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PrefaeThe simulation of the dynamis of lassial �eld theories is urrently gaining some attentionfrom the high-energy ommunity, mainly in the ontext of statistial �eld theory. Reent papersshow that, in some partiular but important onditions, lassial �eld theories are a very goodapproximation to the quantum evolution of �elds at �nite temperature (see, for instane, [1,2℄). Also, in the ontext of ondensed-matter systems, the dynamis of e�etive lassial �eldshas proven to be a very e�ient tool in desribing both the equilibrium and non-equilibriumproperties of systems suh as ferromagnets [3℄. In order to simulate these theories, they mustbe �rst disretized and ast on a lattie, a job far from trivial to do in a onsistent manner[4℄. After the disretization, the di�erential equations of motion transform themselves into �nitedi�erene equations. Before doing any sort of useful alulation in the physial ontext above, oneis supposed to understand the basi foundations of the numerial method, the study of whih isthe objetive of this monograph.Following this motivation, I will present, in an introdutory way, the Finite Di�erene methodfor hyperboli equations, fousing on a method whih has seond order preision both in time andspae (the so-alled leap-frog method) and applying it to the ase of the 1d and 2d wave equation.A brief derivation of the energy and equation of motion of a wave is done before the numerialpart in order to make the transition from the ontinuum to the lattie learer.To illustrate the extension of the method to more omplex equations, I also add dissipativeterms of the kind −ηu̇ into the equations. I also brie�y disuss the von Neumann numerialstability analysis and the Courant riterion, two of the most popular in the literature. In the end Ipresent some numerial results obtained with the leap-frog algorithm, illustrating the importaneof the lattie resolution through energy plots.I have tried to ollet, in a onise way, the main steps neessary to have a stable algorithm tosolve wave-like equations. More sophistiated versions of these equations should be handled withare, and aompanied of a rigorous study of onvergene and stability whih ould be found inthe referenes ited in the end of this work.
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Chapter 1The Wave Equation1.1 IntrodutionPartial Di�erential Equations (from now on simply PDEs) are divided in the literature basiallyin three kinds: paraboli, ellipti and hyperboli (the riterion of lassi�ation of these equationsan be found in [5, Chap. 8℄). In this work we will be interested mainly on hyperboli equations,of whih the wave equation is the paradigm:
∇2u =

1

v2

∂2u

∂t2
, (1.1)where v2 = τ

λ
is the square of the wave veloity in the medium, whih in the ase of a free stringould be determined by the tension τ and the mass density per length unit λ.From the strit numerial point of view, the distintion between these lasses of PDEs isn't ofmuh importane [6℄. There is, however, another sort of lassi�ation of PDEs whih is relevant fornumerial purposes: the initial value problems (whih inlude the ase of the hyperboli equations)and the boundary ondition problems (whih inlude, for instane, paraboli equations). In thiswork we will restrit ourselves to initial value problems. See referene [6℄ for a good introdutionto boundary ondition problems.In the equation (1.1) we ould still add a dissipative term proportional to the �rst power ofthe time derivative of u, i.e.,

τ∇2u = λ
∂2u

∂t2
+ η

∂u

∂t
, (1.2)where η is the visosity oe�ient.Our �rst step will be to derive the wave equation from a simple mehanial analysis of the freerope. Being this a well known problem in lassial mehanis, we will go through only the mainsteps of it (for a more omplete treatment of the problem of the free string, see, for example, [7,Chaps. 8 and 9℄). One we are done with the 1-d wave equation, we will proeed further to the2-d ase, whih isn't as abundant in the literature as the 1-d ase.1.2 Waves in 1-dimension (the free string)1.2.1 Equation of MotionFigure 1.1 gives us an idea of a mass element dm with linear dimension dx subjet to tensionfores. We are interested on the vertial displaement of this mass element, so, for this diretion,we ould write the resulting fore:

dFu = ~τ · û|x+dx − ~τ · û|x , (1.3)3
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Figure 1.1: Representing the tension fores ating on an in�nitesimal element of the rope.where ~τ is the tension and the unit vetor û refers to the vertial diretion. Within the domain ofsmooth deformations of the string (i.e., small β), we ould write:
τu ≡ ~τ · û = τ sin β ≈ τ tan β = τ

