

Nios II Embedded Processor
Design Contest

Outstanding Designs 2005

Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks
and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the
property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and
pending applications, mask work rights, and copyrights.

 i

Foreword

Since its introduction in June 2000, Altera’s Nios® and Nios II soft-core processors have rapidly been
integrated in a wide range of commercial applications. From video broadcast systems and WiMAX base
stations using Stratix II FPGAs to SOHO networking equipment and automotive telematics using
Cyclone® II devices, academic and professional designers worldwide have discovered the advantages of
using Nios processors. Today, more than 15,000 development kits have been shipped, and over 5,000
companies—including the world’s top 20 original equipment manufacturers (OEMs)—are licensed to
use Nios processors.

The versatility of the Nios processor is a big factor in our success. Designers can tailor Nios systems
with the exact peripherals, memory, and interfaces required, and add their own proprietary functions—
their own “secret sauce”—to create a unique competitive advantage. Altera solves the IP integration
problem with a tool that allows designers to drag and drop the exact mix of functions required, so they
can focus on higher, system-level requirements instead of mundane, error-prone, manual tasks. Plus,
Altera® tools work seamlessly with other industry-standard tools, minimizing training time. The soft-
core implementation enables easy software and design upgrades, effectively making the design
obsolescence-proof. With the added advantages of FPGA flexibility, fast time-to-market, and system
integration, designers have a risk-free path to a custom embedded solution.

Altera continually cultivates designers in Asia and around the world through our University Program.
As part of that program, the Nios II Embedded Processor Design Contest aims to increase student
interest in embedded processors, improve their design and creative abilities, and ultimately motivate the
continued development of FPGA-based embedded designs. This year, we received 578 qualified
entries—nearly three times last year’s number of entries. The significant growth of the program is yet
more proof of how rapidly the Nios design community is expanding.

The 20 winning entries presented in this book showcase not only the breadth of possibilities that can be
addressed using Altera’s embedded solutions—including everything from digital imaging,
watermarking and storage centers to an electric network monitoring system and a mechanical control
system—but also technology trends in the industry. When designers have the tools and flexibility they
need, there are no limits to what they can create.

Congratulations to all the Nios II Design Contest winners and their professors. Keep the fires of
innovation burning!

Jordan S. Plofsky
Senior Vice President, Marketing
Altera Corporation

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

ii

Preface

In today’s competitive environment, the integration of multiple complex computational and processing
units to build a System on a Chip (SoC) is an increasingly challenging task. The task of building a SoC
involves creating an exact-fit embedded processor with the inclusion of user-defined instructions to
accelerate the execution of time-critical software algorithms. Moreover, the SoC needs to be flexible
enough to cater for rapid adaptation to design requirements or changing standards, and the ability to
update the features and product enhancements through remote deployment.

The continual technology advancements in programmable logic, through increased performance and
higher density devices, has created an opportunity to design cost effective scalable processor systems
for SoC applications. These scalable “soft processors,” implemented using general logic primitives
rather than a hard, dedicated block in the programmable logic devices, provide a superior alternative for
real-time processing needs in most applications. The SoC designers can choose from any combination
of highly customizable features that will bring their products to market faster, extend their products’ life
cycle, and avoid processor obsolescence.

Altera provides one such flexible soft processor (Nios II). The Altera Nios II processor is a 32-bit RISC
soft core with a rich instruction set optimized for embedded applications. It can achieve a performance
of over 200 MHz. The Nios II processor is designed to be flexible, giving the user control of a number
of features such as the execution units, cache sizes, memory and I/O interfaces, and a flexible bus
architecture. The configurability aspect of the Nios II processor allows the user to trade-off features for
size to achieve the necessary performance for the target application.

The Nios II solution comes with a complete development suite. Tools include Eclipse-based integrated
development environment (IDE), embedded software, operating systems, middleware, and debuggers. It
is also supported by SOPC Builder, the system-level design and integration tool.

To increase the understanding of SoC design methodology and promote its take up by the design
engineers and researchers early in their careers, Altera has been successfully conducting an annual Nios
Student Design Contest for the Asia-Pacific region. This positive initiative from Altera has encouraged
some of the best young talents in the educational institutions in this region to produce exceptionally
innovative designs for many challenging DSP and embedded systems problems requiring SoC solutions.

Dr. Saeid Nooshabadi
Senior Lecturer
University of New South Wales, Australia

 iii

Contents

Consumer Applications
High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors, First Prize

Lu Xiaofeng, Wu Bainian, and Huang Yan, School of Communication and Information
Engineering, Shanghai University .. 1

Passive Digital Camera, First Prize
Ji Won Kim, Doe-Hoon Kim, and Seung-Chul Shin, Hanyang & Yonsei University 15

Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard, Second Prize
Mike Dyer, Amit Kumar Gupta, and Natalie Galin, University of New South Wales 24

Embedded Network MP3 Playing System, Second Prize
Cai Suwei, Xiao Xingjie, Zhang Jiahao, Southern Taiwan University of Technology 37

Implementation of the H.264/AVC Decoder Using the Nios II Processor, Second Prize
Im Yong Lee, Il-Hyun Park, and Dong-Wook Lee, Seoul National University 67

Spectral Estimation Using a MUSIC Algorithm, Third Prize
Jawed Qumar, Indian Institute of Technology, Kanpur.. 74

Nios II Soft Core-Based Full-Color LED Music Sight Light Control System, Third Prize
Zhong Qiubo, Gao Junfeng, and Liu Xiaoping, Harbin University of Science & Technology....... 89

3-D Accelerator on Chip, Third Prize
Young-Hee Won, Jin-Sung Park, Woo-Sung Moon, Donga & Pusan University 109

Industrial Applications
Cryptographic Algorithm Using a Multi-Board FPGA Architecture, First Prize

G. Ananth and U.S. Karthikeyan, Indian Institute of Technology, Chennai................................. 118

SOPC-Based Word Recognition System, Second Prize
S. Venugopal, B. Murugan, S.V. Mohanasundaram, National Institute Of Technology, Trichy 136

Intelligent Card Technology-Based Biometrics Identification System, Second Prize
Tang Hui, Liu Lulu, and Qin Lunming, Institute of Information Science, School of Computer,
Beijing JiaoTong University ... 165

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

iv

Real-Time Driver Drowsiness Tracking System, Second Prize
Wang Fei, Cheng Huiyao, Guan Xueming, School of Electronic and Information, South China
University of Technology.. 179

High Aberrance AES System Using a Reconstructable Function Core Generator, Third Prize
Chen Jian-Hong, Liu Yu, and Shiu Chia-Hau, Department of Computer
Science and Information Engineering, I-Shou University .. 189

Wireless Multifunction Digital Storage Center, Third Prize
Chen Zhuo, Dai Nan, and Fang Dongyu, Beijing University of Industry 210

Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation System,
Third Prize, Lian Jiezhen and Ye Qingfeng, China University of Science and Technology......... 217

Portable Vibration Spectrum Analyzer, Third Prize
Zhang Xinxi, Song Zhuzhen, and Yao Zongzhong, Institute of PLA Armored Force
Engineering .. 228

SOPC-Based Servo Control System for the XYZ Table, Third Prize
Dai Fuyu, Cai Xing’an, and Chen Jiasheng, Motor Engineering Research Institute, Southern
Taiwan University of Technology ... 273

Communications Applications
Networking Remote-Controlled Moving Image Monitoring System, First Prize

Cai Jingtao, National Chung Hsing University... 291

Embedded Electric Power Network Monitoring System, Third Prize
Xu Leijun, Guo Wenbin, and Sun Zhiquan, Jiangsu University... 300

TCP/IP Offload Engine (TOE) for an SOC System, Third Prize
Zhan Bokai and Yu Chengye, Institute of Computer & Communication Engineering, National
Cheng Kung University .. 306

Appendix
Appendix: Nios II Embedded Processor Family.. 323

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 1

First Prize

High-Speed Image Evidence Collector
Based on Dual Nios II Soft Core
Processors

Institution: School of Communication and Information Engineering, Shanghai
University

Participants: Lu Xiaofeng, Wu Bainian, and Huang Yan

Instructor: Lu Hengli

Design Introduction
Currently, the laser velocity measurement forensics system used in road transport systems includes a
velocimeter, charge-coupled device (CCD) camera, image card, and PC. Among these, the CCD
camera, image card, and PC are components of car image forensics systems. Because car information
collection and the forensics of road transport systems are carried out on site, timely communication with
the traffic authority and cooperating institutions is important. Therefore, the system must be able to send
road transport system data accurately, in real time. A system’s real-time performance enables quick data
collection and processing. Accurate data ensures clear images, which can be used by law enforcement
agencies, and the convenience of data exchange enables effective cooperation between agencies.
Because the system needs a human/machine interface, the system is too complex for portable, real-time
operation. The solution is a system that makes it easy to collect and transmit transport system data in
real time.

Keeping in mind the need for a compact system, we focused on the miniaturization of the original car
image forensics system comprising a CCD camera, image card, and PC. We wanted to design a single
image processing system with functions like multipath image collection, intelligent processing,
intelligent display, and wireless transmission with a laser velocimeter to fulfill the need of monitoring
forensics tasks for a road transport system. By adopting Altera’s system-on-a-programmable-chip
(SOPC) solution, our forensics system contains the functions of dual-way asynchronous image
collection, pre-storage, ASIC high-speed JPEG compress/uncompress, compact flash (CF) card picture
storage, picture searching, multiple display modes such as single-way image and picture-in-picture,
real-time character overlay and OSD, and remote wireless transmission.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

2

With the Nios® II soft core processor, we can overcome design issues such as low-speed motion
compensation unit (MCU) processing, limited peripheral resources, difficult I/O configuration, complex
hardware design, and software programming. Using two Nios II soft core processors, we can distribute
control and access to multiple peripherals logically, so that communication between them are
coordinated. This design also meets the requirements of time sequence and functions, makes the best
use of the processor’s resources, and greatly improves the overall operational efficiency of system.
Because the system has external memory and I/O, memory access is frequent. Through the Nios II
processor’s user-defined peripherals, user-defined logic, and direct memory access (DMA), memory
access and data movement are simplified when accessing SDRAM, SRAM, and flash memory.
Additionally, we can implement real-time data overlapping and OSD. In practice, the road transport
situation is subject to frequent changes requiring constant system upgrades. However, while making
system upgrades, you cannot change the system hardware due to cost and time issues. By combining the
requirements of both software and hardware in a coordinated development process, Altera’s SOPC
solution offers the best choice for the team because this solution can fully showcase the advantages of a
multiple soft core processors in combination with an FPGA’s logic control and data processing
capabilities. This design approach allows for a flexible system configuration and simple and convenient
development, supports various processing modes, and offers powerful data processing capacity at low
cost.

With China’s auto industry forecasted to post high growth, a highly integrated and portable forensics
system for cars has a bright market future. Because the system can fulfill mobile random forensics and
offer a real-time position fix, it is very useful for public security and road transport departments.
Additionally, the system can perform functions such as information collection, processing, and
transmission of data on legally registered automobiles, thereby enhancing timely and safe operation of
the road transport system. Our design results in an effective monitoring and forensics system for cars,
which is a crucial component of an intelligent transport system.

Function Description
Our system collects, synchronizes, displays, and stores dual-camera asynchronous images. These
functions include the collection of images based on long shot and close shot distances, and close shot
images with detailed features. All recorded images are transformed based on modulus 8-bit YUV
(CCIR-656) format.

Customized I2C bus peripherals with the Nios II soft core processor control the two-way video ADC’s
initialization. The Altera® FPGA’s on-chip hardware logic elements handle image collection,
synchronization, and memory read/write functions. The two-way asynchronous images are
synchronized using two blocks of 8-Mbyte SDRAM cache. These SDRAMs store each field of two-way
images within the three-field image time, respectively, and then alternate read-write of two blocks’
memory cache. At the same time, the program advances to the next memory location, that is, by writing
memory cache B while reading memory cache A, and writing memory cache A while reading memory
cache B. While writing into memory cache, each field of two-way images is written to within a three-
field time, but only one-way image data is read while reading the cache.

We can display these two-way images separately or within a picture-in-picture (PIP) configuration. We
display these images in real time and skip caching image data when it is one-way image display. Data is
updated and displayed in real time while it is being written into storage memory cache by the method
previously described. When the desired main image display format is displayed as PIP, the image data
of the main picture is not cached and the sub-picture data is the field extraction image by alternate read
operations from the SDRAM cache memory. According to the control mode, if you consider the close
shot image as the main picture, the sub-picture data is read from cache B and the main picture image is
computed from all updated fields while the sub-picture image is updated for every three fields. In
contrast, if you consider long shot image as the main picture, the sub-picture data is read from cache A
using the mode previously discussed.

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 3

Because each sequential burst maximum read/write capability is limited to 512 bytes, the external
SDRAM cache selected cannot write the interlace field data of 720[x]288 resolution into SDRAM in
real time. We solved this problem by designing two dual-port RAMs (using FPGA logic) to act as a
cache memory block of external SDRAM. This scheme ensures that SDRAM continuously reads/writes
a whole-line of image field data in real time.

We implemented the dual-port RAM design through logic control elements in the Nios II soft core
processor and the first block of the FPGA.

Real-Time Character Overlapping
When the system monitor starts to capture image data manually, the system starts processing data on the
spot. If the system monitor uses an automatic process, the system performs a fixed-site execution. The
system monitor communicates with the laser velocimeter through an RS-232 interface. When a speeding
vehicle is monitored, the laser velocimeter provides information such as vehicle speed, distance from
the velocimeter, and current time by series. The monitoring system compares this information in real
time against the stored images database for evidence purposes used by law enforcement agencies. All of
this data is displayed on the LCD.

Before storing the compressed images for display purposes, we used the Nios II soft core processor to
translate it into a regional code character library and stored it in the external flash memory. We then
stored the images in the dual-port RAM of the FPGA. Next, using suitable logic circuits, we were able
to read this character lattice from the RAM and overlap it on the image to be compressed and stored.
This form of the DMA mode improves the operational efficiency of the system. During overlapping, the
image color is pre-defined and overlapping characters are changed into grayscale (because only letters
containing one type of color are overlapped), and 1-bit character information is read every time. The
character information corresponds to a byte of image data. Due to the overlapped grayscale image, Y is
assigned the least grayscale value if some characters must be overlapped. If they do not overlap, Y is
reduced by a 32-bit grayscale grading to highlight overlapped characters.

We created this grayscale overlapping function using logic control elements of the Nios II soft core
processor in the first FPGA. In doing so, we bypassed the costly traditional character-overlapping
function module. After this operation, the system passes image data that have been synchronized and
overlapped with necessary characters to the FPGA for further processing and display.

Early Image Memory
The system monitor must support an early image capture memory function because of the laser
velocimeter instrument and the time delay generated during RS-232C communication between the laser
velocimeter and the system, as well as requirement of law enforcement in traffic system. In other words,
the system must be able to store image information of a T-1 period or even earlier according to T-period
requirements. Keeping this crucial design requirement in mind, we designed our system to control the
image cache using a large external SDRAM to ensure enough image storage precision to meet the law
enforcement requirement when storing images. The system applies cache A and B during a two-way
asynchronous synchronizing process, during which time the early memory storage function is also
completed. The early image capture memory process is related to the size of the cache and the address
position data read from the cache. In theory, the system can implement an intense early memory
function if the cache is large enough. For the current design, because the image time comprises three
fields of storage on cache plus the expected execution time of the Nios II soft core processor during
control compression and read/write into CF card memory, the system can guarantee an early memory
storage requirement of greater than 0.3 seconds.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

4

Image Compression/Decompression
Because the images are available in the CCIR-656 format, we directly adopt a scheme turning one line
into two lines, instead of computing direct interpolation values for mobile images to change the image
format from 640[x]240 to 640[x]480 to ensure image-memory quality. Although, the scheme of one line
turning into two lines adds extra edges to the image, it keeps the definition of the compressed image. In
addition, the size of every image can be up to 600 Kbytes or more, which is a great load for memory
and radio transmission. Hence, we must compress the images in advance. The system adopts JPEG
compression based on the ZR36060 device with about 83% compressibility (affected by image data).
The compressed JPEG picture occupies only 100 Kbytes per image or more with higher compressibility
requirement. However, the reserved images comprise one data field of the interlineations scan odd/even
field. These compressed images, improve memory speed and efficiency of image processing and meet
the requirement of image radio transmission. The chip also supports a decompression function.

The Nios II soft core processor performs initialization and compression/decompression timing, and
commands the ZR36060 compression chip by way of customized peripherals. The compression chip
operates under the control of the Nios II processor and logic elements, and the compression function is
realized by two blocks of external SDRAM (cache A and B) as well as RAM within the FPGA. Cache
A and B, respectively, store a field of distant and close shot images during asynchronous image
synchronizing. If a close shot image is required for compression, the system reads data of the close shot
image from cache A to FPGA RAM, and then the logic elements send data to the ZR36060 for JPEG
compression. In this case, cache B only stores one field of distant image and close shot image in a six-
field data time. By contrast, if a distant image is compressed, the system reads the distant image data
from cache B to FPGA RAM for compression. If PIP image is required for compression, e.g., a close
shot image of the main picture, the system first reads the close shot image from cache A to interior
RAM, and then reads the distant image of extraction frame from cache A to the specified place of RAM.
When logic elements read and compress data from the dual-port RAM, the system reads the scrambled
image in PIP so as to implement the PIP image compression. In this case, cache B only stores one field
of distant image and close shot image data within six-field data time.

Note that image decompression of stored images in the CF card is a reversible process of the previously
described compression process.

When the system is compressing images, no real-time image data is sent to the FPGA and cache C and
D for processing. This process enables the FPGA to repeatedly send image data in cache C to cache D
and LCD to freeze the display picture. Then, the system decompresses the latest data from CF card,
delivers it to the FPGA by data bus transfer, and writes to cache C. The FPGA later reads the latest
image data from cache D and freezes them onto LCD. So every time image memory data is processed
manually or automatically, cache C sends the latest decompressed image data to cache D. The images
are frozen on the LCD from the latest image data of cache D to avoid frame-skipping and black screen
during compression/decompression and image storage processes, thus guaranteeing a continuous and
smooth image display. In addition, this operation also involves updating and intercommunication with
the FPGA RAM when the Nios II processor operates cache C and D.

The function was realized by the control and peripheral access functions of data and command
communication between two Nios II soft core processors in two blocks of the FPGA. Accessing the
compressed chip was performed through the customized parallel input/output (PIO) mode of the Nios II
processor.

CF Card File Management System
Because images must be stored in real time during image collection, and a great number of images need
to be stored while monitoring speeding instances, the system needs substantial memory. Therefore, the
monitoring system must support the right kind of memory medium featuring large capacity, low cost,

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 5

and easy operation. Our system uses a commonly available CF card with a 256-Mbyte capacity, which
can store more than 1,000 groups of pictures. Combined with the LCD display, the CF card can be used
on our system for browsing and searching images or on a PC for easy operation.

The Nios II processor starts initializing both the CF card and compression chip, and builds the catalog
contents and file allocation tables (FAT) of the currently stored files in the CF card. Next, compressed
images can be stored onto to the CF card under the control of Nios II logic elements. However, the Nios
II processor must update catalog contents and FAT of the second picture before the second picture is
stored.

CF card file management involves communication between the two Nios II soft core processors and the
CF card during the storage and read of CF card data. The data channel is connected directly, and the
command channel depends on I2C bus. The communication mode responds according to the
compression process for access and display of external memory data. All keystrokes used by the control
process adopt the I2C bus access mode.

According to the requirements of the traffic system, the monitoring system must be able to store data
similar to the size of an image under question to track aberrant behavior on the spot. This feature helps
the inspector working with the system to track down an over-the-limit speeding vehicle with high-
quality pictures. Using this principle, we designed two memory modes in our system: one mode for two
pictures and the other for three pictures. The system can randomly select two or three pictures to store in
a single image or PIP image under these two memory modes. In addition, the monitoring system can
browse, search, cancel, and format the stored pictures on the CF card. The system LCD display is user
friendly in that it hints all possible operations (including OSD display mode features), its visualization,
and possible shortcuts.

File management on the CF card is realized through control and peripheral accessing functions of the
Nios II soft core processor as well as the command communication function of the FPGA. We have
implemented the I2C bus and CF card interface through a customized PIO mode.

GPRS Wireless Transmission of Images
Because a road traffic system involves intense communication between law enforcement units and
related locations, our system features a peripheral general packet radio service (GPRS) module. This
module communicates with the RS-232 serial port and the Nios II soft core processor of the first FPGA,
and enables wireless transmission of images involving traffic violation (venues and vehicles). The
module allows users to browse the pictures stored on the CF card directly, and transmit them as forensic
evidence to fixed IP addresses on the Internet through a GSM network. This function was mainly
realized through accessing serial port peripherals by the Nios II soft core processor in the first FPGA
device.

OSD Display Mode
Because we need to display status information of the CF card, GPRS module, and user menu on the
LCD screen along with the image, we adopted the OSD display mode for easy operation.

The OSD overlapping character comprises two parts. The first part deals with the law enforcement
location and the enforcement code number on the upper screen. This data is sent to the first FPGA via a
serial port connected to the front-end laser velocimeter to obtain information. Then the main processor
in the first FPGA sends this data to the subordinate FPGA via the I2C bus to implement the OSD
display. The second part deals with the status and menu prompt information. Information in this mode is
obtained using direct data transmission between on-chip and off-chip memory under the Nios II soft
core processor control. This operation is similar, in theory, to DMA mode, but it does not use DMA
peripheral control directly. Instead we use the external SRAM’s custom-defined write logic. When data

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

6

is translated into RGB format from YUV format in the second FPGA, the Nios II processor begins to
write OSD content stored in the external flash memory to an external SRAM chip via the internal RAM
of the FPGA. Then, the logic control unit takes in OSD data read in the external SRAM to the
transmitted RGB image, and displays it in OSD mode. The Nios II processor modifies the OSD content
character bitmap in the external SRAM via the internal RAM of the FPGA during each data access.

The OSD data identifies an overlapped word data with a 16-bit word. Because the text displayed in our
current system is black and white, we only use three bits. If necessary, we can use all 16 bits to display
the text in color. The Nios II processor uses custom logic to write the external SRAM. We have used a
DMA-like mode when data in the external SRAM is transmitted to internal RAM and overlapped under
Nios II processor control.

The logic unit translates the image format, from YUV to RGB, before OSD affected in the second
FPGA. During this process, we implemented line interpolation to create smoother images for easy
viewing of the display.

Performance Parameters
These parameters are the actual performance parameters of the system, which were obtained after
implementing the system design. The actual system performance parameters are:

■ Power supply—DC voltage: 9 – 12 V; operating current: 600 mA (motherboard current is about
200 mA); power consumption: 10 W

■ Environment—Operating temperature: 0° C – 40° C; relative humidity: 8% – 95%

■ Input image—Mode: two-channel asynchronous image; data format after digitalization: CCIR-656

■ Display—LCD resolution: 640[x]480; LCD display area: 16 cm² or 6.4 inch²; LCD display color
depth: 6-bit/RGB

■ Storage—Storage image resolution: 640[x]480; storage image color depth: 8-bit, JPEG; storage
image capacity: about 100 Kbytes/image; image storage total cycle: < 0.5 s/2 images

■ Transmission time—About 1 minute/image (depending on local network condition)

We have used two Nios II soft core processors in this design to manage the FPGA’s internal resources,
define the time sequence requirements for data processing, and handle display and control of the
system. In addition, we needed to make frequent access to multiple peripherals from the main system
and the Nios processor helped us to improve the overall system operational efficiency. The dual-core
system fully utilizes all features and performance of the Nios II soft core processor. The following
functions were included in the design:

Functions of the Nios II soft core processor in the first FPGA:

■ Main processor, controlling logic unit for the whole system.

■ Performs intra-soft core communication with Nios II soft core processor in the second FPGA via
user-defined I2C bus peripheral.

■ Handles data and command communication with front-end laser velocimeter through RS-232 serial
port peripheral.

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 7

■ Handles all operation instructions to FPGA internal logic circuits through user-defined PIO
peripherals.

■ Acts as the main component of I2C bus in the whole system, controlling all subcomponents on the
I2C bus in the system, such as image analog-to-digital (A/D) conversion chip, user buttons, and
Nios II soft core processor in the second FPGA.

■ Communicates with the GPRS module via RS-232C serial port peripheral.

■ Converts the standard region code character library in flash memory into character dot matrix.

■ Issues partial control instructions during image compression and CF card storage while initializing
the compressed chip and CF card at the same time through user-defined peripherals.

■ Performs file allocation table (FAT) file management system of CF card via user-defined peripheral.

Functions of the Nios II soft core processor in the second FPGA:

■ Subprocessor.

• Handles intra-core communications with main Nios II soft core processor in the first FPGA via
I2C bus.

• Issues all operation instructions to FPGA internal logic via user-defined PIO peripheral.

• Implements self-defined logic to write into external SRAM.

• Handles DMA data access mode between external SRAM data and on-chip logic.

• Converts standard character library in Flash memory into character dot matrix.

■ Implements OSD display.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

8

Design Architecture
Figure 1 shows the system block diagram.

Figure 1. System Block Diagram

Video
Data1

Sync/
CLK 1

Video
Data2

SDRAM
A & B

Nios II
(Master)

FPGA 1

Video
Decode

VBO Data

LCD

Sync/
CLK

RGB

Flash 1

VBO
Sync/CLK

FPGA 2
I2C

SRAM 1 CF Card CODE C

Keyboard SDRAM
Control

Interface

Flash
Control

Interface

Data & Control Bus

Character
Buffer

CF & CODEC
Control Interface IIC

Master

RS232
Interface

Clock
Management

Command
Generator

Laser
Velocimeter

GPRS
MODEM

Character
Library 1

R
S

23
2

R
S

23
2

I2C

Sync/
CLK 2

Data & Control Bus

I2C

SDRAM
C & D Flash 2 SRAM 2 Character

Library 2

SDRAM
Control

Interface

Color Space
Converter

Clock
Management

SRAM 3
(Character

Buffer)

I2C
Slave

Command
Generator

OSD
Buffer

Nios II
(Slave)

Design Methodology
This section describes the design methodology we used for the system.

System Function Design & Test
Using Altera’s UP3 development board, we were able to design most of the system functions, test, and
simulate all functions. In addition, we designed a few circuit boards for design and test. We did our
system design and testing as outlined in the steps below:

1. Design the technical parameter and function indexes that need to be implemented by high-speed
image storage.

2. Refer to examples and testing documents on UP3 development board, understand Nios II soft core
architecture, software programming using C language under IDE environment, and online program
debug and programming for the device.

3. Adopt SOPC Builder to implement peripheral storage access, RS-232C serial port, and PIO on UP3
development board.

4. Implement access of hardware through IDE interface and setup file management system on UP3
development board (the IDE interface on UP3 development board also defines the sequence error
of address pinout definition).

5. Implement user-defined peripherals and logic on UP3 development board.

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 9

6. Implement collection, compression, decompression, and CF card storage for a single processor
image.

7. Implement real-time character overlapping for single processor image.

8. Realize LCD OSD display.

9. Realize synchronization of dual-processor asynchronous images.

10. Realize picture in picture, collection, compression, decompression, and CF card storage for dual-
processor asynchronous images.

Hardware Implementation
Our hardware design task was to combine the above-mentioned testing methods realized on UP3
development board and our circuits, then design the necessary hardware modules, build a high-speed
image forensics system based on dual Nios II soft core processors, and implement the above functions.

Using the PROTEL 99SE tool, we were able to partition the design using the UP3 development board
and our own circuit modules. This enabled us to decide upon the usage of two Cyclone® EP1C6Q240
FPGAs as controlling devices. All other functional modules in the system were designed based on these
two FPGAs, which represents a high SOPC-integrated design concept and principle in hardware.
Because the Nios II soft core processor is available to be designed in both FPGAs, only peripherals such
as SRAM and flash devices needed to be configured. Due to the design requirements of image buffer
and freeze, a high-capacity SDRAM needed to be configured as a buffer. We also needed to perform
JPEG image compression; so we decided to use an ASIC to perform compression. Our design treats CF
card as storage media in order to implement image storage, and we chose the CF card to make the
storage media easy to use. The dual-processor simulated image had to be digitized to achieve effective
processing. Therefore, the system had to configure the A/D module for both single and dual-processor
images. Other system peripherals include a power management unit, LCD interface, two serial ports (for
communication with front-end laser velocimeter and GPRS module), and operational buttons.

To make it easy to understand the system hardware design process, we have split the design into the
schematic diagram, functional verification of the schematic diagram, component purchasing, and PCB
development, as described below.

1. Schematic diagram design—Because most of the functional testing and simulation has been
completed on UP3 development board and self-designed circuits, the schematic diagram design
mainly refers to our own circuit designs that effectively combine these into the most representative
of the circuit system schematic diagram. Thanks to the adoption of Altera SOPC solution, all
processors and functional control units were integrated into two FPGAs, further simplifying the
design structure.

2. Functional verification of the schematic diagram—Although most of the functional testing has
been completed on testing board, hardware integration needs functional verification. The functional
verification of the schematic diagram is primarily to demonstrate the proof-of-the-concept in
consideration with the guidance of the tutor. This process led to the confirmation of a complete
circuit design.

3. Component purchase—We purchased the necessary components while designing the schematic
diagram and its verification. All component packages were clearly marked on the schematic, which
made PCB development easier.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

10

4. PCB development—Our circuit board design uses a four-layer PCB scheme, which is capable of
handling multiple signal wires and earth wire to ensure the normal functioning of the circuit board
and perform all system functions.

Software Implementation
The software design task is to migrate the VHDL and C language program of the above-mentioned
functions realized on UP3 development board and self-designed circuit to two Cyclone EP1C6Q240
FPGAs with two Nios II soft core processors. The design of all software modules was based on highly
integrated hardware modules. We used the Altera Quartus® II software, SOPC Builder, and Nios II IDE
to build the Nios II soft core processor and to develop the controlling program of the system,
highlighting the SOPC solution’s highly integrated and programmable concepts. Our software design
was based, but did not completely rely, on hardware modules so that we could complete core
modification and be able to make upgrades. The design also made it possible to easily implement, add,
and remove multiple peripherals, access user-defined peripherals, and design user-defined instructions.
Generally, the system is under control of the dual Nios II soft core processors. However, most of the
software modules were implemented based on the cooperation between the Nios II soft core processor
with the FPGA logic.

We used the VHDL and C languages for the software design. We wrote the logic control and data
processing program in VHDL, and used C language routines for the control program of the main and
sub Nios II soft core processors. Based on the functional tasks, the system software is divided into
system initialization, direct image display, character overlapping of image data, image compression and
decompression, image storage, GPRS wireless transmission, and OSD display. The implementation
method and steps are shown below:

1. System initialization—The system is initialized for all parts in the system by the main Nios II soft
core processor via the I2C bus, which includes video A/D module and user buttons, initialization
operation for the CODEC chip during compression and decompression, FAT file management
system during CF operation, and directory entry and FAT modification.

