecture. Large parts of the programs were to be written in
C with only a few critical functions written in assembly. Our compiler had to support such inter-leaving of
high and low level languages.

Of the many compilers available, we narrowed our choices down to two retargetable compilers - LCC and
GCC. After careful study of both the compilers we decided to port GCC. One of the driving factors for the
same was that LCC is not under active development, the last release, LCC 4.2, being in June 2003. GCC is
currently the most widely used open source compiler. It supports a variety of backends including x86, ARM,
Sparc, PowerPC and MIPS - both the 16-bit and 32 bit ISAs, which forms the basis of our architecture.
GCC provides higher optimization support which causes it to take longer to compile the code as compared
to LCC. However, we needed a good compiler - one that produces highly optimized code, and not a fast
compiler. The decision to use GCC was finally sealed owing to the software team’s experience in porting
GCC earlier. Given the stringent time line, this was the most feasible option as familiarizing the team with
a new system would require considerable time and effort.

Along with the compiler, we needed an assembler and libraries to complete the toolchain. GNU Binutils
provides the most popular and widely used open source assembler used in conjunction with GCC. GNU
Binutils is a collection of binary utilities which includes the assembler, disassembler, linker etc. Newlib,
another widely used open source library on embedded systems, was chosen as the library. The choice for the
assembler and the library were also influenced by the team’s experience with these systems.
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4 Design and Implementation

“Perfection is achieved, not when there is nothing left to add, but when there is nothing left to
remove.”
— Antoine de Saint-Exupery

4.1 ISA

As we decided on a custom ISA for reasons explained in Section 3.1, our first design task was to define our
ISA. We started by defining the instruction formats our ISA would have, based on MIPS but modified to
be 16 bit for our uses. We divided our operations into four types in order to support instructions with zero
through three register operands (see Table 2). The ordering of the registers is arranged so that rs and rt are
always read and rd is always written. The extra bits in the three operand format are used as extra opcode
bits in order to expand our opcode space, while the remaining bits in all other formats form an immediate
operand. The four formats roughly translate into register ALU instructions and memory instructions for the
three register format, immediate arithmetic instructions for the two register format, branches for the one
register format, and jumps and other special instructions for the zero register format.

The 16-bit instruction size imposed some serious limitations on the ISA. Our opcode was only five
bits, only allowing for thirty two instructions. By using left over bits from the three register format as a
“function” field, the opcode space is effectively increased, as every three register opcode can encode four
separate instructions. This allows us to use the three register format for instructions that did not need all
three registers, but also did not need an immediate, such as memory instructions, in order to conserve opcode
space. This leaves us with adequate opcode space for all the instructions we wanted, while still leaving room
for reserved opcodes. These reserved opcodes were important , as we wanted to keep the BRC ISA general
purpose, yet customizable to particular projects. We used some of the reserved opcodes for GPS specific
functions in our version of the chip, while future implementations of the chip can customize them to suit
their needs.

Another problem created by the small instruction size was limiting the ISA to only three bits per register
field, which leaves us with only eight general purpose registers. This is a severe restriction, as most RISC
architecture include at least thirty two registers. We considered having register banks in order to allow more
registers, but determined it would add too much complexity. We opted to leave the ISA at eight registers
and to leave out the zero register in order to free up one more register.

Branches also suffer, having only one register operand. In order to leave a larger immediate field for
the branches, the BRC architecture does not include two register branch instructions. Although this may
frequently require an extra instruction frequently to computer the branch, it leaves the branch with enough

5 3 3 3 2
3R op rs rd rt func
2R op rs rd imm
1R op rs imm
0R op imm

Table 2: Instruction Formats
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immediate space to be useful.
The last problem that the restricted instruction size causes is the small immediate fields. Immediate ALU

instructions are left with only a five bit immediate, branches with an eight bit immediate, and jumps with
an eleven bit immediate. ALU instructions can always be synthesized by first computing the full immediate
into a register, and then performing the corresponding three register instruction. Branches and jumps can
create extra jumps and branches in the code in order to jump multiple times to get to the right location.

However, we want to minimize the number of extra instructions needed in as many cases as possible. In
order to do this, we borrowed another instruction from the 16 bit MIPS ISA, the extend instruction. It is
used to extend the immediate of almost any instruction to a full 16-bits. This is accomplished by issuing
an immediate instruction (which is a zero register format instruction), with the upper eleven bits of the
full immediate. These eleven bits are concatenated with the lower five bits of the following instruction’s
immediate. It is always the lower five bits of the actual instruction’s immediate for consistency. This works
out well as the extend’s immediate is adequate length to pad the smallest immediate (five bits) to the full
16 bit data size. See Appendix A for exact details of the extend instruction functionality.

The addition of extend prompted a change from the traditional MIPS instruction of LUI, or load upper
immediate, to LI, or load immediate. LUI is normally used to fill in the upper halfword of a register, while
an ORI is used to fill in the bottom half, using the zero register as the source register. Since we do not have
a zero register, filling in the bottom half of a register could require more than one instruction. With the
extend instruction available to us, we can switch the LUI to a LI in order to be able to fill small immediates
in one cycle, and full immediates in two, similar to full MIPS.

We also included one other special instruction, break, which halts the processor in order to allow for
it to be debugged by reading out the scan chain and to access the on chip memory (see Section 4.4). We
also included some other instructions for completeness in the ISA as optional instructions, that we chose
not to implement, as we felt they were unnecessary for this chip. These include MIPS style multiply and
divide instructions, a system call instruction, and a return from exception instruction. For a complete ISA
description, see Appendix A.

4.2 Pipeline

As mentioned in Section 3.2, we decided on a three stage pipeline for our architecture. The first stage
includes instruction fetch and decode. The second stage is where our architecture is unique. Instead of
having the ALU stage and MEM stage in series like in the traditional MIPS pipeline, the BRC architecture
has them in parallel. Since they do not each have their own pipeline stage this helps with the cycle time, as
the two in series would create many critical paths. It should also help with power, as now only one of them
will ever be needed at a time and the other one can be clock gated in order to decrease power usage.

The downside of this decision is that we no longer have the ability to do base-offset addressing, and can
only use register indirect addressing. This helps the ISA, as it allows us to use three register format which
has extra function bits, but can cause extra instructions to be needed in certain situations. The offset is
very useful for array, structure, and stack accesses and will require an extra add instruction now in order to
increment the base register. This is a trade off we were willing to make.

Also in the second stage of the pipeline are two custom state machines that perform GPS specific calcu-
lations. One is a gold code generator, and the other buffers the ADC input (see Sections 4.2.10 and 4.2.11
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Figure 3: Block Diagram of Full Core

respectively). The second stage also requires one bypass path (Section 4.2.7) from the third stage in order
to avoid data hazards. The third stage contains only the write back. We also have several sub units which
lie outside of the pipeline data path. These include a break unit (Section 4.2.6), a clock state machine
(Section 4.2.9), and a memory controller (Section 4.2.8), all of which are described in more detail in their
respective sections.

4.2.1 Instruction Fetch

The first block of our pipeline is the Instruction Fetch (IF). As IF and RD are both inside the same stage of
the pipeline, the IF stage must complete its work in the first half of the cycle: as a result, the logic in this
block is minimal. The two main tasks that IF handles are updating and storing the program counter (PC)
and fetching the next instruction from the instruction cache (i-cache).

On each positive edge, IF updates its internal PC register. In case of a stall, PC is updated to itself
and the same instruction is retrieved. If a branch or jump is taken, then the PC is updated to the possibly
extended immediate coming received from RD. Since RD and IF are in the same cycle, this eliminates the
need for a branch delay slot, and all jumps and branches occur in the instruction after they are retrieved.
Finally, if no control instructions have been issued, the PC updates to PC+2, since our instructions are two
bytes wide.

The i-cache is word-addressable and, during normal operation, read-only. As a result, the address lines
feeding out of IF are one least-significant bit shorter than the PC register.
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4.2.2 Register Decode

The Register Decode (RD) block of the pipeline makes up the second part of the first pipeline stage. In
order to reduce power requirements, this portion of the stage is triggered by the negative edge of the system
clock (as opposed to traditional stages, which are triggered by the positive edge in most architectures). The
RD block is responsible for determining the intent of each instruction and sending data based on this intent
to the other blocks within the pipeline.

When the IF receives an instruction, the RD block will read the register locations specified by the
instruction. The data from these registers is then latched in order to be sent to the next stage of the
pipeline. To reduce logic in an effort to control power dissipation, the register operands are transmitted even
if the instruction does not need them. In parallel, the value of the immediate specified by an instruction is
generated within the block. As there are three immediate widths, the instruction opcode is used to decode
which width is appropriate. The RD block also handles the EXTEND instruction operations (see Appendix A).
As the EXTEND instruction will specify the 11 most significant bits to be used for an immediate which will
arrive the next cycle, the RD block incorporates logic that detects an EXTEND instruction and stores the
specified bits into a register for use the next cycle.

The RD block also handles branch computations. Traditionally, branch decisions and destinations are
calculated in the ALU of a processor. However, in order to prevent the use of inefficient stalling logic or
branch delay slots, and to eliminate the need to create a branch predictor, a simple ALU was placed within
the RD block to compute these branch decisions. This branch computation unit (BCU) supports the ability
to perform jump register and linked jump instructions. Once the address is computed, the decision of the
branch, as well as the value with which the PC should be updated, are sent to the IF stage, which updates
the PC register before it fetches the next instruction.

As part of its branch handling, the RD block also has the ability to stall for one or two cycles should a
branch instruction be dependent on data that is still being generated inside the pipeline. Data is currently
bypassed to the second stage of the pipeline from the third stage should it be needed (see Section 4.2.7).
However, this cannot be done with the RD block as it is negative-edge triggered, and its data may not have
been produced yet. As a result, a safer and more power-efficient solution is to stall the RD block until the
data in the pipeline is written back to the register file, at which point the RD block can then serve the
branch request with the needed register data.

The RD block uses a quarter-phase-shifted clock to update register values in the write back (WB) stage.
Since the data is available from the WB stage very quickly, the RD block can read the value for storage at
any time. However, it was found that a critical timing path propagated through this write back mechanism.
In order to ease the timing constraints, this quarter-phase-shifted clock was introduced so that register
data could be updated beginning at the middle of the system clock negative phase. Such a mechanism,
although resulting in an additional power consumption, allows the register update to have three quarters of
a cycle to complete, eliminating the critical path. For information on how the shifted clock is generated, see
Section 4.2.9.
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4.2.3 ALU

The ALU stage is made up of an ALU, a mux to select the second operand, and a decoder to decode the
opcode into a select line for the mux and a function code for the ALU. The mux is a simple two to one
mux, and chooses between the value in the RT register and the given immediate, after it has been properly
extended. The ALU supports the following instructions:

• Add

• Subtract

• And

• Nor

• Or

• Xor

• Shift Left Logical

• Shift Right Logical

• Shift Right Arithmetic

• Set Less Than

• Set Less Than Unsigned

• No Operation

• Population Count

All of these are standard choices for an ALU except for population count. The population count of a
number is the number of ones in that number’s binary representation. This instruction is needed for our
GPS calculations, and we decided to include it in hardware as a single cycle instruction. It appears in the
inner loop of our code, and would take a many more cycles without dedicated hardware. This is implemented
as a tree of small adders. Although this has the potential to be slow and was watched for being a critical
path, it ended up not hurting our cycle time.

There is also a lack of support for multiply or divide. As our chip is suppose to be low power and these
instructions are computationally intensive, we decided to leave them out. This is acceptable as our GPS
code can be run without them by using exclusive-or and population count, as described in Section 5.1.1. If
they are needed for other purposes they can be emulated in software.

4.2.4 Memory

The MEM block is in the second stage of the pipeline, running in parallel with the ALU and GPS blocks,
allowing only for register direct memory operations. The tasks that MEM needs to handle are shifting
incoming and outgoing data from the data cache (d-cache), computing the write and read-enable lines, and
outputting the correct address to the memory controller.
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When MEM receives output data to be stored or input data to be loaded, it checks to see if any additional
processing needs to be done. Processing only needs to occur if the command received is a byte instruction
(such as lb, lbu, and sb), as the data for word-length memory instructions does not need to be changed. For
a store byte instruction, the data is shifted left one byte if the least-significant bit of the address is 1. For
the load byte instructions, the data is shifted right one byte if the least-significant bit of the address is 1,
and the topmost eight bits are zeroed out for lbu and sign-extended for lb.

The write and read enable lines are both active low, and are slightly more complex than merely checking
whether or not the instruction is a store or load due to the write-word masking ability of the cache. The
read enable line is low on a load, and high otherwise. The write enable line is two bits wide, with each bit
being driven low if the corresponding word is to be written (see Table 1).

Like the i-cache, while the d-cache can perform byte-accesses by shifting the data word left and sign- or
zero-extending it, the cache itself is word-addressable. As a result, the least-significant bit of the address
line is discarded when passing it to the memory controller.

4.2.5 Write Back

As the third and final stage in the pipeline, the write back stage determines if the registers will be written
with data, and which of the data lines passing through the design contain the relevant data and register
address. An enable line, controlled by the write back stage, will cause the register write, and the data will be
the result of multiplexing the data lines, with the select lines chosen by decoding the op code and function
from the PC. The data can come from one of five different data sources: the ALU, the memory, the ADC
unit, the gold code, or even the branching unit if the instruction is a linking jump. The write back data
lines were originally the only lines available for bypass forwarding, but this changed in a later revision of the
design.

Traditionally, the write back stage would be combinational logic following the final state holding registers.
In our design, however, we deviate from this by splitting up the write back stage into two segments; write
back computes logic not only after the registers, but before as well. Splitting the write back stage such that
it straddled these phase three registers separated the control lines from the data, and allowing this control
logic to be exposed immediately after decoding. With the decision to stall in certain situations, this decoding
logic was needed before the third pipeline stage. The write back, already decoding these signals, was split
instead of duplicating the logic, reducing the number of gates and decreasing power. The multiplexers after
the registers also enjoy a shorter evaluation time, but since they are not on any of the critical paths this is
a largely fruitless benefit.

4.2.6 Break Unit

The break unit is a simple system for determining whether or not the system should be halted for debugging.
It is set by a break instruction, at which point it notifies the clock state machine (Section 4.2.9) to begin
ramping down the clock. It can be reset by an external input to the chip after debugging has been completed.
See Section 4.4 for more information on the DFT capabilities of the chip. This is necessary in order to examine
the state of the processor and to set the state of the processor externally. This allows it to be debugged by
loading up a known state, running it for one cycle, than examining the next state. It can also be used just
to check the state of a program at a certain point for correctness.
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4.2.7 Bypass Unit

The bypass unit allows for data to be bypassed from the third pipeline stage to the second pipeline stage. If
there are two consecutive instructions with a data dependency, the second will read the old value from the
register file. However, by the time it is ready to consume the value in the second stage, the value is being
written back in the third stage. The bypass checks to see if the value being written back is the same address
as the one currently being consumed, and forwards it if needed.

4.2.8 Memory Controller

This unit is not a memory controller in the normal sense. It simply connects the instruction and data
memory to the core while it is running, and allows for data to be accessed by an off chip debug port while
in debug mode. It has the ability to read and write to all instruction and data memory addresses. Along
with debugging it is used upon powering up in order to program the instruction memory with the code the
chip is to run. It cannot be used to support off chip memory as it does not implement a standard protocol.
Extending it to do so would not be trivial, as it is designed to only allow external access while it is being
run off the slow debug clock and not for real time access. It also currently only allows for either the data or
instruction cache to be accessed at a one time, which would create a bottleneck. For more information on
using the memory controller through the off chip interface, see Appendix D.

4.2.9 Clock State Machine

The functionality for generating the system clock and switching between the system clock and debug clock
is provided by the clock state machine (CSM). The processor can either take an external clock input, or it
can use an internally generated clock to create the system clock. Both the external and internal clock are
referred to as the fast clock, which runs at twice the frequency of the system clock. The fast clock is needed
to allow for state changes within the CSM that do not fall on any of the system clock edges (which would
cause glitching that could propagate to the system). The CSM divides the fast clock into two to generate
the system clock at the desired frequency. A quarter-phase-shifted clock is generated here as well, relying
on registered logic that is triggered on the negative edge of the fast clock. This shifted clock is used in the
RD stage (see Section 4.2.2).

The major functionality of the CSM is to provide a gradual transition from the system clock to the debug
clock when the external FPGA assumes control of the processor. An instantaneous switch between the
clocks could cause serious issues with glitching and potential current fluctuations from the clock distribution
network, due to the multiple-order-of-magnitude difference between the clock speeds. To overcome this, once
the signal is received by the CSM stating that the FPGA is ready to start debugging, the CSM will divide
the system clock in two repeatedly, eventually slowing down the clock until it reaches one 256th of its initial
frequency. The clock is slowed down using a mask and override bit that is generated as an output of the
Mealy state machine. At this point, this slowed down clock is transitioned to the debug clock when their
current phases are aligned, allowing for a clean transition. Such a transition is not necessary for when the
system clock resumes control, as increasing the clock speed does not result in current aberrations. The CSM
will ensure that the debug clock and system clock are on the same phase when they transition to the system
clock.
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The clock state machine is also responsible for generating a clock for the ADC unit. According to
specifications, the ADC is currently expected to run at a twelfth of the frequency of the system clock. The
CSM uses a resetting counter to generate this slower clock, which allows the CSM to continue ADC clock
generation even during a switch between system and debug clocks. The clock state machine also supports
an external ADC clock, if the internal clock either does not operate as expected or a new frequency that is
not dependent on the internal system clock is desired.