∂u

∂x
(1.4)We notie now that (1.3) ould be written as:

dFu =
τu|x+dx − τu|x

dx
dx =

∂τu

∂x
dx =

∂

∂x

(

τ
∂u

∂x

)

dxWe will now restrit ourselves to the ase of onstant tensions along the rope, so that:
dFu = τ

∂2u

∂x2
dx (1.5)Equating this with Newton's seond law

dFu = dm
∂2u

∂t2
= λ

∂2u

∂t2
dx,where λ is the linear mass density, we obtain then the wave equation for a free string:

τ
∂2u

∂x2
= λ

∂2u

∂t2
(1.6)1.2.2 EnergyThe kineti energy ould be evaluated in a straightforward manner, integrating the kineti energyterm for a representative mass element:

dT =
1

2
dm · v2

u,with dm = λ · dx and vu = ∂u
∂t
, in other words,

T =

∫

dT =
λ

2

∫ l

0

(

∂u

∂t

)2

dx (1.7)The potential energy an be obtained by alulating the work neessary to bring the stringfrom a �trivial� on�guration u(x, 0) = 0 to the on�guration at whih we want to evaluate thepotential energy u(x, t). We will �x the boundary onditions u(0, t) = u(l, t) = 0 (string tied atthe ends) and as a onsequene of this, ∂tu(0, t) = ∂tu(l, t) = 0. The potential energy relative tothe work neessary to hange of δu the on�guration of an element of the string in an interval oftime dt is:
δV = −dFu · δu = −dFu ·

(

∂u

∂t

)

dt



CHAPTER 1. THE WAVE EQUATION 5Therefore, the potential energy of the whole string in this same interval of time is:
dV = −dt ·

∫

dFu

(

∂u

∂t

)Substituting (1.5) in the latter we get:
dV = −dt ·

∫ l

0

τ

(

∂2u

∂x2

) (

∂u

∂t

)

dxWe are however interested on V [u(x, t)], so integrating in time and using the boundary ondi-tions above, we have:
V =

∫

dV = −τ

∫ t

0

dt

∫ l

0

dx

(

∂u

∂t

) (

∂2u

∂x2

)

=

= −τ

∫ t

0

dt

{

∂u

∂t

∂u

∂x

∣

∣

∣

∣

l

0

−
∫ l

0

∂u

∂x

∂2u

∂x∂t
dx

}

=

= τ

∫ t

0

dt

∫ l

0

∂u

∂x

∂2u

∂x∂t
dx =

= τ

∫ t

0

dt
1

2

∂

∂t

∫ l

0

(

∂u

∂x

)2

dx =

=
τ

2

∫ l

0

(

∂u

∂x

)2

dx

∣

∣

∣

∣

∣

t

0

⇒

V =
τ

2

∫ l

0

(

∂u

∂x

)2

dx (1.8)With (1.7) and (1.8) we have �nally the total energy of the rope:
E =

λ

2

∫ l

0

(

∂u

∂t

)2

dx +
τ

2

∫ l

0

(

∂u

∂x

)2

dx (1.9)In our appliations we will take λ = τ suh that v2 = 1 and (1.9) assumes the simple form:
E =

1

2

∫ l

0

[

(

∂u

∂t

)2

+

(

∂u

∂x

)2
]

dx (1.10)This energy equation will be very useful to test our algorithms through an analysis of onser-vation (or dissipation) during the dynamial evolution of the system.1.3 Waves in 2-dimensions (the free membrane)1.3.1 Equation of MotionIn its two dimensional version, the wave equation ould be desribing a membrane, a liquid surfae,or some �oarse-grained� �eld in the surfae physis, to ite a few. In the ase of the membraneor other elasti surfae, the osillations are also onstrained to be small (analogously to the 1-dstring).We notie now that the additional dimension fores us to de�ne the tension �per unit length�:
f =