2. Image display—The image is displayed on the LCD screen before it is captured and stored. The
image can be displayed in single-processor mode or picture-in-picture mode. Although the image
data seems to be directly available, the system is writing this data into external SDRAM cache
unceasingly and repeatedly to meet the requirements of compression and storage in advance. It also
refers to the access to external storage operations in user-defined peripheral mode by the Nios II
soft core processor. Meanwhile, logic is needed to do a great deal of work for clock management,
controlling command generation, and data channel handling to carry out functions set by the
system.

3. Real-time character overlapping—The character overlapping software design includes translating
standard characters into binary lattice information by the Nios II soft core processor, the access
time sequence design of the lattice information, and reading/writing of external storage with
internal RAM in the FPGA by the logic unit, which is performed by the Nios II processor and
FPGA logic.

4. Image compression and decompression—Image compression and decompression refer to the
initialization of a compression chip by the Nios II soft core processor, generation of control signal
for compression and decompression is also provided. Logic handles the processing and
transmission of other data.

5. Image storage—The Nios II processor plays an important role during the access of the CF card by
the system. It creates a complete FAT file management system, initializes the CF card, and issues

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 11

control commands for storing and reading processes. Other data processing is performed in
cooperation with the FPGA logic.

6. GPRS wireless transmission—Pictures stored in the CF card need to be transmitted wirelessly to a
fixed IP address at any time based on the users’ requirements. In this way, all law enforcement
units of the whole road traffic system can share the latest data resources. The Nios II serial port
peripheral accesses the GPRS module and to transmit the image data. This implementation provides
more convenience for operating and programming the system.

7. OSD display—This function is mainly implemented by the sub Nios II soft core processor,
including bitmap translation from OSD data, writing of bitmap data to the external SRAM, reading
to the internal RAM of FPGA from data of external SRAM, and overlapping of OSD data to real-
time image. We used the Nios II soft core processor to access the peripheral, write to the external
SRAM in user-defined logic mode, and read/write external SRAM data in DMA mode. In addition,
FPGA logic translates the image format, converges image and OSD data, and interpolates the
image and data.

Design Features
This section describes the system’s design features.

Dual Nios II Soft Core Processors
The master and slave Nios II soft core processors were implemented in two Cyclone FPGAs. The
processors implement communication with Nios II-defined I2C bus peripherals. This design takes full
advantage of the dual-core cooperation to coordinate system data processing and display timing
requirement, and utilize FPGA internal logics and storage device resources to share data processing,
peripheral access, peripheral and internal logic control, enabling CF card file management system, user-
defined peripheral access and control, user-defined logic, DMA, and OSD display. With this
implementation, we could add extra system functions and control methods, while reducing the overhead
of extra control units such as MCU, hardware circuits, and design complexity. This implementation led
to lower software and hardware design costs.

Synchronization of Dual-Camera Asynchronous Images
We used I2C bus peripherals defined by the Nios II processor to control the dual-channel video ADC
initialization and schedule the FPGA logic to control image collection, synchronization, and storage.
While synchronizing the two asynchronous images, the off-chip and on-chip cache can be used to
synchronize the dual-channel asynchronous images, store image information in advance, and realize
multiple display methods such as dual-channel and PIP. The direct access to multiple storage devices
using FPGA often makes the programming task difficult and takes plenty of on-chip resources. We
solved this design issue by using the Nios II processor’s fast access to multiple storage device
peripherals, which helped to reduce the design cycle time and expense.

Real-Time Character Overlapping
During the image capture process, the capturing system and laser velocimeter communicate through the
RS-232 serial port. When detecting a speeding vehicle, the laser velocimeter provides the current speed
of the vehicle, its distance from the velocimeter, and the precise time to the capturing system through
serial ports. Then, this information is displayed through OSD on top of the screen by the system.
Meanwhile, the character information, such as the execution site and force number, are overlapped into
the saved pictures in real time to be used as evidence for police action. This design makes full use of the
Nios II-defined peripheral functions to enable the system to communicate with the front-end

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

12

velocimeter in a timely fashion to obtain character information and instructions needed without having
to develop a dedicated serial port driver.

ASIC Compression & Decompression
The system adopts an ASIC-based, ZR36060 device JPEG compression, delivering 83% compression
ratio. The device can compress JPEG images down to 100 Kbytes, which not only improves the image
storage speed and efficiency but also meets the requirements for image wireless transmission. The chip
is also equipped with a decompression function. Its implementation relies mainly on a user-defined
peripheral of the Nios II software to initialize the compressed chip and issue control instructions for
compression and decompression tasks in coordination with the logic unit.

CF Card File Management System
The Nios II processor starts to initialize the CF card while initializing the compressed chip, and further
creates a directory entry and FAT for the files being stored. Then, the compressed images can be saved
to the CF card. The Nios II processor configures the CF card for saving every image. We have designed
an image storage format of 2 or 3 images in a group. The Nios II software user-defined peripheral
function is fully utilized when accessing or storing images onto the CF card, which allows the Nios II
processor instructions to complete the complex operations on CF card.

Image GPRS Wireless Transmission
We devised externally connected GPRS modules to connect with the Nios II software and the first
FPGA through serial ports to wirelessly transmit speeding vehicle images to the law enforcement,
which facilitates communication between the execution units and sites. Users can view the images
stored in CF card directly and then transmit these images to a fixed IP address on the Internet through a
GSM network. The monitoring execution sites can communicate with each other through GPRS and
quickly read the information on condition of the scene and vehicle in question. This communication
allows the police to intercept these vehicles quickly, and further monitor the road traffic in real time.

OSD
The system uses OSD to facilitate user operation. It is needed because there are many prompts during
system operation, status information of the CF card, GPRS, and various menus that need to be
synchronized and displayed on the LCD along with images.

The characters overlapped on OSD include two parts. One is the execution site and police number on
the top of the screen. The information is sent by the front-end laser velocimeter through the serial port
to the first FPGA. The FPGA’s master processor then sends the data to the FPGA for OSD. The other is
the status and menu prompts. This information is obtained by transmitting data directly between on-chip
and off-chip storage devices under the control of the Nios II soft core processor. This operation follows
the same principle as DMA but does not use DMA peripheral control directly. Additionally, this
function writes to the external SRAM using user-defined logic. When the data format is transformed
from YUV to RGB in the second FPGA, the Nios II processor starts to write the OSD contents stored in
external flash into an external SRAM chip via the RAM in the FPGA. The logic control unit overlaps
the OSD data read from external SRAM into the RGB image whose format has been transformed for
OSD. Then, the Nios II processor modifies the OSD content character matrix in external SRAM through
the RAM in the FPGA during each blanking interval of the data field.

OSD data indicates an overlapped data point with one character (16-bit data). Now, only three
conditions are used for black-and-white display. If necessary, all 16 bits can be used for color display.
The Nios II processor uses user-defined logic to write to the external SRAM chip, while the data in
external SRAM under the control of Nios II soft core processor is transmitted into RAM for overlapping
through a DMA-like method.

 High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors

 13

Highly Integrated SOPC Solution
The whole system has been designed around two FPGAs. Making full use of multiple functions and
features of two Nios II soft core processors, the control and data processing are managed by Nios II soft
core processors in the FPGAs. While the design is processed with the FPGA software, the hardware
system and software system can be combined, casting off the traditional reliance of software
development on hardware. Additionally, the multiple soft core processors can be used to select
appropriate peripherals, storage devices, and I/O interface to build a system that is well-tailored to
match customer demands. This design approach also yields low price, simple design, high integration,
and low risk.

Easy System Upgrades
Due to the nature of the user requirements and road traffic conditions, the system requires quick and
frequent upgrades. The Altera SOPC solution frees users from upgrading hardware for software
upgrades. Even if the product has been delivered to a customer, the software can be updated regularly.
Users can add new features to the hardware continuously to reduce risks possibly caused by changes in
standards and add functions, thus simplifying hardware repairs. They can also avoid processor
obsolescence.

Collaborative Software/Hardware Development
Because the hardware and software of an SOPC system can be combined, the design of both can be
jointly performed during the system development process. The development of software and hardware
can begin and end almost simultaneously, saving a lot of time. Additionally, the SOPC design approach
accelerates the pace of product launches and enables a longer product life cycle. You only need to
generate a new Nios II kernel if you need to modify some definitions during development process,
exerting no impact on other peripherals or other Nios II programs.

Lower System Cost
The Nios II soft core processor solution can help to achieve a good balance between system
performance and system cost when designing systems involving higher integration, optional CPU (high-
speed, economical, and standard), a multi-CPU system, and no fixed requirements for a processor
implemented on an FPGA. Using the Nios II soft core processor, we designed an economical and
practical monitoring solution for road traffic systems, while also taking into consideration the need for
flexible system functions.

Conclusion
Before participating in the contest, we had some prior experience with Altera devices and possessed
some development experience. When we started using Altera’s SOPC solution incorporating FPGAs and
the Nios II soft core processor, our original understanding of the FPGA changed. The FPGA functions
that are single, parallel, and high speed with strong logic, simple time sequence, and complex operation
were greatly expanded. We integrated designs that could be implemented by an external control unit
into one FPGA, and removed/added the peripherals and interfaces of an internal Nios II soft core
processor. Additionally, the Nios II soft core processor can be adapted easily for low-speed control,
awkward peripheral access, and massive storage peripheral devices, all of which need frequent interface
modifications. Furthermore, in accordance with many features of the FPGA I/O, there is always a
problem of operation coordination and interface between the FPGA and control units. You need to take
this coordination into account during software/hardware design, e.g., for data processing, command
control, time sequence coordination, parallel/serial, and high/low speed. Between the Nios II software
processor and FPGAs you can simplify system design and software programming. By migrating the OS
into the Nios II soft core processor, you can combine the FPGA and traditional embedded CPU. At the
same time, the kernel of the SOPC solution is the most effective.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

14

Accordingly, an integrated SOPC solution and the Nios II soft core processor have totally overthrown
the old embedded system design and greatly boosted the hardware/software design gains. Based on this
evolution, an embedded system’s hardware circuit is simpler and more effective and the software design
can be visualized and migrated easily. It is certain that hardware circuit design is not as complex as
before and “processor + memory + peripheral” is easy to understand. However, the software design is
more complex than before. The hardware/software coordinated development technology of SOPC
solution has solved the problem and enabled the synchronous development of FPGA logic and the Nios
II soft core processor inner program to enhance the design efficiency.

In the contest, we created the dual Nios II soft core processor control, but did not migrate a real-time OS
into the processor due to time limitations and difficult technical challenges. Additionally, our Nios II
evaluation is deficient in this aspect. According to the current requirements of embedded systems, the
realization of real-time OS migration shall be based on the improvement of system integrated efficiency
and stability, which is also the direction of our efforts.

Because the SOPC solution and Nios II soft core processor were launched not long ago, some problems
occur in real applications such as process speed deficiency, shortage of IP cores, an internal resource
insufficiency of general mid- to low-level FPGAs, and expensive high-level devices, all of which have
restrained the application of SOPC solutions in some fields. But we believe that with the growth of
related technology, as well as innovations from Altera, system designers will be sharing many practical
SOPC solutions before long. When that happens, by virtue of advanced tools, we will then design the
most profound system in the most concise way.

 Passive Digital Camera

Altera Corporation 15

First Prize

Passive Digital Camera

Institution: Hanyang & Yonsei University

Participants: Ji Won Kim, Doe-Hoon Kim, and Shin Seung-Chul

Project Leader: Min-Chul Kwon

Design Introduction
Today we live in a society where digital devices and related software tools enable us to capture videos.
Thanks to advances in semiconductors, it has become affordable to own personal video equipment such
as video and digital cameras. People use video cameras to store and share their experiences, and blogs
on the Internet to share their thoughts.

Because of popular interest in image acquisition and its storage, a unique set of problems in managing
these images has been created. Users often need to selectively access images; therefore, they need tools
that can consistently enable them to select, sort, and manage the images. In the past, image collections
were small, and therefore easy to manage, but with the ever-growing library of images, it is becoming
increasingly difficult to classify and locate these images. To solve this problem, you need a tool that can
classify and search images automatically. The image compression standard, MPEG-7, was developed
based on this need. However, it is not useful for personal video users because digital camera
manufacturers supply software that provides only the acquisition date and time stamp, and classifies
images based on these parameters. Unfortunately, searching for an existing image without the time
stamp is impossible based on this technique.

To solve this problem, we would like to propose a device called the passive digital camera featuring
image-classification software. We call this device a passive digital camera because the digital camera,
not the user, decides the shot time. The passive digital camera determines the acquisition time of the
image by using various sensors. The camera recognizes the local conditions such as temperature,
velocity, and tilting angle.

We have developed a software module for image analysis based on the image classification descriptor
found in the MPEG-7 standard. The HW-IP module, which analyzes images, does so by considering the
ability of the device and transferring it to a PC. The module also makes software control easy by loading
the uCLinux real-time operating system (RTOS). Our digital camera is compact and lightweight. Being

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

16 Altera Corporation

a portable device, it is best if it can be implemented as a one-chip solution. Altera’s FPGA and Nios® II
embedded processor provide a huge advantage in this type of design.

Function Description
Our Personal Black Box (PB2) design collects image data that is beyond the user’s cognition capability.
We tried to use a grouping algorithm, which sorts collected images automatically, but we had to discard
this approach because it needed a more powerful computing device. Instead, we tried to perform image
classification in hardware. To enable this methodology, PB2 would include a global positioning system
(GPS) module in which it stores location information for individual images. We had to discard this
approach also, and try a different method.

Using an acceleration sensor and an infrared ray sensor, we thought that we could fix the shaking noise
in the image acquisition. This method worked partially because it enabled us to determine how long it
took to acquire images. The image module in our design features more than a 300-Kbyte pixel
capability and can control 640 x 480-size 24-bit color images. For this project, however, we used 320 x
240 image sizes.

Our PB2 supports 1 Gbyte or more of flash memory and an SD card interface, using serial peripheral
interface (SPI). We have also implemented the FAT32 file system. Because the PB2 operates in real-time,
it offers enhanced reliability in image acquisition timing. To achieve this reliability, we developed two
software modules: the first module features single-threaded firmware, and the second features a multi-
threaded program on μC/OS-II. These modules work identically.

With our power management circuitry we thought we could guarantee up to 16 hours of operation.
(however, we have not been able to meet this expectation). Our product was implemented on the UP3
development board, but power management needs its own full custom design. On the UP3 development
board the 1.2-V 900-mAh Ni-MH x 5 starts at 6.6 V, and an hour later it falls to 5.4 V and disables the
UP3 board. We suspect this may be due to the power consumption of the LCD backlight.

Performance Parameters
The image control module uses a probability algorithm, the analysis of which leads to the dispersion
comparison of images.

To refrain from acquiring unnecessary images, the module compares the head of the most recent two
images. It then extracts the sample from the center of the image and compares it with the other image.
To make the operation more efficient, it extracts the minimum sample for a comparison. See Figure 1.

 Passive Digital Camera

Altera Corporation 17

Figure 1. Distribution of Each Image

The statistical tests were carried out on the PC as shown in Figure 2. We then used the Nios II processor
to perform the tests and found that our operation efficiency was equal to the PC environment by a
significant level (0.10).

Figure 2. Testing of Statistical Hypothesis

Design Architecture
While developing our design, we found that the MPEG-7 standard implementation posed many
constraints that were too big to handle. We had a very small-capacity FPGA device, and we needed to
integrate several peripherals. Hardware acceleration was almost impossible to achieve under these
conditions. Also, we needed to develop many device control software routines, which required a simpler
algorithm. When we have a more powerful FPGA available to us, we can reconsider hardware
acceleration.

The image matching algorithm flowchart is shown below in Figure 3. We contrasted and compared two
images based on a randomly chosen pixel’s distribution ratio. If the ratio is over a specific limit, we
deem the two images to be different, and then store the new image.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

18 Altera Corporation

Figure 3. Testing Algorithm Flow Chart

F~(60,60;0.1)
Test Distribution

Same
Distribution?

Old Buffer = New
Image

Loop

Save Image
(Reject

Null Hypothesis)

No

Yes

Input
Random Pixel Value

Start

Hardware Design
We used an Altera® FPGA in our system design, where it functions as the main controller, handles all
sensor functions, and manages all peripherals. The sensor module determines the image acquisition
time. The peripherals in our design consist of a mass storage device and a battery module. Figure 4
shows the PB2 hardware block diagram, including logic element (LE) usage. Later, we plan to add a
battery module to the design.

We designed the image analysis function using the Nios II processor. The image analysis function’s
performance can be enhanced with statistical data analysis software such as the MATLAB software; or
you can use a generic C program module.

Figure 4. Hardware Block Diagram

System Configuration

Cyclone EP1C6Q240C8 (4,952 of 5,980 LEs 82%)

Nios II /s
(2,811 LEs)

(37 MIPS, Dhrystones 1.1,
on 57.6 MHz)

JTAG_UART
(213 LEs)

2 Timers
(281 LEs)

SPI
(145 LEs)

CAM_UART
(202 LES)

RTC

I2C
(240 LEs)

LED Pushbutton

SDRAM
(8 Mbyte)

Flash
(2 Mbyte)

SRAM
(128

Kbyte)

LCD

Avalon
Tri-State
Bridge

(403 LEs)

AD7859 Bridge
(36 LEs)

AD7859 ADC SensorsSD CARD CAM Module

SDRAM
Controller
(475 LEs)

Memory
Interface

LCD
Interface

Personal Black Box

PIO (30 LEs)

 Passive Digital Camera

Altera Corporation 19

Software Design
Figure 5 shows the software flow chart for image acquisition, excluding the image processing. Each
sensor helps determine the image acquisition time. The system uses a heat sensor, speed sensor, and tilt
sensor. The image processing function starts before image storage and is determined by the available
power and storage parameters. The image processing module comprises two parts: an image description
extraction and classification of captured images. We use a PC to perform image classification.
Therefore, each processing module task can be performed independently of the other.

Figure 5. Software Process Flowchart

System On/
Initializing

Aggregate
Sensor Data

Position Image

Motion Thermal

Get Decision
Parameter

Appreciate
Capture Time

Store Image
To Disk

Image
Processing

Sensing

Start

Figures 6 and 7 show the single-threaded and multi-threaded state diagrams, respectively.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

20 Altera Corporation

Figure 6. Single-Threaded Software State Diagram

Device Initialization

SPI Init
SD Init

FAT32 Init
I2C Init

RTC Init
CAM UART Init

AD 7859 Init

START

Device Test

RTC Test
LCD Test

FAT32 Test
CAM Test

Sensor Test

Loop State

Sensor Check

Body Stable

Body Unstable

Image Processing

Get Gray Image
Compare with Prev. Image

Store Image

Get Color JPEG Image
Save into Storage

Interrupt Menu

User Input Wait
[IDEN]

[SAVE DONE]

[DIFF]

[CONTINUE]

[BUTTON IN]

[EXIT]

END

Figure 7. Multi-Threaded Software State Diagram

Device Initialization

START

Device Test

. . .

Start Multitask

OSStart()

UI Task

Interrupt Menu

User Input Wait

[EXIT]

END

Sensing Task

Sensor Check

Body Stable

Body Unstable

[BUTTON IN]

[CONTINUE]

Image Processing
Get Gray Image

Compare with Previous
Image

[IDEN]

Algorithm Task

Store Image

Get Color JPEG Image
Save into Storage

Storing Task
[DIFF]

[SAVE DONE]

Related Hardware
Button Sensors

CAM UART
Custom Instruction SPI

. . .

Although the multi-threaded software module looks good, it was not much help in our design
application. A slow image sensor and a fast processor for the image algorithm made it difficult to
partition tasks. We feel, however, that the multi-threaded software module works well when all of the
peripherals are reliable and the processing speed is uniform.

 Passive Digital Camera

Altera Corporation 21

Design Methodology
Because our system clock was set at 57.6 MHz, it caused peripheral communication errors, especially
with the UART baud rate. By keeping the board clock at 48 MHz, we managed to get 57.6 MHz using a
phase-locked loop (PLL) adjustment. The main modules in our system were:

■ 57.6 MHz Nios II/s processor with JTAG level 1 and a 14.4-MHz SPI bus for SD card control (with
wide clock range support). We used SOPC Builder to calculate the clock latency, which was very
helpful.

■ I2C Core (from opencores.org) for real-time clock (RTC) implementation. We found that Altera’s
OpenCore® Plus I2C core required too many constraints for our system.

■ 115.2-kbps UART for CAM module communication. Because this was a critical module, we
changed and tuned the system clock. The CAM integrated circuit (IC) supports SPI mode for up to
3 MHz, but had some restrictions when used as a UART-type module. We could have selected the
raw CAM module without using the UART interface, but at 115.2 kbps it was too slow to obtain the
image.

■ SDRAM memory controller. This module used a 57.6-MHz clock, but needed some phase-shift
adjustments. We set this shift to -82.0 degrees, which was determined by board-specific
characteristics.

■ SRAM and CFI. This module is a tri-state bridge between memories.

■ AD7859 user logic bridge. The AD7859 has control and data pins. We made AD7859 a bridge
component using the software’s new component feature. Because we had good knowledge of the
Avalon bus interface, connecting peripherals was easy.

■ Keypad and LED parallel (I/O) (PIO). This module comprised a 16 x 2-character LCD interface,
buttons, and LEDs.

The SOPC Builder settings are shown in Figure 8.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

22 Altera Corporation

Figure 8. SOPC Builder Settings

Using SOPC Builder, we designed a general microcontroller like AVR or ARM. This approach saved us
additional hardware design work. Then we developed device drivers. We found that the Nios II
Hardware Abstraction Layer (HAL) is good enough for normal operation, but we needed to customize it
for better performance. We found some compilation problems as well. The memory alignment for
structures was not documented.

Design Features
Our design had the following features.

Performance
Image processing requires many functions, and image processing resources are limited in mobile
devices. Consequently, hardware/intellectual property (IP) implementation can help improve image
processing efficiency.

Portability
The design must be flexible. Because the whole system is complex, you can get around this requirement
by using a PC-based camera system to perform software conversion easily. We used the Nios II
embedded processor for a hardware implementation of software functions, which is more convenient.

Low Power Consumption (Abandoned)
Our original design had low power consumption as one of the performance parameters, which we could
not accomplish. Power consumption is determined by the operation time of the hardware module. Also,
mobility considerations and related sensor operations have to be taken into account to create a low-
power design.

 Passive Digital Camera

Altera Corporation 23

Integration
The image processing unit put a strain on integration. From image acquisition to sorting to storage, we
needed to have the hardware and software modules working together in the design. Thanks to the
Nios II processor, we managed to accomplish that in our design.

Conclusion
Using Altera’s system-on-a-programmable-chip (SOPC) solution, we learned a new way to solve system
design problems. By employing an SOPC design in our system, we learned its advantages and
disadvantages. Because SOPC designs use multiple IP modules to optimize the hardware design, this
technique allowed us to simplify the system revision and debug process. This approach also allowed us
to simultaneously design software and hardware modules.

In this design contest, we acquired hands-on experience and were able to use some excellent hardware
development tools. The Quartus® II and SOPC Builder software made it easy for us to modify and
change hardware, depending on the application. For example, we could easily add and change the SPI
peripherals that are needed by the SD card control and transmission modules. We also feel that taking
this design approach is economical—you do not need to buy additional hardware; you just change the
Nios II soft core configuration. You can easily build new functions by adding related hardware based on
the changed Nios II processor.

However, we do feel that the Nios II software development tools can be further improved. For example,
the coding, compiling, and debugging tools are separate, making it difficult for the designer to work
efficiently. Integrating these tools would greatly improve the design efficiency.

Using the Nios II development kit, we found it very easy to connect the custom logic components.
Additionally, using the tool, we could easily tune several clocks in the system. However, we found it
difficult to find a matched system clock. We think it would be a good idea to provide a table of several
matched clocks. The Avalon bus interface was simple to understand. The UP3 Education Kit was great.
We could do many things on UP3 board. But we hungered for a small LE. – Jiwon, Kim

We found that using the Nios II development kit in our design made it easy for us to develop our design
with greater efficiency. – Doehoon, Kim

We had planned a bigger design at first, but were not able to implement it given time and resource
constraints. We hope to do better next time - SeungChul, Shin

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

24

Second Prize

Nios II Processor-Based
Hardware/Software Co-Design of the
JPEG2000 Standard

Institution: University of New South Wales

Participants: Mike Dyer, Amit Kumar Gupta, and Natalie Galin

Design Introduction
JPEG2000 is a recently standardized image compression algorithm that provides significant
enhancements over the existing JPEG standard. JPEG2000 differs from widely used compression
standards in that it relies on discrete wavelet transform (DWT) and uses embedded bit plane coding of
the wavelet coefficients [1]. Due to the bit-oriented processing techniques used in the standard, full
implementation via software is inefficient, making embedded processing slow on standard
microprocessors. Possible applications, such as scanners and printers, require a reasonable processing
speed, which may be difficult to achieve using existing embedded processors. On the other hand, a full
hardware implementation may not utilize the flexibility available in the standard. To improve the speed
of the JPEG2000 algorithm while maintaining flexibility, we investigate the use of a co-design
approach, using hardware acceleration for the bit-oriented and digital signal processing (DSP) tasks
while leaving packet formation, code-stream formatting, and manipulation to software.

The Nios® II processor provides an ideal platform for implementing a co-design solution. The
customizable arithmetic logic unit (ALU) allows for the addition of DSP-style instructions, which will
improve the wavelet transform speed and code size. By adding custom peripherals to the system, the bit-
oriented functions can be moved outside of the software into dedicated hardware. The provided real-
time operating system (RTOS) (μC/OS-II) allows for parallel processing using multiple custom
peripherals.

A software implementation of JPEG2000, called Kakadu [2], is used as the implementation framework
and baseline for our design. Our proposed design adds the following features to Kakadu: multithreading
with RTOS, custom instructions, and custom peripherals.

 Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard

 25

Function Description
Our system is a JPEG2000 encoder based on a Kakadu software framework. Fully compliant with Part 1
of the JPEG2000 standard, the main features of the system are:

■ Lossless and lossy compression

■ Region of interest (ROI) coding

■ Compression of color and gray-scale images

Figure 1. JPEG2000 Encoding Flow

Figure 1 illustrates the compression system of the JPEG2000 algorithm. The image is compressed in the
following steps:

1. Image samples are separated into color components (if any).

2. Image color components are optionally decomposed into rectangular tiles, with each tile to be
compressed independently.

3. DWT is used to decompose each tile into four frequency subbands. JPEG2000-Part 1 specifies two
wavelet kernels for lossy and lossless compression, 9/7 and 5/3 wavelet kernels respectively.

4. The output from the wavelet transform is quantized and separated into rectangular `code-blocks', to
be processed by EBCOT unit.

5. Each code-block is processed independently by the block coder (BC). The BC may be subdivided
into bit-plane coder (BPC) and arithmetic coder (AC) modules. The BPC encodes a code-block in
bit-plane by bit-plane order generating context-data (C x D) pairs. C x D pairs are then encoded by
the AC module to generate the compressed bitstream.

6. Rate-distortion optimization selects optimal contribution of a code-block to the compressed
bitstream for a given target bit rate such that the reconstructed image has minimum distortion.
Kakadu uses the post compression rate distortion (PCRD) optimization algorithm [3].

7. Markers are added to the output bitstream to increase error resilience and packed into the
JPEG2000 compressed bitstream.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

26

The DWT and BC are two most resource intensive components of JPEG2000. A detailed study and
analysis is performed to determine the strategy to best partition JPEG2000 into software and hardware
components to optimize the compression stream using the rich feature set of the Nios II processor. We
made the following changes to Kakadu:

■ Custom instructions used to implement DWT

■ Implementation of EBCOT in hardware, with BPC, AC, and the distortion estimation module
implemented as hardware peripherals

■ RTOS (μC/OS-II) used to instantiate multiple block-coders to increase throughput

Performance Parameters
Table 1 presents the test environment used for comparison between the baseline and the proposed
Kakadu implementation. It is to be noted that modules (DWT custom instructions, BPC, and AC)
implemented in hardware are bit-exact with respect to the baseline, and thus do not alter the output
bitstream. However, the hardware version of the module Distortion Estimation is not, and experimental
results show that this change results in an average 0.02-dB PSNR difference between the baseline
implementation and our proposed design when compressed for a given target rate.

Table 1. Test Environment Parameters

Profile Results
The profile results for a purely software implementation of Kakadu is presented in Figure 2. From the
profile, we note that block coding accounts for 103.02 of the total 167.08 seconds (64.01%) used to
compress the cafe test image. DWT, on the other hand, accounts for 11.36 seconds (6.89%) of
computation time.

Property Value
Image café (ISO test image)

Image dimensions 2,560 × 2,048

Image format pgm; 8-bit samples

DWT kernel CDF 9/7

DWT levels 5

Block coder mode Normal

Code-block size 64×64

 Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard

 27

Figure 2. Kakadu Profiling Results

Flat profile:
 Each sample counts as 0.001 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 28.80 48.13 48.13 1286 0.04 0.08 encoder()
 17.23 76.92 28.79 9420 0.00 0.00 encode_cleanup_pass()
 15.62 103.02 26.10 8134 0.00 0.00 encode_mag_ref_pass()
 3.89 109.52 6.51 4960 0.00 0.00 perform_vertical_lifting_step()
 3.54 115.44 5.92 __floatsidf()
 3.48 121.25 5.82 2560 0.00 0.00 transfer_bytes()
 3.12 126.47 5.22 __pack_d()
 2.90 131.32 4.85 4960 0.00 0.02 horizontal_analysis()
 2.89 136.16 4.83 122 0.04 0.92 encode_row_of_blocks()
 2.69 140.64 4.49 __unpack_d()
 2.47 144.77 4.13 4960 0.00 0.00 push(kdu_line_buf&)
 0.00 167.08 0.00 1 0.00 133.29 main()
index % time self children called name
 48.13 56.70 1286/1286 encode_row_of_blocks()
[10] 62.7 48.13 56.70 1286 encode()
 28.79 0.00 9420/9420 encode_cleanup_pass()
 26.10 0.00 8134/8134 encode_mag_ref_pass()
 1.51 0.00 1286/1286 find_convex_hull()
 0.21 0.00 23116/25688 find_truncation_point()
 0.06 0.03 1286/1286 terminate(bool)
 0.00 0.00 1286/1286 start(unsigned char*, bool)
 0.00 0.00 2/2 set_max_bytes(int, bool)
 0.00 0.00 1/1 set_max_contexts(int)
 0.00 0.00 1/1 set_max_passes(int, bool)

Block Encode Time
On average, the hardware implementation of the BC (BPC combined with an AC), will take:

clkcyc

blk
BPC F

1.
CTX
CTX

T =

Where CTXblk is the average number of C x D pairs produced per block, CTXcyc is the average number of
C x D pairs produced per cycle and Fclk is the system clock frequency. For a system running at 50 MHz
and processing 64 sample code-blocks, the average code-block processing time is:

sec10182.4
1050

1.
1.1
1023T 4

6

6

BPC
−×=

×
×=

For each code-block, the internal code-block RAM must be loaded via direct memory access (DMA).
This time will accumulate in systems that use multiple BCs.

clkb

ss
DMA FW

WN
T =

Ns is the number of samples in the code-block, Ws is the width of the sample in bits, Wb is the width of
the bus in bits, and Fclk is the system clock frequency. This equation assumes that the DMA has
exclusive access to the bus, as it will in our system. Using 64 sample code-blocks, where each sample is
16 bits, the system bus is 32 bits and the 50-MHz clock gives:

sec10096.4
105032
166464T 6

6DMA
−×=

××
××=

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

28

The average time taken to code a code-block in a system is approximately:

)TT(
N
1T BPCDMAavg,blk +=

It should be noted that this equation is only accurate while the utilization of the data bus is low. When
the time spent performing DMA transfers is greater than the time required to code a single code-block,
the bus will become the limiting factor. This would indicate that the number of BCs should be

10
T
T

N
DMA

BPC =⎥
⎦

⎥
⎢
⎣

⎢
≤ . Proper simulation is invaluable when determining the true value of N.