4.2.10 Gold Code

The Gold Code system is one of the special functional units that have been included in the first revision
of the BRC architecture to accelerate software GPS algorithms. A Gold Code is a pseudo-random noise
sequence that can be generated using shift registers with feedback to define the next bit to be shifted in.
The functional unit in the BRC that computes these codes is a state machine that contains separate sets
of shift registers for each satellite currently being tracked. The system can be accessed through a special
instruction and it will return the next bit, or “chip”, in the sequence. For a much more detailed description
of how this system works and how the Gold Code is used in GPS computations refer to the Gold Code
section of the GPS top-level design description 5.3.

4.2.11 ADC

The primary function of the ADC system is to gather the input from the serial ADC input and buffer it
in a reserved memory space. Because writes to this memory take place automatically when a data word
is ready, the system must also control the location of writes and the next read. In addition to this basic
DMA functionality, the ADC system is designed to optimize GPS calculations by removing the Doppler shift
from the input automatically as it is stored in memory. Incoming data is stored in separate memories for
each satellite currently in tracking and each of these memories is accessible through the reserved instruction
dedicated to loading data from the ADC. For a significantly more thorough discussion of the functionality
of the ADC input system and how that functionality aids in performing GPS baseband calculations refer to
the ADC portion of the top-level GPS system section 5.3.

4.3 Memory System

All memory is located on chip for this design, with 2kB available for instruction memory and 8kB available
for data memory. As discussed in section 3.3, instruction memory and data memory are separated into two
distinct units, with additional memory reserved for the ADC unit. The memory controller, as discussed in
section 4.2.8 provides the user with access to these memory units, but this is intended only for debugging
purposes and general use is restricted to load and store commands as defined in the ISA. Currently there
is no direct support for off chip memory, but a dedicated user could implement one through the debugging
interface provided, although such a system will not be discussed in this report. The Big Red Chip memory
system uses local, fast, on chip memory that is expected to evaluate within a clock cycle, comparable to
modern computer architecture caches. The memory updates on the negative edge of the clock cycle, both
to allow time for the next PC address to compute and for the data memory to compute in one cycle.
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The memory system specifications were determined not by our requirements, desires, or even engineering
ability but instead determined by the ability of the memory compiler provided to us. The ARM memory
compiler will generate either SRAM cells, which we use for our instruction and data memory, or an array of
registers. The icache is treated as a read only block during normal operation, and thus bit level reads masks
were not included as such an ability is not supported in the ISA. Data memory, and the ADC registers, both
support 8-bit reads and writes, however, enabled by masking the appropriate bits in our Verilog. Both load
and store byte operations require similar masking to match the BRC Verilog to expected behavior by the
memory units. All parts of the memory system have distinctive read and write ports, whose exclusivity is
limited only by timing requirements generated by the tool; data can be written and then read in succession
within a clock cycle as long as the cycle is sufficiently long.

4.4 DFT

Based on the available options and their applicability to our processor (see Section 3.5), we chose the
scan chain with extra boundary hardware and control logic for externally injected tests as the solution to
include Design for Testability in our design. Boundary hardware and control logic consist of the break logic
(Section 4.2.6), the clock state machine logic (Section 4.2.9), and adding scan enable and scan chain wires
to the design. The scan chain consists of all registers internal to the processor core hooked up serially. The
beginning of the scan chain has an input from an off-chip source from which external tests can be injected
into the core. The end of the scan chain is where the values in the scan chain can be serially read out from
the processor. The values of the scan chain can be compared against expected values when externally driven
test cases are run on the core.

Extra control logic had to be included within each register for the scan chain to function correctly. When
a scan enable signal is set, the register will take the previous register’s LSB into the MSB position while at
the same time shifting out its own LSB. These shifts happen on the positive edge of the clock.

The scan chain functionality can be implemented when the processor has received a break command and
halted normal operation of the core. The clock is ramped down to a debug clock (for a description of this
process, see Section 4.2.9), and control is given to an external FPGA source. For the scan chain to start
being read, the scan enable signal must be set high.

4.5 Verification

4.5.1 Methodology

A strong verification effort was critical to this project and can be broken down into several stages, each
corresponding to a specific design cycle stage. These stages include verification on the block level, on a
non-pipelined core, on the pipelined core, and post-silicon debug for hardware verification.

Verification on the block level consisted of writing test benches directed at testing the functionality of
each block. For example, when testing the RD block, it was essential to test the decoding of each instruction
within the ISA to ensure correct behavior. At this point in the test cycle, the goal was to catch and fix
Verilog syntax errors as well as basic functionality errors. Test benches consisted of instantiating the block
to be tested within a test bench, and simulating inputs to the module by assigning values in an initial block
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within the test bench. Results of the test benches had to be manually checked with pre-calculated expected
behavior.

When all blocks were completed and suitably verified at the block level, they were wired together under
a common CPU module to test functionality on the core level. At this point, we did not want to worry
about pipelining the core and having to debug pipeline issues as well as functionality issues, so we made
the core a “simple core” with no pipelining to only test functionality. The simple core did not yet have
instantiated instruction and data memories, which limited testing to instructions that remained within the
core. Load and store instructions were not tested on instantiated memories at the core level until pipelining
was implemented. As a work around to this issue, we created an array in hardware the size of memory
to simulate data memory. To simulate instructions being fed into the processor, we assigned the inputs to
the core in an initial block, very much like tests implemented on the block level. At first, as in the block
level tests, results of each test bench were manually calculated and checked. However, the random test case
generator and software simulator became available to us at the end of this testing phase.

The next stage in completing verification of the chip was on the “full core.” This instance of the design
was of the simple core with the three pipeline stages and included the GPS modules. The goal of this stage
was to completely verify both syntactic and functional correctness in the final design of the processor. Since
pipeline registers had been added, the wiring had to be verified to ensure correctness in the connections
between block levels. Furthermore, because we were trying to fully verify the core, we wanted more than
just manually written test cases to test a larger design space than would be possible by writing test cases
manually. To this end, we created a random test case generator and a software simulator to be able to more
fully test the core. The reasoning behind a random test case generator is that it would be able to create
many more combinations of test patterns than would be possible with directed testing of the core and thus
provide greater coverage of the entire design space. A deception of how the random test case generator and
the software simulator worked to identify errors in the design is described in Sections 4.5.2 and 4.5.3.

Coverage describes how much of the design has been tested by the test cases that have been run on that
design space. VCS, a Verilog compiler and simulator, provides a tool that gives coverage metrics based on
different criteria including lines of code touched by the test bench, as well as conditional paths taken among
others. For a full reference on how to use the coverage tool as well as for a more in depth description of what
criteria are included in coverage, please see Appendix F. It should be noted that coverage metrics should
only be run when the design is known to be almost completely correct as coverage numbers are irrelevant if
the design is not correct. The coverage tool allows us to see what has not been covered by the test case and
run tests to more fully verify the core.

One other aspect of verifying the full core was testing the scan chain. This is an extremely important
part of the verification effort as the scan chain will be the primary tool used to debug our processor once
it comes back from fabrication. To test the scan chain, we first had to determine the number of bits in the
chain as well as their ordering; this is described in Appendix E. The test bench then consisted of allowing a
certain test pattern to run on the processor, halting the processor using a break instruction, reading out the
scan chain to ensure that it matches the expected scan pattern, and then re-writing the scan pattern back
into the processor and restarting normal operation.

The final stage of verification will be completed after the chip comes back from fabrication. This last
phase is to test that when the chip returns from fabrication, it functions as in simulation. In this stage, we
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will be making extensive use of the scan chain to ensure correct behavior within the chip. Work remains
to be completed for this stage however. Comprehensive test patterns as well as their respective scan chain
values must be created so that we can confidently release the chip as fully functional. A FPGA will be
connected to the core to inject test patterns and can be used to ensure that the scan chain has correct values
at certain times within the test (see Section 7.1).

4.5.2 Simulator

As described in Section 4.5.1, we wanted to be able to run random test cases on our RTL. In order to be
able to tell if they ran correctly or not, we need to have a reference design to compare the results to. The
reference design we used was a software simulator of our ISA written in Python. It took a binary input file,
and could be run in batch mode to log its results for comparison to the RTL implementation, or in interactive
mode to be able to better debug the program. Also, since the GNU assembler port by the software team
took longer than expected, a simple assembler was written in Python which only did simply mnemonic to
binary conversions to use with our simulator.

The simulator works by using the given binary file as the instruction memory. The current position in
the file is used as the PC. It automatically increments every time the program reads a word, so it only
needs to be modified on jumps and branches by seeking to the appropriate section of the file. Decoding is
done by checking the opcode against lists for each instruction format, than breaking up the instruction into
sections based on which format the opcode specifies the instruction as. The instruction is then executed by
performing the specified operation. This step combines the ALU, MEM and WB stage into one step.

All opcodes are defined as constants in a separate file, along with a list of which opcodes are in each
format. There is also a list of instructions and their formats for the assembler to be able to parse the
assembly files. This file should make it easy to expand the simulator and assembler tools for changes and
enhancements to the ISA to be made in the future (see Section 7).

The simulator includes debugging features in order to help find bugs when the outputs from the software
simulator and RTL implementation differ. These include the ability to have each instruction printed out
in mnemonic form when it is run, including the values that are in the registers being used at the time of
execution. This helps to watch the control and data flow of the program. There is also an interactive prompt
that appears when a break instruction is encountered. The program has commands for reading and writing
to both registers and memory, step through the program, and to restart or resume the program.

The simulator was indispensable during debugging, but could use some improvements. If it could output
a trace of instructions in an identical format to Verilog, it would be much easier to compare their instruction
traces with diff to find where errors occur. It is also important to remember that the simulator is not
guaranteed to be correct, and sometimes the bug was in the simulator and not the RTL.

4.5.3 Random Test Code Generator

In order to run random test cases we needed a way to generate them. A random test case generator was
written in Python in order to accomplish this. It does this by organizing the different instructions by types,
and randomly chooses a type with a certain percentage, than randomly chooses an instruction from a list
of that type. Their are many adjustable parameters including the percentages of different instructions,
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minimum and maximum values for loop iterations and immediate values, and max control flow nesting
among others.

The program begins by initializing all of the registers to random values. It then decides if the program
will contain a function, and generates them with special rules to ensure the test case is sane. It then
begins to loop through and randomly decide what to do next. Data instructions randomly choose a data
instruction with random operands. However, data dependencies are kept track of in order to reduce values
being overwritten before they are consumed to maximize the chance of incorrect operation manifesting itself
in the final register values. Memory instructions are generated similarly, with the generator trying to store
to addresses before it loads from them. Due to the dynamic instruction trace, this is not always guaranteed.
Therefore, data memory needs to be assumed to be initialized to zeros in order for test cases to be guaranteed
to match from the RTL to software simulator cases.

There are also control flow statements. In order to avoid infinite loops and other unwanted code con-
structs, all control flow is in the form of for loops, if statements and function calls. For loops have a random
number of iterations and care is taken not to clobber the loop register to avoid infinite loops. If statements
have random tests, including comparing two values and comparing values against zero. The if statement
also has a random chance of having an else clause or not. The nesting of these control flow structures is
kept track of by the generator and control flow structures are randomly ended, making for varying levels of
nesting and varying lengths of the clauses in control flow structures.

There are also function calls if a function is generated for the test case. Loop indices are saved to
memory before the call and restored afterward to avoid clobbering the loop registers. Nested function calls
and recursive function calls are disallowed in order to avoid infinite recursion and to avoid dealing with stack
semantics. Nothing is pushed or popped from the stack, the return address is simply kept safe in register
seven and all values are treated as global.

Ending the program is another random choice. This allows for programs of varying length. If it ends
the program while control flow structures are still open it first ends all of them, then ends the program. All
programs end with a break in order for our simulators to detect a correct program termination and to assist
in debugging.

4.6 Synthesis Tools

To fabricate the chip, the Big Red Chip project synthesized the high level Verilog into a gate level standard
cell equivalent, and then used automated place and route tools to assist in generating a layout. The standard
cells libraries, IO Pad libraries, wire technology, and memory generators are all licensed from ARM for the
IBM 130nm 8RF process. The fabrication was scheduled for a May 12th tapeout, creating a tight schedule
to achieve in one year. Three primary software tools were used to assist in meeting this deadline: VCS Verilog
compiler, the Synopsys DesignVision synthesis tool, and the Cadence Encounter backend tool for place and
route. A full, independent user’s guide is written based on the design experience, and selected excerpts are
available in Sections 8 and 9.

The Synopsys DesignVision tool synthesized the BRC high level Verilog, producing logically equivalent
standard cell Verilog. Using the provided technology files, the design constraints that we provided, and
custom scripts written by the BRC team, gate level Verilog produced not only met our initial goals of
100MHz but additionally met all hold timing. Several changes to the Verilog were necessary so that the
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code could be synthesized, but more importantly the timing reports generated by DesignVision revealed the
critical paths in the design. These critical paths required several major design changes, but all were either
eventually solved or proved to be false. Cadence Encounter takes the gate Verilog and allows the designer to
place and route the design. The tool supports both automated flow and custom routing, including support for
not only standard cell placement but other design concerns such as power rails, pad IOs, the clock network,
and fixing DRC violations. The results of this synthesis are documented in Section 6.3.

4.7 Toolchain

The toolchain supports generation of code in both little and big endian formats. By default, code is generated
for a big endian machine.

4.7.1 GNU Binutils

GNU Binutils is a collection of binary tools. The main ones are:

• as - the GNU assembler

• ld - the GNU linker

• objdump - Displays information from object files

• objcopy - Copies and translates object files

• readelf - Displays information from any ELF format object file

The process of porting binutils involved porting BFD (Binary File Descriptor), Opcodes (the new ISA), GAS
(GNU Assembler) and LD (Linker). The other binary tools make use of these tools and hence were also
ported in the process.

• BFD
BFD allows low-level manipulation of the object files created. The first task was to decide on the
underlying object file representation. Of the available options, the final decision had to be made
between COFF (Common Object File Format) and ELF (Executable and Linking Format). We chose
ELF because it is more flexible in representing object files and is the object file representation used on
all Linux machines. ELF also has better support for dynamic libraries. This feature is not required
now, but may be useful in the future. Relocation support was also added to BFD. The relocations
defined for our architecture are:

– R BRC 16 IMM5
16-bit absolute relocation for instructions which have a 5 bit immediate field.

– R BRC 16 JMP
16-bit absolute relocation for jump instructions.

– R BRC 16 PCREL
16-bit PC relative relocation for branch instructions.
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Name Usage
%0 Argument word / Return value
%1 Argument word
%2 Local register variable
%3 Local register variable
%4 Local register variable
%5 Frame Pointer
%6 Stack Pointer
%7 Return address

Table 3: Register Usage

– R BRC 32
Standard 32 bit absolute relocation.

– R BRC 16
Standard 16-bit absolute relocation.

• Opcodes
Opcodes contains the ISA for our processor. To ease the development effort for opcodes, CGEN (the
CPU tools GENerator) was used. CGEN specifies a description language for describing the architecture
and organization of the CPU without reference to any particular application.

• GAS
The next step in porting binutils was to port GAS. To ease the programmers job of writing assembly,
we provide an “autoextend” feature. With this feature enabled, the programmer no longer has to
explicitly code an extend instruction. Whenever the assembler finds an immediate which does not fit
in the instructions immediate field, the assembler produces an extend instruction. This feature can be
enabled by writing the directive .set autoextend in the assembly file. Similarly, this feature can be
disabled by writing the directive .set noautoextend in the assembly file. This feature is enabled by
default.

• LD
The next step was to port LD. We provide LD with the layout of the final executable file that is
generated. The linker sets the routine named startup as the entry point for the executable.

4.7.2 GCC

• Register Usage
Table 3 shows the register usage.

All registers are global and visible to both the calling and called function. Register %4 is a caller saved
register i.e. if the register value is needed after the call then the calling function should preserve the
register before making the call. All the other registers belong to the called function.

• Stack Frame
Figure 4 shows the stack frame organization.
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Figure 4: Stack frame layout

Some key points about the stack frame are :

– The stack is word aligned. This is a software convention even though the architecture does not
require any alignment of the stack. This may lead to increasing the argument’s size to make is a
multiple of words by padding it.

– Argument words are pushed onto the stack in reverse order (that is, the rightmost argument
in C call syntax is pushed first and hence has the highest address), preserving the stack’s word
alignment. Incoming arguments reside in the stack frame of the caller.

With all the aforementioned architectural restrictions made to suit our requirements, considerable effort
needed to be put in to the compiler to work around them.

• No indexed addressing mode.

• Limited branch instructions - the architecture only has bgez, bltz, bnz and bz. All other branches
need to be emulated using these branch instructions.

• No jalr instruction.

• Software emulation for multiplication and division.

• Software emulation for floating point arithmetic.