τ

l
(1.11)
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dy dx
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y

y+dy
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u
u+du

Figure 1.2: Representing a mass element dm of dimensions dxdy. The element is subjet to tensionfores on eah side (analogous to the borders of the mass element in the 1-d ase), being thesefores orthogonal to the axes of the sides. Only the variation with respet to x of u is drawn (i.e.,
u and u + du in the �gure are displaements of u(x, y) keeping y onstant and varying x).This fore per unit length ould be understood with a simple example: streth a tape of width
l from its extremities with fore τ . We an't ask the fore on a point of the tape, but only on someelement of some de�nite length and width (of ourse, this element ould be di�erential, playingthe same role of a linear di�erential element in the ase of the string). Formula (1.11), times thelength of the element, then gives you the resulting fore (tension) on the element. In this way, weextend the equation (1.3) to two dimensions:

dFu =

[

~fx · û
∣

∣

∣

x+dx,y
dy − ~fx · û

∣

∣

∣

x,y
dy

]

+

[

~fy · û
∣

∣

∣

x,y+dy
dx − ~fy · û

∣

∣

∣

x,y
dx

]

, (1.12)where ~fx · û
∣

∣

∣

x,y
dy ≡ fx,u|x,y

dy is the x omponent of the tension in the diretion û ating onthe side de�ned by the points (x, y) e (x, y + dy), and so on. We are going to suppose that thefores on the sides of the elements are orthogonal to their axes, whih is the same as deomposingthe tension fore on dm into four omponents, one for eah side (notie, however, that we havee�etively only two resulting omponents, to wit x̂ and ŷ). Doing this we won't need to emphasizethe tension omponents along x or y, ~fx · û
∣

∣

∣

x,y
beoming simply fu|x,y and so on. Neverthelessit is still important, for what we said above, to know what side we are talking about. So, in theregime of small vibrations (i.e., small angles of deformation), we ould �nd fu analogously to thestring ase

fudy = f
∂u

∂x
dy (1.13)

fudx = f
∂u

∂y
dx, (1.14)where fudy and fudx are the tensions in the diretion û on a side of length dy and dx along yand x, respetively. We emphasize that, with this notation plus the knowledge of the point wherewe are going to evaluate the derivatives, we have a omplete spei�ation of the side on whih thetension ats1. With all this in hands, Eq. (1.12) beomes:

dFu =
[

fu|x+dx,y dy − fu|x,y dy
]

+
[

fu|x,y+dy dx − fu|x,y dx
]With alulations analogous to those of the previous setion, we have:

dFu =
fu|x+dx,y − fu|x,y

dx
dxdy +

fu|x,y+dy − fu|x,y

dy
dydx = (1.15)1 Indeed, one spei�ed the beginning of the side with the pair (x, y), speifying the length with dx or dy furnishesus with the diretion of the side in question. This is su�ient to loalize it, sine the z oordinate is unambiguouslydetermined via z = u(x, y).
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=

∂fu

∂x
dxdy +

∂fu

∂y
dxdy = (1.16)

= f
∂2u

∂x2
dxdy + f

∂2u

∂y2
dxdy (1.17)With Newton's seond law we obtain:

f
∂2u

∂x2
dxdy + f

∂2u

∂y2
dxdy = dm

∂2u

∂t2
⇒

f
∂2u

∂x2
dxdy + f

∂2u

∂y2
dxdy = σdxdy

∂2u

∂t2
⇒

f

(

∂2u

∂x2
+

∂2u

∂y2

)

= σ
∂2u

∂t2
⇒

∂2u

∂x2
+

∂2u

∂y2
=

1

v2

∂2u

∂t2
, (1.18)whih is the desired wave equation for two dimensions, with v2 = f

σ
and σ the surfae mass density.1.3.2 EnergyThe derivation of the total energy is done in the same manner as the 1d ase. We will onsidera surfae z = u(x, y, t) with support of dimension l × l, subjet to the boundary onditions

u|boundary ≡ u(0, y, t) = u(l, y, t) = u(x, 0, t) = u(x, l, t) = 0 and u̇|boundary ≡ u̇(0, y, t) =
u̇(l, y, t) = u̇(x, 0, t) = u̇(x, l, t) = 0, where u̇ ≡ ∂u/∂t. Let us begin with the kineti term:

dT =
1

2
dm · u̇2 =

σ

2
u̇2dxdy ⇒ (1.19)