Because block coding accounts for 103.02 of the total 167.08 seconds used to compress the cafe test
image (Table 2), we expect that the implementation of block coding in hardware will give the highest
performance improvement. We also note that the BC must process 1,286 blocks. Table 2 shows the
average block coding time when using N parallel hardware BCs, and the time taken to code 1,286
blocks, while Table 3 shows the speed-up factor using multiple BCs.

Table 2. Average Block Coding Times for Parallel BCs

Table 3. Speed-Up Achievable With Multiple BCs

N 1 2 3 4
Speedup 2.58 2.59 2.60 2.60

DWT Flow
Amdahl's Law provides us with an estimate of the speed-up achieved from an improvement to a
computation that affects a proportion P of that computation where the improvement has a speedup of S.
(For example, if an improvement can speed up 30% of the computation, P will be 0.3; if the
improvement makes the portion affected twice as fast, S will be 2.) Amdahl's law states that the overall
speed-up of applying the improvement will be:

S
PP

upspeed
+−

=−
)1(

1

From the profiling analysis performed, we estimate that the DWT processing consumes approximate
6.78% (P=0.068) of the total image compression time. If we achieved a 5/2 improvement in the lifting
step, by applying Amdahl's Law we estimate an approximately 1.0425 (4.3%) improvement in the
processing speed overall.

Design Architecture
The system structure is illustrated by Figure 3.

N 1 2 3 4
T_{blk,avg} 4.5916×10-4 2.2958×10-4 1.5305×10-4 1.1479×10-4
T_{blk,total} 0.59 0.30 0.20 0.15

 Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard

 29

Figure 3. JPEG2000 Co-Design Configuration on Altera® EP1S40 FPGA

Tri-State Bridge

Nios II Processor

FPGA

SRAM
2 Mbytes

SDRAM
16 Mbytes

U3

U1

U2
DMA BC

DMA BC

DMA BC

U4 U5

U6

Tri-State Bridge

U1: 16 Mbytes of SDRAM containing the modified Kakadu program and image to be compressed

U2: Nios II processor

U3: 2 Mbytes of SRAM, which is loaded with code block data as it is created by Kakadu

U4: DMA controller configured to feed code block data at the rate of 16-bits per clock cycle to the BPC
(U5)

U5: Block encoder hardware peripheral as described in detail later.

The number of DMAs and BPCs determined by the available bandwidth on the Avalon® bus. We chose
to load the image directly onto the SDRAM so that the speed of our system is not limited by data
transfer rates of external data I/Os. In this way, a fair comparison is made between the baseline and our
proposed system. In the future, it will be possible to integrate the system with a fast bus fabric that will
not saturate the speed advantages it provides.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

30

Figure 4. BC Detailed System Configuration

Register
File

4,096- Word
RAM

Bit-Plane
Reorganization

FIFO 1

FIFO 2

Control
FSM

Bit-
Plane
Coder

Dist
EstU16

Arithmetic
Coder

FIFO 3

FIFO 4

Block Coder U5

U14

U13

U12

U11

U10
U8

U9

U7U6

U15

Figure 4 shows a detailed block diagram for the BC hardware peripheral, where:

U6: 4,096-word RAM to buffer the code-block data (entire code-block, if necessary)

U7: Reorganizes sub-band samples in a bit-plane by bit-plane fashion to feed the BPC

U8: 16 x 4-bit FIFO buffer to store the data bits from U7

U9: 16 x 4-bit FIFO buffer to store the sign bits from U7

U10: BPC module

U11: 22 x 13-bit FIFO buffer used to store distortion estimation data

U12: AC module

U13: 16 x 17-bit FIFO buffer used to store compressed data from the AC module

U14: Finite state machine to control the information flow between the various components of the
system

U15: Register file containing 32 x 32-bit registers, 16 for read and 16 for write, to interface between the
BPC (U5) system and the control bus

U16 : Distortion estimation module

Design Methodology
The hardware/software co-design of the JPEG2000 followed these design steps:

1. Alteration to Kakadu to support multithreading.

2. Development of bit-accurate software to verify the functionality of the proposed hardware
peripherals.

 Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard

 31

3. Implementation of hardware peripherals using hardware description languages (HDLs).

4. Use of the ModelSim® tool to verify the hardware peripherals' functionality. The testbench vectors
are generated using the bit-accurate software.

5. Use of the LeonardoSpectrum™ tool to synthesize the hardware peripherals.

6. Use of the Quartus® II development suite to produce the layout and timing analysis of the hardware
peripherals.

7. Post-synthesis simulation in the ModelSim software using the Quartus II timing results.

8. Load Kakadu software into the Nios II integrated development environment (IDE) and develop
glue software to interface it to the hardware peripherals. Custom instructions were also added to
Kakadu at this point.

9. Build and load of the Quartus II project onto the FPGA.

To improve the performance of the DWT function in Kakadu, we augmented the instruction set in the
Nios II processor with two new custom instructions. The block diagram for the custom instructions is
shown in Figure 5.

Figure 5. Nios II Arithmetic Logic Unit (ALU) [4] & Custom Logic Layout to Perform a
Lifting Step

se
l

se
l

Design Features
This section describes the project’s design features.

DWT Custom Instructions
As can be seen from Figure 6 of the state machine for the CDF 9/7 Lifting DWT implementation, the
four lifting steps are very similar; the only difference is the value of the multiplier coefficient.
Therefore, it was clear that the DWT would best be implemented using the Nios II processor’s ability to
add custom logic to its ALU. To perform a lifting step, two custom instructions were needed: one to
augment two 16-bit samples into one, and one to perform the lifting step, shown in Figure 6.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

32

Upon compilation, the number of assembly instructions to perform the lifting step decreased from five
(in the pure C implementation) to two (using Nios II custom instructions).

Figure 6. 9/7 DWT Lifting State Machine

Multi-Threading of Kakadu
The Kakadu software library was originally written as a single-threaded library. While this is adequate
for single CPU systems, it makes dispatching multiple code-blocks to multiple BCs quite challenging.
To utilize the availability of multiple BCs, the Kakadu library was modified to support threads. The use
of threads requires using the μC/OS-II real-time operating system, a useful feature integrated into the
Nios II IDE.

When enough data has been generated by the DWT, a row of code-blocks is dispatched via the function
call 'encode_row_of_blocks()' [2]. At this point, the library was modified to support threads. The library
was supplied with a thread pool, where each thread is capable of encoding a single code-block. Each
thread is attached to a single BC hardware resource and is responsible for initiating the DMA transfer
and for collecting the compressed data and rate distortion information. When a thread completes, it is
restarted with a new code-block until the row of code-blocks is exhausted.

Hardware Peripheral
The main reason for the high computational cost of JPEG2000 on a general-purpose processor is due to
the bit-oriented processing during block coding. This motivates the use of a custom hardware
accelerator for the BC. A major feature of the Nios II SOPC Builder is that it supports the creation and
utilization of custom hardware peripherals. Thus, it presents an ideal platform for our design.

The BC peripheral consists of two Avalon slave interfaces and four sub-modules. The first slave
interface is used to receive block samples via DMA to remove the processor overhead involved in
transferring sample data into the BC. The second slave interface accesses a register file, and is used to
control the peripheral as well as access status information and compressed data. The four sub-modules
perform bit-plane reorganization, bit-plane coding, distortion estimation, and AC. They are outlined
below.

Bit-Plane Reorganization
As the BPC operates on bit planes, sample data must be converted to this format before being sent to the
BPC. The bit-plane reorganizer scans through stripe columns and forms a 4-bit word that contains the
bit value of the four samples in that stripe column for the current bit plane. These are then stored in a
FIFO buffer ready for sending to the BPC. This system must operate at twice the rate of the BPC to
ensure data is always available.

 Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard

 33

BPC Module
■ Generic: Handles all modes of BPC operation for all nominal code-block dimensions

■ High processing throughput: Generates an average of 1.1 C x D/clock-cycle (Existing generic BC
architectures only generate 0.7CxD/clock-cycle) [5]

■ Based on two-state memory system [6]

■ Uses proposed optimal two sub-bank memory architecture for internal memories [7]

■ Minimum memory cost (16 Kbits dual port RAM) currently reported for a generic BPC architecture

■ Efficient intermediate buffer: The BPC has a varying C x Ds per clock-cycle output (anywhere
between 0 to 10 C x Ds per clock-cycle) depending on image statistics. Since our AC module has a
maximum input rate of two C x Ds per clock-cycle, we use an intermediate buffer [8] to integrate
the BPC and AC module. The buffer is optimized for its hardware cost versus throughput
performance using real image statistics.

AC Module
The BPC is capable of producing multiple C x D pairs per clock cycle. Although an AC capable of
coding a single pair per cycle can have enough throughput to cope with the C x D rate of the BPC, this
would require the AC to have a separate, faster clock domain. To mitigate this complexity, an AC was
designed that could consume two C x D pairs per cycle, while operating at the same frequency as the
BPC [9].

Distortion Estimation
The PCRD algorithm requires estimated distortion values associated with each truncation point (coding
passes) [9]. The distortion estimation for a truncation point depends on the sample values and their
distribution among coding passes, a factor that cannot be simply pre-calculated.

We designed a novel hardware module for distortion estimation that uses one fractional bit (in
comparison to five fractional bits as used by Kakadu). Our simulation results show that this results in
average 0.02-dB PSNR degradation for a given target rate (in comparison to Kakadu’s reported
architectures, which achieve an average 0.3-0.7 dB PSNR degradation [10]).

Implementation Results
Figures 7 and 8 show simulation waveforms of our system. The following points in time are of
particular interest:

1. 82,100 ns: Sample DMA finishes.

2. 82,200 ns: Register file access asserts operating parameters and starts system.

3. 82,400 ns: Bit plane reorganization started.

4. 132,550 ns: Register file access checking status and reading compressed data bytes.

5. 132,500 ns: Onwards demonstrates normal operation with BPC providing contexts to the AC.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

34

Figure 7. The Simulation Flow Showing BC-Avalon Bus Transfer

Conclusion
The profile of the pure software implementation justifies our decision to provide dedicated hardware for
the BPC and DWT, as these functions are at the top of the profile list. The Nios II processor provides an
ideal platform for integrating dedicated hardware, as it provides the ability to include both custom
instructions and peripherals. Our implementation results show that the inclusion of a DWT step
instruction will improve the speed by a factor of 1.04, while the inclusion of dedicated block coding
hardware can improve speed by a factor of 2.6. It is interesting to note that providing multiple BCs in
parallel provides only minimal improvement over a single hardware BC as a consequence of Amdahl's
law.

 Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard

 35

Figure 8. Simulation Flow Showing DMA Transfer in Place between Bit-Plane
Reorganizer & BPC

References
[1] “JPEG2000 part i final committee draft version 1.0 ISO/IEC JTC1/SC29/WG1N1646R,”

March 2000.

[2] D. Taubman, “Kakadu software- a comprehensive framework for JPEG2000.”
http://www.kakadusoftware.com/.

[3] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression Fundamentals,
Standards and Practice. Norwell, Massachusetts 02061 USA: Kluwer Academic Publishers,
2002.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

36

[4] “Nios documentation.” http://www.altera.com/literature/manual/mnlniossft.pdf.

[5] A. K. Gupta, S. Nooshabadi, and D. Taubman, “Concurrent symbol processing capable VLSI
architecture for bit plane coder of JPEG2000,” IEICE Transactions on Information and
Systems, Special Section on Recent Advances in Circuits and Systems, vol. E88-D, pp. 1878 –
1884, 2005.

[6] Y.-T. Hsiao, H.-D. Lin, K.-B. Lee, and C.-W. Jen, “High-speed memory-saving architecture
for the embedded block coding in JPEG2000,” IEEE International Symposium on Circuits and
Systems, vol. 5, pp. V–133 – V–136, May 2002.

[7] A. K. Gupta, S. Nooshabadi, and D. Taubman, “Optimal 2 sub-bank based memory
architecture for bit plane encoder of JPEG2000,” IEEE International Conference of Circuits
and Systems (ISCAS’05), 2005.

[8] A. K. Gupta, S. Nooshabadi, and D. Taubman, “Efficient VLSI architecture for buffer used in
EBCOT of JPEG2000 encoder,” IEEE International Conference of Circuits and Systems
(ISCAS’05), 2005.

[9] M. Dyer, D. Taubman, and S. Nooshabadi, “Improved throughput arithmetic coder for
JPEG2000,” IEEE international conference on Image Processing (ICIP’04), 2004.

[10] Y. Chang, H. Fang, C. Lian, and L. Chen, “Novel pre-compression rate distortion optimization
algorithm of JPEG2000,” SPIE Proc. of Visual Communication and Image Processing, vol.
5308, pp. 1353–1361, 2004.

 Embedded Network MP3 Playing System

 37

Second Prize

Embedded Network MP3 Playing
System

Institution: Southern Taiwan University of Technology

Participants: Cai Suwei, Xiao Xingjie, Zhang Jiahao

Instructor: Dr. Wei Zhaohuang

Design Introduction
We designed an embedded Netware MP3 player system that consolidates both software and hardware,
and is based on system-on-a-programmable-chip (SOPC) design principles. The product finds use in the
following applications.

Public Broadcasting System
Many public audio-broadcasting systems have transmitted audio signals that suffer from weak audio
quality and complicated cabling, and are confined to individual or limited area broadcasts. In contrast,
our system broadcasts MP3 audio via Ethernet to solve these problems. Our design not only improves
the broadcasting quality, but also extends the life of the broadcasting device, reducing installation and
maintenance costs for the entire system.

CD Audio Player
In music stores and supermarkets, customers are provided with preset audio CD players on which they
may sample the music. Frequent customer usage can cause the CD players to malfunction.
Additionally, the CD audio content must be updated manually. Using our design, you can download
MP3 archived audio from a server into the system. This approach needs no mechanical operation and
the MP3 server can update the audio data at any time.

Recently, the electronics industry has been shifting away from PC-centric devices to multi-functional
Internet appliance (IA) applications, leading to a boom in rapid market development of multimedia and
consumer electronics such as MP3, DVD players, TV game consoles, consumer electronics devices, and
mobile phones. This trend complicates the system design and shortens the product development cycle.
Therefore, using FPGAs has helped product designs become powerful, multi-featured, consistent, low

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

38

power, and highly integrated. Programmable logic devices greatly assist designers in planning and
customizing the systems they want to build. FPGAs help keep costs down and reduce marketing time,
important factors in the electronic industry. Also, programmable logic components play a key role in
system integration.

Figure 1 shows the SOPC hardware platform used in our system design. The SOPC hardware features
The Altera® 32-bit Nios® II processor, which is the intellectual property (IP) that can be embedded into
many FPGA devices. This design approach enables the developer to build systems without worrying
about development costs. Using the FPGA, we implemented a serial port, timer, boot ROM, Avalon®
bus bridge, and PIO, which connects these interface devices.

Figure 1. Internal Architecture of SOPC Development Platform

A
va

lo
n

B
us

The Nios II CPU can be optimized in three ways:

■ For maximum system performance.

■ For minimum logic use.

■ For a mix of system performance and logic use.

Because the program machine codes for all these optimized CPUs are 100% compatible, designers can
easily modify the CPU performance according to changes in system requirements. The 32-bit RISC
embedded processor has been designed specifically for the FPGA architecture, and features a
performance of greater than 200 MIPS (Dhrystones 1.1). Additionally, the development costs are low
when you use an Altera FPGA, making it a good choice for consumer electronics applications that
demand low price and mass production.

The Nios II processor continues to use the Avalon bus structure introduced by the first-generation Nios
processor. This structure provides a set of pre-defined signal types, which can be used to connect more
than 60 peripherals, including Ethernet, USB, and memory controllers. SOPC Builder and related tools,
such as the Altera Quartus® II software, generate the Avalon bus structure logic automatically. The
structure includes data channel reuse, address decoding, waiting period generation, dynamic bus size,

 Embedded Network MP3 Playing System

 39

and interrupt assignments. Designers can use the SOPC Builder Import Guide to integrate their own IP
modules with other peripherals into the Nios II project.

The Avalon bus structure provides flexible interconnection, simultaneously permitting multiple cores
(CPU and accelerator) to communicate on dedicated channels while reading/writing data. This design
scheme helps increase the volume of system data transmission. Therefore, the hardware accelerator
often used in network communications to compute cyclic delay code can increase its performance two-
fold, compared to software processing. For instance, using software, we need millions of clock cycles to
process a 64-kilobyte data block. If we used Nios II custom instructions, this could be accomplished
with hundreds of thousands of clock cycles. Using the hardware accelerator, it takes only tens of
thousands of clock cycles.

Unlike the Nios processor, the Nios II processor does not restrict you to five custom instructions, and
allow you to use unequal clock cycles. Furthermore, the Nios II processor supports a maximum of 256
user-defined instructions with fixed or variable frequency period operations. Designers can use these
instructions to accelerate the program code and meet an application’s strict timing requirements.
Additionally, they can implement large and complex algorithms and call them as subroutines in the C
language.

Altera provides the Quartus II software, a complete software development tool for the Nios II processor,
which includes a Compiler, integrated development environment (IDE), JTAG debugger, and TCP/IP
protocol stack:

■ Nios II IDE—The Nios II IDE is an Eclipse project that opens with the original code and provides a
complete C/C+ software development kit, including a compiler, project manager, building tools,
debugger, and flash programmer complying with Common Flash Interface (CFI). The IDE supports
connection with target hardware via the JTAG port, and supports a connection between the Nios II
instruction set simulation and Mentor Graphics’ ModelSim hardware simulation tools.

■ IP TCP/IP protocol stack—A lightweight IP TCP/IP protocol stack provides a Berkeley socket
application program interface (API), supporting IP, ICMP, UDP, TCP and RTT estimation, fast
recovery, and fast re-transmission.

Function Description
The system comprises an MPEG-1 Layer III (MP3) archive server, MP3 decoder, and Ethernet
connection. The design is implemented using software and hardware with an embedded SOPC platform,
and uses the embedded uClinux as its real-time operating system (RTOS). The system design principles
and detailed description are described in the following sections.

MPEG-1 Layer III Coder Architecture
The MP3 coding principle should be understood before creating the MP3 decoder. Its coding
architecture is shown in Figure 2, which includes a psychoacoustics model, hybrid filter bank, and
quantization/Huffman coding. Quantization and distortion-free code are mainly used for the rate and
distortion control loop in the MP3 architecture.

Taking monophonic data as an example, one MP3 frame contains 1,152 sound samples (a frame equals
two granules, a granule contains 576 sound samples); each sample is 16-bits of data. Using the filter
bank analysis, the originally entered 16-bit PCM audio is transformed into 32 sub-band signals with the
same bandwidth. Then, each sub-band signal is subdivided into 18 hypo-band signals using the
modified discrete cosine transform (MDCT). Next, bit assignment and quantization coding are made for
each sub-band signal according to the signal-to-mask ratio (SMR) provided by the psychoacoustic
model II. At last, this coded data emerges in bit serial mode defined by MPEG-1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

40

MP3 Decoder Architecture
Figure 3 shows the MP3 decoding architecture. The MP3 bitstream uses a demultiplexer to perform the
header and side information decoding. It then implements Huffman Decoding, a descaler, and a
dequantizer using the header and side information. Next, it performs the inverse modified discrete
cosine transform (IMDCT) using dynamic windows and outputs PCM data through the filter group.

Figure 2. MP3 Decoding Data Stream

Figure 3. MPEG-1 Layer III Coding Architecture

MP3 Archive Description
Related information about archive decoding should be obtained before implementing the MP3
decoding. This data will be used in the corresponding encoding. You need to know the data’s bitstream
format, frame format, header file format, and side information format.

Bitstream Format
The MP3 bitstream is composed of many frames, with the slot size as its basic unit. The MP3 standard
defines a slot size as 1-byte of data, and therefore, the whole bitstream is made up of slots of integer
numbers. Every frame contains a great deal of decoding information. The starting point of each frame is
a set of sync words, and the ending point is before the sync word of the next frame. All frame sizes are
1,152 samples, although their frame length may vary. The length varies because Huffman decoding is

 Embedded Network MP3 Playing System

 41

used during MP3 decoding, which results in a non-identical decoding length and a variable frame
length.

Frame Format
The MP3 frame is composed of four parts: the header, the cyclic redundancy code (CRC), side
information, and the main data (see Figure 4). The header contains sync words and other important
system information used to detect the new frame’s starting point, such as layer, bit rate, sampling
frequency, and number of channels. The CRC is used in error correction and is 16-bits of data. The side
information includes information needed for main data decoding, and the main data section contains
data that is needed during Huffman decoding and scale factor rebuilding.

Figure 4. MP3 Frame Format

Scale Factor Huffman Code

Frame 0 Frame 1 Frame 2

Header
(32 Bits)

CRC
(0 or 16 Bits)

Side Information
(136 or 256 Bits)

. . .

Main Data Granule 0 Main Data Granule 1

Left Channel Right Channel

Header Format
The first 32 bits of a frame hold the header file information, which is divided into 13 fields, and which
records important frame information (see Figure 5).

Figure 5. MP3 Header Format

A sync word identifies the start of the frame and detects the frame length, i.e., the distance between the
sync word and the next group of sync words (also referred to as a frame). Sync words comprise 12-word
groups of 1s. However, ID information is used to tell the decoding end which algorithm needs to be
adopted to decode the current bitstream. The decoding end should use this algorithm to decode while
the ID field is indicated using a single bit. When the ID is ‘1’, it indicates the adopted algorithm to be
the MPEG-1 audio standard (ISO/IEC11172-3); when the ID is ‘0’, it indicates the algorithm to be the
MPEG-2 audio standard (ISO/IEC 13818-3). The layer field is shown in two-bit format, and indicates
which layer of the audio standard is used. The protection bit indicates whether or not there is an added
16-bit CRC in the bitstream.

The output bit rate index indicates the bit rate of the bitstream with 4 bits. Layer 3 ranges from 32 kbps
to 320 kbps. The MPEG-1 audio defines three kinds of sampling rates: 48, 44.1, and 32 kHz. Two bits

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

42

are used to indicate the sampling frequency in the header files, while another two bits are used to
support four channel modes and indicate the channel mode of the bitstream in the header files. When the
mode is set at “01” it is in the joint stereo channel mode. Therefore, the joint stereo processing step
must be added to the decoding. Additionally, the two flags—copyright and original—indicate whether
the MP3 archive owns copyright or is original, respectively.

Side Information Format
Side information records the information needed in audio data decoding. It is 17 bytes long in a single
channel frame and 32 bytes in dual channel or stereo channel (see Figure 6). The starting index of the
main data in the side information indicates the starting address of the main data. The Part2_3_length
field indicates the length of the scale-factor data. The scalefac_compress[gr] table shows how many bits
need to be read each time. Because transform coding is used in MP3, it must transform according to the
window size. In addition to the long window used for a stable signal and the short window used for an
unstable signal, there are two relay windows used for when it changes from a long window to a short
window or vice versa. We use window_switch_flag to indicate which tables are being used. The
advantage of using four different windows is that frequency resolution can be added to maintain good
audio quality. The block_type field indicates which kind of window each granule uses. There are 32
Huffman tables in all, so table_select in the side information indicates which table is used to perform the
Huffman decode.

Figure 6. MP3 Side information format

MP3 Decode Operation
The MP3 decoding operation includes the Huffman decoder, dequantizer, reordering, IMDCT, and
synthesis filter bank, which are described in the following sections.

Huffman Decoder & Dequantizer
To obtain high compression rates during MP3 decoding, the spectrum coefficient transformed via the
MDCT is divided into 3 regions—the big_value region, the count1 region, and the rzero region from
low frequency to high frequency values. Data needs to be recovered from each region according to
different Huffman code tables during decompression.

Before entering data into the synthesis filter bank, the value after the Huffman decoding should be
dequantized.

Long window:

]))[*][]][][][[_*(_(

)210][_(
4
1

3
4

2*

2**)(
sfbpretabgrpreflagwindowsfbchgrlscalefacmultiplierscalefac

grgainglobal

iii isissignxr
+−

−
=

 Embedded Network MP3 Playing System

 43

Short window:

])][][][[_*_(

])][[_*8210][_(
4
1

3
4

2*

2**)(
windowsfbchgrsscalefacmultiplierscalefac

grwindowgainsubblockgrgainglobal

iii isissignxr
−

−−
=

Where iis indicates audio cable undequantized, and ixr
 represents that of dequantized; sign() takes the

positive signal; global_gain and preflag are obtained from side information.

Reordering
The MDCT adopts two block modes: the short window and the long window, which have different
spectrum types, after the MDCT transform. For greater efficiency in Huffman decoding, the short-
window spectrum is deployed prior to the Huffman decoding. This reordering step recovers the original
sorting sequence.

IMDCT
The IMDCT operation is performed on the data frame as the standard unit. There are 576 points in the
data of a frame, which are further divided into 32 sub-bands. Each sub-band has 18 points whose data
are IMDCT-transformed into 36 points. Each frame thus transforms into 1,152 points, and this value is
multiplied with appropriate window functions depending on the type of window. IMDCT definition is
(2-1) mode where N=36 in the long window and N=12 in the short window.

1 to0))12)(
2

12(
2

cos(
1

2

0

−=+++= ∑
−

=

niforkninXX

n

k
ki π

After the IMDCT transform, the synthesis filter bank data enters into the polyphase filter to synthesize
the audio signal in PCM format. The synthesis actions in the polyphase filter are remove, IMDCT, and
matrix-multiply. IMDCT transforms 32 samples to get a 64 V vector and takes 512 samples to the
synthesis filter (W window) to form the W vector (512 elements). The 512 elements are placed into 16
groups of 32 elements, whose summation of the vectors is the final rebuilt audio signal in PCM format
(see Figure 7).

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

44

Figure 7. Synthesis Filter Bank Flow

... ...

Preamble SFD DA SA LN Data PAD FCS
7 7 2/6 2/6 2 0~1500 0~46 4

■ Preamble: Synchronization function

■ SFD: 10101011, starting byte

■ DA, SA: Destination and starting address

■ LN: Data length

■ Data: At most 1500 bytes

■ PAD: Ensure one frame has at least 64 bytes

■ FCS: Error checking code

Ethernet Protocol
Ethernet uses a carrier sense multiple access/collision detection (CSMA/CD) for data transfer. It must
ensure that no online signal transfer is made before the data transfer. The data transfer needs to be
halted in case of conflict, and retried after some random delay.

Data on Ethernet is transferred in frames. The format is shown in the following section. Each frame has
64 bytes of data as the minimum frame length, and 1,518 bytes as the maximum frame length. PAD is
used to fill the packets to 64 bytes in case no data exists or the data is less than 64 bytes.

The Ethernet addressing mode is set by the DA/SA in the packet, whose value could be two bytes (for
local supervision) or six bytes (for global addressing). The first byte determines transfer to the
individual address or the group address. If all values are ‘1’, it is a multicast or a broadcast address.

 Embedded Network MP3 Playing System

 45

Using these addressing modes, the MP3 broadcaster can transfer audio to specified receivers or
multicast the data.

Data in the packet includes TCP/IP information. TCP/IP is the best protocol available today for use in
Internet or Intranet applications. The protocol is briefly described as follows.

The network protocol is built layer by layer. Each layer is responsible for a certain network function.
The TCP/IP four-layer network communications architecture includes the network application layer,
transport layer, network layer, and data link layer. Programs implemented on the application layer are
HTTP, telnet, e-mail FTP, etc; TCP and UDP are implemented on the transport layer; IP and ICMP are
carried out on the network layer; the Ethernet driver and PPP protocols are implemented in the data link
layer. Figure 8 shows the network protocol.

Figure 8. Network Protocol

Single channel mode transfers the network data with TCP/IP, whose operation for “additional Header”
in each layer is shown as follows.

The data architecture of each layer of the TCP/IP network communication is shown below. AP Data is
added in the header of each layer from the TCP segment to the Ethernet frame, and forms network
packet data. Figure 9 shows the data architecture.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

46

Figure 9. Data Architecture

Embedded Operating System Analysis & Selection
An efficient RTOS needs to be supported by the system to enable the embedded products’ multifunction
features and shorter development time. In the past, embedded systems have implemented fewer
functions and therefore did not need operating systems. However, as more and more consumer
electronics devices integrate multiple functions, many embedded systems are more complex.

Among the many available RTOS for embedded systems, the μC/OS and uClinux are the most popular,
offering excellent performance and open source code. μC/OS is suitable for small control systems
because of its high efficiency, small size, and strong scalability. For example, the smallest core of the
μC/OS can be compiled into a 2-Kbyte space. The uClinux, adapted from the standard Linux OS, is
designed according to the feature of the embedded processor. With built-in network protocols, uClinux
supports many file systems.

Comparison between the μC/OS & uClinux Embedded Operating
Systems
The embedded operating system is the control center of the embedded system software and hardware
resources. It organizes and manages multiple user needs. Task scheduling, file system support and
system migration are general tasks in embedded operating system applications. This section compares
how the μC/OS and uClinux RTOSs handle these tasks.

Task Scheduling
Task scheduling arranges the use of system resources (memory, I/O devices, and CPU). Task
scheduling—also referred to as CPU scheduling—allocates the CPU for tasks in ready status based on
two basic modes: preemptive and non-preemptive scheduling. In non-preemptive scheduling, a task is
implemented once it is scheduled, unless it gives up the CPU time and enters into wait status, in which
case the CPU is reallocated to other tasks. Preemptive scheduling identifies the current task, and is
preempted to ready status once a task with higher priority exists in ready status or the running program
has used up the specified time slice, in which case the CPU will be allocated to other tasks.

 Embedded Network MP3 Playing System

 47

Being an RTOS, μC/OS adopts preemptive real-time multi-task core, i.e., the core always runs the task
with the highest priority in ready-status. μC/OS supports a maximum of 64 tasks, which correspond to a
priority status of 0~63, 0 being the highest priority. Scheduled tasks can be divided into two parts:
search and switch, of the task with the highest priority.

Search of the task with the highest priority is performed by setting up the task in ready status. All tasks
in μC/OS have an independent stack. They also have a data structure called tcb (task control block) with
a stack index. The task scheduling module first records the tcb address of the task in ready status with
the highest priority, currently with the OStcbHighRdy variant, then invokes the os_task_sw() function
to realize the task switch.

The uClinux task scheduling adopts the traditional Linux mode. The system starts the task in certain
intervals, generates fast and periodic clock-timing interrupt, and decides when the program could
possess its time slice by using the scheduling function (timer processing function). It then makes the
related task switch by invoking the fork function with the parent task.