4.7.3 Newlib

Newlib provides the C and Math libraries for use on our embedded system. Porting newlib involved providing
definitions of machine-dependent details like the endianness and implementation of setjmp and longjmp.
Newlib also contains a package called libgloss. Libgloss is a library that provides the startup code and stubs
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for all system calls that are needed by the libraries. As of now, these stubs are written to return success for
most of the system calls. This allows us to write any code in a higher language and it will work correctly.
Once we have some kind of debugging mechanism in place on our board like a serial interface or Ethernet,
we can replace these stubs with code which can talk over them.
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5 Software GPS on the Big Red Chip

“Simplicity is the final achievement.”
— Frederic Chopin

5.1 Signal Acquisition and Tracking

5.1.1 Correlation Computations

Despite having special functional units to optimize the architecture for GPS, the bulk of the computation
necessary to acquire and track satellites will be performed in software. Although control adds a significant
amount of complexity, the primary task of the CPU will be to continually compute correlations between the
incoming data and a locally generated copy. The processor must find separate correlations for each satellite
at the same rate at which data is input to the system. For this reason, it is these computations which set the
minimum requirements on performance, and the goal of all optimizations is to make this process as efficient
as possible.

The incoming GPS signal will the product of a pseudo-random noise signal (the Gold code), the carrier
frequency, and the data bits. To extract the data bits the signal must be multiplied by local copies of the
frequency and properly aligned Gold code. In figure 5, one can see visually how the GPS signal is modulated
with the code and carrier frequency.

The accumulated value of the multiplication of these three signals provides the correlation. In a typical
software radio, this would be done using a fast multiply-accumulate instruction. This approach is costly from
a power standpoint and not feasible at all without a fast multiplier which would likely require a full-custom
design. Instead, the BRC system will incorporate the work of Cornell’s Professors Mark Psiaki and Paul
Kintner, who developed a bitwise method for computing GPS correlation[5].

Under this bitwise method, incoming signals that have been quantized to a single bit can be correlated
to a local copy in a bit-wise manner with exclusive-or (XOR) operations instead of multiplies. For a general-
purpose CPU, this is a very significant savings in speed as well as power. Following the XOR operation the
sum of the number of zeros less the number of ones represents the correlation of the signal. To facilitate
these sums the BRC includes one additional special instruction, a population count.

As will be discussed in detail in the ADC section 5.2, the BRC system is capable of removing the Doppler

Figure 5: Modulation of a GPS data bit with the Gold Code and carrier frequency[2]
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shift of a given signal in hardware. Normalizing all of the inputs to the center frequency provides additional
benefits when included in the bitwise scheme for computing computations. Because all correlations will
take place against the same frequency, the sample rate of the Gold code sequence will be constant. With
a properly chosen input sample rate, this allows each chip (each bit of the Gold Code is referred to as a
”chip” because it carries no data) of the code to become a constant length frame over which the correlations
are performed. Since the Gold Code sequence chipping rate is a constant at a given carrier frequency, the
sample rate becomes: fsample = b ∗ fchip

In this equation b represents the number of bits per write in the ADC system. The BRC system data
input system writes to the ADC memories in eight bit words, as this length allows for efficient byte-length
loads and provides the required Doppler frequency resolution. From this equation our sample frequency
becomes 8.184MHz. Note that this frequency provides sufficient over-sampling given that the maximum
information carrying frequency should be approximately 3MHz.

To better illustrate exactly how the correlations are computed using bitwise methods and incorporating
our special purpose instructions we have included an appendix with in-line assembly code written for the
BRC architecture that performs GPS correlations. Refer to Section G after reading the portions of the
document describing the functionality of the special purpose instructions.

5.1.2 Algorithmic Control Loops

Without any prior information, the system will have no initial knowledge about which satellites are in view
or how quickly they are moving. This means that the carrier frequency can have a Doppler shift anywhere
within +/-5kHz of the center frequency (for our purposes). In addition, the processor will not know the
starting time for the coarse acquisition code of those satellites that are in view. The process of acquisition
involves searching all possible frequency and gold code start times until detecting a spike in correlation,
indicating a recovered signal. Figure 6 illustrates the result of such a search.

Following acquisition, the GPS system must continue to perform correlation computations to ensure that
the phase of the coarse acquisition (C/A) code or the Doppler frequency do not drift far enough that the
signal is lost. This can be performed using a delay locked loop that requires correlations from early, late,
and prompt versions of the C/A code (C/A stands for coarse acquisition and is another term that refers to
the Gold Code or PRN code). These three versions of the C/A code are deliberately shifted because the
correlation falls linearly with time offset from the peak. By monitoring the difference between the correlation
values for the early and late versions of the code the algorithm can compute an accurate code start time for
the next iteration.

In addition to correlations required on shifted versions of the PRN code, computations must also be
performed on both in-phase and quadrature representations of the local frequency. The GPS system im-
plemented on the BRC is a non-coherent delay locked loop, meaning that the local intermediate frequency
representation does not need to be aligned with the signal carrier. Instead, correlations are performed on

Instruction Function
POPC rd, rs GPR[rd]← pop count(GPR[rs])

Table 4: Format for Population Count Instruction
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Figure 6: Result of an acquisition search with spike indicating satellite in view[2]

two local frequency copies that are 90 degrees out of phase. Using these two correlations, the real value for
correlation can be found using a Pythagorean identity.

(Correlation)2 = (CorrelationInPhase)2 + (CorrelationQuadrature)2 (1)

For these reasons all data pulled from the ADC must go through six sets of correlations for each satellite
currently being tracked: in-phase and quadrature computations on early, prompt, and late code shifts. We
have included a block diagram of the computation and control that must operate continuously in real time
in figure 7. Although we have not yet tested this optimization, one should note that it should be possible to
track the satellites using only the early and late code-shifted correlations. This optimization would remove
a third of the instructions required in the critical inner correlation loop of the algorithm but would reduce
the sensitivity of the system because early and late correlations will be significantly lower than the prompt
version.

Although figure 7 shows that the GPS algorithm is a complex system, the control will only execute after
correlating with a minimum of one full Gold Code sequence. Each Gold Code sequence is 1023 chips in
length, meaning that many correlations will take place between each subsequent control iteration. With
the common adage “Make the common case fast” in mind, the BRC system concentrates on making each
correlation as efficient as possible. This is the basis for our system including functional units to produce
the Gold Code sequences and remove Doppler shift in hardware while lacking a hardware multiply unit.
The following sections describe in detail the operation of these special units and how they enable increased
efficiency for the common case: computing correlations.
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Figure 7: Satellite tracking loop[2]

5.2 ADC Input System

5.2.1 Serial Input Buffering

The input to the BRC processor begins at the output of the RF front-end, which is an analog to digital
converter (ADC). The functionality of the fully custom designed front-end can be largely abstracted for the
purposes of the digital core. The important points are that the front-end will define an intermediate frequency
(IF) on which the GPS signal will be modulated. In addition, the ADC will quantize the input signal to a
single bit (two quantization levels) and sample at a frequency defined by the required functionality of the
BRC Doppler removal system. The IF is approximately 1.4MHz and the sampling frequency is 8.192MHz.

After crossing into the microprocessor, the output bit stream from the ADC will enter a chain of shift
registers. This shift register will be eight bits long, corresponding to the size of a byte (the smallest ad-
dressable data length) in the BRC architecture. Each of the eight registers will also have a corresponding
valid bit to indicate whether a given bit of data has been consumed by the processor. The structure of these
registers and the corresponding logic is illustrated in Figure 8.

For reasons relating to matching bit rates at various possible Doppler shift frequencies, the valid bits can
be reset corresponding to one of three options: first, all bits are set to zero indicating that all eight bits
have been consumed by the processor and one bit will be skipped; second, the first valid bit (corresponding
to data connected directly to the ADC output) remains one while all others are set to zero indicating that
all bits have been used and the register should continue normally; third, the second two valid bits remain
high indicating that only seven of the bits are actually being used and the last bit should be repeated. For
simplicity, all three options will return the full eight-bit word from the shift register.

The goal of using short or long reads is to be able to modulate the carrier frequency back to the interme-
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Figure 8: ADC input shift register structure

diate frequency in hardware. These reads serve as small corrections and their frequency will be a function
of the Doppler shift. In figure 9, frequency signals with positive and negative Doppler shifts are matched to
the local frequency copy using this technique.

Notice from the graphs in figure 9 that the short read has the effect of repeating an input bit while the
long read skips one. Although this results in a discontinuity, the aberration is small. Also, the Doppler shift
in these figures is large relative to the local frequency, resulting in a correction every second word. In the
real GPS system the Doppler shift is a much smaller percentage of the nominal carrier frequency and the
corrections will be much less frequent.

To use such a bit correction technique there must be a closed form equation relating the Doppler frequency
to the number of words per correction. The equation below describes the error time per bit as a function of
the sample period, intermediate frequency, and Doppler shifted carrier frequency.

δτ = Tsample

(
1− fIF

fIF + abs(fdop)

)
(2)

Using this equation, the number of words per correction W is defined in terms of the time at which the
accumulated error will be equal to one sample period. In the equation for the number of ADC input words
per correction, W, the quantity b is defined as the number of bits per word that that ADC input buffer will
write to the input data memories at a given time.

W =
Tsample

b ∗ δτ
(3)

With these equations for corrections as a function of Doppler frequency, software algorithms can compute
the number of unmodified words between each correction required to track a satellite at a given frequency.
Having computed this value, the BRC architecture uses a simple state machine to continually count down
towards the next correction. Figure 10 illustrates the implementation of this system.

In the Doppler control state machine, the highest-order valid bit from the input shift registers serves
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Figure 9: Inputs with negative (above) and positive (below) Doppler shifts are modulated to match the local
IF copy
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Figure 10: ADC frequency correction state machine

Instruction Function
ADCCNT rs, rt Rcnt[rt]← rs[11 : 0]

Table 5: Format for instruction to set Doppler counter registers

as the enable for the counter update. The CPU uses a special instruction to set the initial counter value;
the sign of this counter value will indicate whether the coming correction is a short or long read. Also, to
enable tracking of multiple satellites with varying Doppler shifts, the above state machine is replicated for
each satellite that the system is tracking. The format for the instruction used to set the correction counter
initialization registers (Doppler ctrl in the Figure 10) follows in Table 5.

Together, the input shift registers and the Doppler control state machine form the system which controls
writes from the ADC input to a satellite’s respective input memory. The system is designed such that the
frequency of writes can be controlled through the software algorithm with a minimal instructional overhead.
To complete the DMA system this write enable logic must be input to a system which can automatically
control the location of reads and writes. The top-level of the ADC system controls this functionality, as
described in the following section.

5.2.2 Direct Memory Access

With the Doppler normalization technique, the frequency at which the most significant valid bit is set high
will automatically change proportionally to the Doppler shift described in its frequency correction register.
Because this bit serves as the output enable, it is difficult to predict the exact times at which the output is
ready for each satellite tracked by the system. Instead, the proposed BRC system implements direct memory
access (DMA) into a reserved stack of memory for each satellite so that this process can be abstracted at
the CPU level.
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Figure 11: Structure of the ADC FIFOs

Instruction Function
ADCLD rd, rs GPR[rd]← FIFO[rs[7..0]]

Table 6: Format for ADC FIFO load instruction

The reserved ADC memories are structured as pointer-based first-in first-out (FIFO) memory stacks.
There are separate pointers indicating the location of the next write and read which point to the memory lo-
cations above the newest data or of the oldest data, respectively. Both of these pointers update automatically
following a read or write. Figure 11 illustrates the structure of the DMA memory.

Because the input from the ADC is continuous, the rate of reads and writes for each FIFO memory must
be equal on average. The size of the memory needs only to be large enough to provide buffering while the
CPU executes control loops and are therefore relatively small. The first revision of the BRC architecture
has 256 16-bit words per FIFO.

Each satellite that the BRC tracks has its own ADC memory. Since each satellite has a different Doppler
shift, the data written into each FIFO will be similar, but shifted such that its carrier is modulated back
to the intermediate frequency. Although this results in extra hardware, the software-level complexity of the
correlation computations will be greatly reduced. Because these correlations are the primary driver for the
minimum frequencies of operation, the area overhead for these memory structures should be more than paid
back in frequency reduction.

In many DMA systems, the largest challenge is ensuring that there will be no conflicts between separate
attempts to access the memory from both the CPU and ADC. The BRC system mitigates this risk by
creating each ADC memory as a separate and discrete structure rather than as software-defined segments of
main memory. These memories will be read-only with access through another special-purpose instruction.
The format for this instruction is provided in Table 6.

The format of this instruction is very similar to the register-indirect system that the BRC architecture
uses for standard loads. However, the important difference is that because the read pointer in each FIFO
determines the position of the read within the stack, the source register in this instruction need only determine
which ADC stack from which to retrieve data. From the point of view of the CPU, there is only a single
memory location for data from each satellite.
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Function Modifier FIFO selector
15..8 7..0

Table 7: Interpretation of RT and RS in ADC instructions

5.2.3 Corner Cases

During typical operation, the write and read pointers should never be equal. The exceptions to this case
occurs when the FIFO is empty or in the event of data loss. At initialization, the pointers are both set to
point to the lowest entry in the array. In this case, there will be no available data until the first write has
completed and the pointers are no longer the same. A similar situation will occur if the CPU has consumed
data faster than the ADC writes and emptied the FIFO buffer, but in this case the pointer values will not
necessarily be equal to zero. In this situation the ADC system will stall the CPU until the FIFO data
becomes valid and the instruction can complete. This method has the advantage of creating an automatic
mechanism by which the system frequency can be scaled down for power savings if the CPU runs ahead of
schedule. At the other end of the spectrum, if our system cannot keep up with the rate of incoming data, the
write pointer will wrap around until it passes the read pointer. At this point there has been data loss. Our
system deals with this problem through prevention. In the event that data loss does occur, the algorithm
should be robust enough to detect the failure and restart the acquisition process.

5.2.4 Special ADC Functions

When taking the GPS algorithm into account, it becomes clear that certain extra functions within the ADC
system can significantly increase the reliability of the system and reduce total power. For reliability, we have
included mechanisms to reset and read the values of the pointers. In addition, special instruction formats
can enable or disable individual FIFO systems. These special instructions are variants on the two ADC-
specific instructions adccnt and adcld which utilize the fact that the maximum values for the RS and RT
fields is significantly smaller than one byte, meaning that the top byte could be used to encode additional
information. The architecture uses the adccnt instruction for any special instruction which alters the state
of the ADC and the adcld instruction to read out any state. Table 7 indicates the byte-wise interpretation
of RS and RT for ADC instructions.

During the acquisition phase, if no satellite can be found at a given frequency the processor updates the
Doppler and continues to search. However, because the Doppler shift is effectively encoded in the input signal
as it is stored in the FIFO, significant changes to the Doppler frequency during acquisition will render any
data currently in that FIFO useless. To avoid loss in signal strength due to old data at an incorrect frequency
and to minimize the possibility of filling the FIFO during acquisition, the BRC architecture includes a variant
on the adccnt instruction that effectively clears a given FIFO. To avoid any timing issues with the write
pointer (which must be clocked based on the ADC sample clock) the read and write pointers are not set to
zero; instead, the read pointer is simply updated with whatever value is currently in the write pointer.

When the system tracks multiple satellites with different Doppler frequencies, the input buffer system
stores data corresponding to FIFO registers at different rates. Because a read stalls if there is no available
data, a näıve implementation could become rate-limited by the signal with the most negative Doppler
frequency. To avoid this problem we have included functionality to read the state of the pointers so that the
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Instruction Modifier Function
ADCCNT 8’h00 Rcnt[rs(7..0)]← rs(11..0)

8’h01 RdPtr[rt(7..0)]← WrPtr[rt(7..0)]
8’h02 adcEn[rt(7..0)]← ENABLE
8’h03 adcEn[rt(7..0)]← DISABLE

ADCLD 8’h00 GPR[rd]← FIFO[rs(7..0)]
8’h01 GPR[rd]← WrPtr[rs(7..0)]
8’h01 GPR[rd]← RdPtr[rs(7..0)]

Table 8: Summary of ADC instructions and modifiers

Unit Selection Phase
15..8 7..0

Table 9: Interpretation of RS in GC instructions

system can monitor the fill of each FIFO. Separate modifiers allow for the system to load the read pointer
and write pointer values into a CPU-level register.

The last set of functional modifiers allows the system to enable or disable individual ADC sub-systems
to manage power dissipation. While the current design only includes hardware to track the minimum of four
satellites, future designs may provide support for additional tracking to produce a more accurate navigation
solution. In this case, providing a software mechanism to disable and enable individual ADC functional units
will allow the GPS algorithm to trade power for accuracy.

In table 8 we have summarized the assembly-level ADC instructions along with the functional modifiers.

5.3 Gold Code Generation

The GPS system uses a code-division multiple-access (CDMA) protocol to enable signal transmissions from
multiple satellites to occupy the same frequency space. The codes used for consumer GPS are Gold codes
have a length of 1023 chips (each bit is referred to as a “chip” because it does not carry any information on
its own). Because our design is power and area constrained, storing the codes for each satellite in memory
is not an option. Instead, the BRC design includes four Gold code generation units that can each produce
the code for an individual satellite in real time. Although these generators can track only one satellite at a
time, each is capable of producing any Gold code. The diagram in Figure 12 describes the structure of an
individual gold code generator.

Each gold code generator stores its current phase selector bits. If the requested phase selection is different
from that stored, then a new Gold code has been requested and the shift registers will be reset to all ones
(the initialization for all GPS PRN codes). If the phase selection matches the current state the shift registers
will advance by one cycle and the returned value will be the next value in its sequence.