T =
σ

2

∫ l

0

∫ l

0

(

∂u

∂t

)2

dxdy, (1.20)where σ is the surfae mass density.The potential energy is obtained in an analogous way to the Setion (1.2):
dV = −dt ·

∫

dFu

(

∂u

∂t

)

=

= −dt ·
∫ l

0

∫ l

0

f

(

∂2u

∂x2
+

∂2u

∂y2

) (

∂u

∂t

)

dxdy ⇒

V = −f

∫ t

0

dt

{

∫ l

0

dy

∫ l

0

dx

(

∂2u

∂x2

∂u

∂t

)

+

∫ l

0

dx

∫ l

0

dy

(

∂2u

∂y2

∂u

∂t

)

}

=

= f

∫ t

0

dt

{

∫ l

0

dy
1

2

∂

∂t

∫ l

0

(

∂u

∂x

)2

dx +

∫ l

0

dx
1

2

∂

∂t

∫ l

0

(

∂u

∂y

)2

dy

}

=

=
f

2

∫ t

0

dt
∂

∂t

{

∫ l

0

∫ l

0

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2
]

dxdy

}

=

=
f

2

∫ l

0

∫ l

0

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2
]

dxdy

∣

∣

∣

∣

∣

t

0

⇒

V =
f

2

∫ l

0

∫ l

0

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2
]

dxdy (1.21)



CHAPTER 1. THE WAVE EQUATION 8Then the total energy for our usual ondition f = σ ⇒ v2 = 1 is:
E =

1

2

∫ l

0

∫ l

0

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+

(

∂u

∂t

)2
]

dxdyor, in a more general way (we are going to take as granted the result for more than two dimensions),
E =

∫

dn~r

[

1

2
(~∇u)2 +

1

2
u̇2

]One again I emphasize that these results are important for the veri�ation of the stability ofour numerial analysis. This derivation is shown here not only as an exerise, but also beause Iouldn't �nd the 2-d version in any textbook.



Chapter 2Finite Di�erenes2.1 IntrodutionDi�erently from the non-approximate analytial solutions of PDEs in the ontinuum (for instane,those obtained through variable separation and subsequent integration), numerial solutions ob-tained in a omputer have limited preision1. It is due to the way in whih omputers store dataand also beause of their limited memory. After all, how ould we write in deimal notation (orin any other base) an irrational number like √
2 making use of a �nite number of digits? In thiswork we won't stik with rigorous derivations of the theorems nor of most of the results presented.The referenes listed in the end should be onsidered for this end.The entral idea of numerial methods is quite simple: to give �nite preision (�the disrete�)to those objets endowed with in�nite preision (�the ontinuum�). By disretize we understand totransform ontinuum variables like x, y, .., z into a set of disrete values {xi}, {yi}, ..., {zi}, where

i runs over a �nite number of values, thus sampling the wholeness of the original variables. Asa onsequene of this disretization, integrals beome sums and derivatives turns out to meredi�erenes of �nite quantities (hene the name ��nite di�erenes�). I illustrate below these ideas:
∫

f(x)dx = lim
δx→0

∑

n

f(nδx)δx →
∑

n

f(n∆x)∆x (2.1)
df(x)

dx
= lim

δx→0

f(x + δx) − f(x)

δx
→ f(x + ∆x) − f(x)

∆x
, (2.2)where δx is a variable with in�nite preision (thus its value ould be as small as we want) and