After the invoking the fork function in the uClinux system, the subtask substitutes the parent task to
realize the implementation. This time, an executable file is generated, even if this task is a copy of the
parent task. After the subtask has exited or executed, it awakes the parent task using a wakeup to
continue the parent task implementation.

Because uClinux does not have a memory management unit (MMU), its access to the memory is direct,
and the accessed addresses in all programs are real physical addresses. The operating system does not
protect the memory space, so all tasks actually share the same running space. In this case, data
protection needs to be made during the multi-task implementation, which may also result in the user’s
program taking up the system core space. All these problems should be addressed during the design
stage.

From the above analysis, we deduced that μC/OS is best suited our real-time system requirements.

File System
The file system handles the access and management of file information. These operations include file
creation, reading/writing, modifying, copying, and software programs that manage resources (directory
table, storage media, etc.).

μC/OS is used for medium and small-sized embedded systems. Because the core of μC/OS is only 6 to
10 Kbytes after compilation, the system itself does not support the file system.

uClinux inherits the perfect Linux file system performance. It adopts the romfs file system, which
requires less space than the general ext2 file system. The space savings is made up of two aspects. The
core needs less code when supporting the romfs file system than supporting the ext2 file system. On the
other hand, romfs file system is easier to implement, and requires less storage space when establishing
the superblock file system. The romfs file system does not support dynamic erase saving. It adopts a
virtual RAM mode to process data that needs to be dynamically saved by the system (RAM would use
ext2 file system).

uClinux also inherits the advantages of the Linux network operating system, which supports the
network file system and embeds TCP/IP protocol that simplifies development of the network embedded
devices of uClinux RTOS.

Based on the file-system support, we decided that uClinux is better suited for complex embedded
systems that need many file processes. In contrast, μC/OS is suitable for smaller control system
applications.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

48

Migration of the Operating System
The basic idea of migrating an embedded operating system is to run the OS on a certain microprocessor
or microcontroller. μC/OS and uClinux are operating systems with open original code whose structural
designs make it simple to separate processor-related segments. Therefore, they can migrate to the new
processor easily.

The target processor has to meet the following requirements to migrate μC/OS:

■ The C program compiler of the processor must generate re-settable machine code and open and
close the interrupt routine using the C language.

■ The processor supports interrupt and can generate interrupts periodically.

■ The processor supports abundant RAM (several Kbytes) as the task stack under a multi-tasking
environment.

■ The processor features instructions to read or store the stack index and other CPU registers into the
stack or memory.

When compared with μC/OS, migrating the uClinux RTOS is more complex. Generally speaking, the
target processor should also support external ROM and RAM with abundant capacity in addition to the
above-mentioned μC/OS requirements.

The migration of uClinux can be split into three hierarchies:

■ Migration of hierarchy—If the structure of the processor to be migrated is not the same as any
supported processor structure, then the relative processor structure archive in the linux/arch
directory must be modified. Although most of the machine code of the uClinux core is independent
of the processor and its architecture, the machine code in the lowest hierarchy is not the same in
different systems because of their unique interrupt process program, memory map, task process
invoking, and initialization process. These routines are in the linux/arch/directory. Because Linux
supports various architectures, to handle a new architecture, its low-level program should be
compiled by copying the architecture similarly.

■ Platform level migration—If the processor to be migrated is the branch processor of an architecture
that has been supported by uClinux, the corresponding directory must be established under a
relative architecture directory and the corresponding machine code must be compiled. For example,
the migration in this case must establish the linux/arch/nioscpu/platform/nios directory and compile
the tracking program (to realize the user program to core function interface and some other
functions), the interrupt control program, and the vector initialization program in the directory.

■ Board level migration—If the processor is supported by uClinux, then board level migration will
suffice. The board level migration needs a corresponding board directory established in the
linux/arch/platform/ directory, and it should contain the corresponding starting machine code
crt0_rom.s or crt0_ram.s and link description file rom.ld or ram.ld. The board level migration also
includes driver compilation and environment variables setup.

Comparing μC/OS and uClinux, we can see that the two operating systems have their strengths and
weaknesses. μC/OS takes up less space, implements with high efficiency, offers real-time performance,
and migrates to a new processor relatively easily. uClinux takes up more space, implements with weak
real-time performance, and migrates to the new processor in a relatively complex way. However, with
its embedded TCP/IP protocol, uClinux supports various file systems, and benefits from abundant open
Linux program resources. uClinux is stronger when used in some more complex applications.

 Embedded Network MP3 Playing System

 49

Performance Parameters
The system features the Nios II /s CPU, peripheral compact flash (CF) card, Ethernet network chip,
MP3 decoding chip, ROM, SRAM, SDRAM, and other peripherals. The hardware design is shown in
Figure 10, and the hardware resource utilization in Table 1. Figures 11 and 12 show the finished MP3
player development platform.

Figure 10. Nios II CPU & Peripheral Component Design

C k
c0
e0

Ratb
1/1
1/1

Pb(09) DC()%
0.00 S0.00

-63.00 S0.00

In ck 0 trequemcy:s0.00 MHz
Operation Mode: Normal

inck0

inst2 Stratix

c0
e0

sysck OUTPUT
PLD_CLKOUT

sdram_pll

SDRAM PLL

INPUT
VCC

PLD_CLOCKINPUT[]

delay_reset_block

clock_in delayed_reset_n
reset_n

inst1
Reset Delay: Allow PLL to Stabilize (Lock) After
Reset or Device Configuration

INPUT
VCC

PLD_CLEAR_N

clk
reset_n

linux_1s10ES

detect_n_to_the_cf

iordy_to_the_cf

iortrq_to_the_cf

INPUT
VCC

de tect_i_to_the

INPUT
VCClrtq_to_the_or
INPUT
VCClrtq_to_the_or

addr_from_the_cf[10.0]

atasel_n_from_the_cf

cs_n_from_the_cf[1..0]

data_cf_to_and_from_the_cf[15..0]

iord_n_from_the_cf

reset_n_cf_from_the_cf

iowr_n_from_the_cf
power_from_the_cf

rfu_from_the_cf

we_n_from_the_cf

OUTPUT addr_from_the_ct[10..0]
OUTPUT

atase_u_from_the_ct[1.0]OUTPUT

lowr_i_from_the_ct

atase_U_from_the_ctr

uata_cr_to_and_from_the_ct[15.0]BIDIR
UOO
OUTPUT lord_l_from_the_ct
OUTPUT

powr_from_the_ctOUTPUT

OUTPUT rn_from_the_CT
OUTPUT we_from_the_CT

ic_warnt_fill_to_the_cpu

be_n_to_the_ext_ram[3.0] be_i_to_the_ext_ram[3..0]OUTPUT

byteenablen_to_the_I an91c111[3..0] bnytee tablen_to_the_tan91c111[3..0]
OUTPUT

ext_ram_bus_address[22..0] OUTPUT ext_ram_bus_address[22..0]

ext_ram_bus_data[31..0] ext_ram_bus_data[31..0]BIDIR
UOO

ior_n_to_the_I an91c11 OUTPUT Ior_i_to_the_ta91c111

iow_n_to_the_I an91c11 OUTPUT Ior_i_to_the_ta91c111

read_n_to_the_ext_flash OUTPUT read_i_to_the_ext_taxt

read_n_to_the_ext_ram OUTPUT read_i_to_the_ext_taxt

read_n_to_the_Ian91c111
select_n_to_the_ext_flash

OUTPUT relect_i_to_the_ext_taxt

select_n_to_the_ext_flash OUTPUT select_i_to_the_ext_taxt

write_n_to_the_ext_flash OUTPUT wirtte_i_to_the_ext_taxt

write_n_to_the_ext_flash OUTPUT wirtte_i_to_the_ext_taxt

zs_addr_from_the_sdram[11.0] zx_addr_from_sdram[3..0]OUTPUT

zs_ba_from_the_sdram[1.0] zx_ba_from_sdram[3..0]
OUTPUT

zs_cas_n_from_the_sdram OUTPUT zs_cas_i_from_the_sdam

zs_cke_from_the_sdram OUTPUT zs_cke_from_the_sdam
zs_cs_n_from_the_sdram OUTPUT zs_cs_i_from_the_sdam

zs_dq_to_and_from_the_sdram[31..0] zs_dq_to_adn_from_the_sdram[31..0]BIDIR

zs_dqm_from_the_sdram[3..0] zx_dqm_from_sdram[3..0]OUTPUT

zs_ras_n_from_the_sdram zx_ras_i_from_the_sdramOUTPUT

zs_we_n_from_the_sdram zx_we_i_from_the_sdramOUTPUT

txd_from_the_uart1 txd_from_the_artOUTPUT

Blue_from_the_vga_out Blne_from_the_uga_ontOUTPUT

Green_from_the_vga_out GREEN_from_the_uga_ontOUTPUT

Horiz_Sync_from_the_vga_out Horlz_Sync_from_the_uga_ont
OUTPUT

Red_from_the_vga_out Red_from_the_uga_ont
OUTPUT

Vert_Sync_from_the_vga_out Vert_Sync_from_the_uga_ontOUTPUT

out_port_from_the_vs1001_bsync ont_port_from_the_vs1001_bsync
OUTPUT

MOSI_from_the_vs1001_control mosi_from_the_vs1001_control
OUTPUT

SCLK_from_the_vs1001_control SCLK_from_the_vs1001_control
OUTPUT

SS_n_from_the_vs1001_control ss_i_from_the_vs1001_dataOUTPUT

MOSI_from_the_vs1001_data MOSI_from_the_vs1001_dataOUTPUT

SCLK_from_the_vs1001_data SCLK_from_the_vs1001_data
OUTPUT

SS_n_from_the_vs1001_data

in_port_to_the_vs1001_dreq

MISO_to_the_vs1001_data

out_port_from_the_vs1001_reset ont_port_from_the_vs1001_reset
OUTPUT

Inst

Input
VCCIn_put_to_the_us1

GND

MISO_to_the_vs1001_control
Input
VCCIn_put_to_the_us1

rxd_to_the_uart1
Input
VCCad_to_the_us1

irq_from_the_lan91c111

GND

VCC
Imput

Inq_from_the_tab91c111

OUTPUT ENET_ADS_N

OUTPUT ENET_AEN

GND

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

50

Table 1. MP3 Chip Used by Network Player Hardware & Performance

Item Description
Function Nios II MP3 Player System

Altera EP1SF780C6ES FPGA
Hardware Device

Available Usage

LEs 10,570 6,575 *

9-Bit DSP Blocks 48 9
920,448 801,536

CPU On Chip RAM VGA On Chip Memory (Bits)
45,824 524,288 230,400

I/O Pins 427 191
Performance 61.63 MHz (fmax)

*Using the Quartus II software version 5.0 group compiling and integration; Set options together: the least logic

As for software resources, the uClinux kernel and file system take up 1,784 Kbytes and 2,417 Kbytes of
external flash ROM, respectively. The application takes up about 30-Kbytes space, and the MP3 files
are stored on the CF card.

Figure 11. Outside View of MP3 Player LCD

 Embedded Network MP3 Playing System

 51

Figure 12. MP3 Player Development Platform

Design Architecture
This section describes the project’s design architecture.

MP3 Broadcasting Network
This system architecture will be used for music audio/broadcasting or music audition (see Figure 13).
MP3 audio is provided by the MP3 broadcasting server and is downloaded to each MP3 receiver from
the Ethernet. The broadcasting server selects the audio actively, and the receiver plays or audits the
downloaded music. In this system, the broadcasting server is based on a PC because of the large hard
disk, which is easy to store, extend, and maintain. Additionally, the hard disk offers abundant operating
system support. If the system is used for business purposes, the Linux/uClinux is preferable because of
the server operating system and receiver operating system, considering system stability and costs.

Figure 13. Ethernet MP3 Broadcasting System

MP3 Broadcasting Receiver
Figure 14 shows the circuit function block of the MP3 broadcasting receiver. After receiving the
Ethernet data, the MP3 data is first prepared for processing by the Nios II CPU, which also performs

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

52

MP3 decompression. Then, the audio is output via a dual-channel amplifier. The received MP3 data can
also be stored in flash memory for playback.

Figure 14. Ethernet MP3 Receiver

Flash ROM
SRAM
DRAM

SMSC
LAN91C111

Ethernet

640 x 480 LCD
Display

Touch Panel

Control
Signals

Stereo Audio
Amplifier

Ethernet
Frame

Ethernet

MP3 File
Server

Altera
EP1S10F780

FPGA
(Nios II)

MP3
Decode

Accelerator
& D/A

Converter

CF Card

MP3
Data

Stream

MP3 Decoder
From the previous MP3 coding theory, we found that you needed a huge amount of data packet
composing or decomposing, and a great deal of repeated numerical operations in both the coding and
decoding processes. Additionally, in a real-time system, a large volume of data needs to be processed in
every clock cycle. If the processor speed is low in an embedded system, then you cannot play MP3
audio. Our system has been designed to accelerate MP3 decoding with the help of a peripheral decoding
circuit. Although the Nios II processor in an FPGA can perform the MP3 software decoding function, it
cannot reach the real-time processing speed. Therefore, the MP3 data stream decoding is implemented
using an additional decoding chip to reduce the burden on the CPU.

The system adopts a special chip to implement MP3 decoding. Other design considerations include:

■ MP3 audio play needs to be transformed into simulation signals towards the end of the process.
However, the FPGA currently cannot implement this simulation circuit; in contrast, the dedicated
chip features a simulation circuit. Taking this design approach, you can save on components of the
simulation circuit.

■ Because MP3 audio players are very popular, you can easily get cheap, reliable, and low-power
integrated circuits.

Figure 15 shows the block diagram of internal functions of the VS1001, an MP3 decoding chip
developed by VLSI Solution Oy from Finland. It features a low-power DSP chip, which could be used
to implement user programs to process special audio effects. It also operates as the MP3 decoder and
has a 16-digit dual channel digital-to-analog converter (DAC) with no phase difference and a simulation
earphone amplifying circuit. These features could significantly simplify the MP3 decoder production.

 Embedded Network MP3 Playing System

 53

Figure 15. Block Diagram of Internal Functions in VS1001 MP3 Decoding Chip

Figure 16 shows the circuit connections between this chip and the Nios II development platform. The
3.3-V working power is obtained from P17 (on the board), the controlled serial peripheral interface
(SPI) signal and MP3 data’s SPI signal are connected with to the development board at P11. The two
SPI signals are controlled by the independent SPI interface in the FPGA (see Figure 16).

The VS1001 chip uses two SPI buses, the serial data interface (SDI) that transmits MP3 compressed
data and serial control interface (SCI) that implements control instructions. By reading/writing the 16-
bit register of the SCI interface, the following operations can be implemented:

■ Operation mode control

■ Loading user program

■ Reading header data

■ Reading status information

■ Accessing decompressed digital data

■ Feed-in entry data

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

54

Figure 16. MP3 Decoding Chip Circuit

SO
SI
SCLK
CS
RESET
DREQ
SDATA
DCLK
BSYNC

TEST0
TEST1
TEST2

XT1 / MCLK
XT2

14F20
13G15
12G20
11G19
26

1
3
2
4

G14
G18
G17
H18

1
3 N.C.
5 N.C.7
9
11

N.C.
N.C.
N.C.13 N.C.

15 N.C.
17 F20
19 DGND
21 G15

G2023
25 G19
27 G14
29 G18

G1731
33 H18
35 N.C.
37 N.C.
39 N.C. N.C.

2
4
6
8

10
12
14
16
18
20
22
24
26
28

N.C.

N.C.

N.C.
N.C.
N.C.

N.C.
DGND

N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.

8
7 AGND

AGND
AGND
DGND
DGND
DGND

RCAP

RIGHT
LEFT

AVDD
AVDD
DVDD
DVDD

28DVDD
8
5
23
19

24
20

22

27
10
6
25
21
18

N.C.

10 k
R3

DVDD

21.576 MHzX1

R4

1 M

18 p

C8

18 p
C9

104

C1

VS100 1 K

U1

DVDD

RVDD

15 R1

10 �

10 �

C6
100 �

100 �
C7

R215

L

R

G

STEREO

104
C2

+ +

100 �F

C3

100 �F

C4

104

C5

DGND

L1

L2

+3 V

P17
1
3
5
7
9

11
13
15
17
19

N.C.
N.C.
N.C.

N.C.
N.C.

+3 V

2
4
6
8
10
12
14
16
18
20

RGND

P11
RES

30
32
34
36
38
40 16

17

15

The SCI instruction read/write waveforms are shown in Figures 17 and 18, respectively. The data is
read or written to at the SCK rising edge.

Figure 17. Reading of SCI Word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 30

XCS

SCK

SI

SO

Instruction (READ)

0 0 0 0 0 0 1 1

Address

7 6 5 4 3

Data Out

Don't Care

31

15 14 1 0 X

2 1 0

High Impedance

Figure 18. Writing of SCI Word

 Embedded Network MP3 Playing System

 55

Figure 19 shows the MP3 decoding flow in the VS1001 device and its program steps are as follows:

1. MP3 data is entered through the SDI bus.The data is delivered to the bass/tenor enhancing circuit,
which is controlled by the SM_BASS of the SCI register, after MP3 decoding.

2. If A1ADDR of the SCI register is not zero, the application code set by the user is implemented. The
starting address is specified by A1ADDR.

3. The digital PCM audio data is then sent to the volume control unit. The output signal is temporarily
stored in a FIFO buffer, and is then transformed into simulation audio by the DAC for output
according to the sampling frequency. The FIFO buffer can save 512 stereo audio (2 x 16 bits).

Figure 19. VS1001 MP3 Decoding Flow

Figure 20 shows the connection of the microprocessor to the VS1001 chip. The basic settings are listed
for the microprocessor interface as follows:

■ SO and DREQ are inputs, and the rest of the signals are outputs.

■ When the SPI control is idle, the PI clocks should be set to low power.

■ If the microprocessor has no SPI signal interface, the SO, SI and SCK signals could be
implemented by the general I/O; however, the microprocessor must have a fast enough operation
speed.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

56

Figure 20. VGA Display Control Circuit

Horizontal/Vertical Synchronization
Signal Generator

Information Displays Memory

Headine in LCD Panel Displays Memory

RGB Output Signal Generator

Clock_50 MHz Horiz_Sync
Vert_Sync

OUTPUT Horiz_Sync
OUTPUT Vert_Sync

co[8..0]
now[7..0]

v_h_sync

inst2

video_on1
video_on2

WRE h_adr[9..0]
inst3
WRE

inst4
h_adr[15..9]

GND h_adr[15..0]

Ipm_add_sub0

A
dataa[15..0]

dataa[15..0]
B
A£«B

result[15..0] rd_adr[15..0]

INPUT
VCCClock_50 Mhz

c[15..0]

inst8

r[18..0]result[16..0]

Unsigned
multiplication

Ipm_mult0
datab[7..0]

datab[8..0]

row[7..0]

inst6
320

9

Ipm_constant0

inst/
Ipm_ram_dp0

61
44

0
W

or
d(

e)
R

A
M

wr_data[2..0
]

wr_data[15..0]
data[2..0]
wraddress[15..
0]
wrenwr_erb

INPUT
VCCwr_data[2..0]

wr_adr[15..0] INPUT
VCC
INPUT
VCC

wr_enb rgb1[2..0]q[2..0]rdadrress[15..0
]rd_adr[15..0]

clock

Block Type:AUTOinst5
Ipm rom1

address[13..0]
clock q[2..0]

rd_adr[13..0]
rgb2[2..0]

inst18
AND2v_on2

rgb1[0]
inst
AND2

rgb1[1]
inst1
AND2

rgb1[2]

v_on1
rgb2[0]

inst10

AND2

inst15
AND2

rgb2[1]
inst16
AND2

rgb2[2]

inst17

OR2

inst2
OR2

inst13
OR2

rgb[0] OUTPUT Blue

rgb[1] OUTPUT Rad

rgb[2] OUTPUT Green

Display Memory Address Generator

Figure 21 shows the VGA output interface circuit.

 Embedded Network MP3 Playing System

 57

Figure 21. VGA Output Interface Circuit (from Altera UP3 Development Kit)

1 R
55

7
1

k2IN
41

46

1 R
55

6
2

1
kIN

41
46

1 R
55

5
2

1
kIN
41

46

LCD Display Panel
A dot-matrix LCD controller is added to the MP3 receiver for displaying the related MP3 information
(such as MP3 file name, length, bit rate, receiving status, and play menu) on the 640 x 480-pixel LCD
panel. The panel information operation is controlled by the touch panel.

Touch Panel
Touch panels are becoming more and more popular these days. They are mainly used in environments
where there are space constraints and it is not convenient to use a normal keyboard. These applications
include operating table supervision systems, self-service meal ordering systems, PDAs, cell phones,
logistics management, and inventory management. To make it easier for the user, a four-wire touch
panel, rather than an ordinary keypad, is used in the system. Its principle is described as follows.

The basic structure of the four-wire resistive element is very simple: it is made up of two resistive films
(see Figure 22). On the X axis of the top resistive film, there are X+ and X- poles connected with the
resistive film; and another two Y+ and Y- poles connected with the bottom resistive film. A voltage is
applied interactively onto one side of the pole of the two-layer resistive film. When the two-layer
resistive film is touched, a voltage value resulting from the touch of the resistive films can be measured
via the pole on other side, which is not electrically connected, and hence the X and Y coordinate of the
touch point can be obtained. The touch panel outputs X, Y coordinates in serial mode after processing
by the interface integrated circuit. Its data format is shown in the tables following Figure 22.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

58

Figure 22. Touch Panel Diagram

X+
X-

I

Y+
Y-

I

Description Data Byte
1 2 3 4 5 Pen Up BF 00000xxx 0xxxxxxx 00000yyy 0yyyyyyy

Description Data Byte
1 2 3 4 5 Pen Down FF 00000xxx 0xxxxxxx 00000yyy 0yyyyyyy

If the first serial data character is 0xFF, the following four characters are X, Y coordinates of the
touching point of the touch panel; if it is 0xBF, the characters are the X, Y coordinates of the leaving
point of the touch panel. We have mapped the system LCD screen into 40 horizontal characters and 30
vertical characters. Therefore, the program divides the read X, Y value with 40 and 30 to determine the
touch display position of the character. Every time the panel is touched, the Nios II CPU issues a short
beep to confirm the touch command.

Ethernet Chip
We used SMSC’s LAN91C111 device as the Ethernet control chip in our MP3 receiver. The
LAN91C111 device is a 128-pin TQFP, full-duplex network chip that can be connected with 8-, 16- or
32-bit microprocessors and can work in 10/100-Mbps mode. See the following table.

Item Byte/Bit 7 6 5 4 3 2 1 0
Command code 1 C7 C6 C5 C4 C3 C2 C1 C0
X-High byte 2 0 0 0 0 0 X9 X8 X7
X-Low byte 3 0 X6 X5 X4 X3 X2 X1 X0
Y-High byte 4 0 0 0 0 0 Y9 Y8 Y7
Y-Low byte 5 0 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Currently, the LAN91C111 chip used by our system network interface has two main function blocks:
the MAC and PHY. The MAC is used mainly for digital data processing and the PHY for simulation
data processing. Figure 23 shows the LAN91C111 simplified circuit diagram with the MAC and PHY
function blocks. Figure 24 shows the block diagram of the LAN91C111 device’s internal functions.

 Embedded Network MP3 Playing System

 59

Figure 23. Basic Connection Block Diagram

H
os

t S
ys

te
m

Figure 24. Basic Functional Block Diagram

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

60

The LAN91C111 device features an 8-Kbyte FIFO buffer, which is used to store the transmitted and
received data packets. The FIFO buffer can be accessed externally in DMA mode. The device uses
9,346 (64 x 16-bit EEPROM) to store resource configuration (e.g., I/O address, boot ROM base address,
and interrupt request source) and ID parameters. The chip control circuit comprises four register banks.
The first 16 registers are used for control and status, registers 16 through 23 are used for DMA data
access, and register 24 through 31 are used for chip reset. The transmitted or received data packets
range from 60 to 1,514 bytes:

Item Description Size
Destination address MAC address of target node 6 bytes
Source address MAC address of sending node 6 bytes
Length Packet length 2 bytes
Data Data 46 ~ 1,500 bytes

The transmit and receive flow of data packets are shown in Figures 25 and 26, respectively. The packet
transmission flow includes memory configuration, packet buffer writing, packet array arrangement, and
transmission.

 Embedded Network MP3 Playing System

 61

Figure 25. Data Packing Transmission Flow

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

62

Figure 26. Data Packet Receiving Flow

Start the Receiver
RCR Register =

0x0100

RCXINT Byte = 1?

Read the Receiving
Packing Packet #=

RXFIFO

Packet Receiving

Yes

Set Pointer Register =
0xE000 (RCV, RD &

AUTOINC)

Read STATUS

No

Read Byte Count

Read Receiving
Address (6 Bytes)

Read Source
Address (6 Bytes)

Read Data packing
Bytes

Read Receiving
CONTROL Register

End

Operating System
We designed the system software based on the uClinux RTOS that can be implemented on the Nios II
processor. The main functions of each task are briefly described as follows (see Figure 27):

■ Transport stream (TS) processing program—This program implements the TS input, output, and
memory management functions. It is similar to the physical layer of the communications system,
which implements transmission control of the hardware system. In general, this task stores the data
read from the FIFO buffer in different segments of SRAM, and submits the index address.
Meanwhile, the data stream to be output is read from SRAM and written to the output FIFO buffer
according to the application requirements. In special cases, the input data volume is modified
according to the input data stream rate and memory availability.

■ MP3 system layer analyzer—The MP3 information that is entered into the data stream is analyzed
according to the MP3 system layer standard. Various acquired parameters and audio information
are sorted and stored. The data is reassembled according to the simple network management
protocol (SNMP) data structure and is updated when necessary. The results are then submitted to
the trigger program of the transmission error transaction.

■ Transmission error supervision program—The program first completes the synchronization and
analysis in succession according to different priorities, and then stores the analysis results data in a
structured format to submit to the communications module. It implements a fault prompt and alarm
via the pre-designed fault mode. Too many error alarms cause an information jam; therefore, it is
helpful to be judicious in judging problems by combining it with the related errors into higher-level
alarm information.

 Embedded Network MP3 Playing System

 63

■ Communications service program—The program completes the design of Ethernet transmission
control according to TCP/IP protocol and SNMP protocol. Data output transmits the statistical
information database and the analytical database to the controller side, based on the standard SNMP
protocol. Meanwhile, control command communications are made via TCP or UDP protocols.
Semantic analysis can be made for statistical information data entered by SNMP by means of
additional analysis software. Nevertheless, the program needs to transmit local hardware timing
information as the reference, or display analysis data on the console directly. After adding the web
server function to the communications service, the analysis results can be displayed directly via a
browser.

Figure 27. Embedded Operational System Software Structure

Transmission Error
Supervision Program

Communications Service
Program

Ethernet Command
Controller

MP3 System Layer
Analyzer

TS Processing ProgramEthernet Transmission
Service Program

Optimized RTOS Core

Ethernet
Driver

TS FIFO
Buffer Timer Nios II Driver

Nios II Processor

Data Stream TS Information Control Stream

Design Methodology
The development of the system is divided into system planning, hardware circuit design, software
program design, OS migration, and system integration test.

At the beginning of system planning, we decided to perform MP3 coding by combining software and
hardware. During the testing phase, we realized that using only software programs will not work in real-
time, as they consume large amounts of time. Also, if we used MP3 coding hardware circuits along with
the FPGA, these circuits would occupy too many chip resources, and some circuits would operate
poorly. Therefore, we decided to use an additional MP3 coding chip to save the process of
implementing a simulation circuit.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

64

The hardware circuit design includes the Nios II CPU, touch pad, compact flash (CF) card, memory,
Ethernet interface, VGA display interface, and MP3 chip control interface. We developed the circuits in
VHDL, and used the SOPC Builder tool for the CPU and the peripheral design. Finally, we used the
Quartus II software to compile and compose our design.

The software program was written in the C language and compiled with the gcc compiler. For making
easy modifications to the system during development, we performed the interface circuits tests of all
using independent programs without involving the OS. This process saved us development time because
we did not have to recompile the software/hardware combination of the design.

The uClinux RTOS was downloaded to the Nios II development board. The CF card access and
Ethernet operated under the RTOS, so we did not have to write drivers.

After completing the actions and tests above, we took enough time to integrate and test the system,
using the following steps:

1. Establish the kernel project. Plan and compile the Nios II CPU system that generates the PTF file
for the establishment of the kernel (including selecting the development board whose kernel
configuration is set to the Stratix® or Cyclone™ device).

2. Establish a file system project, including the basic instructions to be performed on the OS, as well
as some application programs such as boa server, telnet, and ftp.

3. Download constructed kernel (vmlinux.bin) and file system, romfs.bin, to the flash ROM, and then
download the SRAM Object File (.sof) or Programmer Object File (.pof) of the CPU. Once the
software development kit (SDK) window changes to Nios II terminal mode, you can start the OS
and check some messages, as well as control the OS after inputting the user account and password.

4. The development of the application program must establish the write program, build the makefile,
and specify the option setting of the compilation in the integrated development environment (IDE).
The program should copy the .exe file generated by compilation to the filesystem/bin subdirectory,
rebuild the project to download to the flash ROM, and start the RTOS to test the program.

5. When testing a program, you must first start up the RTOS network connection and download the
program execution file to the CF card via ftp or telnet.

When the tested program is in an endless loop, it can skip over the execution program if the user presses
the Ctrl+C keys when testing with the SDK. However, if you press the Ctrl+C keys in the RTOS, the
program only leaves terminal mode and does not end the program.

 Embedded Network MP3 Playing System

 65

Design Features
This design project integrates the Nios II CPU, the MP3 encoder, Ethernet, the RTOS, and other
software/hardware technologies on the SOPC, and completes the embedded network MP3 broadcast
system. The system can download MP3 messages through Ethernet, which are then played directly on
the MP3 receiver. This system is applicable for use in:

■ Public places, replacing conventional loudspeaker broadcasts and providing good quality audio and
voice messages.

■ Music audio in shops, replacing CD audio players and providing the convenience of the latest MP3
technology.

The main function blocks in the system design include:

■ Nios II CPU and peripheral circuit plan

■ MP3 encoder interface circuit

■ VGA display interface circuit

■ Embedded Ethernet

■ Embedded OS uClinux

■ MP3 file server

■ SOPC software/hardware system integration

Considering the flexible design of the system software/hardware, we adopted the SOPC design
methodology to complete the system. If the system were to be implemented only using software
programs, it would be extremely difficult to process the MP3 data in real-time, or it would require a
higher performance processor, which is too costly and consumes more power. Many application
programs of the system cannot be realized in hardware circuitry, and therefore are not flexible.
Therefore, an FPGA that contains the Nios II soft processor is the best choice for this design.

Conclusion
The purpose of our design, the Embedded Network MP3 Playing System, is to make general public
announcements at selling booths and public places. These messages are played in real-time, and could
include popular music or electronic information (in MP3 file format) that can be transmitted to MP3
players by the main control room to the Internet or LAN.