The instruction used to access the Gold code generators must provide a way to indicate the phase selection
and which state machine to access. To provide maximum flexibility and efficiency the state machine and
phase selection is encoded in a single value and stored in a source register. The encoding of that register is
described in Table 9.

Using one byte each for the two fields allows for easy loading of values into the fields and provides the
system with room to expand to a much larger number of possible codes. In the first revision of the BRC
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Figure 12: Structure of the Gold Code generation shift registers

Instruction Function
GC rd, rs GPR[rd]← 16gc[rs]

Table 10: Format for ADC FIFO load instruction

we only attempt to track the minimum number of satellites, so there are only four code generation units to
address. A code generation instruction returns only a single chip of the code. Each bit of the destination
register is then filled with that value. The format of the instruction and the result appears below in Table 10.

5.4 System Specifications

Because the microprocessor must minimally be able to perform the necessary correlation calculations de-
scribed in the flow chart in Figure 7 for each satellite that it is tracking, the following equation describes an
reasonable approximation of the required system clock frequency.

fclk ≥ N ∗ S ∗
(

fchip

floor(16/b)

)
(4)

In the above equation N represents the number of instructions per correlation computation for early
and late C/A codes both in-phase and quadrature, S represents the number of satellites currently being
tracked, b is the number of bits per word, and fclk is the minimum possible operating frequency for the
microprocessor. Assuming that S will be four (the minimum number of satellites necessary to produce a
navigation solution) and the number of bits per word will be eight, the clock frequency must be greater than
2MHz multiplied by the number of instructions necessary to perform a correlation.
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The number of instructions per correlation therefore becomes the most significant criterion in defining
the clock frequency and power output of the microprocessor. Preliminary assembly code written to perform
the correlations in the BRC system show that each iteration requires 35 operations. Using equation (4),
70MHz is the resulting estimate for the required clock frequency. However, since this does not take the
control overhead into consideration, the BRC team targeted a clock frequency of 100MHz. When testing
the final implementation the ultimate goal is to see a correlation plot similar to that displayed in Figure 6.
Even in the event that the final system is not capable of tracking four satellites simultaneously, seeing such
a correlation spike for any signal will be an indication of success.

49



6 Results

“I love deadlines. I like the whooshing sound they make when they fly by.”
— Douglas Adams

6.1 GPS Algorithm

Achieving the goal of a low-power GPS system based on a software baseband receiver required several unique
hardware systems. Of these, the system by which our ADC input system automatically removes the Doppler
frequency shift as inputs are buffered in memory is particularly novel. Because these designs are based on
new ideas they required testing to ensure that the theoretical system would work in reality. Unfortunately,
testing for these systems at the hardware level is difficult because the design depends on the specifications of
the custom RF front-end which has not yet been implemented. Instead, the BRC GPS system was verified at
the algorithmic level using software simulation in MatLab. The MatLab platform allowed the team to create
simulated inputs at the proper intermediate frequency and sampling rate. Using these inputs we developed
a software algorithm that could be easily ported to a BRC compilable C format. In addition, the software
system simulated the functionality of our special-purpose GPS functional units to ensure that the Gold Code
system could be used in conjunction with the ADC Doppler removal state machine to allow highly efficient
correlation computations.

Although we received initial assistance from the GPS research group in developing our software algo-
rithms, ultimately we were forced to develop our own MatLab system because our algorithm needed to
incorporate a structure capable of real-time tracking to accurately model the BRC system and allow for easy
code conversion. The real-time algorithm that we developed using MatLab automatically time-shares the
processor resources by continuously cycling through each of the satellites that system is currently tracking or
attempting to acquire. When a given signal has been correlated against a full iteration of its pseudo-random
noise (PRN) code the algorithm runs an iteration of the control loops. The control will be an iteration of
the tracking loop if the signal has been previously acquired, otherwise the system check for acquisition. The
pseudo-code displayed in figure 13 represents the basic structure of the BRC real-time GPS system.

The MatLab system mimics our proposed hardware system as closely as possible. The code uses a counter
value similar to the Doppler correction register to determine the frequency of single-bit corrections and the
Gold Code is never resampled. All correlation computations are simply a vector sum of a bit-wise multiply
operation, which is a direct analog of the XOR-POPC instructions that compute correlations in hardware.
After some learning - most notably discovering that the value of the Doppler counter must be set by rounding
the computed value the the next higher integer - the algorithm was successfully able to acquire and track
signals generated to represent those found an incoming GPS bit-stream.

Acquisition of signals typically occurs at approximately 150kHz Doppler shift away from the precise
value. Following acquisition, the tracking algorithm is capable of pulling in towards the exact Doppler shift
in successive iterations. Since our technique for Doppler shift correction requires more corrections at larger
magnitude frequency shifts, the possibility of decreased signal correlation at the ends of the spectrum was
a significant concern prior to algorithmic simulations. However, simulations showed very little loss at all
Doppler frequencies so this is no longer expected to be an issue. In figure 14 we have shown the correlation
output of our GPS algorithm at different code shifts (the graph is generated by setting the acquisition
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INITIALIZE;
always
foreach( satellite )
//Repeat for in-phase and quadrature on
// early, prompt, and late goldCodes
correlation = goldCode ^ signalIn ^ localIF
if( chipNum[satellite] == codeLength )
if ( acquired[satellite] )
tracking_iteration( satellite )

else
acquisition_iteration( satellite )

end
end

end
end

Figure 13: Pseudo code detailing the real-time GPS algorithm for use on the BRC system

threshold impossibly high - else the algorithm would not have continued to change the code shift). Note that
the ascent towards the correlation peak is linear and that magnitude is near the maximum possible value of
8192.

Having obtained results indicating that our system architecture was valid we began the process of con-
verting the MatLab algorithm to C, which could be compiled into BRC assembly language by our custom
port of the GCC compiler. For this code, the control loops are written using standard C constructs. The
correlations, however, must be implemented using the special instructions implemented for this revision of
the BRC architecture. Because the compiler does not support these instruction the correlation portions of
the final GPS code are written in in-line assembly. Because these computations dominate the performance
of the algorithm this portion of code would likely have been written in assembly regardless.

Although the C code necessary for running GPS on the BRC processor has been written, it remains
untested. Finalizing this code and testing it on the fabricated core will be one of the largest tasks left to
future BRC teams.

6.2 Timing Fixes

After writing and fixing our RTL for functional correctness, we began to synthesize it for timing. The design
failed to meet the timing goals we gave it, which was our target frequency goal of 100MHz. DesignVision
reports the timing paths and how much they missed or made timing by. By reviewing failed paths, they can
either be marked as false paths if they are guaranteed not to occur or design changes can be made in order
to fix the critical paths. This section describes the design changes that needed to be made in order for the
critical paths to pass timing.

The first time fix involved the path from write back through the register file to the branch compare unit.
The register file was updated on the negative edge of the clock; if a branch was in RD and needed a value
currently being written back, it would only have a half cycle to compare and compute the new PC. This was
not enough time. However, the write back logic is actually faster than half a clock cycle, so it arrives at the
RD early. By allowing the RD to use this information early, we could eliminate this path. By having the
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Figure 14: Correlation at various code shift offsets generated using the BRC real-time algorithm

RD check if the current input is being written to the register the branch wants to check, it can calculate the
correct value before it is actually written back to the register file.

The next fix relied heavily on our the bypass path we created around the registers that we created. This
problem was in the first half of the cycle. The stall signal from the ADC could not reach the register file
in half a cycle. After our previous fix, the only timing path after the half cycle for the register file was the
decoded value directly to the pipeline register. As there was no logic to be performed, we decided it would
be possible to shift the register file write to later in the cycle, in order to give the stall signal more time. In
order to do this we generated a quarter phase clock in the clock state machine. The stall signal now had
75% of a cycle instead of only a half cycle, which was enough for it to make timing.

The last major timing fix involved the gold code and ADC units. When they consumed a value produced
by the immediately preceding instruction, the value would be bypassed to them. However, since these units
use the negative edge of the clock internally, this meant that there was now a path through write back,
through the bypass logic, and into the gold code or ADC unit in only half a cycle. Since this path failed
timing, we decided to not allow data forwarding to these two units. Instead, we stalled any gold code or
ADC instruction that had a data dependency on the previous instruction. These instructions will normally
be used in assembly code where it should be possible to write code that will avoid having to stall, making
this trade off worth while.

6.3 Synthesis

Our goal to produce full GDSII in the IBM 130nm process was successful. Synthesis of the Big Red Chip
processor successfully compiled with no DRC or hold violations, and is expected to be able to run at 50MHz.
Our original goals were to achieve a 100MHz frequency to be able to track multiple satellites, but the
Encounter backend reported unfixable timing paths that will force the chip to run at a slower frequency.
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Results from the gate level compilation in DesignVision suggested that our timing goals would be met, but
these were made with only rough wire model estimates.

Real results from the back end include:

Standard Cells, Macros, IO Pads Placed As shown in Figure 15, all modules were successfully placed
in a logical fashion. The memory systems are close to one another, but still have some spacing to allow
routing near them.

Power Grid Synthesized The power grid is shown in Figure 17, displaying not only the power ring around
the core and stripes to distribute this evenly over the core, but the standard cell power lines as well.

IR Drop acceptable Figure 18 confirms that our IR drop is acceptable: all cells indicate that there is less
then a .1V drop to any standard cell in the design.

Clock Synthesized The clock distribution network, as seen in Figure 16 is split fairly evenly over the chip,
and although automatically distributed, a natural H-tree configuration is readily apparent.

Design Routed The final picture of the chip, routed and with all DRC fixes is shown in Figure 19. There
are no overly congested wire paths, but wire distance along with aggressive cycle times with the quarter
clock do not allow for the desired timing to be met.

DRC Clean All geometry violations, process antenna violations, and metal density violations were cor-
rected either automatically using the Encounter tool or by custom routing.

Hold Timing Clean Hold timing violations, which affect the functionality of the processor regardless of
the clock speed, were corrected by inserting buffer or delay cells while minimizing their effect on setup
timing. There were no hold timing violations in the final GSDII.

Setup Timing Setup timing was not fully fixed. Several paths were declared as false, but until the final
chip returns the fastest that the processor will predictably run at is 50Mhz.
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Figure 15: Standard Cells, Macros, IO Pads placed

Figure 16: Clock Tree Synthesized
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Figure 17: Chip with Power Grid

Figure 18: IR Drop across the chip
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Figure 19: Chip, Fully Routed, Final Synthesis
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7 Future Work

“As for the Future, your task is not to foresee, but to enable it.”
— Antoine de Saint-Exupery

7.1 Post-Silicon Verification

As stated in the verification methodology section, there remains a significant amount of work to be done
on the chip once it comes back from fabrication. This will be the biggest priority of next year’s team, as
we hope to deliver a working chip to another project group as soon as possible. The verification effort will
require implementing an FPGA-based system to load/read the memories and read/write the scan chains.
Ideally, it could also enable dynamic debugging, allowing the user to see the state of the system at all times
as the chip steps through the program. This project would probably require some knowledge of scan chain
fault analysis as well (stuck-at faults, etc). In addition to the FPGA-based system, we will also require a
test suite that will be able to test for register to register faults within the processor. This will require the
team to write a test case, halt the processor at a fault, know the expected values in the scan and compare
them to actual values. A script may need to be written to generate the expected values in the scan chain as
instructions are run through the core.

Another area that requires attention is working toward complete coverage of the design. On our current
design, we achieved approximately 85% line coverage, with much smaller coverage percentages on all other
metrics. This was due, in part, to different top level test benches whose coverage metrics could not be
combined, as well as not having the time to write directed test cases to increase coverage at the end of the
year. While we are confident that our processor will be shipping without functional errors due to our random
test cases, without coverage metrics to confirm this, we cannot be completely sure. Therefore, on the next
design iteration, we feel that a strong emphasis should be placed on verifying the chip such that we can have
close to 100% coverage in all metrics.

7.2 Architecture

In the future, an expansion of the existing ALU operations to include instructions which were not fully
implemented in this iteration of the processor would be excellent functionality to add into BRC. These
instructions are currently reserved and unused and include the more complicated mult and div, along with
corresponding multu, divu, mfhi and mflo. Currently, mfhi and mflo along with HI and LO registers are
not implemented, and mult and div are unrolled to shifts and adds in software. A module that includes a
hardware multiply and divide would provide significant time-savings in arithmetic-intensive programs.

Additionally, one of the largest drawbacks we suffer from in a 16-bit architecture is the limitation to
only eight registers. It would be useful to increase this number: even sixteen registers would afford a great
deal more flexibility. One solution to this would be to have multiple sets of eight registers and be able to
switch between them at the compiler level using interrupts or context switching. A second solution, though
requiring more fundamental changes, may be to amend the ISA to include instructions with four or five-bit
register fields, allowing an instruction to access 16 or 32 registers instead of the current eight.

Building off of this last idea, interrupts are not implemented in the current processor, but having that
functionality would allow for much more flexibility. Having interrupts implemented could let BRC evolve
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from a simple embedded processor to one that is both low-power and general purpose. Whether it is a simple
timer-based interrupt or a fully asynchronous and driven from outside the core, this added functionality would
make our core far more robust.

Finally, from an architectural standpoint, more aggressive efforts can be made to reduce power. While
the overall, high-level design choices were made to conserve as much power as possible, there is still a good
deal of power optimization at the implementation level, especially when considering enable logic and clock
gating.

7.3 Circuit Design

Another task that remains for future generations of the Big Red Chip is to fully integrate the entire GPS
system onto the chip. Right now, the ADC module only processes the data coming in from an off-chip ADC,
it does not actually include one of its own. Designing a custom ADC in whichever process we are working
in, to be included on-chip is task that remains unfulfilled.

Additionally, the possibility of migrating to a smaller technology size, such as 90nm from our current
130nm, is intriguing. This would require designing and characterizing a new, complete standard cell library
as well as the memories for the caches. If this is a task that future teams choose to take on, there would
need to be a group of experienced people working on it.

7.4 Software

Finally, in addition to the work that needs to be done in hardware, the software could also be optimized.
The GCC compiler has been completed, but the focus has been purely on making it functional as quickly as
possible in order to begin testing, instead of on optimizations that could have been done. Similarly, all of
the time-critical and ADC-related portions of the embedded code are written in assembly, but could also be
further optimized. Both of these tasks are important, because as the instruction count of the program goes
down, more time can be spent tracking additional satellites.
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8 DesignVision User Guide

“We shall not fail or falter; we shall not weaken or tire. Neither the sudden shock of battle nor
the long-drawn trials of vigilance and exertion will wear us down. Give us the tools and we will
finish the job. ”
— Sir Winston Churchill

8.1 Before You Begin

Synopsys DesignVision is a software tool to convert high level Verilog RTL to gate level equivalent. The
tool can handle many design constraints, from timing restrictions to power constraints to wire load models.
Before starting, consider reading any relevant sections in the Encounter section, including if the design will
have power or IO pads, as these will require changes to Verilog. The following files are necessary, and will
either be provided by the designer’s Verilog, technology vendor or from a memory generators:

• High Level Verilog RTL

• Technology Libraries (.db)

– Timing Libraries for both standard cells, macros

– Wiring models (Data may be contained in timing libraries)

• Symbol Libraries (.sdb)

8.2 Finding Help

DesignVision provides two primary sources of help for the user. The GUI window has a link to ”Online
Help,” providing a complete GUI option. For more experienced users, or for anyone unsatisfied by the GUI
support, help can be obtained from the command prompt by issuing help to find a listing of commands, and
man COMMAND to find out more about a particular command. Any command will be recorded in command.log,
including GUI commands, so this file can be referenced to find the command prompt equivalent to any GUI
operation.

8.3 Setup

8.3.1 Setup Libraries

After starting DesignVision, the first task the user must accomplish is to define the technology libraries,
as described in section 8.1. The target libraries and link libraries are the same for the purposes of this
document, and the designer should use the same .db files for both. If only the .lib is provided, DesignVision
can convert this file to .db using the following steps:

• From the DesignVision terminal:

• read lib LIBRARY.lib
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• write lib -format db USERLIB

NOTE: After using the read lib command, DesignVision will output some text saying it was successful.
In this text it will say what the internal name of the library that it read it is (usually matches the
name of the .lib, but not alway). Use this name as USERLIB.

Once all .db files are prepared, they can be read in using the following method:

• GUI:

– Menu:File-Setup

– Click “...” next to Link Libraries

– Remove previously defined libraries (.db)

– Add user’s libraries for timing, wire models, etc. All models must be included here. Exit.

– Repeat the steps for Link Libraries for the Target Libraries.

– Add user’s Symbol libraries (.sdb) in the same fashion.

• Command Prompt:

– set link library { LIBRARIES.DB }

– set target library { LIBRARIES.DB }

– set symbol library { SYMBOLS.SDB }

For more advanced users, a .Synopsys dc.setup file can be included in the run directory with the terminal
commands listed above. By default, dv reads one from the install directory if none is defined. We chose
to modify the install directory file, but if multiple users share the same install with differing technologies,
personal setup files are recommended.

8.3.2 Importing Design

When the libraries are setup the user is then ready to import the design. If the Verilog contains hierarchy
(likely), then they are recommended to use the Analyze, Elaborate flow; if there is no hierarchy in the
design then the user may use the GUI Menu-Read command directly. User’s with hierarchy in their design
must remove any include *.v in their Verilog that can instantiate a module, as this will cause multiple
instantiations at this step and are likely to cause show stopping errors.