∆x ≪ 1 is a variable with �nite preision, whih under the omputational point of view is thelimiting ase analogous to δx. We ould naively expet that, the smaller the value of ∆x, the loserwe are to the ontinuum theory. This would be indeed true if omputers didn't have �nite preision!The loser your signi�ant digits get to the limiting preision of the omputer, the worse is yourapproximation, beause it will introdue the well-known �round-o� errors�, whih are basiallytrunation errors. The referene [8℄ has a somewhat lengthy disussion about omputationalissues like this.1 In this point it is worth mentioning that there are basially two ways of solving a mathematial problemwith the aid of a omputer: symbolially and numerially. Symboli methods deal fundamentally with algebraimanipulations and do not involve expliit numerial alulations, giving us an analytial form (whenever possible)to the desired problem. It is, however, widely understood that non-linear theories hardly have a losed-formsolution, and even if they do, it is often a lot ompliated and requires an understanding of very sophistiated tools.Whenever this is the ase, one often resorts to the numerial approah, whih doesn't furnish us with an analytiallosed-form solution, but ould give very preise numerial estimates for the solution of the problem. It has beenused sine the very beggining of the omputer era, and today it is sometimes the only tool people have to attaksome problems, pervading its use in almost every disipline of siene and tehnology.9



CHAPTER 2. FINITE DIFFERENCES 102.2 Di�erene EquationsDi�erene equations are to a omputer in the same way as di�erential equations are to a goodmathematiian. That is, if you have a problem in the form of a di�erential equation, the moststraightforward way of solving it is to transform your derivatives into di�erenes, so that you �nishwith an algebrai di�erene equation. This turns out to be neessary for what we said about thelimitations of a omputer2.As a trivial example, take the ordinary di�erential equation:
df

dx
= g(x) (2.3)Using a �rst-order Taylor expansion (see Appendix A) for f(x),

f(x + h) ≈ f(x) + f ′(x)h ⇒

f ′(x) ≈ f(x + h) − f(x)

hwe obtain the Euler form for the Eq. (2.3):
f(x + h) − f(x)

h
≈ g(x)Notie that this equation involves only di�erenes as we said above, and to solve it in a omputerwe shall need the following iterative relation obtained diretly from the above equation:

f(x + h) = hg(x) + f(x)or, in the traditional numerial notation:
fn+1 = hgn + fn (2.4)Tehnially, one provided both the initial ondition (for instane, f0 = 0) and the funtionalform of gn = g(xn), we ould solve Eq. (2.4) by iterating it in a program loop.In spite of its simple form, Euler's approximation is far from being useful for realisti equations;it ould give rise to a ompletely erroneous approximation. Higher order expansions are frequentlyused in order to obtain equations with redued error (see again Appendix A for some of theseexpansions). However, these higher order approximations are also subjet to serious problems,like the lak of stability or onvergene, so the problem is ubiquitous and has been one of the mostattaked problems in the so-alled �numerial analysis�, a relatively modern branh of mathematis.I will say a little bit more later about these issues on onvergene and stability.It has already been said that the relevane of the lassi�ation of PDEs lies in their �nature�;those of initial value have a ompletely di�erent way of solving numerially from those of boundaryvalues. The latter kind doesn't evolve in time. It's the lassi ase of the Poisson equation whihould be desribing a thermostati or an eletrostati system:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= f(x, y) (2.5)Using the expansions from Appendix A, we have:

ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2
= fi,j , (2.6)2 There are, however, more sophistiated methods like Finite Elements, but the fat that one needs to get ridof di�erentials transends these methods when we are talking about numerial solutions.



CHAPTER 2. FINITE DIFFERENCES 11where we took h as the lattie spaing (also grid or net resolution) both for the oordinate x and
y (x → xn = nh and y → yn = nh). The indies of this equation then orrespond to sites in thislattie (a.k.a. lattie points), and sweep from 0 to the number of sites Ni or Nj. The problembeomes then to solve the equations given by (2.6) simultaneously for the various ui,j . There arevery interesting methods to solve this sort of problem whih ould be found in the referenes [6, 8℄.Our work, however, is direted towards initial value problems whih, as the very name suggests,deal with temporal evolutions starting from ertain �initial values� at the �zero� instant. It is thetypial ase of the wave equation already presented, or of the di�usion equation