The system core uses a 32-bit RISC Nios II embedded soft processor, which was released by Altera in
2004. The system OS is uClinux. The development tools, such as the SOPC Builder and the Quartus II
software version 5.0 IDE, helped us to partition the software/hardware module design, compile,
combine, program, and test, as well as to integrate the program into the Altera Stratix FPGA
development board.

The Nios II processer has three types of optimal CPU variants: one that has high system performance,
one that uses the fewest logic resources, and one that provides a balance between system performance
and logic resources.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

66

Although Altera’s development tools were good, we faced a few problems during development.

■ It was difficult to make an optimal choice because selecting the CPU, parameters of the peripheral
components, and even circuit combinations were very complicated.

■ Whether the RTOS was in use or not, the OS name was not matched during hardware development,
which we needed to change manually.

■ It was difficult to write this report because the sections were out of order and contained repeated
information. Instead, we would like to suggest the following project report sections: Motivation and
Purpose, System Architecture (including circuit diagram, program flow, and specifications for use),
Design Principle, Design Description (detailed circuit diagram and program description), Test and
Experiment Result, Conclusion, and Appendix.

The initial hardware design of the system was to select the Nios II /f CPU using SOPC Builder, and add
a user logic interface, designed by us, to connect the VGA display. At the beginning of the design, we
took more time to add a display with extra pixels, but considering the memory resources used by the
system and the size restriction of some RAM and ROM, we used the Nios II /s CPU instead, compiled it
in the Quartus II software, and implemented a full-screen display. Besides the LCD display, the system
also supports the touch screen input by the UART interface, and allows further design modifications on
the touch screen functions. The play of the MP3 decoder is controlled by two SPI interfaces. We spent a
lot of time at the beginning of the project on this aspect, due to our unfamiliarity with the
communication protocol and SPI timing, learning how the function base of the SPI is applied in the
Nios II system, and verifying using an external MP3 decoder circuit. After completing a few modules,
we still had some difficulties when integrating the uClinux RTOS, accessing the CF card, and
performing Ethernet transmission. We overcame these problems in the end.

For this kind of project, no matter how the software and hardware cooperate, or what the setting and
operation of the RTOS, each function that needs to be implemented successfully must be understood
and developed with the correct debugging procedures. You cannot wade into this design blindly and use
trial and error. That approach wastes a great deal of time and lowers your confidence. A special thanks
to our instructors for providing such great help and important suggestions about the design and
operation of this product. We thank all our college mates for their active participation and sincere
devotion during this competition. Through this competition, we learned how to design an embedded
system and perform system integration. We had a pleasant experience entering the competition, and we
hope to do even better next time.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 67

Second Prize

Implementation of the H.264/AVC
Decoder Using the Nios II Processor

Institution: Seoul National University

Participants: Im Yong Lee, Il-Hyun Park, and Dong-Wook Lee

Instructor: Ki-Young Choi

Design Introduction
H.264/AVC is a video standard of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). This standard has been developed in response to the growing
need for higher video compression in applications such as videoconferencing, digital storage media,
television broadcasting, internet streaming, and communication. The H.264/AVC standard has been
designed to enable the coded video representation in a flexible manner for a wide variety of network
environments.1

We started our design from Joint Model Reference code. Because the design requires a lot of
computations with various sophisticated compression techniques, we needed a high-performance system
for real-time video processing. We achieved the necessary performance for a reduced frame rate using
the Nios® II Development Kit. Specifically, we used the versatile features of the Nios II configurable
processor, such as configurability of the memory hierarchy and custom instruction extensions.

Function Description
Figure 1 shows the H.264/AVC decoder block diagram.

1 ITU-T Rec. H.264(05/2003)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

68

Figure 1. H.264/AVC Decoder Block Diagram

F1
n - 1

(Reference) MC

Intra
Prediction

T-1 Q-1 Reorder Entropy
DecodeFilterF1

n - 1
(Reference)

Inter

Intra
P

(1 or 2 Previously
Encoded Frames)

uF1
n

+
D1

n

+
X

NAL

We implemented an H.264/AVC decoder, which can decode about 12 frames per second, with Nios II
processor-based system-on-a-programmable-chip (SOPC) solution running at 90 MHz. The function
blocks, MC, Intra Prediction, and Filter were implemented as software modules, and the context-based
adaptive variable length coding (CAVLC) decoder was implemented using custom instructions. The
Inverse Integer Transform and Inverse Quantization blocks were implemented as a single intellectual
property (IP) module featuring an Avalon® slave interface. We also implemented the thin-film transistor
(TFT) LCD controller and YUV-to-RGB color space converter to display decoded pictures. An
expansion prototype connector links our TFT LCD panel to the Nios II development board.

Performance Parameters
Our performance target was to achieve quarter common intermediate format (QCIF) (176 x 144 pixel
resolution and 30 frames per second (fps)) decoding capability based on a 200-MHz SOPC solution.
With the FPGA implementation, we achieved 90 MHz maximum and we could decode about 12 fps. If
we fabricated this solution using 0.18-micron technology, we could increase the clock frequency to 200
MHz, which can process about 27 fps. So, we would still need to increase the performance by more than
10% to meet our original performance target. However, 27 fps is good enough for today's mobile video
streaming service.

Design Architecture
The Figure 2 block diagram details our design implementation. We used the Nios II/f (fast) processor’s
custom instructions for CAVLC decoding. The Inverse Quantization and Inverse Integer Transform
blocks were combined into a single IP module with an Avalon slave interface. We used three dual-port
RAM blocks for the YUV frame buffer. To transfer the frame data to the frame buffer, we designed an
interface between the dual-port RAM and Avalon bus.

Nios II Configuration & Memory Hierarchy
We chose the Nios II/f processor with a hardware multiplier using DSP blocks and a hardware divider.
This scheme gives an estimated performance of 102 MIPS (Dhrystones 2.1) at 90 MHz at most, based
on a 32-Kbyte instruction cache and 32-Kbyte data cache. The line size of the data cache is 16 bytes.
We found that the performance was saturated at this cache configuration and we could get a little
improvement by further increasing the cache size. In addition, the system has a tightly coupled data
memory of 24 Kbytes. Because the YUV frame buffer uses many M4K blocks, this configuration is
almost the maximum amount of memory blocks that can be allocated to cache and then tightly coupled
to memory.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 69

Figure 2. Block Diagram of Implemented H.264/AVC Decoder

PLL
5 MHz

PLL
90 MHz

50 MHz
Oscillator

Inverse
Quantization

Inverse
Integer

Transform

Nios II/f

Custom
Instructions

For
CAVLC

Decoding

Generated by SOPC Builder

data[31..0]

wraddress[10..0]

wren

rdaddress[12..0]

rden

rd_addres sstall

wrclock
rdclock
rdclocken

Block Type: M512
inst4

YUV Frame Buffer

q[7:0]
TFL-LCD
Controller

with
Color Space
Conversion

TFT LCD
Module

Ipm_ram_dp_U
Avalon

To
Dual-Port

RAM
Bridge

Tightly coupled data memory handles read-only data memory (.rodata), heap memory, and stack
memory. Our design application uses about 16 Kbytes for read-only data, which stores frequently used
coefficients. The remaining tightly coupled data memory is enough for the heap and stack. We managed
to obtain about a 7% speed increase with this memory design modification.

Custom Instructions for CAVLC Decoding
The ReadCoeff4x4_CAVLC function reads an encoded bitstream using CAVLC and decodes
coefficients of a 4 x 4 macro block. Figure 3 shows the process of CAVLC decoding. Each block in
Figure 3 features 2 to 4 inputs and 1 to 2 outputs. Each of the inputs and outputs has a value ranging
from 8 to 24 bits. Each block takes several execution cycles in the best case and several hundred cycles
in the worst case. Each block is called more than several hundred times per frame. Because the result of
each block is determined by the input data and multiple execution of the following block, it is very
difficult to implement this function as a separate hardware IP module. Specifically, implementing each
block of Figure 3 as an independent hardware block would cause high data communication overhead.
By implementing these blocks as custom instructions, we can use the processor’s register to lower
overheads on data communications.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

70

Figure 3. CAVLC Decoding Process

Among the six blocks in Figure 3, five blocks (except the Level Decoding block) have the same
structure (see Figure 4). Each of the five blocks first looks up the length table to obtain information on
the bits required to be read from the bit stream. Following this, the blocks read that many bits of data
from the bit stream and compare the data with the code book. This sequence is repeated until the block
finds an exact match. Although all five blocks have the same structure as described above, they have
been implemented with different custom instructions because they have different lengths and code
tables. Because the largest table size is 3 x 17, the iteration amounts to 3 x 17, worst case.

Figure 4. Flow Chart of Each Block CAVLC Decoding

Figure 5 shows the implementation structure of each custom instruction for CAVLC decoding. By loop
unrolling and parallel comparison we managed to maximize inherent parallelism and arrived at the exact
match in 1 cycle. Using this custom instruction, we achieved about 13% increase in execution speed.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 71

Figure 5. Custom Instruction Implementation of CAVLC Decoding

Bitstream

Data == Code

Length_Table[0,0]

Code_Table[0,0]

Length_Table[0,1]

Code_Table[0,1]

Length_Table[1,0]

Code_Table[1,0]

Code

Data

Match!

Data == Code
Code

Data

Data == Code
Code

Data

Inverse Quantization & Inverse Integer Transform2

We will skip the elaborate mathematical details and simply note that the inverse transform is given by

i
T
i WCC , where W has elements sWij ' , which are scaled coefficients computed by

⎣ ⎦62 QP
ijijij VZW ⋅⋅= .

The value of ijV for 50 ≤≤ QP is defined in the standard as shown in Table 1.

Table 1. Rescaling Factor V

QP
Positions

(0,0),(2,0),(2,2),(0,2)
Positions

(1,1),(1,3),(3,1),(3,3)
Other

Positions
0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

Zij is the transformed coefficient which is the output of CAVLC decoding and QP is the quantization
parameter which is given by the user when he encodes raw video stream.

We implemented the functionality described above as a single IP module. Inputs to the IP module are
sixteen 8-bit data words and sixteen 16-bit data words and the outputs are sixteen 8-bit data words.
Because it requires multiple input ports and multiple output ports, we found that it is more efficient to
implement it as an IP module than as a custom instruction. The module takes in sixteen adders and

2 H.264/MPEG-4 Part 10 Tutorials at www.vcodex.com

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

72

completes operation in five cycles. Using this IP module, we have achieved about a 20% increase in
speed.

YUV Frame Buffers
Our TFT LCD controller uses a 5-MHz clock. This is the typical clock frequency to refresh TFT LCD
60 times per second. Because the TFT LCD controller runs on a clock domain different from that of the
decoding system, the YUV frame buffers must be implemented as dual-port RAM. So, we used the
parameterized dual-port RAM function altsyncram. Even though the dual-port RAM needs only 8 bits at
the output port, we configured the input port to be 32-bit wide, because the inherent structure of
altsyncram makes it efficient in terms of the data transfer rate.

Design Methodology
For design and implementation, we used various tools from Altera such as Quartus® II software, SOPC
Builder, and Nios II integrated development environment (IDE), which are seamlessly integrated and
easy to use. This complete toolset from Altera made it easy for us to develop the SOPC solution. In
addition, support for third-party EDA tools such as the ModelSim® software was very helpful to verify
the behavior of the SOPC design. Figure 6 details the overall design flow and tools we used.

Figure 6. Overall Design Flow & Tools Used

Design Features
The following are salient features of our H.264/AVC design.

■ Optimal configuration of memory design hierarchy and layout.

■ Deployment of custom instructions for CAVLC decoding.

■ Implementation of IP modules for Inverse Quantization and Inverse Integer Transform.

■ Design of TFT LCD controller with YUV-to-RGB color space converter.

 Implementation of the H.264/AVC Decoder Using the Nios II Processor

 73

■ Design of dual-port RAM for intra-communication between different clock domains.

Conclusion
The Altera Nios II design contest allowed us to design an H.264/AVC decoder targeted for Altera’s
FPGA, using Altera tools. In our opinion, we have extensively utilized the versatile features of Altera’s
Nios II configurable processor and SOPC Builder to make the video decoder process 12 QCIF frames
per second with a 90-MHz clock frequency. Altera’s Nios II development kit gave us a valuable
opportunity to experience three alternative ways of design implementation (software, custom
instruction, and hardware IP) and how to combine them in a harmonized way to optimize the design.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

74

Third Prize

Spectral Estimation Using a MUSIC
Algorithm

Institution: Indian Institute of Technology, Kanpur

Participants: Jawed Qumar

Instructor: Baquer Mazhari

Design Introduction
I have implemented a high resolution spectral estimation multiple signal classification (MUSIC)
algorithm in an Altera® Stratix® FPGA. MUSIC detects signal frequencies by performing an eigen
decomposition on the data vector covariance matrix from received signal samples. High-resolution
spectral estimation is a major challenge of any advanced Doppler radar, cellular mobile base stations,
etc. Eigen value decomposition (EVD) and MUSIC temporal spectra computations with a cyclic Jacobi
processor based on a Coordinate Rotation Digital Computer (CORDIC), is the major signal processing
being implemented using an Altera Stratix FPGA. All the digital signal processing (DSP) functions are
based on fixed-point arithmetic and are well suited for the Stratix FPGA architecture. The feature-rich
Sratix FPGA is armed with a Nios® II processor that has custom instruction and multi-mastering
capabilities, as well as a powerful system development platform: SOPC Builder. The Nios II processor
integrated development environment (IDE) has made the FPGA an attractive alternative to implement
algebraic signal processing algorithms.

 Spectral Estimation Using a MUSIC Algorithm

 75

Function Description
The MUSIC algorithm is a kind of directional of arrival (DOA) estimation technique based on eigen
value decomposition, which is also called the subspace-based method. Here, we consider a unitary
MUSIC algorithm. With this, the eigen decomposition of correlation (covariance) matrix in the MUSIC
algorithm can be solved with real numbers only. This system achieves high performance in EVD and
MUSIC angular spectra computation with a cyclic Jacobi processor on a CORDIC and spatial DFT
respectively. The unitary MUSIC computational flow involves the following steps:

1. Estimation of the correlation matrix, including unitary transform.

2. EVD of the correlation matrix.

3. Computation of the MUSIC spectrum.

4. Local Maximum detection.

I have implemented EVD via a CORDIC-based Jacobi processor. The EVD computation processor for
MUSIC DOA uses a CORDIC-based Jacobi method. The cyclic Jacobi processor computes real
symmetric eigenvalue problems by applying a sequence of orthonormal rotations to the left and right
sides of the target matrix (unitary transformed K X K real symmetric correlation matrix Ryy) as:

Where Wpq is an orthonormal plane rotation over an angle θ in the (p, q) plane whose elements are
Wpp = cos θ, Wpq = sinθ, Wqp = −sin θ, Wqq = cosθ (p > q). J is the multiple rotation of Wpq’s in
the cyclic-by-row manner of (p, q), which is called a Jacobi sweep, and the superscript T and subscript
K denote transposition and array length, respectively. This processor employed the hardware friendly
CORDIC algorithm for vector rotators and arctangent computers to solve the above equations, which
were the basic processing unit. Because the fixed-point operation is applied, of course approximation
errors exist. But when it was implemented with the above 16-bit precision, we could get reasonable
performance. In the next section, implementation angular spectrum is computed after the EVD step. See
Figure 1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

76

Figure 1. System Overview

]Re[11
HXX •

]Re[22
HXX •

]Re[H
MM XX •

... ...

...

Performance Parameters
The estimated performance of the dominant core functions is the number of occupied logic blocks in the
FPGA and fMAX is the maximum clock frequency at which normal operation can be guaranteed. The
minimum computation time, tmin, is calculated by required clks * fMAX. I assumed that less than 2
coherent/incoherent waves arrived at only 4-element uniform linear array antenna. For spectrum
generation, 256-point radix-4 complex fast Fourier transform (FFT) was employed and the FFT with
256 spatial data composed of N elements of the noise eigenvector and (256−N) zeroes interpolates the
spectrum fine and smoothly. All computations were performed by fixed-point arithmetic with 12-bit
input data from ADCs. On the other hand, the estimation accuracy of the EVD system depends on so
many factors that the proper assessment has some difficulties in detailed analysis. For example, the
effect of finite bit-length and bit-truncation by scaling in the fixed-point operation, the estimation errors
caused by non-uniform discrete wavefront, and so forth.

Design Architecture
The EVD of the input matrix X can be performed, as illustrated in Figure 2, using the well known
systolic array architecture. The rows of matrix X are fed as inputs to the array from the top, along with
the corresponding element of the vector y. The R and u values, held in each of the cells once all the
inputs have been passed through the matrix, are the outputs from the EVD. These values are
subsequently used to derive the coefficients using a back substitution technique.

 Spectral Estimation Using a MUSIC Algorithm

 77

Figure 2. EVD of the Input Matrix

The CORDIC rotation-based algorithm is implemented in a very efficient pipelined manner using a
triangular systolic array. The schematic is shown in Figure 3, for M = 4 antenna elements.

Figure 3. CORDIC Rotation-Based Algorithm Schematic

Vec. Rot.

x1(t) x2(t - 1)

Rot.

x3(t - 2)

Rot.

y(t - 3)

A B D

Rot. Vec. Rot. Rot.

D
0 1F

Rot. Vec. Rot.
E

0

C

Rot

G

0

H

CPE

xi

n

yi

n

�out

(�out)

xout yout

�in

(�in)

e(t - 7)

Φ - CPE

Θ - CPE1 Θ - CPE2

(|xin|)
Im(r)Re(r)

Re(xout) Im(xout)

σΦ,out

σΦ,outσΦ,in

σΦ,in

Re(xin) Im(xin)

(a) (b)

The cells in the triangular array (A-B-C) store the elements of the evolving triangular matrix R[i], and
the ones in the right hand column (D-E) store the elements of the updated vector u[i]. The data flow is
from top to bottom, while the rotation angles are propagated from left to the right of the array. In this
implementation, the array entirely consists of CORDIC processor elements (CPEs), which work
completely synchronously, driven by a single global master clock. Because all the CPEs need the same
amount of time to perform their computations they never get flooded with data. Thereby, the CPEs
designated with Vec are configured to the “vectoring” mode of operation, and those labeled with Rot
operate in the “rotation” mode. Each row performs a given rotation, whereby the rotation angle is
determined by the CPE in vectoring mode at the beginning of the row. The rotation angle is passed to
the rotation CPEs to the right with one clock cycle delay, thus requiring the elements of the data vector
to be applied to the array in a time-staggered fashion, as indicated by the indices in Figure 3. To handle
the complex data, complex CORDIC is used. As shown above, it is comprised of three CPEs
interconnected according to figure 4b. In vectoring mode (Im(rm,m) = 0), the imaginary part of the
complex value xm is annihilated by the Φ-CPE and subsequently | xm| is zeroed in θ-CPE1. The complex
Givens rotation is then coded by the two sequences of rotation coefficients {σΦ,j} and {σθ,j}. By applying
these rotation coefficients to a supercell configured to operate in the rotation mode, the incoming vector
(Re(xin) Im(yin))

T is rotated by Φm in the Φ-CPE and subsequently the real and imaginary parts of rm,n and
xm,n are each rotated by θm in θ-CPE1 and θ-CPE2, respectively.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

78

The heart of the design is the EVD decomposer block. The hardware implementation is carried out
directly using systolic array. I worked this out first with a kind of direct mapping, where as many
CORDIC blocks are required. The aim was first to get the R matrix and U matrix from the given input
of X and Y matrix. The rest of the task is taken care of by the Nios II processor. The number of logic
elements used was very high. Also, the EVD update can be done very fast: this is not required for so
many practical applications, for example, a radar system where the interference environment changes in
milliseconds or hundreds of microseconds. So excess hardware utilization and achieving high speed is
of little interest. To address this problem, the array can be mapped to a reduced number of CPEs on a
time-shared basis.

Complex CORDIC blocks are required, so as to implement the complex data. Each complex CORDIC
block consists of three basic CORDIC blocks. I have implemented systolic array for four antenna
elements. As mentioned, this approach gave satisfactory output, but the problem with the scheme is that
it consumes too many logic elements, which is not practical. So, I have worked out another scheme
which does the same thing with only two complex CORDIC blocks. This approach is called mixed
mapping which consumes less logic elements. The benefit is achieved with the scheme, but latency also
will be there. This latency is unavoidable. The scheme is practical, as resource utilization is well within
the limits of the Stratix FPGA. This requires an additional state machine to control the operation. Out of
the two CORDIC blocks, one is for vectoring mode and another for rotating mode of operation.

Figure 4 is the block diagram representation of the design.

Figure 4. Block Diagram

M
ul

tip
le

xe
rInput

Bank1

Input
Bank2

EVD
Odd Bank

Even Bank

Nios II
Processor

Input
Buffer

Avalon Bus

The data on which EVD is to be carried out is in bank1 and bank2. The multiplexer will select the bank
alternately and will pass it to the input buffer. This input buffer is controlled, so when required, it is
being read and given to the EVD. The EVD will write data alternately in the odd and even memory
bank. This is because when Nios II is reading from one bank, the EVD will write data in the other
memory bank. The Nios II processor communicates with the peripheral using the Avalon® bus.

Figure 5 is a schematic representation of the EVD. The input data is 32 bit and of complex nature. The
EVD requires two types of operations, namely boundary-cell and internal-cell operation. As we have
used a mixed mapping approach, the scheduling of the complex CORDIC block is a must here. This is
achieved at the cost of speed. The load enable signal initiates the EVD decomposition task. A separate
controller generates the load enable signal when required. The output of the EVD is intentionally stored
once in the odd memory bank and once in the even memory bank because, for example, if the Nios II
processor is reading from the odd bank, the EVD can write into the even memory bank and vice versa.

 Spectral Estimation Using a MUSIC Algorithm

 79

Figure 5. EVD Schematic Representation

EVD

clk

reset

32-Bit Data

load-en

32-Bit Odd Memory

32-Bit Even Memory

Figure 6 is a simplified view of the controller responsible for generating control signals, as necessary.

Figure 6. Controller

Controller

clk

reset

done_reset

cordic_clk

load_enable

data_sel_pass1

bank_sel

vec_rot_sel_pass1

rd_wr_x

vec_rot_sel_pass1

global_ress

done

cordic_clock_by2

read_address_out[5:0]

The register transfer level (RTL) view of the controller is shown in Figure 7.

It is a finite state machine that uses a counter and mealy state machine. It generates the following
control signals for different blocks. It is the central unit for the EVD processor. When the load_en signal
comes, as long as high loading of the data takes place, as soon as load_en goes low, the controller acts.
It generates:

1. bank select signal for switching the y memory bank data and address.

2. vec_rot_sel signal, which is used to multiplex between the vector and rotation modes of the
complex CORDIC.

3. address signal for writing into the memory and reading from the memory.

4. Done signal, which goes high when the EVD operation is over.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

80

Figure 7. RTL View of Controller

row_end_gen_9

data_read_gen1_tc

bank_sel_cnt

bank_sel_tc_gen1

reg_genZ3

input_data_read_sel

reset_gen_counter

tc_bank_en_gen

reg_gen_enZ2

tc_9_reg1

row_end_gen

read_address_gen1_lsb

row_end_gen

read_address_gen1_msb

reg_genZ3

bank_sel_gen1

reg_gen_enZ2

neg_edge_bank_sel

reg_genZ3

load_en_reg_rdwr

timing_cnt

rd_wr_gen1

reg_genZ3

reg_rdwr1

reg_genZ3

reg_rdwr2

timing_cnt

cordic_clk_by2_1

done_counter

done_inst

reg_genZ3

reg_done1

reg_genZ3

reg_done2

global_reset_out

cordic_clk_by2

global_reset_rdwr

un1_bank_end_tc_mod

rd_wr_x_sig

bank_end_tc_modclk_en

cordic_clk_by2

global_reset_out

rd_wr_x

vec_rot_sel_pass2

read_address_out[5:0]

load_en

cordic_clock

reset

[2:0]

reset
clk

1
clk_en

row_end

[3:0]
address[3:0]

reset

clk
1

clk_en
row_end

[3:0]

address[3:0]

reset

clk

ri[0]
ro[0]

reset

clk

1
clk_en

vec_rot_sel_pass1

vec_rot_sel_pass2

bank_end

address[4:0]

reset
clk

1 clk_en

ri[0]
ro[0]

reset
clk

1
clk_en

row_end

[3:0]
address[3:0]

reset

clk
1

clk_en

row_end

[3:0]
address[3:0]

reset
clk
ri[0]

ro[0]

reset
clk
clk_en
ri[0]

ro[0]

reset

clk

ri[0]

ro[0]
reset

clk

start

[3:0]
address[3:0]

reset
clk

ri[0]
ro[0]

reset

clk

ri[0]

ro[0]

reset

clk

start

output_en

[3:0]
address[3:0]

reset
clk

1
clk_en

tc

address[7:0]

reset
clk
ri[0]

ro[0]

reset
clk
ri[0]

ro[0]

[2]

[3]

done

row_end_10

bank_sel1

output_en

clk

done_reset

data_sel_pass1

bank_end_tc_out

vec_rot_sel_pass1

[2:0]

bank_end_rdwr_dis

Figure 8 shows the complex CORDIC block and the equivalent RTL is shown in Figure 9.

Figure 8. Complex CORDIC

Complex CORDIC

clk

reset

start

output_en

r_x_real_in[21:0]

r_x_imag_in[21:0]

xin_real[21:0]

xin_imag[21:0]

vec_rot_sel

xout_real_th[21:0]

xout_real_th_next[21:0]

xout_imag_th[21:0]

xout_imag_th_next[21:0]

 Spectral Estimation Using a MUSIC Algorithm

 81

Figure 9. RTL of Complex CORDIC

vec_rot

vec_rot_inst

reg_gen_enZ2

vec_rot_sel_delay1

reg_gen_enZ2

output_delay

reg_gen_enZ1

phi_store

mux_genZ3

mux_vec

reg_gen_enZ2

vec_rot_sel_reg1

reg_gen_enZ2

vec_rot_sel_delay2

vec_rot

vec_rot_theta_real

reg_gen_enZ1

theta_real_store

vec_rot

vec_rot_theta_imag

reg_gen_enZ1

theta_imag_store

xout_imag_th_next[21:0][21:0]

[21:0]

xout_imag_th[21:0]
[21:0]

xout_real_th[21:0]
[21:0]

R_x_imag_in[21:0]
[21:0]

R_x_real_in[21:0]
[21:0]

xin_imag[21:0]
[21:0]

xin_real[21:0]

[21:0]

vec_rot_sel

output_en

start

reset

clk

clk

reset

start
1 clk_en

output_en

vec_rot_sel
[21:0]

dataa[21:0]
[21:0]

datab[21:0]
[17:0]

zin[17:0]

[21:0]
x_out[21:0]

[21:0]
y_out[21:0]

result[17:0]

reset

clk
1

clk_en

ri[0]

ro[0]

reset

clk
1

clk_en

ri[0]

ro[0]

reset

clk

clk_en
[17:0]

ri[17:0]

[17:0]
ro[17:0]

sel

[21:0]
A[21:0]

[21:0]
B[21:0]

[21:0]

mux_out[21:0]

reset

clk
1

clk_en

ri[0]

ro[0]

reset

clk
1 clk_en

ri[0]

ro[0]

clk

reset

start
1 clk_en

output_en

vec_rot_sel
[21:0]

dataa[21:0]

datab[21:0]

zin[17:0]

[21:0]
x_out[21:0]

[21:0]
y_out[21:0]

[17:0]
result[17:0]

reset

clk
clk_en

[17:0]
ri[17:0]

[17:0]
ro[17:0]

clk

reset

start
1

clk_en

output_en

vec_rot_sel
[21:0]

dataa[21:0]
[21:0]

datab[21:0]

[17:0]
zin[17:0]

[21:0]
x_out[21:0]

[21:0]

y_out[21:0]

[17:0]
result[17:0]

reset

clk

clk_en
[17:0]

ri[17:0]

[17:0]
ro[17:0]

[21:0]

[17:0]

This complex CORDIC block is the key block for EVD. It comprises three CORDIC blocks and one
phi-CORDIC block. These blocks are used for compensating the imaginary part of the complex input,
the two theta-CORDIC ones are for the real part and the other is for the imaginary part. Because we are
using a complex CORDIC in a time division multiplex manner, the angles phi and theta are stored in
vector mode and these angles are used subsequently in rotation mode. The output block is important, as
shown in Figure 10, for storing the final result and generating the control-signal-like interrupt when
EVD is over. It also provides all necessary addresses and bus control signals for interfacing with the
Nios II processor.

Figure 10. Output Block

address_wr_op

address_read_inst

reg_gen_enZ4

tc_reg_1

address_wr_op

address_wirte_inst

mux_genZ2

mux_rd_wr_address_instload_en

cordic_clock

address_rd_wr[5:0]
[5:0]

address_rd[5:0]
[5:0]

rd_wr

done

reset

reset

clk

1
clk_en

tc

[5:0]
address[5:0]

reset

clk

1
clk_en

ri[0]

ro[0] reset

clk

1
clk_en

tc

address[5:0]

sel

[5:0]
A[5:0]

B[5:0]

mux_out[5:0]

[5:0]

[5:0] [5
:0

]

clk

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

82

CORDIC Architecture
I have implemented CORDIC as an iterative architecture that is a direct translation from CORDIC
equations.

The CORDIC rotator is normally operated in one of two modes. The first mode, called rotation mode,
rotates the input vector specified angle. The second mode, called vectoring, rotates the input vector to
the x-axis while recording the angle required to make that rotation.

Rotation Mode

In rotation mode, the angle accumulator is initialized with the desired rotation angle. The rotation
decision at each iteration is made to diminish the magnitude of the residual angle accumulator. The
decision at each iteration is therefore based on the sign of the residual angle after each step.

Vectoring Mode

In vectoring mode, the CORDIC rotator rotates the input vector through whatever angle is necessary to
align the result vector with the x axis. The result of the vectoring operation is a rotation angle and the
scaled magnitude of the original vector (x component of the result). The vectoring function works by
seeking to minimize the y component of the residual vector at each rotation. The sign of the residual y
component is used to determine which direction to rotate next.

An iterative CORDIC architecture can be obtained by duplicating each of the three difference equations
in hardware as shown in Figure 11. The decision function, di, is driven by the sign of the y or z register,
depending on whether it is operating in the rotation or vectoring mode. In operation, the initial values
are loaded via multiplexers into the x, y and z registers. Then on each of the next n clock cycles, the
values from the registers are passed through the shifters and adder-subtractors and the result is placed
back in the registers. At each iteration, the shifters are modified to cause the desired shift for the
operation. Likewise, at each iteration, the ROM address is incremented so that the appropriate
elementary angle value is presented to the z adder-subtractor. On the last iteration, the results are read
directly from the adder-subtractors.