In order to run timing analysis, the wire load must be defined as well, combined in the steps below.
There is likely to be a choice of wire load models, ranging from most optimistic to most pessimistic. Refer
to the .lib technology file that the .db was generated from to see the exact RC estimates the tool will use.
Choosing pessimistic wire load models will cause the timing to skew towards fixing setup timing, while
choosing optimistic timing will cause the timing to do a better job fixing hold timing. These wire models are
only estimations of what the back-end Encounter tool will actually calculate as the RC delays, but wisely
choosing early on can save headaches later. Wire load models may be later extracted from Encounter to give
a more realistic estimate.

• GUI:
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– Menu:File-Analyze

– Add all Verilog files, including all levels of hierarchy.

– Note the Work Library, this will be necessary for Elaborate

– Menu:File-Elaborate

– Choose the Work Library defined in the Analyze step

– Choose the top level module in the Design drop down selection, click OK

– Menu:Attributes-Operating Environment-Wire Load

– Choose the appropriate wire model (they are listed from most optimistic to most pessimistic)

• Command Prompt:

– analyze -library WORK -format Verilog { VERILOG.v }
NOTE: WORK can be any name here, but keep it consistent with the elaborate step

– elaborate TOP MODULE -architecture Verilog -library WORK

NOTE: TOP MODULE is the name of the user’s top level module

– set wire load model -name NAME -library LIBRARY

8.3.3 Clocks & False Paths

To run timing based compilation, the clocks must be defined so that the tool knows which cycle time to
optimize to. Aggressive designs may choose to define a lower period so that even if DesignVision cannot
compile to a clock cycle, it may be stretched so that it increases iteration and effort. There are two types of
clocks: port level clocks and derived clocks. Many designs will not have derived clocks, clocks that are the
result of clock gating and must go through combinational logic, but the steps to address them are included
as well.

• GUI

– In the GUI, a logical hierarchy window will have appeared. This window is a design browser, and
for now find the top most module and click on it.

– Next to the tree structure of hierarchy is another frame with a drop down menu. Select pins/ports.

– Select the clock net with the mouse.

– Menu:Attributes-Specify Clock

– In the window that pops up, name the clock, define a period (in nS) and two edges.

– Repeat for all clocks in the design.

• Command Prompt:

– create clock -name "CLOCK NAME" -period PERIOD -waveform { EDGES } { CLOCK PIN }
NOTE: This command will match a CLOCK PIN to a clock with a PERIOD and two EDGES
(rising and falling), this is considered a ”root” clock
EX: create clock -name myclock -period 10 -waveform {0 5} { clkPIN }
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– create generated clock -name "CLOCK NAME" { GEN CLOCK PIN }
-source CLOCK PIN -divide by NUMBER

NOTE: This command will match a GEN CLOCK PIN to a generated clock, whose source is
CLOCK PIN. The generated clock is slower by NUMBER in this case. Experiment with this
command for the desired value - we suggest using the most pessimistic period the clock will see
for timing compilation. Additionally, we don’t believe that this is possible with the GUI.

While the clock provides a restrictions on the design to meet timing, not all paths analyzed are truly
critical paths. If the designer has defined the ISA such that a particular scenario will never occur, but could
still possibly happen in the Verilog, this is considered a false path. Even just the designers understanding of
the Verilog may justify such false paths - impossible race conditions. With each false path, the designer must
think very critically on whether they might mask a true timing path and take a similar level of precaution as
a surgeon might. If the designer knows there are false paths in the design, however, they can remove these
from consideration by taking the following steps: (NOTE that this may require at least one compilation of
the design for the tool to recognize the paths)

• GUI

– See the Clock section above on how to select a pin or port using the GUI.

– Select up to two pins that are on the critical path: the D-Q clock on the path and the destination
register D pin. Use the CTRL or SHIFT buttons to select multiple pins. If the pins are in different
blocks, a new hierarchy window can be opened with Menu:Hierarchy-New Logical Hierarchy View.

– Menu:Attributes-Optimization Constraints-Timing Constraints

– In the pop-up box the nets selected will appear divided into two sections. Arrange the nets into
the two sections appropriately using the GUI buttons. The Reset Paths check box can be checked
here if overwriting a previous false paths.

– For multiple false paths in the design, the previous steps can be repeated.

• Command Prompt:

– set false path -setup -reset path -to { REG INPUT PIN }
-through { NET } -from { CLOCK PIN }
NOTE: -to, -through, and -from restrict the possible paths, but a user can define anywhere from
one restriction to all three restriction. We commonly used two restrictions.
NOTE: A false path can be a false setup and / or hold path. Replace -setup with -hold for hold
paths.
NOTE: This command will accept wild cards * if there is regularity with the false paths (such as
an array of flops)

8.4 Compilation

At this point, the designer is almost ready to compile the design. Before this can be done however, the
designer is encouraged to run the Check Design script under Menu:Design-Check Design, analyze all warnings
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and fix all errors or violations. These errors and violations will appear in the terminal, with active links to
help debug. Checking the design may dictate design changes in the Verilog, as the synthesis tool is more
restrictive of what it’ll accept then the normal Verilog compiler. Once all synthesis errors are fixed, warnings
understood, and setup complete, compilation may be accomplished with the following steps:

• GUI

– Menu:Design-Compile Design

– Ensure Map Design, Exact Map are checked, along with the Fix design rules and optimize mapping
option.

– Choices for compilation are not all obvious, but high mapping effort is suggested for the best
timing results.

– Incremental mapping will allow the compiler to reiterate, improving over several passes instead
of abandoning it’s work. This option is also suggested, and may be required for some designs.

– Auto ungroup may be attractive, as it completely flattens the design for full optimization based on
either Area or Delay. Floorplanning in the Encounter flow and debugging the design will become
nearly impossible though, so use with caution.

• Command Prompt:

– compile -exact map -area effort none -power effort none

-map effort high -incremental mapping

NOTE: If your design is area or power constrained adjust the area or power efforts accordingly.

8.5 Results

Immediately following compilation, again check all errors and warnings and ensure there is no unexpected
behavior occurring. If the design is timing constrained, a slack histogram can be analyzed to find critical
timing paths, supported in the GUI under MENU:Timing-Path Slack. Double clicking a histogram will pull
up more detailed timing analysis, from which the designer can evaluate what needs to be done. While some
changes may require RTL to be rewritten if some paths are simply too long, other options include:

• Define a more optimistic or pessimistic wire model, depending if hold time or setup timing is failing.

• Rerun compilation with incremental mapping, DesignVision will reiterate to meet the timing goals.

• A combination of both: run a compile run with optimistic wire modeling to fix hold timing, then a
compile run with pessimistic modeling to fix setup timing.

When satisfied, there still remains one step before moving onto the backend. Encounter takes in a .sdc
file to determine which nets are clocks, what the desired clock period is, and other timing constraints. To
write a design with the name NAME to a .sdc file, the following terminal command must be used: write sdc

-nosplit NAME.sdc.
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8.6 Scripts

For users that wish to automate these steps, DesignVision supports executing .scr scripts. The format for
these scripts, as mentioned in section 8.2, comes from the command.log file that DesignVision automatically
generates as it runs both GUI and terminal commands. Custom user created scripts will typically be a
string of such commands, and they can be run from inside DesignVision either by source SCRIPT.scr or
MENU:File-Execute Script. The scripts that the authors used in their flow of the tools are attached in the
appendix, with comments detailing every step of the way.

8.7 FAQs

• Analyze and Elaborate won’t work!
Make sure that library setup files are all properly defined, and that there are no include statements
in the Verilog. Include statements can cause multiple instantiation, and hierarchy is better handled
by DesignVision by explicitly defining all files in the Analyze step. Also ensure that the work library
between Analyze and Elaborate is consistent.

• Hold time fixes takes forever! Why won’t this converge?
If the wire load is very optimistic for setup timing, hold fixes may struggle to be implemented without
breaking setup timing. Consider if there are any false hold paths, and if the design still will not converge
there is a chance that the back-end Encounter may be able to fix it with more realistic timing. Try
starting with a pessimistic wire model, which are the best case for hold. Let it compile once and then
compile using the “fix hold only” command. You can then incrementally work towards a more realistic
wire model.

• Paths previously defined for false paths, clock nets, etc. seem to change after compilation, why would
the tool do this?
Upon compilation DesignVision will read in the standard cell libraries, and this may change the low level
hierarchy of the design (most notably anything defined as reg in the Verilog). Sufficiently generalized
paths will not break, but any steps that seem to be ”lost” can also probably be safely rerun with the
new names.
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9 Encounter User Guide

“Victory belongs to the most persevering. ”
— Napoleon Bonaparte

9.1 Before You Begin

Cadence Encounter is a backend tool that will place and route a gate level design either by automation or
by user specifications. This document will only go over the automated flow, with minimal custom routing
and placement at the end. Before beginning, the user should have the following files:

• Gate level Verilog file (.v) from DesignVision, or another source.

• Timing constraints file (.sdc) from DesignVision that matches the gate level Verilog.

• Physical libraries (.lef or .vclef) that describe the physical shapes and locations of pins, blockages, and
power rails or rings. These may be provided by the technology vendor, or might need to be created
with the memory generator.

• Timing libraries (.lib or .tlf) for standard cells and macros that were used to generate the .db files used
in DesignVision. These may be provided by the technology vendor.

• IO Assignment File (Optional). If the design will have IO Pads, this file will specify the order of those
IOs around the design. If not specified, Encounter will automatically generate one.

• Mapping File (Optional). If creating a GDSII file, the appropriate .map file is necessary to match the
metal and via layers to the technology being used. This may need to be modified by hand.

9.2 Finding Help

Encounter primarily supports terminal command help through two commands: help COMMAND and man

COMMAND. When the user does not know what command might be relevant, help COMMAND will search the
man pages for relevant topics and return possible commands containing the search string COMMAND; help
-k KEY will return any relevant topics that have KEY in their definition. Both methods can be used to
guess at potentially helpful commands. man COMMAND will bring up the man page for any specific command,
and is useful for exploring various commands and their arguments. Encounter also stores .log files for every
session, so crashes may be traceable in these files.

9.3 Design Import

Before even importing the design, considerations for how Encounter will read the Verilog must be accounted
for. If the Verilog contains any level of hierarchy (likely), it will have very likely created assign statements in
the gate level equivalent. Encounter will not accept assign statements, the designer will need to set a flag by
running a command, setDoAssign, that allows Encounter to replace assign statements with buffers. This
command must be run first, and Encounter will not accept it after importing a design. To verify that the
command set correctly, run setDoAssign -stat.
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After assessing whether setDoAssign is necessary or not, the design may be imported by going into the
GUI and running MENU:Design-Design Import. In the pop-up window that appears, the following fields
must be filled out:

Design

Verilog Files gate level Verilog generated by DesignVision

Top Cell By User: (TOP CELL NAME)

LEF Files all .lef or .vclef files relevant to the design

Common Timing Libraries all .lib files relevant to the design

Buffer Name/Footprint list of buffer cell names, or footprint name from the standard cell library

Delay Name/Footprint list of delay cell names, or footprint name from the standard cell library

Inverter Name/Footprint list of inverter cell names, or footprint name from the standard cell
library

IO Assignment File Pad assignment file, if desired

Timing

Timing Constraint File .sdc generated in DesignVision correlating to the gate level Verilog

Power

Power Nets A list of the power nets included in the Verilog, such as VDD and 1’b1.

Ground Nets A list of the ground nets included in the Verilog, such as VSS and 1’b0.

9.4 Floorplanning & Place

Once the design is imported, Cadence will display an estimated chip area with modules on the left of the
chip and blocks on the right, and IO Pads surrounding it if included. Modules include any hierarchy that
will be built using standard cells that can be flexible in shape, while blocks are inflexible macros consisting
of memory or any custom layout. These blocks must first be placed in a rough sketch of where they will
eventually reside, known as the floorplan. In addition, before place can be run any blocks must have a halo
defined around them, creating placement blockage near them so standard cells will not fail DRC. Again these
commands can be done either in the GUI or the terminal:

• GUI

– MENU:Floorplan-Specify Floorplan...

– Core size can be defined here. The only recommended change is to create some distance between
the core and the IO’s:
Adjust Core to Boundary to be nonzero. With the units in microns, we used 30 for each side
boundary.

– MENU:Floorplan-Place Blocks-Place, pick a nonzero block halo size.
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– This will create a floorplan of the various modules in the design. In addition, each block must
have its halo specified:
Click on any block, then MENU:Floorplan-Edit Block Halo. Again a nonzero number is recom-
mended; default units are microns.

– End cap filler cells must be added as well, MENU:Place-Filler-Add End Cap. Select reasonable
size filler cells.
Filler cells are blank cells which have no pins, but prevent minimum density DRC errors. End
caps are necessary for the power and ground rail terminations.

– cutCoreRow terminal command must be run here as well to create standard cell rows.

• Command Prompt

– floorplan -r RATIO UTILIZATION LEFTBOUNDARY RIGHTBOUNDARY

TOPBOUNDARY BOTTOMBOUNDARY

RATIO: Height to width ratio, UTILIZATION: Core utilization (between 25-75%), BOUNDARY:
Core to IO boundary size
EX: floorlpan -r .99 60 30 30 30 30

– addHaloToBlock LEFTBOUNDARY RIGHTBOUNDARY TOPBOUNDARY BOTTOMBOUNDARY BLOCK

BLOCK: Instance name of the block

– modulePlace -effort h -variableCore -placeBlocksModule -solutionCount 1

-halo HALOSIZE -minAR MINAR -maxAR MAXAR -solFilePrefix mp

HALOSIZE: biggest halo size, MINAR & MAXAR: possible area ratios for modules.

– addEndCap -preCap FILLERCELL -endCap FILLERCELL -prefix PREFIX

– cutCoreRow terminal command must be run here as well to create standard cell rows.

Once the floorplan is defined, the user is free to move modules and blocks if they feel there is a better
logical placement. While modules can overlap each other, and overlap blocks, blocks and their halos cannot
overlap each other or the boundaries. Following floorplanning, the standard cells can then populate the
modules and the macros fixed in place:

• GUI

– MENU:Place-Place..., Choose high effort, timing driven.

– Double click on any blocks. Change their status to “FIXED”.

• Command Prompt

– amoebaPlace -timingDriven -highEffort -ipo

NOTE: The -ipo flag will allow Encounter to resize standard cells based on the timing information
that it has along with a rough RC calculation based on distance. This option is not available
using the GUI.

– setBlockPlacementStatus -allHardMacros -status preplaced

NOTE: There is no support for ”fixed” in this command, but ”preplaced” achieves the same
purpose - the clock placement will not touch the macros.
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9.5 Clock

After the standard cells are placed, the clock buffers and inverters may be introduced into the design. If the
.sdc file was not correctly specified earlier, and Encounter cannot determine the timing constraints, this step
is likely to fail. The clock is created first by specifying the clock tree and then synthesizing; designs with
multiple interleaving clock networks must be careful, as they may need to account for reconvergence.

• GUI

– MENU:Clock-Create Clock Tree Spec, define the clock buffers and inverters.

– MENU:Clock-Specify Clock Tree, the default will work here as long as it matches the previous
step

– MENU:Clock-Synthesize Clock Tree, and enable “Handle Crossover and Reconvergence” if there
is any clock gating or propagated clocks in the design.

• Command Prompt

– createClockTreeSpec -output NAME.ctsch

-bufFootprint CLK BUF FOOTPRINT -invFootprint INV FOOTPRINT

– specifyClockTree -clkfile NAME.ctsch

– clkSynthesis -forceReconvergent -report NAME/NAME.ctsch

To view if the clock tree seems reasonable, the GUI command MENU:Clock-Display-Display Clock Tree,
has several options for viewing both phase and predicted routing of the tree.

9.6 Power

Integrating power into the design is a multiple step process. Since the gate level Verilog is not likely to
include pins for power and ground, the user must specify that the global nets in the Verilog connect to the
pins in the technology libraries, and then connect these nets. A power and ground ring around the core,
supplemented by power and ground stripes, will distribute power from the pads in a regular fashion over the
chip. Special routes then connect the macros and standard cells to these rings and stripes, providing the
final connection to the pads. To run this series of commands must be done in the Command Prompt, as the
GUI implementation does not correctly connect the global nets.

• Command Prompt

– globalNetConnect VERILOG POWER NET -type pgpin

-pin TECHNOLOGY POWER PIN -inst * module {}
NOTE: Both VDD and VSS must be defined in this manner

– globalNetConnect VERILOG TIEHI NET -type tiehi -inst * module {}
NOTE: TIEHI is the name of the verilog equivalent of 1’b1, or whatever the design uses for tying
pins high.
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– globalNetConnect VERILOG TIELO NET -type tielo -inst * module {}
NOTE: TIELO is the name of the verilog equivalent of 1’b0, or whatever the design uses for tying
pins low.