∂2u

∂x2
=

∂u

∂t
. (2.7)Our fous goes even �ner, sine we will deal only with �expliit disretizations�, whih ouldbe understood as those whih ould be solved iteratively, that is, we ould solve the di�ereneequation for u(x, y, t + ∆t) expliitly in terms of the other variables u(x′, y′, t) at the instant t(for instane, Euler's equation above is an expliit method). Impliit methods need a di�erentapproah, whih often involves the solution of linear systems by using matries (again [6, 8℄ dovery well in these matters).2.3 The von Neumann Stability AnalysisHow should we know, after transforming a di�erential equation into �nite di�erenes, if the alu-lated solution is a stable one? By numerially stable solutions we understand those in whih theerror zn

m between the orret theoretial solution u(xm, tn) and the numerial solution Un
m doesnot diverge (i.e., is limited) as n → ∞ (t → ∞), in other words:

zn
m ≡ u(xm, tn) − Un

m < ǫ, (2.8)for any n, where the lower indies are spatial and the upper ones are temporal, and ǫ is a �nitereal value. For instane, an unstable disretization desribing a vibrating string ould be easilydeteted wathing the energy of the system for a while: a divergent energy would ertainly arise.Fortunately, there is a useful tool to identify unstable �nite di�erene equations prior to simulatingit, known as von Neumann stability analysis [6, 9℄, whih ould be applied to a di�erene equationto preview its numerial behavior.The von Neumann method onsists essentially in expanding the numerial error zn
m in a disreteharmoni Fourier series:

zn
m =

∑

r

ar(tn)eikrxm (2.9)and analyzing if ar(tn) inreases (or dereases) as t → ∞ (tehnially, if ar(t) dereases when
t → ∞ we have a numerial dissipation, whih is usually harmless). It is then easy to see that if
ar(tn) isn't divergent for any n and m we will have a stable solution. This analysis is somewhatsimple, sine it is su�ient to study the behavior of a single general term of the series, for if weprove that this general term of the series ould have a ertain pathologial behavior (like divergingfor n → ∞), then the whole solution is ompromised; otherwise, our solution is stable.Mithell and Gri�ths [9℄ show that zn

m given by (2.8) satisfy the very same di�erene equationfor un
m. Hene, if we take a ertain zn

m suh that ∣

∣z0
m

∣

∣ = 1 and put it into the di�erene equation,we ould ahieve the desired stability ondition. One possible zn
m satisfying the riteria above is:

zn
m = eαn∆teiβm∆x (2.10)Indeed, notie that for n = 0 we have ∣

∣z0
m

∣

∣ = 1, and with α and β arbitrary values we satisfythe above disussion. With this expression, we ould now write the stability ondition for the vonNeumann analysis:
|ξn| ≤ 1, (2.11)
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t+Dt

x x+Dxx−Dx

tFigure 2.1: Representing an integration algorithm that needs the values u(x − Dx, t) and u(x +
Dx, t) to obtain u(x, t + Dt). The ratio Dx/Dt (whih is the tangent of the angle in the baseof the triangle) is then the �maximum speed� with whih an information in the algorithm ouldpropagate.where ξ = eα∆t is the ampli�ation fator . In summary, putting the error given by

zn
m = ξneiβm∆x (2.12)into the di�erene equation, together with (2.11), we get the neessary ondition for stability.2.4 The Courant ConditionAnother important ondition that we should pay some attention in initial value problems is relatedto the speed with whih information ould propagate in the di�erene equation. We ould visualizethe problem in the sheme of Figure 2.1.It ould be shown [6℄ that, applying von Neumann's ondition for hyperboli problems wearrive at the Courant ondition: if the �physial� wave veloity |v| in a di�erential equation isgreater than the �algorithm speed� ∆x/∆t, then the sheme is unstable. We have therefore thefollowing expression for the Courant ondition:
|v| ≤ ∆x

∆t
(2.13)2.5 The Leap-Frog Algorithm and the Wave EquationConsider the 1-d wave equation (to ease the notation, from now on we will take v = τ = λ = σ = 1):