 Spectral Estimation Using a MUSIC Algorithm

 83

Figure 11. Equations in Hardware

mux

reg

>>n
+/-

£mdi

x

+/-

di

y
>>n

reg

Sign(yi)

mux

y0

+/-

-di

z
ROM

reg

Sign(zi)

mux

z0

x0
Iterative Cordic Sructure

Figure 12 shows a hardware-level simulation result. Hardware-level simulations were performed by the
direct measurements with only the DSP part of real hardware, to efficiently evaluate the validity of the
system. I used the input data made by an offline PC in advance, and obtained the results with real
hardware operation. With these hardware-level simulations, we could verify the function of the digital
signal processor. In this simulation, it was assumed that 2 coherent (or fully correlated) waves were
impinging at 4 antennas from the DOAs of -15 and 20 degrees, respectively. And two waves were the
same power and the input SNR was 15 dB. For the spectrum computation, the FFT of 256 points,
including 3-spatial data of the noise eigenvector’s elements (1 dimension was used for spatial
smoothing) and 253 zeroes, was applied. The final result waveform output is shown in Figure 13, which
shows CORDIC and EVD decomposed values.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

84

Figure 12: Hardware Simulation Result of MUSIC (EVD) & Its Inverse (SNR 15 dB)
(4 Antenna with 2 Coherent Waves at -15 & 20 Degrees)

0
-5

-10

-15

-20
-25
-30

-35
-40

-45
-50

-100 -80 -60 -40 -20 0 20 40 60 80 100
0
1

2
3

4
5

6
7
8

9
10

x104

M
ag

ni
tu

de

Local Minimum

Angle (Degree)

M
ag

ni
tu

de
 (d

B
)

Figure 13. Final Result Waveform

FPGA Implementation
As discussed earlier, I am going to develop the EVD, which is the IP for the system. It is the
responsibility of the Nios II processor to read the values of the R and U matrix from the EVD. The
Nios II processor is responsible for the two tasks namely: 1) reading the R and U matrix 2) back
substitution. Back substitution involves calculating the weights and putting them back.

I developed the software for the above mentioned tasks. It takes approximately 57 µs to accomplish the
specified task (4 antenna elements). This information is useful to calculate the throughput of the system.
The software part also includes the interrupt service routine such that the Nios II processor will read the
data and do the back substitution repetitively. The duration between each interrupt is also programmable
and in synchronization with the system clock. For the above tasks I developed two peripherals, with one
master and one slave each. The master reads data from memory and the Nios II processor does the
necessary calculation for generating the new weights. The slave interface, which consists of a counter, is
generating interrupt. The processor acknowledges the interrupt after 8 µs so that is to be taken care of
while periodically generating the interrupt.

 Spectral Estimation Using a MUSIC Algorithm

 85

The hardware-software co-simulation in the ModelSim® tool helped me to resolve the problem, and to
estimate the time taken by the processor to acknowledge the interrupt. The program developed for the
back substitution is not fixed for four antenna elements, but it is a general program, applicable to any
number of antenna elements.

The Avalon bus is a simple bus architecture designed for connecting on-chip processors and peripherals
together into a system-on-a-programmable-chip (SOPC) solution. See Figure 14. It is an interface that
specifies the port connections between master and slave components. Basic Avalon bus transactions
transfer a single byte, half word, or word between a master and slave peripheral. After the completion of
a transfer, the bus is available on the next clock cycle for any another transaction.

Figure 14. Avalon Bus

Data &
Program
Memory

R_r R_i U_r U_i

Mixed Mode EVD_Decomposer

Avalon Bus

Nios II
Processor C_r C_i

Some key features of the Avalon bus are:

■ Memory and peripherals may be mapped anywhere within the 32- bit address space.

■ All Avalon signals are synchronized to the Avalon bus clock, which simplifies the timing behavior
of the Avalon bus and facilitates integration with high-speed peripherals.

■ Separate, dedicated address and data paths provide the easy interface to on chip user logic.
Peripherals do not need to decode data and address bus cycles.

■ The Avalon bus automatically generates chip select signals for all peripherals, greatly simplifying
the design of Avalon peripherals.

■ Multiple master peripherals can reside on the Avalon bus. The Avalon bus generates the required
arbitration logic.

■ The Avalon bus also handles the details of transferring data between peripherals with mismatched
data widths.

Device Utilization Summary
Family Stratix
Device EP1S10F780C6ES
Total logic elements 8,236 / 10,570 (77 %)
Total pins 34 / 427 (31 %)
Total memory bits 61,856 / 920,448 (6 %)
DSP block 9-bit elements 8 / 48 (16 %)
Total phase-locked loops (PLLs) 1 / 6 (16 %)
Total DLLs 0 / 2 (0 %)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

86

Test Results & Comparison
I have undergone a full design cycle of an SOPC implementation, i.e., hardware-software co-design,
integration of peripherals with Avalon bus, etc. A hardware-based approach is accelerating the
performance. The new hardware-based computing will solve the bottleneck of algorithmic signal
processing. It is discovered that, if a CORDIC block is implemented in software only, it takes 8,600
clock cycles to complete the vectoring mode of operation as opposed to what I have achieved: 16 clock
cycles to accomplish the same task in hardware. This result can motivate a CORDIC-based EVD. With
respect to accuracy, if we compare the Arctan function implementation in software only, it requires
approximately 20,000 clock cycles to achieve the same accuracy as the Arctan IP developed with a
hardware approach. We achieved the desired functionality with the Nios II processor running at a clock
speed of 50 MHz on a Stratix board. Our design of the EVD IP only takes 55 percent of the chip area on
the Stratix FPGA.

Performance Comparison
Software Approach

Method

CORDIC (Cycles)

CORDIC EVD (Cycles)

Direct Equation

 8,600 (172 us) 90,3000 (18 us)

Arctan Series Expansion

 20,000 (400 us) 2,100,000 (42 ms)

Hardware Approach

CORDIC (Cycles) CORDIC EVD (Cycles)

 16

16 (EVD update latency will
 be 16 cycles) = 320 ns

Logic Elements Utilization for EVD Decomposer

Method Logic Elements

Direct Mapping 34,055
Mapping Each Row 7,811
Mixed Mapping 4,946

Design Features
I tried different mapping architectures for optimum implementation. This section shows different
mapping for seven antenna elements. Figure 15 shows direct mapping.

 Spectral Estimation Using a MUSIC Algorithm

 87

Figure 15. Direct Mapping

Figure 16 shows mix mapping and Figure 17 shows row mapping. Round blocks indicate the vectoring
mode of operation. Square blocks indicate the rotating mode of operation.

Figure 16. Mix Mapping

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

88

Figure 17. Row Mapping

Conclusion
From the above design, it is evident that for real-time implementation of computationally intensive
algebraic signal processing algorithms, an FPGA-based SOPC solution is a promising, futuristic
technology.

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 89

Third Prize

Nios II Soft Core-Based Full-Color LED
Music Sight Light Control System

Institution: Harbin University of Science & Technology

Participants: Zhong Qiubo, Gao Junfeng, and Liu Xiaoping

Instructor: Dong Huaiguo

Design Introduction
Lighting sources have evolved beyond incandescent lamps. After the launch of the China Green Lights
Program, new LED lighting products have attracted wide attention in the lighting and decoration
industry with their energy savings, extended life, wide application, flexible control, brilliant color, and
environmental efficiency. Our design is a musical landscape lamp control system with high-level
simulation software, which transfers data and MP3 files to the control system through a compact flash
(CF) card. Our design also includes a series of steps including lamp installation, layout, scenario data
editing, simulation, preview, and so on. The product has applications in city beautification, lighting, and
music integration in public places.

Controlled by a control panel or a dedicated computer, traditional landscape lamps feature only seven-
color changes, in a simple way. The speed of the dedicated computer is limited: its hardware pulse
width modulation (PWM) generally has only three to six paths, and can only be expanded with software
modifications. Therefore, a traditional system cannot meet the requirements of high-speed data transfer.
Additionally, traditional systems cannot display a smooth gradient and the jumps are noticeable with the
naked eye. Therefore, we need a powerful processor to implement a soft gradient with jumps that cannot
be seen by the naked eye. Considering the cost, we adopted one controller to handle several lamps. We
also implemented a packet-control mechanism to handle a large number of lamps by communication
between computers.

The embedded 32-bit Nios® II soft core processor helped us create a highly integrated landscape lamp
control and MP3 playing system. The computing power of the Nios II processor enables simultaneous
LED lamp operation based on different scenarios and music. Further, algorithms can be developed on
PC using C and can be migrated to the Nios II processor, which shortens the development cycle of the
whole system. Altera’s SOPC Builder can help to create and deploy users’ Nios II instructions, and add
customized intellectual property (IP) cores to create a more powerful system-on-a-programmable-chip

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

90

(SOPC) system. Combined with the Cyclone™ FPGA, the designed product delivers a high
price/performance and promises good market prospects.

Function Description
This section provides our design’s functional description.

Major System Functions
Our LED musical landscape lamp control system controls 10 LED lamps (which can be increased in
number, if needed). At least 256 color changes are realized through RGB color mixing and you can
change five different parameters to achieve the desired effect: static, gradient, dim, bright, and flicker.
You can change the duty cycle of the PWM to control a scene made up of changes to 10 lamps, form a
scenario with several scenes, and then create an animation effect by playing these scenarios
continuously. Simultaneously, you can play MP3 files, creating a dynamic scenario in which light
changes with the rhythm of music.

System Components
The system includes a display unit, drive unit, control uni,t and data communications unit, which are
controlled by the µC/OS real-time operating system. The control unit has three tasks:

■ Read lamp control data and MP3 data from the computer to the CF card memory.

■ Get and analyze data from memory, and send analyzed lamp control data to the LED lamp drive unit.
Then, the multi-path PWM display unit implements the LED lamp scenarios.

■ Send MP3 data to the decoder for decoding and play via serial peripheral interface (SPI) SPI bus.

Figure 1 shows the system hardware design diagram (see the “Design Architecture” section). We used
the FS embedded file system for data management, based on the real-time and multi-tasking features of
µC/OS real-time operating system (RTOS). The drive unit is a self-customized, full color lamp-control
intellectual property (IP) core, each controlling a lamp via PWM circuit. We use the lamp-control data
to display scenario changes through the PWM port. The timer provides 10-ms interrupts, after which
scenario-data analysis is carried out. The module drawn in dashed lines can be modified. Several Nios II
control systems can be used for control, based on multi-computer communications, when you need to
handle a large number of landscape lamps. Then, only one control module needs MP3 functionality, and
the other modules may not need it. This functionality can be programmed in the SOPC Builder tool to
save development costs.

Display Unit
The tricolor LED chip is the core component of the display unit. The LED is the most widely used lamp
in electronic components, and tests have proven that three basic colors (red, green, and blue) can be
mixed in different combinations to obtain other colors.

Control Unit
In the control unit, the µC/OS RTOS runs tasks by means of semaphore. The lamp control task software
flow chart is shown in Figure 4 in the “Design Architecture” section.

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 91

Display Drive Principle
Generally, there are two ways to control LED brightness: by changing the current flowing through LED
or by controlling the on/off period of the LED by the PWM. Controlling the LED working current
allows for a wider range of LED brightness control. However, current control is difficult to realize in
software; therefore, it is unsuitable for digital control. In contrast, the PWM method is widely adopted
in digital circuits because it can be implemented easily in software. According to Talbot’s law:

 L =
T
1

 ∫
T

dttL
0

)(

in which, L is the visual brightness of cyclic change sensed by the eyes and T is the cycle. When

brightness function)(tL is a constant L, the visual brightness changes into L =
T
t

L, when PWM

actually controls the working time of the LED by changing the working time in a cycle periodically to
change LED brightness.

Continuously changing the LED’s working time in a cycle continuously changes the LED brightness
and grey scale. Dividing cycle T by n equal periods results in n grey scales of LED. To ensure that the
brightness transition is not perceived by human eyes when the LED grey scale changes (i.e., no flicker),
the on-and-off frequency LED should be larger than critical frequency, and the cycle should not be
longer than 0.1 - 0.2 s. Tests have shown that when the LED grey scale is 256, the mix of three basic
colors will not create transitions, and human eyes can perceive the color gradient. The PWM cycle of
this system is 2 ms and grey scale is 256. We can generate 256 colors controlling the three basic LED
colors, and use fragment delay to control the duty cycle. The basic colors are mixed according to a
certain brightness ratio, which is a certain grey scale. Different grey scales correspond with different
duty cycles and different LED working time cycles.

Display Drive Unit
The display drive unit design for the 10 self-customized system peripherals is shown in Figure 2. The
diagram features the design of a 30-path output port with 10 PWM controllers, respectively, for scenario
changes of 10 LED lamps. The PWM circuit has two caches, back and front. The control arithmetic unit
sends data that needs to be stored to the back cache of The PWM. The PWM checks whether the back
cache has data to be updated, if not, it continues to read the PWM value from the front cache. We check
the back cache each time playing finishes, and if data is updated, we move the data from the back cache
to the front cache, and play the new data. If the PWM value is 255, the output waveform is at high logic
level; if PWM value is 0, the output waveform is at low logic level. If the PWM is between 0 and 255,
output is made according to the relevant duty cycle based on the fixed cycle. Figure 5 shows the
software design flow.

Data Communications Unit
The data communications unit transfers lamp control data and MP3 music files from the computer to the
control system via the CF card. If there are several control systems, multi-computer communications
with an RS-485 serial port can be used.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

92

Performance Parameters
The design’s performance parameters are as follows:

■ The Nios II frequency required by the system is 85 Hz and the peripheral PWM’s cycle is 2 ms,
which is divided into to 256 parts. This scheme enables the lamp control data display using interrupt
data processing that is performed every 10 ms.

■ The system relies on the µC/OS II RTOS to handle multiple tasks and makes it possible to
simultaneously execute landscape lamp scenario display and MP3 music play operations.

■ The landscape lamps can support a 256-color display and five operation modes: static, gradual
bright, dark, change, and flicker.

■ During a gradual change, jump phenomenon cannot be observed by the naked eye. Instead, multiple
colors and gentle gradual change is displayed.

■ Fluent and clear MP3 play.

A combination of the self-defined IP core and the Nios II processor greatly accelerates operation and
processing. Also, using the Nios II soft core, you can set the cycle of PWM at 2 ms and enable
simultaneous operations of MP3 play and landscape lamp scenario display.

Design Architecture
Figures 1 and 2 show the hardware design. Figures 3 through 7 show the project software flows.

Figure 1. Hardware Design

LED Lamp
1

Full Color
Lamp Control

IP Core 1

Memory
Controller

F
L
A
S
H

S
D
R
A
M

LED Lamp
2

Full Color
Lamp Control

IP Core 2

LED Lamp
10

Full Color
Lamp Control

IP Core 10
Timer

RS485
Controller

Serial
Port

Nios II CPU CF Card
Controller

CF Card

PIO SPI

MP3 Decoder

FPGA

Avalon Bus

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 93

Figure 2. Full Color Lamp Control IP Core Hardware Design

Control Unit Analyzed Data
PWM 1

Pre-Cache
Post-

Cache

R
G
B

PWM 2

Pre-Cache
Post-

Cache

R
G
B

PWM 30

Pre-Cache
Post-

Cache

R
G
B

Scenario Data

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

94

Figure 3. Timed Interruption Software Design Flow

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 95

Figure 4. Software Design Flow Diagram

Read Scenario
Data

Sear the Table of
Corresponding Relation
Between RGB & PWM

Judgement
Change Type

Compute the Output
Times

Counter is
Degressive

Start

Flick

Compute the Interval
Time of Output

Evaluate Counter

Time Out

Y

Output the Value of
PWM to Corresponding

PWM Control Unit

Output Times Are
Degressive

Output Is Finished

End

N

N

Y

Gradually Change
Bright & Dark & Static

Compute the Output
Times

Compute PWM Output
Increment

Evaluate Counter

Time Out

Output the PWM Value to
Corresponding PWM

Control Unit

Counter Is
Degressive

N

Y

PWM Value = PWM
Value + PWM Increment

Output Times Are
Degressive

Output Is Finished

End

Y

N

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

96

Figure 5. Peripheral PWM Software Design Flow Diagram

Clock Ascending
Along With

Start

NRedout = 0;
Greenout = 0;
Blueout = 0;
count 256 = 0;
count 664 = 0 Y

Reset Signal
Is Received

Y

N

Chip Select Signal Is
Received

N

Y

Write Signal
Is Received

N

Y

count 664 = 663

count 664 = 0

count e256++;
count 664 = 0

Y

red_in data = write data[23:16];
green_in data = write data[15:8];
blue_in = write data[7:0]

N

count 256 = 255
N

Y

count 256 = 0;
count 664 = 0;
red_out data = red_in data;
green_out data = green_in data;
blue_out data = blue_in data

Clock Ascending
Along With

Start

N
Redout = 0;
count 256 = 0;
count 664 = 0

Reset Signal
Is Received

Y

N

Chip Select Signal Is
Received

N

Y

Write Signal
Is Received

N

Y

red_out data >= count 256

Y

red_out = 1

red_out = 0

N

Y

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 97

Figure 6. MP3 Design Flow Diagram

Does STA013 Exist?

Start

I2C Initialization (SPI Is
Set In FPGA)

STA013 Reset

Identify STA013

Write the Configuration
Files

Configure STA013

Set Tone & Prepare
Compression

Detect STA013 REQ
N

Y

N

Data Is Sent from SDRM to
STA013

Y

Is Data Sent?
N

End

Y

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

98

Figure 7. CF Card Read Software Design Diagram

Start

Detect the Initialized CF
Card

Does CF Card Exist?

Read the Basic Information
of CF Card File System

Y

N

Search the File to Be
Opened

Does the File Exist?

Read the Basic Information
of CF Card File System

Distribute Space for
Files is SDRAM

Is the Distribution
Successful?

Read Files to SDRAM

End

Y

Y

N

N

Design Methodology
We adopted a design methodology that blends nicely with the self-defined peripherals option in the
SOPC Builder tool. The system displays the landscape lamp scenario and plays MP3 files under the
semaphore control mode of µC/OS-II RTOS in the Nios II integrated development environment (IDE)
after download. Our design comprises two modules: hardware and software.

Hardware Design
We extended the system hardware by adding the STA013 MP3 decoder and D/A converter for playing
MP3 files on the Altera® Cyclone II EP2C3. We implemented the lamp control on the UP3 development
board to promote the application of Cyclone II FPGA, which is the most cost-effective device that offers
the best price-performance ratio among competing devices. We implemented all system functions on the
EP2C3 device. Additionally, we applied the ULN2803 power drive to control the voltages used in the
LED lamp display (see the Appendix for the circuit schematic).

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 99

Full-Color Lamp Control IP Core Design
We used Verilog HDL to design the self-defined peripheral full-color lamp control IP core’s control unit,
which implements a 10-lamp, self-defined IP core controller with 30 PWM circuits. The software design
flow is shown in Figure 5. The cycle of PWM is set to 2 ms, as shown in Figure 8.

Figure 8. PWM Timing Diagram

Function Simulation
After PWM design, we carried out functional simulation as shown in Figure 9.

Figure 9. PWM Functional Simulation

The simulation variables in the oscilloscope display are described as follows:

■ clk: clock signal.

■ resetn: PWM reset signal.

■ chipselect: PWM chip select signal.

■ write: PWM write signal.

■ writedata: data written to PWM.

■ red_out: red corresponding output signal in PWM.

■ green_out: green corresponding output signal in PWM.

■ blue_out: blue corresponding output signal in PWM.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

100

■ counter256: one cycle is divided into 256 parts for computing the duty ratio of each PWM cycle.

■ counter664: each part comprises 664 clock cycles for computing whether the count is over or
not.

MP3 Design
We used the I2C bus to control the STA013 device. In this way, we were able to transfer MP3 data from
SDRAM to STA013 through SPI, which is set using the SOPC Builder tool as shown in Figure 10. We
added four PIO interfaces in SOPC Builder to connect with the SDA, SCL, DATA_REQ, and RESET
pins. The PIO connected with SDA is set as a bidirectional port.

Figure 10. SPI Setting

Figure 11 shows the MP3 decoding circuit.

Figure 11. MP3 Decoding Circuit Schematic

H
F7

0A
C

B3
21

61
1

L8

£«
£«

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 101

SOPC Builder Configuration
After finishing the IP core design and simulating, we used the SOPC Builder tool to configure the whole
system. The settings are shown in Figure 12.

Figure 12. SOPC Builder Settings

Compiler
After configuring all the required system parts, the SOPC Builder tool assigns pin definitions with the
Quartus® II development tool and then compiles. See Figures 13 through 17, which show the Compiler
output.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

102

Figure 13. Compiler Analysis Report

Figure 14. Assembler Report

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 103

Figure 15. Fitter Report

Figure 16. Flow Report

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

104

Figure 17. Timing Analyzer Report

Software Design
The basic design of the software module is to send out the play and data read tasks accurately and in a
timely manner using the µC/OSII RTOS.

The first task is to read the CF card and send its data and MP3 files to SDRAM for the next two tasks.
In our design, we used the Quartus II version 5.0 compact flash core as the interface between the CF
card and the Nios II processor. This routine uses two pointers, *MP3data and *pwmdat, to assign space
for data and MP3 files on the SDRAM. We designed a small file allocation table (FAT) file system for
CF card reading. This system:

■ Does not support long file names.

■ Does not support the FAT12 file format.

■ Sets data and MP3 files in the root directory of the CF card.

■ Does not support writing into the CF card (the data in CF card can be written from by PC with
reader/writer).

We defined three data structures: BPB, file directory entries, and FAT. The specific definitions are as
follows:

typedef struct
{
 unsigned char Type; // file format type
 unsigned char StartLBA; //BPB start sector

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 105

 unsigned char SectorsPerCluster; //sectors per cluster
 unsigned char LShift; //shift number of SectorsPerCluster
 unsigned short SectorsBeforeFAT; // reserved FAT number
 unsigned char FATs; //FAT number
 unsigned short FAT16RootEntries; // number of root directory entries
 unsigned long TotalSectors; //total sector number
 unsigned short SectorsPerFAT; //sector number per FAT
 unsigned long FAT32RootStartCluster; //start cluster of root directory when the
file format is FAT32

} FS_TBPB;
typedef struct
{
 unsigned long StartLBA; //start sector of file allocation table
 unsigned char LShift; // shift number of file format type
 unsigned long DataStartLBA; //start sector of data area
} FS_TFAT;
typedef struct
{
 unsigned char Attrib; //file attributes
 unsigned long StartCluster; //file start cluster
 unsigned long StartLBA; //file start sector
 unsigned long CurrentCluster; //current cluster
 unsigned long CurrentLBA; //current LBA
 unsigned long Offset; //system reserved
 unsigned long Length; //file length
} FS_TFile;

Refer back to Figure 6 for a detailed software flow.

At system initialization, we invoke CF card initialization function IDE_initialize() to determine whether
the CF card exists or not. If the CF card exists, we read the basic information of the FAT file system,
such as the file format the CF card has adopted, start sector of root directory, and data area. We invoke
the FS_SearchFile (char *FName, FS_TFile *R, unsigned char dir) function to search the file to be read
and then assign a buffer for the file with a pointer. Because SDRAM has enough space, the file data can
be totally read into SDRAM, which is the file size in SDRAM. One sector is read each time until all
data is moved into SDRAM. The key to FAT file system design is to get data of the next cluster after
reading the current one. In this design, we defined the function, FS_GetNextCluster(unsigned long
Cluster). We read the whole cluster chain into an array when opening a file. Although this routine
occupies some space on the SDRAM, the search of cluster in future will not read the FAT table. This is
because the function slows down system speed.

The second task is to display the scenario file and to receive the scenario data of different lamps as well
as search the PWM values R, G, B binary-coded according to Table 1. This task judges the changing
modes, such as gradual change, bright, dark, and static, in the same control mode. The flicker mode is
handled differently.

Formatting of scenario data comprises five bytes: the last byte indicates the address information and the
first four bytes are shown as follows:

Front color Back color D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Front color and back color separately occupy one byte; D15 in the third byte is the marker bit of FLICK,
following two situations that may occur in terms of D15’s value:

■ D15=0, gradual change, bright and dark as well as static, D14……..D0 indicate the lamp on lasting
time.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

106

■ D15=1, flick mode, D14……..D9 indicate the flicker time, D8………D0 indicate the lamp flicker
lasting time.

For gradual change, bright, and dark as well as static, the data increment PWM_D sent to PWM per
cycle is computed using the following formula:

PWM_D =(PWM_BACK_COLOR – PWM_FRONT_COLOR)/(LASTING_TIME/10ms)
PWM_FRONT_COLOR PWM value of front color
PWM_BACK_COLOR PWM value of back color
LASTING_TIME lasting time of scenario

10 ms is the cycle period time of the PWM.

Interrupt time scenario is TIMES = LASTING_TIME /10ms, in which the increment of static mode is 0.
Accordingly, based on the principle that PWM_D sends TIMES to PWM per 10 ms, we can achieve the
control of gradual change, bright and dark as well as static.

FLICK (flicker), the lasting time of such a scenario can be obtained in terms of the following formula
LASTING_TIME:

LASTING_TIME=FLICK_TIMES*FLICK_TIME
FLICK_TIMES flicker times
FLICK_TIME flicker lasting time

Thus, this routine delivers PWM_FRONT_COLOR and PWM_BACK_COLOR by turns to PWM
using FLICK_TIME as the interval, and after delivering FLICK_TIMES, ends the control of flicker
function.

Table 1. Look-up Table of RGB Binary Value & Corresponding PWM Value

Value R PWM G PWM B PWM
 000 0 000 0 00 0
 001 36 001 36 01 85
 010 72 010 72 10 170
 011 108 011 108 11 255
 100 144 100 144
 101 180 101 180
 110 216 110 216
 111 255 111 255

When the 10-ms interrupt is received, the processed scenario data is delivered to the self-defined
peripherals for display (the design flow is shown in Figure 3). All lamps are judged in the interrupt
cycle to determine whether the system needs to play a scenario completely. If the present scenario is
totally played out, data for the next scenario is collected and delivered to the control unit of the self-
defined IP core for analysis and processing. If the scenario is still incomplete, the interrupt routine
returns.

The third task is to play MP3 format music. To fulfill this task, tone quality has to be taken into account.
It is interesting to observe how landscape lamps appear to change with anamorphic music, and therefore
we adopted a secure hardware based decoding solution. We have used the STA013 decoding chip and
the CS4334 D/A converter. Refer back to Figure 6 for the detailed design flow.

When the task is activated, it first initializes the I2C bus, and then invokes the sta_Init() function to
initialize STA013. This initialization includes resetting STA013, verifying ST013, and writing the
configuration files, which are loaded in STA013_UpdateData[] array. The following operation
configures STA013 and set tone as well as prepares data for compression. We start by invoking the
decode control function sta_SendToDecoder (unsigned short len, unsigned char MP3_data[]) for

 Nios II Soft Core-Based Full-Color LED Music Sight Light Control System

 107

decoding. When the DATA_REQ pin of STA013 is high, it indicates that STA013 needs new MP3 data
to compress and play. By querying the sixth bit of the status register in SPI core we judge whether status
register TXDATA requires new data (or whether previous data was delivered to STA013); if this bit is
low, we write new MP3 data to TXDATA. The received data from STA013 is decoded and played.

The difficult problems in the above routines are in the decoding time sequence setting and phase-locked
loop (PLL) configuration. The data input/output accords a certain standard of time sequence. For
instance, here we set the SPI frequency clock to 400 kHz so that the music can be played smoothly. If
this frequency is too high or too low, it will affect the tone quality and music rhythm. An improper
setting can even cause cacophony. The PLL may impact the operating clock of the on-chip components.
Therefore, we had to be careful with the PLL setting, because a wrong setting of PLL may generate
sampling drift and consequently cause anamorphic music.

Design Features
The system uses the Nios II soft core combined with an FPGA to control LED lamps. At least 256 lamp
colors can be displayed in our system with full dynamic effects based on five changing modes: static,
gradual changing, bright, dark, and flicker. Simultaneously, we can change the lamps’ colors along with
MP3 music rhythm. Our system can be used in applications that integrate decoration lamps with music
in public places. Because of the nearly 200 MIPS capacity of the Nios II soft core, no color leap appears
in the gradually changing LED color. By deploying the user-defined peripherals, the system can quickly
perform data analysis of lamp control, and allows for easy expansion of peripherals. Using the SOPC
Builder tool, it was easy for us to delete and add the MP3 expansion circuitry and the user-defined
peripherals. By taking full advantage of the FPGA, we were able to develop PWM IP core, expand
multi-PWM circuits in peripherals based on the design requirement. After optimization of a design, the
system’ logic units are much reduced when compared with the purely traditional embedded, bus-based
designs.

Conclusion
With more than two months of learning, we have been able to appreciate the Quartus II tool’s powerful
design functions and flexibility. The system provided us with many common IP cores in SOPC Builder,
which helped in our design work and enabled us to add our self-defined IP cores and commands to meet
the customer specific requirements. This approach made our design more flexible, especially the self-
defined commands, which when added to existing 256 colors, are sufficient to meet most customer
requirements. Additionally, the Quartus II software provided the functions from the start of the design to
completion. These functions are easy to handle in the GUI. As for software development, the Quartus II
software also integrates the Nios II IDE. We were able to finish the program design and download the
final design using the Nios II IDE GUI.

Additionally, when we compared Quartus II version 4.2 and Quartus II version 5.0, we noticed that with
Quartus II version 5.0 we can save system compilation time. Previously, even a small design
modification needed the whole system to be recompiled. However, the Quartus II software version 5.0
provides optimized compilation, which only compiles the modified parts each time. As for the system
design, we know about the advantages of FPGA and soft core design methods, especially during product
development. With these methods, we can shorten the development cycle, reduce development risk, and
get the early-to-market advantage. The Quartus II tool provided us with abundant materials for
development, which are easy to understand, and each user reference emphasized a design principle by
illustrating it with diagrams and code samples. By studying these materials, we were able to develop our
own systems easily and wrote programs based on our requirements.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

108

Appendix
Schematic Circuit of LED Lamp

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 2005-9-12 Sheet of
File: � � � �D:\DXP \BallLamp\BallLamp.SCHDOCDrawn By:

+24V

+24V

R1

+24V
+24V

R2

R3

1
2
3
4

J1

1 2

Red1

1 2

Red2

1 2

Red3

1 2

Red4

1 2

Red5

1 2

Red6

1 2

G1

1 2

G6

1 2

G5

1 2

G4

1 2

G3

1 2

G2

1 2

B1

1 2

B6

1 2

B5

1 2

B4

1 2

B3

1 2

B2

R
G
B

Schematic Circuit of LED Drive

 3-D Accelerator on Chip

Altera Corporation 109

Third Prize

3-D Accelerator on Chip

Institution: Donga & Pusan University

Participants: Young-Hee Won, Jin-Sung Park, Woo-Sung Moon

Instructor: Sam-Hak Jin

Design Introduction
Recently, consumers are becoming interested in cellular phones and portable game devices that play 3-
dimensional (3-D) games. It is difficult for mobile device processors to compute 3-D graphic operations
because they require a lot of arithmetic operations and most mobile device processors cannot process
them. To solve this problem the processor chip must incorporate 3-D accelerator units to reduce the
computing time. In this project, we developed a 3-D graphic display system that quickly computes 3-D
graphic operations by including a hardware 3-D accelerator in the chip, and creating applications in it.

Using the Nios® II processor to develop 3-D graphic displaying system makes it possible to integrate the
main processor and 3-D accelerator in one chip. The system is smaller, faster, and more stable than
when using a hard-core processor chip and a separate 3-D accelerator chip.