– applyGlobalNets

– connectToGlobalNet -tie high lows 1 -to global net VERILOG POWER NET

-verbose 0 -override prior global connection 0 -in instances * -nets

-pins TECHNOLOGY POWER PIN -connect Pins -under module {}

– addRing -spacing bottom S -spacing top S -spacing left S -spacing right S

-width left W -width bottom W -width top W -width right W

-layer bottom TECH MLAYER -center 1 -stacked via top layer TECH MLAYER

-via using exact crossover size 1 -around core -jog distance 0.2

-offset bottom 0.2 -layer top TECH MLAYER -layer right TECH MLAYER

-layer left TECH MLAYER -threshold 0.2 -offset left 0.2 -offset right 0.2

-offset top 0.2 -offset bottom 0.2 -stacked via bottom layer TEC VIA

-nets { POWER NETS }
NOTE: This seemingly complicated instruction can also be accomplished in the GUI, and this is
merely the command output found in the .cmd file.
NOTE: Please see man addRing for more about these paramters.

– addStripe -block ring top layer limit TECH MLAYER -max same layer jog length 8

-padcore ring bottom layer limit TECH MLAYER -number of sets 8

-stacked via top layer TECH MLAYER -via using exact crossover size 1

-padcore ring top layer limit TECH MLAYER -spacing 5 -xleft offset 100

-xright offset 100 -merge stripes value 0.2 -layer TECH MLAYER

-block ring bottom layer limit TECH MLAYER -width 4

-stacked via bottom layer TECH MLAYER -nets { POWER NETS }
NOTE: This seemingly complicated instruction can also be accomplished in the GUI, and this is
merely the command output found in the .cmd file.
NOTE: Please see man addRing for more about these paramters.

– sroute -jogControl {preferWithChanges differentLayer }
-corePinJogViaMultiplier 2 -blockPinJogViaMultiplier 2

NOTE: The via multipliers correct DRCs that Encounter creates while routing the special nets.
The vias violate min space violations, and the multipliers ensure that the vias will be sufficiently
large enough to pass these DRCs. Again, experimentation and further reading is encouraged.

To check to see if the power distribution network is sufficiently robust, the designer should run an IR
check. Since V = I ∗ R, the voltage drop across the chip will vary as the resistance on the wires varies.
Standard cells need sufficiently high voltage to maintain true digital operation, and the drop from true Vdd

is too much, the chip will not function as intended. To run the IR check:

• GUI
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– MENU:Route-Trial Route, the defaults should be fine
NOTE: Creating a fake trial route is necessary for first order RC approximations.

– MENU:Timing, Extract RC
NOTE: This step is to estimate the resistance in V = IR.

– MENU:Power-Edit Pad Location, enter the power line (ex: VDD), auto-fetch and save

– MENU:Power-Power Analysis-Statistical, with the Net Names: power line (ex: VDD), and Pad
Location Files: the file created in the previous step

– MENU:Power-Display-Display Rail Analysis Results, set the Net Name: power line, Type: IRD
or IVD, and IRD Threshold to worst possible drop (ex .2V), Apply

9.7 Route

Once the standard cells are placed, the clock tree is synthesized, and the power grid is created, the design
may be routed and real timing results extracted. There are two parts to the routing: a global route handling
most high level and distant connections, and then detail routing which connects the instances to these
global lines and can iteratively fix broken timing paths, DRC violations, and noise failures. The command
globalDetailRoute will do both for the user, but if they so choose they can can also split up the effort into
distinctive stages with the globalRoute and detailRoute commands.

By using detailRoute separate from global routing, the designer can choose different focuses for the
iterations, choosing between timing fixes at first and then moving to specifically DRC fixes. All nanoroute
attributes (the Encounter Routing tool) are set using the setNanoRouteMode command. Nanoroute can
fix antenna DRC violations on its own, either by routing or replacing filler cells with antenna diodes if
provided by the technology library. Additionally, Nanoroute can give different nets varying weights, and in
the example below the clocks are given a very high weight so that they are routed first.

The flow below separates global and detailed routing, first doing a global route, with one iteration of
detail routing to asses hold time violations. Once hold time violations are fixed using the fixHoldViolation,
filler cells are added to the design. The order is important, as the buffers necessary to fix hold timing cannot
replace the filler cells, only be inserted. Global routing and one iteration of detail routing is done again before
one pass to fix setup timing violations. Several iterations are then devoted to fixing DRC violations, as this
design project valued correctness of design over timing. The detail iterations will incrementally improve
a design, and the various options for setNanoRouteMode should be explored for each individual designers
needs. A sample routing script is included below:

• Command Prompt

– setAttribute -net @CLOCK -weight 100

NOTE: Setting the weight on the clocks high so they are routed first

– setNanoRouteMode -routeAllowPowerGroundPin true

– setNanoRouteMode -routeWithEco false

– setNanoRouteMode -routeWithSiDriven false

– setNanoRouteMode -routeSelectedNetOnly false
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– setNanoRouteMode -envNumberProcessor 1

– trialRoute -handlePreroute

– globalRoute

– setNanoRouteMode -drouteStartIteration 0

– setNanoRouteMode -drouteEndIteration 0

– detailRoute

STATUS: Global Route and Detail Route done, fix Hold Violations and add filler cells

– fixHoldViolation

– findCoreFillerCells

– addFiller -cell FILL8TS FILL64TS FILL4TS FILL32TS

FILL2TS FILL1TS FILL16TS -prefix FILLER

STATUS: Hold time buffers, filler cells added, do a quick global and detail route

– setNanoRouteMode -routeWithTimingDriven false

– setNanoRouteMode -drouteFixAntenna false

– setNanoRouteMode -routeInsertAntennaDiode false

– setNanoRouteMode -routeInsertAntennaDiodeForClockNet false

– setNanoRouteMode -drouteStartIteration 0

– setNanoRouteMode -drouteEndIteration 0

– globalRoute

– detailRoute

STATUS: Do a route fix for timing

– setNanoRouteMode -timingEngine CTE

– setNanoRouteMode -routeWithTimingDriven true

– setNanoRouteMode -routeTdrEffort 6

– setNanoRouteMode -drouteStartIteration 1

– setNanoRouteMode -drouteEndIteration 1

– detailRoute

STATUS: Do a route fixes for DRC violations

– setNanoRouteMode -drouteFixAntenna true

– setNanoRouteMode -routeInsertAntennaDiode true

– setNanoRouteMode -routeInsertAntennaDiodeForClockNet true

– setNanoRouteMode -routeAntennaCellName ‘‘ANTENNATS’’

– setNanoRouteMode -routeReInsertFillerCellList fillerCell.list

– setNanoRouteMode -drouteStartIteration 2
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– setNanoRouteMode -drouteEndIteration 19

– detailRoute

STATUS: Finish routing optimizations

– setNanoRouteMode -drouteStartIteration 20

– setNanoRouteMode -drouteEndIteration default

– detailRoute

Nanoroute can also be issued from the GUI using MENU:Route-Nanoroute.

9.8 Post-Route

Following routing, timing analysis and DRC violations can be completed. Before timing analysis can be com-
pleted, however, the RC values must be extracted by going into MENU:Timing-Extract RC. Timing analysis
in Encounter is very similar to DesignVision, a path slack histogram is available in the GUI MENU:Timing-
Timing Debug-End Point Slack Histogram. Timing violations may require more robust routing, verilog
changes, or more extreme measures. The routing script above should address all hold time violations using
a custom Encounter command.

DRC violations can be found under the variety of commands in MENU:Verify. Some common fixes for
DRC errors may include the following:

• fixMinCutVia will automatically try to fix all min cut via DRC violations.

• Geometry violations can be addressed by changing Nanoroute settings to either increase or decrease
multipliers, depending on whether the majority of violations are spacing or min area violations. Also
fixable in ECO mode by wire editing.

• Antenna violations may be fixed automatically by Nanoroute as well, using the settings described
above to address antenna violations. If these still do not prove sufficient, ECO changes may be
necessary. setNanoRouteMode -routeWithEco true will enable ECO routing for Nanoroute, but
globalDetailRoute is the only routing tool available in this mode. Possible ECO changes include:

– Wire Editing: Use “e” to select a net for editing, and the GUI options on the left side of the
screen provide multiple wire manipulation tools.

– MENU:Timing-Interactive ECO, allows the designer to change individual cells. If nets from the
pads fail the antenna check, try removing a filler cell and adding a buffer along the line before
rerouting. Ensure that the doRefinePlacement checkbox is enabled.

– If filler cells are removed and buffers added, adding the filler cells again will be necessary to ensure
no other new DRC failures.

• Metal Density violations can be fixed by MENU:Route-Metal Fill-Add Metal Fill.
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9.9 Scripts

Encounter terminal runs .tcl scripts, and provides a limited shell for the user. All Encounter commands are
recorded in a *.cmd file which can then be merged with custom user tcl scripts. To run these scripts, issue
source SCRIPT.tcl, where SCRIPT is the name of the tcl file you choose to run. Again, sample tcl scripts
are included at the end of this document.

9.10 Verilog Considerations: Power

For the Encounter backend to correctly recognize the global power and ground nets necessary for section 9.6,
global nets must be connected in the Verilog file. These nets are inout, and may be included only on the
topmost level of hierarchy, and do not need to descend in the hierarchy, but must be present as a global
net. The tie high and low verilog equivalents (1’b1 and 1’b0) do not need to be propagated up the hierarchy
either, they are automatically recognized by Encounter.

9.11 IO Pads

In order to include IO Pads in the design, additional changes to the Verilog are again necessary. The
technology vendor should provide all the necessary files, including the .lib, .lef, .db, and .v files to incorporate
the pads into the design. At every point in the flow these files must be included much like the other macros,
but Encounter will be able to identify the pads as unique and treat them separate from the rest of the design.
Since the pads will vary with each vendor, the only way to correctly identify what each pad will do is to
refer to the vendor documentation. Any changes to the Verilog must include these gates, and be written by
hand. In general however, there will be several types of cells:

• Power and Ground for the Core - instantiate in the Verilog, connect pins to Power and Ground nets.

• Power and Ground for the Rings - instantiate in the Verilog, but do not connect nets.
NOTE: The pads have a power ring internal to them, and these pads will provide power to the rest of
the pads without any explicit routing on the designers part. The designer must ensure that there are
no gaps in the pad ring, however, as this disconnects the pad power ring.

• Other Power and Grounds - For multiple power domains, including analog power

• Input Driver Pads - instantiate and connect the appropriate nets, change top level port connectivity
to reflect that inputs must go through these drivers.

• Output Driver Pads - instantiate and connect the appropriate nets, change top level port connectivity
to reflect that inputs must go through these drivers.

• Empty / Dummy Pads - instantiate as necessary (ex: four corner pads) to fill in gaps in the pads.

In addition, a designer may choose a specific order for their pads, either to group related signals,
place power and ground pads specifically, or to ensure correct orientation on cells such as the corner
pads. This order can be written to any text file and will be inported as described in section 9.1. The
pads should be described in the following format, line separated Pad: IO INST ORIENTATION, e.g. Pad:

io inst/inst PCORNER SE SE.
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[3] Dave Comisky, Sanjive Agarwala, and Charles Fuoco. A scalable high-performance dma architecture for
dsp applications. Technical report, Texas Instruments, 2000.

[4] Dan Ernst, Nam Sung Kim, Shidhartha Das, and et al. Razor: A low-power pipeline based on circuit-level
timing speculation. 36th Annual International Symposium on Microarchitecture, 2003.

[5] Brent M. Ledvina, Mark L. Psiaki, Steven P. Powell, and Paul M. Kitner. Bit-wise parallel algorithms
for efficient software correlation applied to gps software receiver. IEEE Transactions on Wireless Com-
munications, Vol. 3, No. 5, September 2004, 2004.

[6] MIPS Technologies, MIPS Technologies, Inc., 1225 Charleston Road, Mountain View, CA 94043-1353.
The MIPS16e. Application-Specific Extension to the MIPS32 Architecture, July 1, 2005.

[7] Christian Piguet, Jean-Marc Masgonty, Claude Arm, and et al. Low-power design of 8-bit embedded
coolrisc microcontroller cores. IEEE Journal Of Solid-State Circuits, Vol. 32, No. 7, July 1997, 1997.

[8] Texas Instruments Semiconductor Group. IEEE Std 1149.1 (JTAG) Testability, 2007.

[9] Brett Alan Warneke. Ultra-Low Energy Architectures and Circuits for Cubic Millimeter Distrubuted
Wireless Sensor Networks. PhD thesis, Univerty of California in Berkeley, 2003.

74



11 Appendix

“The truth is always a compound of two half-truths, and you never reach it, because there is
always something more to say.”
— Tom Stoppard

A BRC ISA

A.1 Description

This is the reference manual for the Big Red Chip instruction set architecture. It has been designed for use
in low power, embedded systems. As such, it is a 16-bit ISA, with each instruction being 16-bit. This causes
it to have access to fewer registers (eight) and less range on branch and jump instructions, but this should
be acceptable as the data cache access time should be one cycle, so loads and stores will be fast. Since the
instruction cache will not be very large a small branch and jump range is acceptable.

The ISA is a RISC, load-store architecture, based off of MIPS. The instructions that were not included
were mainly unsigned arithmetic instructions and branches. We decided to leave out unsigned arithmetic
instructions and never detect overflow, as it is not commonly used in C programming. Many branches were
left out as we could not support branches which required two registers, as this would not leave us with a big
enough immediate field.

A.2 Formats

The instructions come in four formats: a three register format, a two register format, a one register format,
and a zero register format. The three register format contains an extra 2 bits for the function, an addition
to the opcode. The other formats all include an immediate field of varying size. The formats are all very
regular as to allow for extremely easy decoding.

5 3 3 3 2
3R op rs rd rt func
2R op rs rd imm
1R op rs imm
0R op imm

Table 11: Instruction Formats

A.3 Notation

A.4 Instructions

add Add

5 3 3 3 2

op rs rd rt func
0x02 0x0
arith
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Symbol Meaning
GPR[x] The value of the x th General Purpose Register
DMEM[addr] The value of the data memory at addr
PC The Program Counter register
HI The high register used by multiplication and division instructions
LO The low register used by multiplication and division instructions
← Assign the value on the right hand side to the left hand side
+ Addition
− Subtraction
× Multiplication
÷ Integer division
mod Integer modulo
∧ Bitwise and
∨ Bitwise or
⊕ Bitwise xor
¬ Bitwise negation
<< Shift left
>> Shift right
|| Bit concatenation
Xa..b Bit selection - take bits a through b of X
Xa Bit selection - take bit a of X
=, 6= Check for equality, inequality (true = 1, false = 0)
<,≤ Check for less than, less than or equal to (true = 1, false = 0)
>,≥ Check for greater than, greater than or equal to (true = 1, false = 0)
sign ext(x) Sign extend x
zero ext(x) Zero extend x
∅ Do nothing

Table 12: Notations Used in This Document

Format: ADD rd, rs, rt

Operation: GPR[rd]← GPR[rs] + GPR[rt]

addi Add Immediate

5 3 3 5

op rs rd imm
0x0E

Format: ADDI rd, rs, imm

Operation: GPR[rd]← GPR[rs] + sign ex(imm)

and And

5 3 3 3 2

op rs rd rt func
0x01 0x0
log

76



Format: AND rd, rs, rt

Operation: GPR[rd]← GPR[rs] ∧ GPR[rt]

andi And Immediate

5 3 3 5

op rs rd imm
0x0A

Format: ANDI rd, rs, imm

Operation: GPR[rd]← GPR[rs] ∧ sign ex(imm)

bgez Branch on Greater than or Equal to Zero

5 3 8

op rs imm
0x14

Format: BGEZ rs, imm

Operation: if(GPR[rs] ≥ 0) then PC← PC + sign ex(imm << 1)

bltz Branch on Less Than Zero

5 3 8

op rs imm
0x15

Format: BLTZ rs, imm

Operation: if(GPR[rs] < 0) then PC← PC + sign ex(imm << 1)

bnz Branch on Not Zero

5 3 8

op rs imm
0x13

Format: BNZ rs, imm

Operation: if(GPR[rs] 6= 0) then PC← PC + sign ex(imm << 1)

break Break

5 11

op imm
0x18

Format: BREAK

Note:

The break instruction puts the processor into debug mode, causing it to halt execution. In order for execution
to resume the processor must be restarted through an external chip interface.
This instruction currently does not need an immediate field. Future generations may use it to define different
types of breaks.
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bz Branch on Zero

5 3 8

op rs imm
0x12

Format: BZ rs, imm

Operation: if(GPR[rs] = 0) then PC← PC + sign ex(imm << 1)

div Divide

5 3 3 3 2

op rs rd rt func
0x03 0x0 0x2
md

Format: DIV rs, rt

Operation:

LO← GPR[rs]÷ GPR[rt]
HI← GPR[rs] mod GPR[rt]
Note:

DIV treats both numbers as signed values.
This is an optional instruction which should be emulated in software if not implemented in hardware. We
will not be implementing this instruction in the first chip.

divu Unsigned Divide

5 3 3 3 2

op rs rd rt func
0x03 0x0 0x3
md

Format: DIVU rs, rt

Operation:

LO← GPR[rs]÷ GPR[rt]
HI← GPR[rs] mod GPR[rt]
Note:

DIVU treats both numbers as unsigned values.
This is an optional instruction which should be emulated in software if not implemented in hardware. We
will not be implementing this instruction in the first chip.

extend Extend

5 11

op imm
0x19
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Format: EXTEND imm

Note:

In order to compensate for BRC ISAs small immediate fields and lack of a zero register, an instruction that
is able to set a 16-bit immediate on any instruction has been defined. When executed, the 11-bit immediate
is stored. The next instruction is then extended with this value instead of sign or zero extended, as follows:
(ext imm << 5)||imm4..0
This instruction should only proceed instructions with meaningful immediate fields or it has undefined
behavior. There should not be two extend instructions in a row. If implemented on a system supporting
exceptions and interrupts, this instruction and the following should be treated as atomic and no exceptions
or interrupts may occur between them.

j Jump

5 11

op imm
0x16

Format: J imm

Operation: PC← PC15..12||(imm << 1)

jal Jump And Link

5 11

op imm
0x17

Format: JAL imm

Operation:

GPR[7]← PC + 2

PC← PC15..12||(imm << 1)

jr Jump to Register

5 3 3 3 2

op rs rd rt func
0x06 0x0 0x0 0x0
spec

Format: JR rs

Operation: PC← GPR[rs]15..1||0
Note:

As the PC must always be word aligned, the LSB of the register value is ignored when using this instruction.
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lb Load Byte

5 3 3 3 2

op rs rd rt func
0x04 0x0 0x0
meml

Format: LB rd, rs

Operation: GPR[rd]← sign ex(DMEM[GPR[rs]]7..0)

lbu Load Byte Unsigned

5 3 3 3 2

op rs rd rt func
0x04 0x0 0x1
meml

Format: LBU rd, rs

Operation: GPR[rd]← zero ex(DMEM[GPR[rs]]7..0)

li Load Immediate

5 3 3 5

op rs rd imm
0x11 0x0

Format: LI rd, imm

Operation: GPR[rd]← sign ext(imm)

lw Load Word

5 3 3 3 2

op rs rd rt func
0x04 0x0 0x2
meml

Format: LW rd, rs

Operation: GPR[rd]← DMEM[GPR[rs]15..1||0]15..0
Note:

Load word is required to have aligned memory accesses, which is enforced by ignoring the LSB of the address
value.

mfhi Move From Hi

5 3 3 3 2

op rs rd rt func
0x06 0x0 0x0 0x2
spec
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Format: MFHI rd

Operation: GPR[rd]← HI

Note:

This is an optional instruction which is not needed if all multiply and divide instructions are not implemented.
We will not be implementing this instruction in the first chip.

mflo Move From Lo

5 3 3 3 2

op rs rd rt func
0x06 0x0 0x0 0x3
spec

Format: MFLO rd

Operation: GPR[rd]← LO

Note:

This is an optional instruction which is not needed if all multiply and divide instructions are not implemented.
We will not be implementing this instruction in the first chip.

mult Multiply

5 3 3 3 2

op rs rd rt func
0x03 0x0 0x0
md

Format: MULT rs, rt

Operation: (HI, LO)← GPR[rs]× GPR[rt]
Note:

MULT treats both numbers as signed values.
This is an optional instruction which should be emulated in software if not implemented in hardware. We
will not be implementing this instruction in the first chip.

multu Multiply Unsigned

5 3 3 3 2

op rs rd rt func
0x03 0x0 0x1
md

Format: MULTU rs, rt

Operation: (HI, LO)← GPR[rs]× GPR[rt]
Note:

MULTU treats both numbers as unsigned values.
This is an optional instruction which should be emulated in software if not implemented in hardware. We
will not be implementing this instruction in the first chip.
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nop No Operation

5 3 3 3 2

op rs rd rt func
0x00 0x0 0x0 0x0 0x0
shift

Format: NOP

Operation: ∅

nor Nor

5 3 3 3 2

op rs rd rt func
0x01 0x2
log

Format: NOR rd, rs, rt

Operation: GPR[rd]← ¬ (GPR[rs] ∨ GPR[rt])

nori Nor Immediate

5 3 3 5

op rs rd imm
0x0C

Format: NORI rd, rs, imm

Operation: GPR[rd]← ¬ (GPR[rs] ∨ sign ex(imm))

or Or

5 3 3 3 2

op rs rd rt func
0x01 0x1
log

Format: OR rd, rs, rt

Operation: GPR[rd]← GPR[rs] ∨ GPR[rt]

ori Or Immediate

5 3 3 5

op rs rd imm
0x0B

Format: ORI rd, rs, imm

Operation: GPR[rd]← GPR[rs] ∨ sign ex(imm)
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rfe Return From Exception

5 3 3 3 2

op rs rd rt func
0x06 0x0 0x0 0x0 0x1
spec

Note:

This is an optional instruction. We do not have exceptions in our implementation and therefore do not need
this instruction. It is included for completeness.

sb Store Byte

5 3 3 3 2

op rs rd rt func
0x05 0x0 0x0
mems

Format: SB rs, rt

Operation: DMEM[GPR[rs]]7..0 ← GPR[rt]7..0

sll Shift Left Logical

5 3 3 5

op rs rd imm
0x07

Format: SLL rd, rs, imm

Operation: GPR[rd]← GPR[rs] << imm3..0

sllv Shift Left Logical Variable

5 3 3 3 2

op rs rd rt func
0x00 0x1
shift

Format: SLLV rd, rs, rt

Operation: GPR[rd]← GPR[rs] << GPR[rt]3..0

slt Set Less Than

5 3 3 3 2

op rs rd rt func
0x02 0x2
arith
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Format: SLT rd, rs, rt

Operation: GPR[rd]← (GPR[rs] < GPR[rt])
Note:

SLT compares the two numbers as signed two’s complement numbers.

slti Set Less Than Immediate

5 3 3 5

op rs rd imm
0x0F

Format: SLTI rd, rs, imm

Operation: GPR[rd]← (GPR[rs] < sign ex(imm))
Note:

SLTI compares the two numbers as signed two’s complement numbers.

sltiu Set Less Than Immediate Unsigned

5 3 3 5

op rs rd imm
0x10

Format: SLTIU rd, rs, imm

Operation: GPR[rd]← (GPR[rs] < sign ex(imm))
Note:

SLTIU compares the two numbers as unsigned numbers.

sltu Set Less Than Unsigned

5 3 3 3 2

op rs rd rt func
0x02 0x3
arith

Format: SLTU rd, rs, rt

Operation: GPR[rd]← (GPR[rs] < GPR[rt])
Note:

SLTU compares the two numbers as unsigned numbers.

sra Shift Right Arithmetic

5 3 3 5

op rs rd imm
0x09
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Format: SRA rd, rs, imm

Operation: GPR[rd]← GPR[rs] >> imm3..0

Note:

An arithmetic right shift shifts in the most significant bit, as to not change the sign of the number.

srav Shift Right Arithmetic Variable

5 3 3 3 2

op rs rd rt func
0x00 0x3
shift

Format: SRAV rd, rs, rt

Operation: GPR[rd]← GPR[rs] >> GPR[rt]3..0
Note:

An arithmetic right shift shifts in the most significant bit, as to not change the sign of the number.

srl Shift Right Logical

5 3 3 5

op rs rd imm
0x08

Format: SRL rd, rs, imm

Operation: GPR[rd]← GPR[rs] >> imm3..0

Note:

A logical right shift will always shift in zeros.

srlv Shift Right Logical Variable

5 3 3 3 2

op rs rd rt func
0x00 0x2
shift

Format: SRLV rd, rs, rt

Operation: GPR[rd]← GPR[rs] >> GPR[rt]3..0
Note:

A logical right shift will always shift in zeros.

sub Subtract

5 3 3 3 2

op rs rd rt func
0x02 0x1
arith
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Format: SUB rd, rs, rt

Operation: GPR[rd]← GPR[rs]− GPR[rt]

sw Store Word

5 3 3 3 2

op rs rd rt func
0x05 0x0 0x1
mems

Format: SW rs, rt

Operation: DMEM[GPR[rs]15..1||0]15..0 ← GPR[rt]
Note:

Store word is required to have aligned memory accesses, which is enforced by ignoring the LSB of the address
value.

syscall System Call

5 11

op imm
0x1A

Note:

This is an optional instruction. We do not plan on running a full featured operating system on our chip or
having a kernel and user mode. It is included for completeness.

xor Xor

5 3 3 3 2

op rs rd rt func
0x01 0x3
log

Format: XOR rd, rs, rt

Operation: GPR[rd]← GPR[rs]⊕ GPR[rt]

xori Xor Immediate

5 3 3 5

op rs rd imm
0x0D

Format: XORI rd, rs, imm

Operation: GPR[rd]← GPR[rs]⊕ sign ex(imm)
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A.5 Reserved Op Codes

Op codes which are unused and should be treated as reserved for customizations:

• 0x1B

• 0x1C

• 0x1D

• 0x1E

• 0x1F

B BRC GPS ISA Additions

B.1 Description

This is a description of the custom instructions included in the BRC ISA for the first generation chip which
will be integrated into a GPS tracking system.

B.2 Instructions

adccnt ADC Count

5 3 3 3 2

op rs rd rt func
0x1B 0x0 0x0

Format: ADCCNT rs, rt

Operation: Rcnt[GPR[rt]]← GPR[rs]
Note:

This instruction sets the count for the particular ADC in order to fix for the Doppler effect.

adcld ADC Load

5 3 3 3 2

op rs rd rt func
0x1C 0x0 0x0

Format: ADCLD rd, rs

Operation: GPR[rd]← FIFO[GPR[rs]]
Note: This instruction loads the next value from the ADC queue.

gc Load Gold Code

5 3 3 5

op rs rd imm
0x1D 0x0
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Format: GC rd, rs

Operation: GPR[rd]← gc(GRP[rs]9..8, GPR[rs]4..0)
Note:

This instruction gets the next gold code chip from the state machine specified in bits 9 through 8 with a
phase selection specified by bits 4 through 0.

popc Population Count

5 3 3 5

op rs rd imm
0x1E 0x0

Format: POPC rd, rs

Operation: GPR[rd]← pop count(GPR[rs])
Note:

A population count is the number of 1’s appearing in the binary representation of a number.

C Boot Sequence

Instructions on booting the chip

Power up the chip. The initial values of the following signals should be set to the following values (all
values are single bits unless otherwise specified in Verilog format):
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Pin name Value Description

debug clk clock Slow debug clock - ~100kHz
ext clk clock Fast external clock - 2x the running frequency
int clk clock Fast internal clock - generated by an oscillator
ext adc clk clock Slow ADC clock - 8.192MHz
reset 1 Main chip reset
clk reset 1 Clock state machine reset
cont en f 1 FPGA controller enable signal
scan en f 0 Main scan chain enable
scan in f 0 Main scan chain scan in
clk scan en f 0 Clock state machine scan enable
clk scan in f 0 Clock state machine scan in
sc over f 0 Stop clock override
reset br f 0 Turns break off to run the program
cont addr f 13’h0 Address to access memory at
cont wdata f 16’h0 Data to write to memory
cont rw sel f 1 Read/write control - 0 is write, 1 is read
cont di sel f 1 Data/inst control - 0 is data, 1 is instruction
cont c en f 0 Core/port control - 0 is the port, 1 is the core
chip en 1 Overall chip enable - should be tied to power
clk sel 1 Internal/External clock select - 0 is int, 1 is ext
adc clk sel 0 ADC clock select - 0 is generating, 1 is external
adc in input Input from the ADC

Start the clock state machine. Be sure the debug clock and external clock is running. Deassert the
clock reset after at least one full cycle of the external clock to ensure the clock state machine has been
correctly initialized.

Signal New Value

clk reset 0

Load the instructions into the instruction memory. Be sure that cont di sel f is 1 for instruction and
that cont c en f is 0 for port control. Now switch cont rw sel f to 0 to begin writing. This will write one
word per cycle, on the negative edge of the debug clock. It is recommended to update the cont addr f
and cont wdata f on the positive edge of the debug clock in order to avoid metastability problems.
Switch con rw sel f back to 1 after finishing the writing.
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Signal New Value

cont rw sel f 0
On each positive edge of debug clock:
cont addr f cont addr f + 1
cont wdata f next instruction word
When no more instructions are left:
cont rw sel f 1

Initialize data memory if necessary. If the program requires preloaded data, such as global arrays, load
it now. It is very similar to loading instructions. First switch cont di sel f to 0 for data. Set cont addr f
to the initial address of the data to load. Then follow the instruction load directions.

Signal New Value

cont di sel f 0
cont addr f initial data address
Wait one cycle
cont rw sel f 0
On each positive edge of debug clock:
cont addr f next data address location
cont wdata f next data word
When no more data is left:
cont rw sel f 1

Start the program. In order to begin the program assert cont c en f, deassert reset, and assert reset br f.
This will give the core control of the memory, stop reseting the registers, and take the processor out of
debug mode. Set them in this order. After reset break has been asserted ready will go low, meaning
that break has been reset. After this reset br should be deasserted to allow the next break instruction
to correctly enter debug mode. The debug clock should also be turned off at this point to allow for a
smooth transition back to debug mode.

Signal New Value

cont c en f 1
Wait one cycle
reset 0
Wait one cycle
reset br f 1
Wait for ready to deassert
reset br f 0
debug clk turn the clock off

Wait for break command. The ready signal should now be monitored. After the next break command,
the clock will begin ramping down. When it is finished and has entered debug mode, ready will go
high. The chip will now be waiting for external input before it will continue to do anything. To debug
the chip, please see Appendix D for directions on the debug sequence. If the program is not being
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debugged and has no break statements, disconnect the FPGA controller and allow the chip to run.

D Debug Sequence

When ready is asserted, the chip has entered debug mode. The debug clock should have been turned off, so
the chip will stay paused upon entering this mode. Deassert cont en f after ready is asserted, so that the
debug clock can safely turn on without changing the state of the chip. Once the debug clock is running, use
any of the DFT features described in the subsections of this appendix.

Signal New Value

Ready is asserted
cont en f 0
Wait a couple cycles to ensure a smooth transition
debug clk start the debug clock

To restart the chip after examining the chip with the following DFT features, restart it in a similar
manner to the first boot, except also assert the cont en f signal during the last step.

Signal New Value

cont c en f 1
Wait one cycle
reset 0
Wait one cycle
reset br f 1
Wait for ready to deassert
reset br f 0
cont en f 1
debug clk turn the clock off

D.1 Clock Scan Chain

The clock scan chain may either be debugged before starting a program or after a program has entered
debug mode through a break command. The clock scan chain updates on the positive edge of the external
clock. You should slow down the external clock and update the inputs on the negative edge of the external
clock. You should assert the clock scan chain enable and read out the first value from clock scan out on
the same cycle. Keep the signal high while reading out the entire scan chain over the next nine cycles. The
clock scan chain is ten bits in total, see Appendix E for the registers they correspond to. You should then
deassert the clock scan enable. You may now store and analyze this data. In order to restart the processor
without reseting it, now repeat this process, while changing clock scan in to the same values read out, in
order. These values may be changed in order to change the state of the clock state machine for test vectors
and other debugging purposes.

To read out:
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Signal New Value

clk scan en f 1
Wait nine cycles
clk scan en f 0

To write in:
Signal New Value

clk scan en f 1
clk scan in f first value read out
Wait one cycle
clk scan in f next value read out

...
After all data has been written back in
clk scan en f 0

D.2 Scan Chain

The scan chain may either be debugged before starting a program or after a program has entered debug
mode through a break command, although it probably will be most useful after a break command. The
scan chain updates on the positive edge of the debug clock. You should update the inputs on the negative
edge of the debug clock. You should assert the scan chain enable and read out the first value from scan out
on the same cycle. Keep the signal high while reading out the entire scan chain over the next 654 cycles.
The clock scan chain is 655 bits in total, see Appendix E for the registers they correspond to. You should
then deassert the scan enable. You may now store and analyze this data. In order to restart the processor
without reseting it, now repeat this process, while changing scan in to the same values read out, in order.
These values may also be changed in order to change the state of the processor for test vectors and other
debugging purposes.

To read out:
Signal New Value

scan en f 1
Wait 654 cycles
scan en f 0

To write in:
Signal New Value

clk scan en f 1
clk scan in f first value read out
Wait one cycle
clk scan in f next value read out

...
After all data has been written back in
clk scan en f 0
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D.3 Memory Access

The memory controller allows read and write access to all data and instruction memory while in debug mode.
The memory updates on the negative edge of the debug clock so all inputs should be changed on the positive
edge of the debug clock. To read from memory, make sure cont rw sel f is set to 1, cont di sel f is set to 0 for
data or 1 for instruction memory, cont c en f is set to 0 for port control of the memory, and cont addr f is
set to the first address to read from. After the next negative edge, the read data will appear on cont rdata.
You may change the address once per cycle to read out any amount of data. When finished, set cont c en f
back to 1 to give the core control of the memory. To write data to memory, set cont rw sel f to 0, cont c en f
to 0 for port control, and cont di sel f to the appropriate value and set cont addr f and cont wdata f to the
first address and data value to write. When finished, set cont rw sel f back to 1 and cont c en f back to 1.
Note: The cont addr f port is only word addressable. You should therefore convert byte addresses to word
addresses by dividing the byte address by two (right shift by one).