∂2u

∂x2
=

∂2u

∂t2Using the seond order expansion (A.9) from Appendix A for the derivatives above, we have:
un

i+1 − 2un
i + un

i−1

∆x2
=

un+1
i − 2un

i + un−1
i

∆t2
, (2.14)or, solving this algebrai equation for un+1

i ,
un+1

i = ρ
(

un
j+1 + un

j−1

)

+ 2(1 − ρ)un
j − un−1

j ,with ρ = (∆t/∆x)2.Notie that this equation is expliit and has seond order preision both in time and spae (wedidn't write the error O(∆x2, ∆t2), but you an easily trak it when you do the above passage).We ould also obtain it taking seond order approximations for the harateristis of the waveequation (the de�nition of the harateristis of an equation ould be found in [5, Cap. 8℄),
∂u

∂x
± ∂u

∂t
= 0,



CHAPTER 2. FINITE DIFFERENCES 13so, with these approximations, to �nd un+1
m we need un−1

m , un
m−1 and un

m+1. Then the nameleap-frog, sine, with respet to the time approximation for the derivative, we �leap�, from n − 1to n + 1, over the spatial derivative whih involves only approximations at the instant n.Now let us onsider the ase of the wave equation with dissipation:
∂2u

∂x2
=

∂2u

∂t2
+ η

∂u

∂t
,where η is the visosity oe�ient. Using also a seond order expansion for the new term we have:

un
i+1 − 2un

i + un
i−1

∆x2
=

un+1
i − 2un

i + un−1
i

∆t2
+ η

un+1
i − un−1

i

2∆t
,from whih we ould solve for the term un+1

i :
un+1

i =

[

1 +
η∆t

2

]

−1 {

ρ
(

un
i+1 + un

i−1

)

+ 2(1 − ρ)un
i −

[

1 − η∆t

2

]

un−1
i

} (2.15)Let's onsider now the 2d ase with a symmetri spaing for the two oordinates (∆x = ∆y =
∆l) plus a visosity term:

un
i+1,j − 2un

i,j + un
i−1,j

∆l2
+

un
i,j+1 − 2un

i,j + un
i,j−1

∆l2
=

un+1
i,j − 2un

i,j + un+1
i,j

∆t2
+ η

un+1
i,j − un−1

i,j

2∆tand, again solving for un+1
i,j ,

un+1
i,j =

[

1 + η∆t
2

]

−1
{

ρ
[

un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1 − 4un
i,j

]

+

2un
i,j −

[

1 − η∆t
2

]

un−1
i,j

} (2.16)It ould be shown that these di�erene equations satisfy the von Neumann riterion when
∆x/∆t satisfy the Courant riterion [6℄. For the sake of ompleteness, let's now see how theabove equations (i.e., the 1-d and 2-d disretizations) hange when we add an �arbitrary� term3
F (un) whih depends on u(t) (it ould be, for instane, the term δV [φ]/δφ(~x) whih arises inlassial �eld theories, where the λφ4 is the paradigm). The di�erential equation for these asesare:

∂2u

∂t2
=

∂2u

∂x2
− η

∂u

∂t
− F (u)

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
− η

∂u

∂t
− F (u),whereas their disretizations are:

un+1
i =

[

1 +
η∆t

2

]

−1 {

ρ
(

un
i+1 + un

i−1

)

+ 2(1 − ρ)un
i −

[

1 − η∆t

2

]

un−1
i − ∆t2F (un)

} (2.17)
un+1

i,j =
[

1 + η∆t
2

]

−1
{

ρ
[

un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1 − 4un
i,j

]

+

2un
i,j −

[

1 − η∆t
2

]

un−1
i,j − ∆t2F (un)

} (2.18)It may be worth mentioning that we need to de�ne both the initial values and the boundaryonditions in order to solve the above equations. For the appliations whih will be shown inChapter 3, we shall use the following onditions:3 Notie that this term ould not depend on time derivatives of u(t) or any other �non-loal� time dependene,that is, it should be de�ned ompletely in terms of un; otherwise we might not be able to solve the equation for
un+1 expliitly. Spatial derivatives are not a problem sine they are de�ned loally in time.
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u(t)|boundaries = 0
∂u(t)

∂t

∣

∣

∣

boundaries
= 0

u(x, y)|t=0 = C exp
[

− (~r−~r0)
2

2γ

]

,

(2.19)where ~r = xî + yĵ, ~r0 = l
2 î + l

2 ĵ, l is the lattie length, C is a normalization onstant, and γ is asu�iently small onstant suh that u(~r) → 0 as ~r → boundaries, that is, the initial ondition isa gaussian su�iently loalized to make u ontinuous at the boundaries.