Our 3-D graphic display system is based on OpenGL ES version 1.1, which is a royalty-free, cross-
platform application programming interface (API) for full-function 2-D and 3-D graphics on embedded
systems, including handheld devices, appliances, and vehicles. It is a well-defined subset of desktop
OpenGL, creating a flexible and powerful low-level interface between software and graphic
acceleration. OpenGL ES Pipeline is based on OpenGL 1.3 Pipeline, which includes geometry
processing, rasterization, fragment processing, and frame buffer operations. Programmers who have
used the desktop OpenGL can easily develop application programs for OpenGL ES. Therefore, our
system can also be used to develop 3-D graphics applications, such as 3-D games.

Function Description
Our system is based on OpenGL ES version 1.1; therefore, the system offers same interface. If the
application program makes vertex data by using offered functions, it computes the 3D operations, such
as rotation or transfer 3-D vertexes, lighting, clipping, and so on. Additionally, the software makes final
vertex data that is viewed by the camera set to see the 3-D world. See Figure 1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

110 Altera Corporation

Figure 1. Pipeline Flow of OpenGL ES in the System

Application
Program

Vertex Data

Evaluators

Per-Vertex
Operations &

Primitive
Assembly

Rasterization

Per-Tragment
Operation

Software
Program
In the Nios II
Processor

Hardware Logic
In User Peripheral
(3-D Accelerator)

Frame Buffer
(SDRAM)

OpenGL ES

The software part of the 3-D graphic processing function delivers the positions of the three points of the
triangles and the color of polygons to the 3-D accelerator, which is the hardware part of the 3-D graphic
processing function. The 3-D accelerator makes the x, y, and z positions of the inside of the polygons to
fill up it. It also writes the color data of points to the exact address of the frame buffer, which is placed
in SDRAM. The thin-film transistor (TFT)LCD controller module independently reads the frame buffer
and displays the 3-D graphics on the TFT LCD repeatedly. The application programmer programs the
applications using the OpenGL ES library and the system displays the 3-D graphic output of
application.

Performance Parameters
The most important performance parameter of a 3-D graphic display system is the speed of computing
and displaying a frame of 3-D graphics. The general unit of 3-D graphic display speed is frames per
second (fps). We tested the speed of our system displaying a cube spinning on an x, y diagonal axis, as
shown in Figure 2.

 3-D Accelerator on Chip

Altera Corporation 111

Figure 2. Test Display

Design Architecture
Figure 3 shows the top-level block diagram. The Nios II processor connects to ext_ram_bus, 3-D
accelerator, 7-segment controller, SDRAM controller, TFT-LCD controller, and so on. The
ext_ram_bus module is a tristate Avalon® bus bridge that connects the Nios II processor to flash
memory and SRAM, which are the instruction memory and data memory, respectively, used to run the
Nios II processor.

Figure 3. Top-Level Block Diagram

Flash
Memory

SRAM

Ext_ram_bus

Flash Memory
Controller

SRAM
Controller

Nios II
Processor

3-D
Accelerator

SDRAM
Controller

7 Segment
Controller

TFT LCD
Controller

SDRAM

TFT LCD

7
Segment

Avalon Bus 1

Avalon Bus 2

Avalon Bus 3

Avalon Bus 4

FPGA

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

112 Altera Corporation

The 3-D accelerator (Renderer) is a slave of Avalon bus connected to the Nios II master (see Figure 4).
The Renderer receives the polygon data and starts rasterization. After rasterization, the outline pixel
position data of the triangle of polygon is restored in the span buffer, which uses the Altera® FPGA’s
internal memory. The structure of the span pixel data is x (8-bit integer) and z (32-bit fixed-point real
number), and the address is y (9-bit integer).

Figure 4. Block Diagram of Rendering Module

Avalon
Slave Rasterization

Draw Pixel
with

Z Buffering

Avalon
Master

Span Buffer
320 * 2 * (8 + 32) Bit

Z Buffer
240 * 320 * 32 Bit

Avalon Bus 3Avalon Bus 1

Color

position

After rasterization, the position data of y, the right side of x, the left side of x, and the z position of each
side is delivered to the draw pixel module. This module makes the x and z position data of the pixels
between the received pixel of the right side and left side and loads the z position data of that (x, y)
position to compare the depth that is drawn and to draw. If the pixel to draw is closer to the camera than
the pixel drawn previously, the module writes color data of the pixel to the frame buffer in SDRAM
through the Avalon bus connection and the z position data to the z buffer. If it is further than the
currently drawn pixel, it is ignored. See Figure 5.

Figure 5. The Rasterization Process

The LCD Control module displays the data of the frame buffer to the screen of the TFT LCD. It
receives the base address of the frame buffer from the Nios II processor. The SDRAM Control module,
a master of Avalon bus synchronized to the VGA Controller’s sync signals, repeatedly reads data from
the frame buffer in SDRAM. See Figure 6.

 3-D Accelerator on Chip

Altera Corporation 113

Figure 6. LCD Controller Block Diagram

Avalon
SlaveAvalon Bus 1

Avalon
Master

SDRAM
Controller Line

Buffer

VGA
Controller

vsinc
hsinc

TFT LCDAvalon Bus 4

Base Address
of Frame Buffer

While the software operates, it uses a custom instruction to multiply or divide fixed-point real number
type data.

The software is very complex and can be changed by the application program. We developed the
OpenGL ES library by modifying the details of open-source OpenGL ES code to fit into our system.
The functions have same interface with OpenGL ES that the well-defined subset of desktop OpenGL
has. Therefore, an application program using our functions operating in the system processes the 3-D
graphic operations as shown in Figure 1, in software and hardware.

Design Methodology
We developed the LCD Controller first and displayed a sample image to the TFT LCD with a simple
software program. Next, we developed the OpenGL ES software library by modifying the open-source
code. We reprogrammed the process of writing pixel data to the frame buffer because our system uses
memory differently. We changed computations using floating-point numbers to fixed-point numbers,
and some functions, including those concerning lighting, were changed to fit our system.

After we checked the 3-D graphic frame displaying of our test application without the 3-D accelerator,
we developed the 3-D accelerator module. We changed the software functions to deliver data to
hardware instead of computing it with the main processor.

We used a 50-MHz system clock to reduce compilation time. After we checked the system’s operation,
we set a phase locked loop (PLL) to generate a 100-MHz clock to run the final system.

The main CPU is the Nios II processor. The design uses the Nios II /f processor, flash memory, and
RAM controllers, which are connected to the Nios II processor by a tristate Avalon bridge,
ext_ram_bus. Additional modules, such as a timer, JTAG UART, etc., run and debug the Nios II
processor. The 7-segment PIO Controller displays the system speed.

We wrote the 3-D accelerator module (Renderer) in VHDL with Avalon bus slave and master signals.
We used the New Component menu option in SOPC Builder to add the VHDL code. The slave side of
the module connects to the Nios II processor, and the master side connects to the SDRAM controller, as
shown in Figure 7.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

114 Altera Corporation

Figure 7. SOPC Builder System

We used the New Component menu option in SOPC Builder to include the LCD Controller module
and specify its signals. The signals between the LCD Controller and Avalon bus became the pins of the
Nios II module. The slave side of the module is connected to the Nios II processor and the master side is
connected to the SDRAM controller. We developed the LCD Controller module in VHDL, created a
Symbol File of it, and connected it to the Nios II module. See Figure 8.

Figure 8. Top-Level Circuit

Figure 9 shows the LCD Controller block association in the Quartus® II software. We created each
block in the LCD Controller module using VHDL, and used the Quartus II MegaWizard® Plug-In
Manager to develop the line buffer, which uses the FPGA’s internal memory.

 3-D Accelerator on Chip

Altera Corporation 115

Figure 9. LCD Controller Block Diagram

We also used the Quartus II MegaWizard Plug-In Manager to create the 3-D accelerator line span
buffer, and the multiplication and division operations.

While the software operates, it performs many multiplication and division operations of fixed-point real
numbers. These numbers are defined as:

#define __GL_X_MUL(a,b) ((__gl_x)((((__gl_ll)(a))*(b))>>__GL_X_FRAC_BITS))
#define __GL_X_DIV(a,b) ((__gl_x)((((__gl_ll)(a))<<__GL_X_FRAC_BITS)/(b)))

Where __gl_x is a 32-bit, fixed-point read number, __gl_ll stores 64-bit data, and
GL_X_FRAC_BITS means the bits under point, defined as 16. We created custom instructions for
these numbers as shown in Figures 10 and 11.

Figure 10. Fixed-Point Division Custom Instruction

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

116 Altera Corporation

Figure 11. Fixed-Point Multiplication Custom Instruction

We used the Quartus II MegaWizard Plug-In Manager to create the multiplication and division
processors and added these modules to the design as custom instruction with the definition:

#define __GL_X_MUL(a,b) (__gl_x)__builtin_custom_inii(0, a,b)
#define __GL_X_DIV(a,b) (__gl_x)__builtin_custom_inii(1, a,b)

Using custom instructions makes the system faster because the custom instruction only uses 1 clock
cycle instead of more than 2 required without the custom instruction.

Design Features
We developed the 3-D graphic display system with the Nios II processor and our 3-D accelerator in one
chip. This design makes it possible for small devices, such as cellular phones or portable game devices,
to display 3-D graphics faster in a smaller device.

Because the 3-D accelerator is in the same chip as the main processor, the system size is smaller than
the same functional system using a hard-core processor chip, separate 3-D accelerator chip, the signal
connections between the two chips, power sources, memories, and so on.

The design is also faster than using variable chips, because the access to SDRAM is controlled by the
Avalon bus without complex control signal protocols. Additionally, custom instructions make it more
capable. The system has reduced wires and power source regulators by using a synchronized clock from
the PLL blocks. Therefore, the system can run without noise or clock sync errors, making it much more
stable than using variable chips.

Conclusion
We developed the 3-D graphic display system with the Nios II soft-core processor and our designed 3-D
accelerator in one chip. This system allows small devices, such as cellular phones or portable game
devices, to display 3-D graphics faster in a small size. Although the system is not currently fast enough
for a consumer product, we could develop additional hardware modules for various operations and
change the software processes to hardware processes to divide the processing loads in each section of
pipeline, thereby increasing the computing speed.

The Nios II processor is very useful for embedded system engineers. With it, we were able to integrate a
processor and our designed hardware in one chip, making the system smaller, faster, and more stable. In
particular, using Nios II custom instructions makes the system much more efficient than using hard-core
processors or only FPGAs.

 3-D Accelerator on Chip

Altera Corporation 117

The Avalon bus was very easy to create and use to connect blocks in the FPGA. For example, with just
a few mouse clicks in SOPC Builder made it possible to connect blocks, even several master blocks
accessing several slave blocks. In our system, the Nios II processor, 3-D accelerator, and LCD
controller are all masters of the SDRAM controller, and using the Avalon bus makes the operation
smooth, without error or crossing data.

The Quartus II software, which includes SOPC Builder and MegaWizard Plug-Ins, made it very easy to
include and connect several current designs. It reduced our development period and made the design
process less complex.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

118

First Prize

Cryptographic Algorithm Using a Multi-
Board FPGA Architecture

Institution: Indian Institute of Technology, Chennai

Participants: G. Ananth and U.S. Karthikeyan

Instructor: Dr. V. Kamakoti

Design Introduction
Information security has assumed a significant importance in today’s world, especially because minor
breaches can lead to major risks in the fields of national security and other e-commerce applications and
transactions. This necessitates implementing cryptographic algorithms in hardware to achieve better
security and faster response as opposed to any software implementation. A promising solution
combining high flexibility with the speed and physical security of traditional hardware is the FPGA.

Implementing cryptographic algorithms requires the generation of random numbers that can be then
used in any algorithm to derive the keys for carrying out a secure transmission. Keeping this in mind, a
design was created implementing a multi-board architecture using two Altera® boards. One board
constantly generates random numbers using a data encryption standard (DES) random bit generator and
at the same time keeps polling its input port for requests by another program designed to receive
random numbers. The second board contains a design that implements the RSA algorithm and
incorporates the reception of random numbers on the fly by means of hardware interrupts. On receiving
the random number, the second board sends an acknowledgement back to the first board to continue the
process. The designs (implemented as peripherals) on each board make use of a Nios® embedded
processor for communicating and exchanging data between the driver program and the peripheral.

The FPGA device family chosen for implementing the RSA algorithm is Altera’s APEX™ 20KE device
family. APEX devices are high-density FPGAs that allow complex designs to be implemented on a
single device. The target device was an APEX 20K EP200EFC484-2X and the design files were written
in Verilog HDL, while compilation, synthesis, fitting, placement, and routing was carried out using the
Quartus® II software. The Nios development board provided a hardware platform to immediately start
developing embedded systems based on Altera APEX devices. The Nios development board was
preloaded with a 32-bit Nios embedded processor system reference design.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 119

The highlight of this project is the efficacious use of interrupts for inter-board communication and the
use of numerous custom peripherals for both random number generation and implementing the RSA
algorithm and hardware acceleration.

Functional Description
The functional description of this project is depicted through the flow diagram below. It is essentially
comprised of two flows. One flow is the generation of the random number using the DES-based random
bit generator. See Figure 1.

Figure 1. DES-Based Random Bit Generator

Incrementer Plain Text Key

DES
Algorithm

Cipher Text
Random
Number

The flow diagram for the RSA implementation is as follows:

1. A request is sent from the RSA module to fetch a random byte.

2. On receipt of a request, a random byte is sent by the DES random bit generator that continuously
polls a designated port for the request for random bytes.

3. It also signals READY after sending the random byte, and indicates readiness to accept the next
request from the device (FPGA running RSA).

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

120

Figure 2. Handshaking Between RSA Module & DES Random Bit Generator

Performance Parameters
The performance parameters entail results obtained for the random number generator as well as for the
RSA implementation.

Random Number Generation
A comparative overview of the results obtained for all nine designs implemented during the course of
this project is tabulated below:

■ Resource Requirements

■ Session Yield

■ Bit Generation Speed/Throughput

■ Lines of Verilog HDL Code

Resource Requirements

Number Item Logic
Elements

(LEs)

Pins Memory
Bits

Phase-
Locked
Loops
(PLLs)

1. Maximum available resources on
Altera APEX 20K EP200EFC484-2X 8,320 376 106,496 2

2. Resources utilized by the standard Nios
processor with essential peripherals 2,641 111 26,496 0

Resource Utilization per Design

Number Design LEs Pins Memory
Bits

PLLs

1. PLL-Based TRBG 4,737 113 26,496 2

2. Ring Oscillator-Based TRBG 2,772 119 26,496 0

3. Modified LILI-II PRBG 4,114 111 26,496 0

4. Nonlinear Combiner Model-Based PRBG 7,419 111 26,496 0

5. Nonlinear Combiner Model (Enhanced With Memory) 8,312 111 26,496 0

6. Nonlinear State Filter Model-Based PRBG 8,312 111 26,496 0

7. DES-Based PRBG 4,969 111 26,496 0

8. DES-ALFG-Based PRBG 8,043 111 26,496 0

9. BBS-Based PRBG 6,449 111 26,496 0

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 121

Session Yield

Number Design Yield per Session
1. PLL-Based TRBG 362 bits

2. Ring Oscillator-Based TRBG > 246 Kbits

3. Modified LILI-II PRBG > 40 Kbits

4. Nonlinear Combiner Model-Based PRBG > 2 Mbits

5. Nonlinear Combiner Model (enhanced with memory)-Based PRBG > 2 Mbits

6. Nonlinear State Filter Model-Based PRBG > 40 Kbits

7. DES-Based PRBG > 526 Kbits

8. DES-ALFG-Based PRBG > 1.87 Mbits

9. BBS-Based PRBG > 40 Kbits

 Although the session yield of the true random bit generator is based on the PLL and implemented as the
Nios peripheral appears to be low, it is conjectured that it will perform far better as a stand-alone device.
Moreover, 362 bits per session may be considered adequate for session key initialization vector
requirements.

Bit Generation Speed/Throughput
The bit generation speed/throughput shown below has been worked out in terms of the clock cycles
taken to generate one random bit, based on the implemented algorithm. Its translation into throughput
has been done for a clock speed of 33.3 MHz.

Number Design Clock Cycles per
Random Bit

Throughput for
a Clock at 33.3

MHz
1. PLL-Based TRBG < 3 > 11.1 Mbps

2. Ring Oscillator-Based TRBG - 0.59 Mbps

3. Modified LILI-II PRBG 5 6.66 Mbps

4. Nonlinear Combiner Model-Based PRBG 3 11.1 Mbps

5. Nonlinear Combiner Model (Enhanced with
Memory)-Based PRBG 3 11.1 Mbps

6. Nonlinear State Filter Model-Based PRBG 4 8.325 Mbps

7. DES-Based PRBG 140 7.611 Mbps

8. DES-ALFG-Based PRBG Initially 140 subsequently
amortized to < 140 > 7.611 Mbps

9. BBS-Based PRBG 520 64.038 Kbps

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

122

Lines of Verilog HDL Code

Number Design Lines of Verilog HDL
Code

1. PLL-Based TRBG 275

2. Ring Oscillator-Based TRBG 275

3. Modified LILI-II PRBG 177

4. Nonlinear Combiner Model-Based PRBG 189

5. Nonlinear Combiner Model (Enhanced with Memory)-Based PRBG 322

6. Nonlinear State Filter Model-Based PRBG 324

7. DES-Based PRBG 1,143

8. DES-ALFG-Based PRBG 1,191

9. BBS-Based PRBG 601

The RSA algorithm was implemented as separate peripherals performing the following operations:

■ Random number receiver

■ Multiplicative inverse calculator

■ Modular exponentiation calculator

After implementing these peripherals, all were combined to form a RSA integrated design working
through a C driver program, which passed inputs and outputs between the various peripherals, in order.
Due to the paucity of the space on the FPGA in terms of the number of LEs, only a 32-bit RSA
integrated algorithm was implemented. Space on FPGA (number of LEs) permitting, this design can
easily be scaled up.

Random Number Receiver
The random number receiver was implemented to receive one byte of random number through the
external pins on the board. The peripheral consumed the following resources.

Family APEX 20KE

Device APEX 20K EP200EFC484-2X

Total LEs 2,783/8,320 (33%)

Total Pins 121/376 (32%)

Total Memory Bits 26,496/106,496 (24%)

Total PLLs 0/2 (0%)

The total time taken for compilation, synthesis, fitting, placement, and routing of this peripheral was 4
minutes and 42 seconds.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 123

Multiplicative Inverse
This peripheral was implemented to compute the secret key using an extended Euclidean algorithm.
Since the algorithm implemented required division operations to compute the remainder and quotient at
every step, it consumed a lot of resources. In simulation, this algorithm was tried and tested up to 128
bits, but in hardware, it could be implemented only up to 48 bits. Total time taken for compilation and
synthesis, fitting, placement, and routing was 12 minutes, 31 seconds. The compilation report for this
peripheral was:

Family APEX 20KE

Device APEX 20K EP200EFC484-2X

Total LEs 6,524/8,320 (78%)

Total Pins 111/376 (29%)

Total Memory Bits 26,496/106,496 (24%)

Total PLLs 0/2 (0%)

As can be seen from the compilation report, a 48-bit implementation itself consumes 6,524
LEs. Hence, if used along with other peripherals such as the exponentiator and the random number
receiver, no other peripheral would be able to fit on the FPGA. Therefore, only a 32-bit implementation
was used in the RSA integrated implementation.

Exponentiator
This peripheral was implemented to carry out the following tasks:

■ Primality check using Fermat’s Theorem

■ Encryption

■ Decryption

The algorithm implemented was the Montgomery exponentiation algorithm, which in turn uses the
Montgomery multiplication algorithm for the intermediate steps. The modular multiplication was
implemented using the systolic array architecture, which is quite resource efficient. In simulation, a
512-bit exponentiation was implemented, however, in hardware only a 128-bit exponentiation was
possible. The total time taken for compilation, synthesis, fitting, placement, and routing was 11 minutes,
36 seconds. The compilation report for this peripheral was:

Family APEX 20KE

Device APEX 20K EP200EFC484-2X

Total LEs 6,971/8,320 (83%)

Total Pins 111/376 (29%)

Total Memory Bits 26,496/106,496 (24%)

Total PLLs 0/2 (0%)

The peripheral consumed 6,971 LEs, hence a higher implementation such as 256- or 512-bit
exponentiation was not possible, despite a resource-efficient architecture. The 256-bit exponentiator

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

124

itself required 10,277 LEs, while a 512-bit exponentiator required 17,459 LEs. In the RSA integrated
implementation, only a 32-bit exponentiator was included, since two other peripherals, the random
number receiver and the multiplicative inverse, were also required to be fitted on the same chip.

RSA Integrated
The RSA integrated peripheral implements the complete RSA algorithm primitive, which includes the
following operations:

■ Receiving random numbers.

■ Primality checking

■ Computation of multiplicative inverse.

■ Computation of modular exponentiation.

All of the above operations were implemented as separate peripherals and fitted on the same chip. A C
driver program then interacts with all the peripherals and passes appropriate values between them. This
requires that all the peripherals are instantiated correctly in the C program. The total time taken for
compilation, synthesis, fitting, placement, and routing was 13 minutes, 8 seconds. The compilation
report for this integrated design was:

Family APEX 20KE

Device APEX 20K EP200EFC484-2X

Total LEs 6,984/8,320 (84%)

Total Pins 121/376 (32%)

Total Memory Bits 26,496/106,496 (24%)

Total PLLs 0/2 (0%)

The RSA integrated implementation of 48 bits, excluding the random number receiver and the primality
checker, consumed 8239 LEs, which is almost 99% of the total available LEs on the board. Hence the
final implementation was scaled down to 32 bits to accommodate the random number and the primality
check peripherals.

Execution Time & Throughput
The RSA algorithm has been implemented with a modulus of 32 bits, with a multi-board architecture
also included to receive the random numbers on the fly. However, this makes the measurement of the
execution time difficult since it involves an interrupt-driven mechanism. By simulation, the execution
time and the throughput for only the encryption/decryption can be approximated for a clock speed of 33
MHz. In the case of RSA, the encryption and decryption is carried out by modular exponentiation, and
for a modulus of 32 bits, it took 1,555 clock cycles, which gave a throughput of 0.68 Mbps.

Design Architecture
The system architecture entails two parts, namely:

■ Generation of random numbers using the DES random bit generator

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 125

■ Implementation of RSA using the random number generated by the above method

PRBG Based on Block Cipher Techniques

This section describes how the random numbers were generated.

DES Random Bit Generator
The data encryption standard (DES) was developed by an IBM team around 1974 and adopted as a U.S.
national standard in 1977. Since that time, many cryptanalysts have attempted to find shortcuts for
breaking the system. It is defined by the American standard FIPS 46-2. We wish to encipher a 64-bit
plaintext message block under the 56-bit key, to produce a 64-bit ciphertext message block c=Ek(m).
Decipherment, or recovering plaintext from ciphertext, is denoted m = Dk(c).The plaintext message
block m is subjected to an initial permutation P, and the result is broken into two 32-bit message halves,
m0 and m1. Intermediate message halves,m2,...m17 are then created in sixteen rounds according to the
procedure described below. Finally, the 64-bit ciphertext c is generated by applying the inverse
permutation IP^{-1} to the two message halves m17 and m16.)

The plain text and intermediate message halves m{0},m{1},m{1},...,m{17} are related as follows:

 m{i+1} = m{i-1} XOR f(k{i},m{i}) , i= 1, 2,...,16

Here k is the secret 56-bit key and i is the number of the round (from 1 through 16). Also, k{i} (round
key) is a selection of 48 bits from the 56 bits of k. This selection, or key schedule, depends on the round
number i. Now we describe the substitution function f. There are eight S-boxes, S{1},...,S{8} described
in the standard. Each S-box is a table lookup, using six bits as input and providing four bits as output.
For each S-box, say S{j}, six consecutive bits are selected from the 48 bits of k{i}, namely bits 6j - 5, 6j
- 4, ...,6j. Also, six consecutive bits are selected from m{i}, namely bits (4j - 4, 4j - 3,..., 4j + 1) mod 32.
The mod 32 is shorthand for the convention that for j = 1, the bits are 32, 1, 2, 3, 4, 5, and for j = 8 the
bits are 28, 29, 30, 31, 32, 1. Two adjacent S-boxes share two message bits. For instance, S{1} uses
message bits 32, 1, 2, 3, 4, 5, while S{2}, uses message bits 4, 5, 6, 7, 8, 9, and they share bits 4 and 5.
(Key bits are not shared among S-boxes on one round.) S{8}, and $S{1}, are considered to be adjacent
because they share message bits 32 and 1. The six key bits and the six message bits are XORed together
bitwise, and the resulting six bits are used as input for a table lookup.

That is, the six inputs to S-box S{j} at round {i} are:

m{i}[4j -4] XOR k{(i)}[6j -5],

m{i}[4j -3] XOR k{(i)}[6j -4],

m{i}[4j +1] XOR k{(i)}[6j]

or, written another way,

[4j - 4, 4j - 3, 4j - 2, 4j - 1, 4j, 4j + 1]XOR k{i}[6j - 5, 6j - 4, 6j - 3, 6j - 2, 6j - 1, 6j].

Each of the eight S-boxes implements a different table, each with 26 entries of four bits each. These
tables are described in the standard. The eight S-boxes together put out 8 x 4 = 32 bits. These bits are
permuted according to a permutation P that is fixed for all rounds i. The resulting 32-bit quantity is the
value of f(k(i)},m{i}).

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

126

In summary, the 64-bit message undergoes a permutation IP to produce two 32-bit message halves
m{0} and m{1}. Then we compute the 32-bit quantity f(k{(1)},m{1}) and XOR that quantity with
m{0}, to produce m{2}. We use this new quantity m{2} to compute f(k{(2)},m{2}) and XOR that
quantity with m{1}, to produce m{3}. We continue in a like fashion until m{16} and m{17} have been
computed. These two message halves are interchanged and then subjected to the permutation IP^{-1},
to produce the ciphertext c. Decryption is easily accomplished by a user in possession of the same key
k. First, one applies the permutation IP to c, to produce the message halves m{17} and m{16}. Next,
one computes f(k{(16)}, m{16}) and XORs that quantity with m{17} to recover m{15}. Recalling that
m{17} = m{15} XOR f(k{(16)}, m16), we have m{17} XOR f(k{(16)}, m{16}) = [m{15} XOR
f(k{(16)}, m16)] XOR f(k{(16)}, m16) = m{15}, because of the identity (A XOR B) XOR B = A.
Similarly, one computes m{14} = m{16} XOR f(k{(15)}, m{15}), and continues in like fashion until
one has computed m{1} and m{0}. Applying IP^{-1} to the pair (m{0}, m{1}), one recovers the
plaintext message m.

DES RBG Design
DES was implemented in ECB mode for any arbitrarily selected IV, using a secret key. The ciphertext
emerging after each round of encryption was thereafter used as the key for the next round of encryption,
while simultaneously incrementing the plaintext once in counter mode. This fundamental operation is
iteratively executed for the desired number of times, with an interrupt being raised after each execution.
The random bits are read back by the driver as 32-bit words, and the next iteration by the hardware is
triggered as per the interrupt service routine.

Implementation Details
The design entry was created in Verilog HDL. Quartus II software was used for the compilation,
analysis, synthesis, fitting, assembling, and timing analysis. The random bit generator was designed as a
peripheral device to the embedded Nios processor. A device driver written in C was used to control the
peripheral device. Further, the DES RBG was adapted to serve as the random bit generator for the RSA
implementation created by a colleague. The DES RBG continuously polls a designated port for the
request for random bytes. On receipt of the same, it generates a 64-bit word of random bits and sends
the lower order byte to the requesting device. It signals "ready" after doing so, indicating readiness to
accept the next request. The implementation performed as a multi-board design and the checking for
primality of the generated random number is done at the distant end.

The statistical performance of both generators fails to impress. The DES-ALFG generator is an absolute
flop, while the DES generator is scarcely much better against this benchmark. At a pinch, the DES
generator could be used—in spite of a little bias in its output, it exhibits no periodicity—but the ALFG
as a primitive for cryptographic random number generation does not pass any statistical test other than
block-frequency. In summary, the block cipher-based approach, for the primitives selected, has yielded
disappointing results.

RSA Design
The design for RSA includes the design for random number generation, multiplicative inverse, and
modular exponentiation.

Random Number Generation
The RSA algorithm requires that two random prime numbers of n/2 bits be generated, where n is the
number of bits in the modulus. These random prime numbers are then tested for primality before they
are used in the algorithm proper. Since there is a separate project on \emph{Random Number
Generation} being implemented, no random numbers were generated as part of this project. However, a
peripheral module to receive the random numbers generated by an external program on a different board
was implemented and incorporated in the main RSA algorithm.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 127

Architecture of Random Number Receiver
The project has been implemented on Altera’s APEX 20K EP200EFC484-2X board, which has a space
limitation as far as the number of LEs is concerned. Also, the board has been manufactured in such a
way that it does not permit daisy-chaining architecture to overcome the above limitation. Hence, the
only method available is to use the external pins on the board, connect those to another board, and
exchange data between the two. This, however, has certain limitations, such as the numbers of bits that
can be exchanged, the timing issues between the two independent programs, and the requirement of
exchanging signals between the boards to facilitate communication as per specific requirements. A
multi-board architecture was realized to exchange data between two boards connected through external
pins. Due to the limitations mentioned above, a peripheral module for handling random numbers of 16
bits each was implemented. This design is completely scalable and, hardware permitting, can receive
any number of bits from another board.

This peripheral module has the following components:

■ Random number receiver module

■ Driver program, which receives the random numbers from the random number receiver module

■ Primality check module, based on Fermat's Theorem and utilizing the exponentiator peripheral

Random Number Receiver Module
This is a module written in Verilog HDL and it resides on the hardware (FPGA). To receive the random
numbers and to communicate with another board, 10 external pins have been mapped with this module.
On eight of these external pins, the module receives the random numbers, one byte at a time. Of the
other two pins, one is used to send a \emph{start} signal to the other board and the other to receive the
\emph{done} signal from it. A common ground is necessary for this type of data exchange. On
receiving the \emph{done} signal from the second board, this module transfers the byte received on the
external pins, first to an internal register and thereafter to the driver program. After sending that byte to
the driver program, it is ready to receive the next byte. The number of bytes to be received can be set at
the beginning of the data exchange. On completion, it hands over control to the driver program for
further processing of these random numbers received.

Random Number Receiver Block Diagram
The random number receiver has been implemented as a peripheral and shown in the figure given
below. The block diagram also shows the random number generator peripheral implemented on a
different board. Both these peripherals exchange data and signals through the external pins of the Altera
board. As explained earlier, these pins have been mapped on to the inputs and outputs of the peripherals
in the FPGA.

Driver Program
This program has been written in C and it interacts with the random number receiver module through
the Nios processor. With each hardware interrupt, it activates its hardware handler subroutine and
captures the byte sent into an array. It then combines two bytes at random and then sends it to the
primality check module. If the primality check is positive, this driver program stores that 16-bit random
prime number to be used subsequently in the RSA algorithm, else it discards that number. The same
process is repeated until it gets at least two prime numbers of 16 bits each. These two prime numbers
eventually make p and q for the RSA algorithm. After obtaining p and q, it also computes n = pq, which
is the modulus, and phi = (p-1)(q-1)}, which is phi(n).