To read:
Signal New Value

cont rw sel f 1
cont di sel f 0 for data, 1 for instruction
cont c en f 0
cont addr f address to read from
Wait one cycle
cont addr f next address to read from

...
After reading the data
cont c en f 1

To write:
Signal New Value

cont rw sel f 0
cont di sel f 0 for data, 1 for instruction
cont c en f 0
cont addr f address to write to
cont wdata f data to write
Wait one cycle
cont addr f next address to read from
cont wdata f next data to write

...
After reading the data
cont c en f 1
cont rw sel f 1
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E Scan Chain Sequence

Note: These are all in big endian.
The complete order of the clock scan chain:
Index Register Size

0 CPU.clock inst.system clock divider.counter 1
1 CPU.clock inst.system clock mask.state machine 8
9 CPU.clock inst.system clock mask.reg clock generator 1

The complete order of the scan chain:

Index Register Size

0 CPU.break inst.break reg 1
1 CPU.clock inst.adc clock divider.counter 4
5 CPU.iff inst.PC reg 12
17 CPU.rd inst.registers.reg00 16
33 CPU.rd inst.registers.reg01 16
49 CPU.rd inst.registers.reg02 16
65 CPU.rd inst.registers.reg03 16
81 CPU.rd inst.registers.reg04 16
97 CPU.rd inst.registers.reg05 16
113 CPU.rd inst.registers.reg06 16
129 CPU.rd inst.registers.reg07 16
145 CPU.rd inst.immediate gen.ext reg 11
156 CPU.rd inst.immediate gen.ext valid 1
157 CPU.rd bp rs addr 01 3
160 CPU.rd bp rt addr 01 3
163 CPU.rd bp rs 01 16
179 CPU.rd bp rt 01 16
195 CPU.rd out imm 01 16
211 CPU.rd out func 01 7
218 CPU.rd wb rd addr 01 3
221 CPU.if wb next pc 01 12
233 CPU.gc inst.phase gen0 B 5
238 CPU.gc inst.phase gen1 B 5
243 CPU.gc inst.phase gen2 B 5
248 CPU.gc inst.phase gen3 B 5
253 CPU.gc inst.gen0.g1 B 10
263 CPU.gc inst.gen0.g2 B 10
273 CPU.gc inst.gen1.g1 B 10
283 CPU.gc inst.gen1.g2 B 10
293 CPU.gc inst.gen2.g1 B 10
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303 CPU.gc inst.gen2.g2 B 10
313 CPU.gc inst.gen3.g1 B 10
323 CPU.gc inst.gen3.g2 B 10
333 CPU.adc inst.adc stopStart0 regB 1
334 CPU.adc inst.adc stopStart1 regB 1
335 CPU.adc inst.adc stopStart2 regB 1
336 CPU.adc inst.adc stopStart3 regB 1
337 CPU.adc inst.stall hold regB 2
339 CPU.adc inst.wr ptr clk reg 4
343 CPU.adc inst.rd ptr clk reg 4
347 CPU.adc inst.bufIn.adc out reg0 8
355 CPU.adc inst.bufIn.adc out reg1 8
363 CPU.adc inst.bufIn.adc out reg2 8
371 CPU.adc inst.bufIn.adc out reg3 8
379 CPU.adc inst.bufIn.dat 8
387 CPU.adc inst.bufIn.valid0 8
395 CPU.adc inst.bufIn.valid1 8
403 CPU.adc inst.bufIn.valid2 8
411 CPU.adc inst.bufIn.valid3 8
419 CPU.adc inst.dopCtrl0.cntr init 12
431 CPU.adc inst.dopCtrl0.dopNew dly B 1
432 CPU.adc inst.dopCtrl0.cntr 12
444 CPU.adc inst.dopCtrl1.cntr init 12
456 CPU.adc inst.dopCtrl1.dopNew dly B 1
457 CPU.adc inst.dopCtrl1.cntr 12
469 CPU.adc inst.dopCtrl2.cntr init 12
481 CPU.adc inst.dopCtrl2.dopNew dly B 1
482 CPU.adc inst.dopCtrl2.cntr 12
494 CPU.adc inst.dopCtrl3.cntr init 12
506 CPU.adc inst.dopCtrl3.dopNew dly B 1
507 CPU.adc inst.dopCtrl3.cntr 12
519 CPU.adc inst.wr ptr0 B 9
528 CPU.adc inst.wr ptr1 B 9
537 CPU.adc inst.wr ptr2 B 9
546 CPU.adc inst.wr ptr3 B 9
555 CPU.adc inst.rd ptr0 B 8
563 CPU.adc inst.rd ptr1 B 8
571 CPU.adc inst.rd ptr2 B 8
579 CPU.adc inst.rd ptr3 B 8
587 CPU.alu wb data 12 16
603 CPU.mem wb data 12 16

95



619 CPU.gc wb data 12 1
620 CPU.adc wb data 12 16
636 CPU.if wb next pc 12 12
648 CPU.wb1 wb2 addr 12 3
651 CPU.wb1 wb2 en 12 1
652 CPU.wb1 wb2 cont 12 3

F Coverage Document

This section provides a description of coverage metrics and how to implement coverage in our design.

Types of Coverage :

Line / Statement Coverage : Tells which lines of procedural code in the file are not exercised.
Will keep metrics on procedural statements, procedural statement blocks, missing conditional
statements, and branches for conditional statements.

Condition Coverage : Tests if all conditionals in the following cases are exercised: conditional
expression used with “?”. Sub-expressions that are operands for AND and OR logical operators
in conditional expressions with operators “?”, “if” and procedural statements.

Toggle Coverage : Monitors nets and registers for value transitions from 0 to 1 and 1 to 0. Tells
you how much activity is being performed in each net, which allows you to see which nets are not
being used at all / with low activity.

FSM Coverage : Identifies groups of statements in code belonging to an FSM and monitors current
state and state transition metrics.

Path Coverage : Determines whether conditional expressions in IF and CASE statements are true
which allows the tester to see which paths have not been tested.

Branch Coverage : Analyzes how IF and CASE statements establish branches in the design.

Limitations : Does not extract statements for FSM’s where state is stored in memory.
Does not cover multi-dimensional arrays.
Does not cover the power operator in sub expressions.

How to enable Coverage Metrics :

Compile the design for coverage metrics :
Tell VCS command line which coverage metric you want to compile the design for.

i.e.
VCS -cm line source file.v // runs line coverage on the file
other arguments include: cond, fsm, line, tgl, path, branch
you can include more than 1 argument with (+) between arguments
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Run the simulation :
Here, you can tell VCS to collect coverage information for fewer types than the design was compiled
for.

i.e.
simv -cm line (or other arguments you compiled for)

To see the metrics do the following :
GUI: bring up cmView

i.e.
vcs -cm pp gui -cm line

file→open coverage→statement menu command
open design hierarchy to view coverage reports
double click on summary window to see which lines not covered in module (in red)

Text output: run cmView in batch mode. Reports will be compiled in text files and formatted to
display different types of coverage and result.

i.e.
vcs -cm pp

cmView will write the output text files to reports directory. “simv.cm/reports/cmView”
cmView.short l would report percent line coverage for entire design. Other files provide more in
depth analysis

How to Merge Coverage results :

Build simv executable for different test cases, and run the same test bench with different inputs (for
the random test cases)

Steps:

1. Compile for coverage, i.e. vcs -cm coverage arguments source file

2. Start simulation and specify directory and name for intermediate data log file, i.e. vcs -cm dir
dir name -cm name test1 -cm coverage arguments

3. Do the last step repeatedly with different data log file names and different input vectors

4. run cmView in batch and write reports, i.e. vcs -cm pp -cm dir dir name -cm dir dir name1

-cm name merged

Note: When running the above command, cmView will take the intermediate coverage logs from each
of the directories and compile them under the first directory listed under the report name “merged”.

To put all data log files into a directory other than the standard “./simv.cm/coverage/verilog” directory,
use command line option -cm dir “desired directory path/dir name.cm” in the compilation stage.
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Then, to merge all together, run command:
vcs -cm pp -cm dir dir path (several directories) -cm name merged

For BRC:
To run coverage, go to the “~/coverage” directory on BRC. In the “rand testing” subdirectory, you can

find a “rand testing coverage” script. This script will run until an error is found and die, or run indefinitely.
To kill the process, just type “CTRL-C.” Even though you kill the process, the script will have enabled
logging for all types of coverage for the test cases that were run. If you cd to the cpu symbolic link,
you will see a simv.cm directory which contains the intermediate log files for coverage. These are in the
“coverage/verilog” directory. To get the final coverage results, from the cpu directory, run “vcs -cm pp” for
the command line option. The GUI option is also available. If you would like to merge coverage results
from two different sources you must make some small changes in some command line option at compile time.
First, make the new test compile coverage reports in a different directory by using the -cm dir command line
option. For example:

vcs +v2k -cm dir /coverage/rand testing/cpu/newsimv.cm -cm path+branch+line+cond+fsm+tgl

+incdir+../../../../design/core full/trunk/cmn +incdir+../../../../design/core full/trunk/alu

+incdir+../../../../design/core full/trunk/rd -f filelist

In the above command, the coverage directory is in the newsimv.cm directory. It compiles for all types
of coverage with the -cm options being all included.

Finally to merge the results from this test bench and, say, the previous randomly generated test bench
coverage numbers, you will run (from the cpu directory again)

vcs -cm pp -cm dir simv.cm -cm dir newsimv.cm -cm name merged

This will compile the merged results into a file named “merged.” These files will be found in the first
directory specified in the command, in this case, “simv.cm/reports/.” In that directory, you will see the
“merged.*” reports.

Note, currently, we have not found a way to incorporate coverage results that come from different test
benches, i.e. the core full run tb.v and core full scan tb.v. VCS does not like the different top level test
benches and even trying to exclude them from coverage reports fails. The solution at this time is to put
both top level test benches together and maybe adding a control to select between the two.

G GPS Correlations in BRC Assembly

Although it would beyond the scope of this document to include all code involved in the BRC GPS system,
we have elected to include a segment showing the required assembly sequence to perform correlation compu-
tations on in-phase and quadrature components of the early, late, and promptly shifted C/A code. Hopefully
this example code will illustrate exactly how the special instructions implemented in the BRC system can
be used to aid in baseband computations.

Also, the reader should note that the code has been arranged such that no special purpose instruction
is dependent on data produced in the previous instruction. The code has been arranged this way by the
author knowing that the system will stall in this case. This segment of code also illustrates how the software
team’s full port of the GCC compiler has helped enable the use of our special purpose instructions. As one
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can see below, GCC includes functionality to take variables as input arguments to in-line assembly blocks,
allowing for smooth introduction of assembly to C programs.

Listing 1: In-line ASM to compute correlations using special-purpose instructions

// INLINE ASM does the f o l l ow i n g :
// Use adc ld func t i on to ge t new data word
// Get new PRN ch ip s and a l i g n eary and l a t e
// Corre l a t e e a r l y
// Corre l a t e prompt ( t h i s i s o p t i ona l )
// Corre l a t e l a t e

CA km1 [ sa t ] = CA k [ sa t ] ;

// This code c r ea t e s the new CA k [ sa t ] and CA kp1 [ sa t ] .
// Note t ha t no dependent i n s t r u c t i o n s immediate ly f o l l ow
// the gc i n s t r u c t i o n .
asm volat i le ( ”gc %%0 %3;” // %%0 = gc (CA id [ sa t ] )

” s r l %2 %2 $8 ; ” // CA kp1 [ sa t ] ( input ) = CA kp1 [ sa t ] ( input)>>8
”gc %1 %3;” // CA kp1 [ sa t ] ( output ) = gc (CA id [ sa t ] )
” andi %%0 $0x00 f f ; ” // %%0 = %%0 & 0 x00 f f
” or %0 %2 %%0;” // CA k [ sa t ] = CA kp1( input ) | %%0
: ”=g” (CA k [ sa t ] ) , ”=g” (CA kp1 [ sa t ] ) //Output operands
: ”g” (CA kp1 [ sa t ] ) , ”g” (CA id [ sa t ] ) // Input operands
: ”%0” //Clobbered r e g i s t e r s

) ;

// This code g e t s the new input data from the ADC f i f o and
// produces the ea r l y and l a t e CA codes . I do t h i s a l l a t
// once to ensure t ha t adc ld i s not f o l l owed by a dependent
// i n s t r u c t i o n .
asm volat i le ( ” adcld %0 %6;” // s i g word [ sa t ] = adc ld ( sa t )

” s r l %%0 %4 $2 ; ” // %%0 = CA k [ sa t ] >> 2
” andi %%1 %5 $0xc000 ; ” // %%1 = CA kp1 [ sa t ] & 0xc000
” or %1 %%0 %%1;” // CA early = %%0 | %%1
” s l l %%0 %4 $2 ; ” // %%0 = CA k [ sa t ] << 2
” andi %%1 %3 $0x0003 ; ” // %%1 = CA km1 [ sa t ] & 0x0003
” or %2 %%0 %%1;” // CA late = %%0 | %%1
: ”=g” ( s ig word [ sa t ] ) , ”=g” ( CA early ) ,

”=g” ( CA late ) //Output operands
: ”g” (CA km1 [ sa t ] ) , ”g” (CA k [ sa t ] ) ,

”g” (CA kp1 [ sa t ] ) , ”g” ( sa t ) // Input operands
: ”%0” , ”%1” //Clobbered r e g i s t e r s
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) ;

s ig word BB I = s ig word [ sa t ] ˆ IF word I ;
sig word BB Q = sig word [ sa t ] ˆ IF word Q ;

corr word IE = sig word BB I ˆ CA early ;
corr word IP = sig word BB I ˆ CA k [ sa t ] ;
cor r word IL = sig word BB I ˆ CA late ;

corr word QE = sig word BB Q ˆ CA early ;
corr word QP = sig word BB Q ˆ CA k [ sa t ] ;
corr word QL = sig word BB Q ˆ CA late ;

// Update c o r r e l a t i o n accumulator f o r IE
asm ( ”popc %%0 %2;” // %%0 = popc ( corr word IE )
”add %1 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] + %%0
” xo r i %2 %2 0 x f f f f ; ” // corr word IE = ˜ corr word IE
”popc %%0 %2;” // %%0 = popc (˜ corr word IE )
”sub %0 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] − %%0
: ”=g” ( I e a r l y k [ sa t ] ) //Output operands
: ”g” ( I e a r l y k [ sa t ] ) , ”g” ( corr word IE ) // Input operands
: ”%%0” //Clobbered r e g i s t e r s
) ;
// Update c o r r e l a t i o n accumulator f o r QE
asm ( ”popc %%0 %2;” // %%0 = popc ( corr word IE )
”add %1 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] + %%0
” xo r i %2 %2 0 x f f f f ; ” // corr word IE = ˜ corr word IE
”popc %%0 %2;” // %%0 = popc (˜ corr word IE )
”sub %0 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] − %%0
: ”=g” ( Q ear ly k [ sa t ] ) //Output operands
: ”g” ( Q ear ly k [ sa t ] ) , ”g” ( corr word QE ) // Input operands
: ”%%0” //Clobbered r e g i s t e r s
) ;
// Update c o r r e l a t i o n accumulator f o r IP
// NOTE: This may not be necessary in the f i n a l implementat ion
asm ( ”popc %%0 %2;” // %%0 = popc ( corr word IE )
”add %1 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] + %%0
” xo r i %2 %2 0 x f f f f ; ” // corr word IE = ˜ corr word IE
”popc %%0 %2;” // %%0 = popc (˜ corr word IE )
”sub %0 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] − %%0
: ”=g” ( I prompt k [ sa t ] ) //Output operands
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: ”g” ( I prompt k [ sa t ] ) , ”g” ( corr word IP ) // Input operands
: ”%%0” //Clobbered r e g i s t e r s
) ;
// Update c o r r e l a t i o n accumulator f o r QP
// NOTE: This may not be necessary in the f i n a l implemention
asm ( ”popc %%0 %2;” // %%0 = popc ( corr word IE )
”add %1 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] + %%0
” xo r i %2 %2 0 x f f f f ; ” // corr word IE = ˜ corr word IE
”popc %%0 %2;” // %%0 = popc (˜ corr word IE )
”sub %0 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] − %%0
: ”=g” ( Q prompt k [ sa t ] ) //Output operands
: ”g” ( Q prompt k [ sa t ] ) , ”g” ( corr word QP ) // Input operands
: ”%%0” //Clobbered r e g i s t e r s
) ;
// Update c o r r e l a t i o n accumulator f o r IL
asm ( ”popc %%0 %2;” // %%0 = popc ( corr word IE )
”add %1 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] + %%0
” xo r i %2 %2 0 x f f f f ; ” // corr word IE = ˜ corr word IE
”popc %%0 %2;” // %%0 = popc (˜ corr word IE )
”sub %0 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] − %%0
: ”=g” ( I l a t e k [ sa t ] ) //Output operands
: ”g” ( I l a t e k [ sa t ] ) , ”g” ( corr word IL ) // Input operands
: ”%%0” //Clobbered r e g i s t e r s
) ;
// Update c o r r e l a t i o n accumulator f o r QL
asm ( ”popc %%0 %2;” // %%0 = popc ( corr word IE )
”add %1 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] + %%0
” xo r i %2 %2 0 x f f f f ; ” // corr word IE = ˜ corr word IE
”popc %%0 %2;” // %%0 = popc (˜ corr word IE )
”sub %0 %1 %%0;” // I e a r l y k [ s a t ] = I e a r l y k [ s a t ] − %%0
: ”=g” ( Q late k [ sa t ] ) //Output operands
: ”g” ( Q la te k [ sa t ] ) , ”g” ( corr word QL ) // Input operands
: ”%%0” //Clobbered r e g i s t e r s
) ;
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