Chapter 3Examples3.1 The Free String (1D)These simulations were exeuted in a PC of 350MHz, for latties of at most N = 1000. Theintegration time lay in the order of seonds.Figure 3.1 shows some results for the onditions of the previous setion (2.19) for variousparameters. Notie the improvement of energy onservation for �ner resolutions and the verygood exponential �tting for η = 1. This exponential result is expeted, sine the vibrating stringould be understood in terms of the Fourier spae, where eah mode behaves as a deoupledharmoni osillator with a damping given by η.3.2 The Membrane (2D)These simulations were also exeuted in a PC of 350MHz, and for latties of N = 500 theintegration time reahed half an hour.Figure 3.2 shows some results for η = 0 and η = 1. For a non-onservative system (η = 1), wesee also the exponential �tting for N = 200.
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Figure 3.1: E × t for di�erent lattie spaings and η = 0 (above) and E × t for N = 1000 and
η = 1 (below). The linear dimension is �xed at L = 1.
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Figure 3.2: E × t for η = 0 and various N (above) and E × t for η = 1 and N = 200 (below). Thedimensions of the membrane are L × L = 1 for all runs.



Appendix ATaylor's TheoremA.1 De�nitionsWhen we want to transform a di�erential equation into a di�erene equation, the Taylor expansionis often used:
f(x) = f(x0) + f ′(x0)(x − x0) +

1

2
f ′′(x0)(x − x0)

2 + ... = (A.1)
=

∞
∑

n=0

f (n)(x0)

n!
(x − x0)

n, (A.2)where x0 is the point around whih we want to expand f(x)1. An alternative form for thisexpansion is ahieved doing a simple variable hange x → x + h and x0 → x:
f(x + h) =

∞
∑

n=0

f (n)(x)

n!
hn (A.3)In the numerial ase we will be interested in trunating the series, so that we �nish with a�nite number of terms. We ould then write this expansion in the following form:

f(x + h) =

m
∑

n=0

f (n)(x)

n!
hn + O(hm+1), (A.4)where O(hm+1) orresponds to the trunated terms whih powers of h are equal or higher than

m + 1 (this term is frequently alled the error of order m + 1). Notie that under the numerialpoint of view it is important to know the order of O in the disretization, sine for h ≪ 1, thegreater the order of O the more negligible will be the error.A.2 Useful ExpansionsSome expansions that will be used throughout this text are shown below. All of them ould beobtained from (A.4) by diretly solving for the desired term or using more than one expansion to�nd higher order expansions for the derivative, and then solving the system. For instane:
{

f(x + h) = f(x) + f ′(x)h + 1
2f ′′(x)h2 + ...

f(x − h) = f(x) − f ′(x)h + 1
2f ′′(x)h2 − ...

f ′(x) =
f(x + h) − f(x)

h
−O(h) (A.5)1 For x0 = 0 this expansion is also known as Malaurin expansion.17
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f ′(x) =

f(x + h) − f(x − h)

2h
− 2O(h2) (A.6)

f ′′(x) =
f(x + h) − 2f(x) + f(x − h)

h2
− 2O(h2) (A.7)

∂f(x, y)

∂x
=

f(x + h, y) − f(x, y)

h
−O(h) (A.8)

∂2f(x, y)

∂x2
=

f(x + h, y) − 2f(x, y) + f(x − h, y)

h2
− 2O(h2) (A.9)Notie that when we divide an error of order O(hn) by hr, automatially this error turns to order

n − r, i.e., O(hn)/hr = O(hn−r).
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