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

128

Primality Check Module
This module is based on the Fermat's Theorem, which states that for any integer a, and any prime
number n, if n is prime then

a^{n} mod n = a

If a^{n} mod n ,n eq a, then n is not prime. By testing sufficient number of a's, all composite a's can be
excluded and all primes can be retained. Another variation of Fermat's Theorem that can also be utilized
to carry out a primality check is Euler's Theorem. It states that, if a is any integer and p is prime, such
that gcd(p,a) = 1, then

a^{p-1} mod p = 1

This is possible only if p is prime. The existing modular exponentiation architecture can be utilized to
carry out the exponentiation required by Fermat's theorem or Euler's theorem to determine whether the
number is prime or not. If the number is prime, then, the driver program retains that number to be
further handed over to the main RSA driver routine.

Multiplicative Inverse
The multiplicative inverse of a number, over a modulus, is computed based on the Extended Euclidean
algorithm. The algorithm needs to do integer division twice for that which the module calModulus
makes use of. This is by far the most time consuming, as well as resource consuming, operation in RSA.
The Altera APEX 20K EP200EFC484-2X board is able to accommodate the algorithm for computing
the multiplicative inverse only up to 48 bits. The design incorporates two modules:

■ Extended Euclidean module

■ Modulus

Extended Euclidean Module
This is the top-level module, which takes as input the value of exponent e and the value of phi. Based on
the value of e, it goes through the various steps of the Extended Euclidean algorithm. For each step, it
sends the dividend and divisor values to the modulus for performing the integer division. The modulus
returns the remainder and quotient after the division operation. Finally, the inverse value is returned
after ascertaining that the last non-zero remainder is one, and the algorithm is executed for two steps
beyond the Euclidean algorithm.

Modulus
This module is based on the non-restoring division method of calculating the modulo. It takes two
inputs, the dividend and the divisor. After division, it returns the remainder and quotient back to the
Extended Euclidean module. The multiplicative inverse computed by this peripheral is based on the
value of phi generated, as well as the value of exponent e chosen. The value of e chosen is actually the
public key and the multiplicative inverse computed is the secret key or d. This value of d is then used
during the decryption phase for computing the original plaintext.

The module for computing the multiplicative inverse has been implemented as a peripheral on the
FPGA. The driver program sends the exponent value and the phi value to this peripheral through the
Nios processor. The peripheral computes the secret key or the inverse value of the exponent with
respect to phi and returns it via the Nios processor to the driver program.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 129

Modular Exponentiation
An architecture for modular exponentiation proposed by Thomas Blum and Christof Paar was chosen
for implementation. It is based on the Montgomery exponentiation and Montgomery modular
multiplication for radix 2. It is a resource-efficient architecture suitable for implementation in FPGAs.
Its design is based on an exponentiator, which handles the exponentiation and feeds values to a systolic
array that computes the modular multiplication. The architecture essentially consists of two basic units,
the exponentiator and the systolic array.

Exponentiator
This is the top-level module and is based on the Montgomery exponentiation algorithm. It takes as input
the following parameters:

■ Modulus m

■ Message x

■ Exponent e

■ Number of bits in exponent

■ Precomputation factor R^{2} mod m

The precomputation factor and A are fed as inputs so that all values in the intermediate stages of
exponentiation are in Montgomery domain carrying a factor of 2^{n+2}, where n is the number of bits
in the modulus. This module first feeds the values of x and R^{2} mod m to the systolic array for
computation of widetilde{x}. Thereafter, it first checks the exponent bit and then feeds appropriate
values to the systolic array for multiplication. At the end it feeds the result and value 1 again to the
systolic array to obtain the final result, thereby getting rid of the additional factor of 2^{n+2}. The final
result so obtained is either the ciphertext or the plaintext depending upon whether it is encryption or
decryption. In case of encryption, the exponent used is 65537, while in the case of decryption it is the
secret key or d computed as the multiplicative inverse earlier.

Systolic Array
The systolic array computes the modular multiplication based on the Montgomery modular
multiplication algorithm. A systolic system comprises a set of interconnected cells, each capable of
performing a specified operation. The cells and operations performed by them are usually identical. The
time taken for processing by each of the cells is identical. Individual cells are connected only to their
nearest neighbors. The flow of data between the cells is rhythmic and regular. Except those at the
boundary of the array, the cells do not communicate with the outside world. Systolic architectures are
essentially suited for implementing computationally bound operations. The following arithmetic
operation is required to be implemented.

S_{i+1} = (Si + q_iM)/2 + a_iB, q_i, a_i {0,1}

The above equation can be modified into

S_{i+1} = (S_i + q_iM + 2a_iB)/2, q_i, a_i {0,1}

Instead of using two adders for computing the addition required in the above step, the sum 2B + M is
precomputed and stored in a register. A single adder is sufficient to add 0, 2B, M or 2B + M to S_i,
depending on the values of a_i and q_i. The same adder can also be used to precompute 2B + M. The
systolic array has the following inputs and outputs:

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

130

Inputs:

■ modulus: Modulus value sent by exponentiator

■ var1: First variable to be multiplied

■ var2: Second variable to be multiplied

■ clk: Clock for synchronization

■ reset: Reset signal

Outputs:

■ result: Result of the modular multiplication

All the processing elements get instantiated in this module. The signals and the data exchanged between
the processing elements are declared as wires in the systolic array module. During each clock cycle,
each processing element computes u bits of S_{i+1} = (S_i + q_iM + 2a_iB)/2. Now, during the clock
cycle I, the processing element1 computes u bits of S_{i}. During clock cycle i+1 processing element2
computes the next u bits of S_i. To compute u bits of S_{i+1} the processing element1 requires the LS
bit of S_{i}, computed by processing element2. This is on account of the division by two required in
step S_{i+1} = (S_i + q_iM + 2a_iB)/2. Thus, clock cycle i+1 is unproductive for processing element1.
Therefore, each unit of the systolic array stays idle in every alternate clock cycle. To achieve parallelism
each processing element computations during one cycle and remains idle in the next clock cycle. This
alternate clock cycle computation ensures parallelism and a complete utilization of all its units.

To compute S_{i+1} = (S_i + q_iM + 2a_iB)/2 where M = \sum_{i=1}^{n-1} {m_i2^i}, m_i {0,1\}
and B = \sum_{i=1}^{n} {b_i2^i}, b_i {0,1\}, n/u + 1 units are needed. The unit n/u + 1is used to
process the most significant bit of part b and has no part mod inputs. There are two buses each for
loading the M and B. The M even bus and B even bus are connected to units processing element1,
processing element3,processing element(n/u + 1). The M odd bus and B odd bus are connected to
units processing element2, processing element4}, processing element(n/u)

The s1 out output of processing element1 is connected back to its input. This is required for subsequent
passes through the loop. The carry generated in each addition is also propagated to units in the left
through the use of c_out and c_in pins. The s0 out is connected to the s0 in the pin to the right in order
to send the LS bit of the left shifted S_i(division by 2). The result bits are pumped backwards to
\emph{processing_element1} through the use of the res _out and res_in pins as only processing
element1 is connected to external modules.

Operation:

1. Initially, the values M and 2B are fed to all the units and saved in registers.

2. The computation of S_{i+1} = (S_i + q_iM + 2a_iB)/2 begins by initialization followed by giving
the a_i input at the a_i_In pin of processing_element1}.

3. At the end of computation, the result is pumped across the units to processing_element1.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 131

Processing Element
At the heart of the processing element is a u bit Adder. The result of the adder is latched into S_Reg
(including the carry). An extra S_Reg_2 is required to introduce the one clock delay before the result is
fed back as input for the next pass through the loop after it is left-shifted. The LS bit of the shifted input
comes from the neighboring unit from S0_In pin. Registers B_Reg, M_Reg, and BMSum_Reg are used
to save 2B, M, and B + M. Multiplexer Mux_B is used to selectively input B_Reg with the B_In or the
S_Reg. Multiplexers Mux_1 and Mux_2 select the appropriate inputs for the adder. Mux_Res
selectively outputs the result of the adder or Result_In from the neighbor. Control_Reg and qa_Reg are
used to latch the values before passing it along to their neighbors. Each processing element of the
systolic array computes u bits of modular multiplication. Each processing element has the following
inputs and outputs.

Inputs:

■ res_in: Result bits from the (left) neighboring unit

■ qa_in: q_i,a_i bits

■ c_in: Carry bit from (right) neighbor

■ s0_in: LS bit of S_I from (left) neighbor required on account of division by 2 of S_i

■ part_b: u bits of 2B fed externally at the start for saving and precomputation of 2B + M

■ part_mod: u bits of M fed externally at the start for saving and precomputation of 2B + M

■ clk: Clock signal for synchronization

■ reset: Reset signal

■ start: Start signal from exponentiator to begin computation

■ flush: Flush signal from the exponentiator to flush all the registers before the next multiplication

Outputs:

■ res_out: Result bits computed by the unit

■ s0_out: LS bit of result for the (right) neighbor

■ qa_out: q_i,a_i bits for the (left) neighbor

■ c_out: Carry bit generated by the addition

■ s1_out: 2nd LSB required as q_i input for unit 1, can be taken from the LSB of res_out, also

■ next: Next signal for the neighbor to start computation

Modular Exponentiator Block Diagram
The modular exponentiation has been implemented as a peripheral comprising all of the modules
mentioned above. The top-level module in this peripheral receives the exponent value, modulus value,

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

132

correction factor, message, and the number of bits in the exponent from the driver program via the Nios
processor in 32 bits each. The peripheral then computes the value of the exponentiation and returns it
back to the driver program.

Design Methodology

RSA Implementation
Altera’s APEX 20KE FPGA family was chosen for implementing the RSA algorithm. APEX devices
are high-density FPGAs that allow complex designs to be implemented on a single device. The target
device was an EP20K200EFC484-2X. The design files were written in Verilog HDL, while
compilation, synthesis, fitting, placement, and routing were carried out using Quartus II software.

Design Flow
The complete implementation of the RSA in FPGA was performed in the following stages:

4. Design entry

5. Compilation and synthesis

6. Fitting, placement, and routing

7. Interaction with the C Driver program

Design Entry
The designs for the project were specified by using the Verilog HDL. The Verilog HDL files are
essentially the source files, giving the structural description of each of the sub-units.

Random Receiver
This contains the design file random_receiver.v, which receives the random numbers on the output pins,
generated on the other board. A total of 10 external pins were used to collect the random numbers one
byte at a time. The balance of the two pins was used for synchronization purposes. This Verilog file
contains the mechanism of raising hardware interrupts and throwing out the byte received to the driver
program for further processing.

Multiplicative Inverse
This contains the following design files:

■ calModulus.v—This module performs the division operation, given the dividend and divisor, and
returns the remainder and quotient after the division operation. The size of the inputs and outputs of
this module are parameterized to facilitate easy scalability.

■ topInverse.v—This module implements the extended Euclidean algorithm for calculating the
multiplicative inverse. It instantiates the calModulus.v module for performing the division
operation. The inputs and outputs of this module are also parameterized.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 133

Modular Exponentiation
This contains the following design files:

■ processing element.v—This gives the structural description of the processing element of the
systolic array. The word size of the processing element is parameterized and can be altered. Each
processing element computes the sum as per the algorithm.

■ systolic_array.v—This module instantiates a series of processing elements and specifies the
interconnections between them in terms of inputs and outputs. It returns the result of a
multiplication to the exponentiator module, based on the Montgomery modular multiplication
algorithm.

■ monty_expo.v—This is the top-level module that implements the Montgomery exponentiation
algorithm as a series of modular multiplications with the help of the underlying systolic array
module.

Compilation & Synthesis
The design files form the input to the compilation and synthesis tool (i.e., Quartus II development
software). The design files are first included in the project standard_32 directory within Quartus II
software. Thereafter, a new peripheral is created for each top-level module with the help of the SOPC
builder. The SOPC builder is then generated to build the user-defined peripherals along with the design
files of the standard_32 directory. The operating frequency and the target devices are selected at the
time of opening a new project. Finally, the whole project is compiled and synthesized.

Fitting, Placement & Routing
Quartus II development software is also used for this purpose. The netlist file generated during the
compilation and synthesis forms the input to it. The fitter in Quartus II software assigns each logic
function to the best logic cell location for routing and timing. It also selects appropriate interconnection
paths and pin assignments. The final output is the standard.sof file, which contains the complete routed
application.

Interaction with C Driver Program
The design files implemented in the hardware are actually peripherals to the Nios processor and work
through the Avalon® bus signals. To write/read data to/from the peripheral, a C driver program is used.
This C program is loaded in \cpu_sdk\src project subdirectory within standard_32. The nios_build and
nios_run utilities are then used to compile the C program and run it on the design files already
downloaded to the FPGA. The C program includes the nios.h, which in turn includes all the header files
required for compilation. Also, the peripheral created in the SOPC builder is instantiated in the C
program along with its IRQ number. The handler function in the C program then performs the functions
mentioned inside the handler in the event of the peripheral raising an interrupt. The data is written to the
peripheral through the writedata Avalon signal while the reading of data from the peripheral is done
through readdata. Both writedata and readdata work for specific addresses that need to be mentioned in
the C program.

Implementation Issues
This section describes the implementation issues for this project.

Use of External Pins
For peripherals involving use of external pins, the additional pins used are marked as export, before
generation in the SOPC Builder. After generation, physical assignment of each and every pin is carried

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

134

out using the assignment editor within Quartus II software. The external pins to be assigned are selected
through the Nios development manual. The balance of the operations is similar to that described in
earlier sections. This configuration and implementation was carried out for the random_receiver module
and peripheral.

16-Bit Implementation
Handling large numbers (1024 bit) makes debugging and functional verification very difficult. Also, the
time taken by the software tools, especially the placement and routing (fitter) and simulator, is
extremely high. Therefore, a 16-bit exponentiate was built and tested thoroughly as a first step. The
exponentiate was then scaled up from 16 bits to 512 bits.

Modular Design
The design of the exponentiate is modular with the processing element and the systolic array being
independently implemented and tested. Finally the modules were then integrated together and tested.
Same is the case for the other peripherals like multiplicative inverse and the random number receiver.
The peripherals have been designed in such a manner that all inputs and outputs are parameterized and
can be changed easily without affecting any other part of the module.

Design Scalability
The exponentiator and the multiplicative inverse peripherals scale linearly and therefore require little
effort.

Testing & Verification
The test cases for testing were given using the C driver program to the Verilog HDL design file and
then reading back the results in the driver program. Initial simulation and testing was carried out using
iverilog, being faster. The testing and verification in the hardware takes time owing to time taken for
compilation, synthesis, fitting, placement, and routing by the Quartus II software.

Processing Time
An important issue associated with the implementation is the processing time associated with Quartus II
software. For the exponentiator, multiplicative inverse, and the random number receiver, the time taken
for compilation, synthesis, and fitting is about 12 to 15 minutes.

Software Implementation
A software implementation of modular exponentiation algorithm, multiplicative inverse, modular
multiplication, generation of random numbers, and multiplication of large integers was implemented in
C and Java to verify the correctness of the results obtained. The Montgomery multiplication algorithm
was also implemented to verify the correctness of the intermediate results during exponentiation. This
was necessary since the intermediate results carry the additional factor of 2^{n+2} at each stage.

Design Features
The highlights of our design features that we implemented were:

■ Interboard communication between two Nios processors using interrupts. This entailed interrupt
handling.

■ Use of peripherals around the Nios core. This facilitated quick prototyping at the design and trial
stage.

 Cryptographic Algorithm Using a Multi-Board FPGA Architecture

 135

■ The most significant advantage that is accrued by modeling the design as an Avalon bus peripheral
of the Nios processor is that Altera allows control of the input to and the output from the
peripherals through a device driver that can be written in C language. This fact allows verification
of the cryptographic algorithm once burnt into the hardware, even after simulation is complete.

Conclusion
The entire course of this design was a period of cumulative learning and enrichment of our knowledge
regarding the Nios processor and the FPGA. The most satisfying part of this project was the multi-board
architecture implemented to make use of two boards simultaneously and realizing an asynchronous
system. The use of minimal pins and LEs (as discussed in Part III) to achieve this cryptographic
algorithm was one of the achievement of this project. Coupled to this was the fact that a hardware
acceleration was achievable, as was hardware reusability.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

136

Second Prize

SOPC-Based Word Recognition System

Institution: National Institute Of Technology, Trichy

Participants: S. Venugopal, B. Murugan, S.V. Mohanasundaram

Instructor: Dr. B. Venkataramani

Design Introduction
Real-world processes generally produce observable outputs, which can be characterized as signals. The
signals can be discrete in nature (e.g., characters from a finite alphabet, quantized vectors from a
codebook), or continuous in nature (e.g., speech samples, temperature measurements, music). The
signal source can be stationary (i.e., its statistical properties do not vary with time), or non-stationary
(i.e., the signal properties vary over time). The signals can be pure (i.e., coming strictly from a single
source), or can be corrupted from other signal sources (e.g., noise) or by transmission distortions,
reverberation, etc.

A problem of fundamental interest is characterizing such real-world signals in terms of signal models.
There are several reasons to be interested in applying signal models. First, a signal model can provide
the basis for a theoretical description of a signal processing system, which processes the signal to
provide a desired output.

A second reason why signal models are important is that they are potentially capable of letting us learn
a great deal about the signal source (that is, the real-world process that produced the signal) without
having the source available. This property is especially important when the cost of getting signals from
the actual source is high. In this case, with a good signal model, we can simulate the source and learn as
much as possible via simulations.

Finally, signal models are important because they often work extremely well in practice, and enable us
to realize important practical systems (such as prediction systems, recognition systems, identification
systems, etc.) in a very efficient manner. There are several possible choices for the type of signal model
used for characterizing the properties of a given signal. Broadly, one can dichotomize the types of signal
models into the class of deterministic models and the class of statistical models.

Deterministic models generally exploit some known specific properties of the signal (e.g., that the signal
is a sine wave or a sum of exponentials). In these cases, specification of the signal model is generally

 SOPC-Based Word Recognition System

 137

straightforward; all that is required is to determine (estimate) the values of the signal model parameters
(e.g., amplitude, frequency, phase of a sine wave, amplitudes and rates of exponentials, etc.).

The second broad class of signal models is the set of statistical models in which one tries to characterize
only the statistical properties of the signal. The underlying assumption of the statistical model is that the
signal is characterized as a parametric random process, and that the parameters of the stochastic process
can be determined (estimated) in a precise, well-defined manner. The Hidden Markov Model (HMM)
falls in this second category.

In simple terms, a HMM is a model used to create another model about which we know nothing except
its output sequence. The HMM is trained to produce an output that closely matches the available output
sequence, and can be assumed to model the unknown model with sufficient accuracy.

Speech recognition systems have been developed for many real-world applications, often using low-cost
speech recognition software. However high-performance and robust isolated word recognition,
particularly for digits, is still useful for many applications, such as recognizing telephone numbers for
use by physically challenged persons. This formed the motivation for taking up this project.

Efficient implementation of a complete system on a programmable chip (SOPC) got an impetus with the
advent of high-density FPGAs integrated with high-capacity RAMs and the availability of
implementation support for soft-core processors such as the Nios® II processor. FPGAs enable the best
of both worlds to be used gainfully for an application—the microcontroller or RISC processor is
efficient for performing control and decision-making operations, while the FPGA efficiently performs
digital signal processing (DSP) operations and other computation intensive tasks.

We aim to produce an efficient hardware speech recognition system with an FPGA acting as a
coprocessor that is capable of performing recognition at a much faster rate than software.
Implementation of systems using an Altera®-based system on a programmable chip enables time-critical
functions to be implemented on hardware synthesized with VHDL/Verilog HDL code. The soft-core
Nios II processor that is part of the FPGA can execute the programs, written in a high-level language.
Custom instructions enable the feasibility of implementing the whole system on an FPGA with better
partitioning of the software and hardware implementation of the speech recognition system.

Our project aims at developing a HMM-based speech recognition system with a vocabulary of 10 digits
(digits zero to nine). We trained the system for three users for all the mentioned digits with a
recognition accuracy of nearly 100%. Energy and zero crossings-based voice activity detection (VAD)
was used for segmentation of the input samples and removing background noise. We used linear
predictive coding (LPC-10) analysis, followed by cepstral analysis for feature vector extraction from
speech frames. HMM was used for training the speech models and Viterbi decoding for recognition.
Vector quantization (VQ) was used for reducing the memory requirement. We used direct parameter
averaging of the HMM parameters during training, which has several advantages over Rabiner’s
approach, such as a lower data requirement, higher detection accuracy, and less computation
complexity.

We implemented the feature extraction, training, and other preprocessing stages of HMM in software
(C++/MATLAB) in the offline mode and the recognition process, including floating-point
multiplication operation of the Viterbi decoding process, as custom hardware in hardware
implementation and as an online process.

Functional Description
The aim is to design a system that will recognize an uttered digit from the recorded speech samples
(recorded as .wav files and converted to text files using MATLAB). The digits have to be from a

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

138

predetermined vocabulary set for which the system is trained. The design can be split into software and
hardware partitioning to exploit the facilities present in the Nios II processor. The overall design can be
divided into two functional parts: training and recognition.

Training involves iteratively fine-tuning the parameters of the HMMs with digits from the given
vocabulary set until it converges. The sequence of steps in training are:

■ Preprocessing

■ Codebook generation

■ Generating models for individual digits using a combination of the Forward algorithm, the
Backward algorithm, and the Baum-Welch algorithm.

Recognition involves testing the given digit with each of the available digit HMMs, finding the model
that gives the maximum probability, and concluding that the result corresponds with the digit uttered.
The sequence of steps in recognition are:

■ Preprocessing

■ Finding the best fitting model using maximum likelihood algorithm, the Viterbi decoding algorithm

Preprocessing
Preprocessing involves the following steps:

1. Recording—Record the speech at a sampling frequency of 8 KHz with 16-bit quantization.

2. VAD—Using the endpoint detection algorithm, the starting and ending points are found. The speech
is sliced into frames 450 samples in length. The energy and number of zero crossings of each frame
is found. A threshold energy and zero crossing value is determined based on the computed values,
and only frames crossing the threshold are considered. This removes most of the unnecessary
background noise. A small vestige of frames beyond the starting and ending frames are included so
as not to leave the starting and ending parts of the speech that do not cross the threshold but that
may prove important in recognition.

3. Pre-emphasis—The digitized speech signal s(n) is put through a low-order LPF to spectrally flatten
the signal and to make it less susceptible to finite precision effects later in the signal processing.
The filter is represented by H (z)=1-az-1 where we have chosen the value of “a” as 0.9375.

4. Frame blocking—Speech frames are formed with durations of 56.25 ms (N = 450 sample length)
and with an overlap of 18.75 ms (M=150 sample length) between adjacent frames. The overlapping
is performed so that the resulting LPC spectral estimates correlate from frame to frame and are
quite smooth.

xq(n)=s(Mq+n) n=0 to N-1; q=0 to L-1 where L is the number of frames.

5. Windowing—Each frame with a Hamming window is windowed to minimize signal discontinuities
at the beginning and end of the frames.

x’q(n)=xq(n). w(n)

 SOPC-Based Word Recognition System

 139

Where

w(n)=0.54=0.46 cos (2 n/ N-1)

6. Autocorrelation analysis—Perform autocorrelation analysis for each frame and find P+1 (P=10)
autocorrelation coefficients.

 N-1-m

7. rq(m)= ∑ x’q(n)x’q(n+m) m=0,1,…..P

 n=0

8. The zeroth autocorrelation coefficient is the frame’s energy, which was previously used for VAD.

9. Perform LPC analysis by employing Levinson and Durbin’s algorithm to convert the
autocorrelation coefficients to LPC parameter set.

E(0) =rq(0)

L-1

Ki={ rq(i) – { ∑ αj

(i-1). rq(|i=j|) } }/E(i-1) 1≤i≤P

j=1

αi

(i) = ki

αj

(i) = αj

(i-1) - ki. α(i-j)

(i-1)

E(i) = (1- ki

2) E(i-1)

Where αm

10 1≤m≤P are the LPC coefficients.

10. LPC parameters to cepstral coefficient conversion: The cepstrum coefficients are a more robust and
reliable feature set than the LPC coefficients.

c0=ln σ2 where σ is the gain of the LPC model.

m-1

cm= αm + ∑ (k/m) . ck. αm-k 1≤m≤P

k=1

m-1

cm= ∑ (k/m) . ck. αm-k P<m≤Q

k=1

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

140

11. Parameter weighing—Sensitivity of the lower order cepstral coefficients to overall slope and the
higher order coefficients to noise has necessitated weighing of the cepstral coefficients by a tapered
window to minimize these sensitivities. We have used weighing by a band pass filter of the form

wm=[1+ (Q/2). sin (m/Q)] 1≤m≤Q

12. Temporal cepstral derivative—Temporal cepstral derivatives are an improved feature vector for
forming the speech frames. They can be used with the cepstral derivative in case the cepstral
coefficients do not give acceptable recognition accuracy.

Vector Quantization
A codebook of size 128 is obtained by the VQ of the weighted cepstral coefficients of all reference
digits, by all users. The advantages of VQ are:

■ Reduced storage for spectral analysis information

■ Reduced computation for determining similarity of spectral analysis vectors.

■ Discrete representation of speech sounds. By associating phonetic label(s) with each codebook
vector, the process of choosing a best codebook vector to represent a given spectral vector becomes
equivalent to assigning a phonetic label to each spectral frame of speech. This makes the
recognition process more efficient.

One obvious disadvantage of VQ is the reduced resolution in recognition. Assigning a codebook index
to an input speech vector amounts to quantizing it. This results in quantization error, which increases
with decrease in codebook size.

There are two commonly used algorithms, the K-Means algorithm and the Binary Split algorithm. The
K-Means algorithm describes the way in which a set of L training vectors can be clustered into M (<L)
codebook vectors with:

1. Initialization—Arbitrarily choose M vectors as the initial set of code words in the codebook.

2. Nearest neighbor search—For each training vector, find the code word in the current codebook that
is closest and assign that vector to the corresponding cell.

3. Centroid update—Update the codeword in each cell using the centroid of the training vectors
assigned to that cell.

4. Iteration—Repeat the above two steps until the average distance falls below a preset threshold.

The Binary Split algorithm is a more efficient method than the K-Means algorithm because it builds the
codebook in stages. First, it designs a 1-vector codebook, then uses a splitting technique on the code
words to initialize the search for a 2-vector codebook, and then continues the splitting process until the
desired M-vector codebook is received.

1. Design a 1-vector codebook, which is the centroid of the entire training set and hence needs no
iteration.

2. Double the size of the codebook by splitting each current codebook yn according to the rule

yn

+ = yn(1+e)

 SOPC-Based Word Recognition System

 141

yn

- = yn(1-e)

where n varies from 1 to the codebook size and e is the splitting parameter.

3. Use the K-Means iterative algorithm to obtain the best set of centroids for the split codebook.

4. Iterate the above two steps until the required codebook size is received.

Hidden Markov Model
Recognition is achieved by maximizing the probability of the linguistic string, W, given the acoustic
evidence, A. For example, choose the linguistic sequence W such that

P(W’ | A) = max P(W | A)

 W
An HMM is characterized by the following:

■ N, the number of states in the model. Although the states are hidden, for many practical
applications there is often some physical significance attached to the states or to sets of states of the
model. The states are interconnected in such a way that any state can be reached from any other
state (e.g., an ergodic model); however other possible interconnections of states are often used by
restricting the transitions. We denote the individual states as S = {S1,S2,… SN}, and the state at time
t as qt.

■ M, the number of distinct observation symbols per state, i.e., the discrete alphabet size. The
observation symbols correspond to the physical output of the system being modeled. We denote the
individual symbols as V={V1,V2,….VM}

■ The state transition probability distribution A = {aij} where aij=P[qt+1=Sj | qt=Si] 1≤i,j≤N

■ The observation symbol probability distribution in state j, B = {bj(k)},

where bj(k) = P[vk at t | qt = Sj] 1≤j≤N, 1≤k≤M

■ The initial state distribution = { i} where i=P[q1=Si] 1≤i≤N

Given appropriate values of N, M, A, B, and , the HMM can be used as a generator to give an
observation sequence O=O1 O2 O3 …OT (where each observation Ot, is one of the symbols from V, and
T is the number of observations in the sequence).

Three Basic Problems for HMM
Given the form of HMM, there are three basic problems of interest that must be solved for the model to
be useful in real-world applications. These problems are as follows:

■ Problem 1, the scoring problem—Given the observation sequence O = { O1 , O2 , . . . OT } and a
model λ = (A, B, π), how to efficiently compute P(O/A), the probability of the observation
sequence, given the model? The algorithm normally used to solve this is the Forward-Backward
algorithm

■ Problem 2, the matching problem—Given the observation sequence O = { O1 , O2 , . . . OT }, and
the model λ, how to choose a corresponding state sequence Q = q1 q2 . . . qT which is optimal in

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

142

some meaningful sense (i.e., best “explains” the observations)? The algorithm normally used to
solve this is the Viterbi algorithm

■ Problem 3, the training problem—How to adjust the model parameters λ = (A, B, π) to maximize

P(O/A)? The algorithm normally used to solve this is the Baum-Welch Re-Estimation Procedures.

Solution to Problem 1
One of the most straightforward and highly inefficient methods to solve this problem is to enumerate all
the possible state sequences of length T and finding the sum over all such state sequences to find the
required probability. The forward-backward is a more efficient algorithm, which can be explained as
follows:

Consider the forward variable αt(i) defined as

αt(i)=P[O1, O2, O3, Ot, qt=Si | λ]

That is, the probability of the partial observation sequence, O1, O2. . . Ot and state Si at time t, given the
model λ. We can solve for αt(i) inductively, as follows:

1. Initialization:

α1(i)= πi. bi(O1) 1≤i≤N

2. Induction:

 N

αt+1(j)=[∑ αt(i).aij] bj(Ot+1) 1≤t≤T-1; 1≤j≤N

 i=1

3. Termination:

 N

P(O| λ)= ∑ αT(i)

 i=1

In a similar manner we can solve for the backward variable βt(i) iteratively as follows:

1. Initialization:

βT(i)= 1 1≤i≤N

 SOPC-Based Word Recognition System

 143

2. Induction:

 N

βt(i)= ∑ βt+1(j).aij. bj(Ot+1) T-1≥t≥1; 1≤i≤N

 j=1

Solution to Problem 2
Unlike Problem 1, for which an exact solution can be given, there are several possible ways of solving
Problem 2, namely finding the “optimal” state sequence associated with the given observation sequence.
The difficulty lies with the definition of the optimal state sequence; i.e., there are several possible
optimality criteria. To implement this solution to Problem 2, we define the variable

γt(i)=P(qt=Si | O, λ)

γt(i) = αt(i). βt(i) / P(O | λ)

 N

= αt(i). βt(i) / ∑ αt(i). βt(i)

 i=1

Because αt(i) accounts for the partial observation sequence O1,O2….Ot, and state Si at t , while βt(i)
accounts for the remainder of the observation sequence Ot+1, Ot+2, …OT given state Si at t.

Viterbi Algorithm
To find the single best state sequence, Q = {q1, q2, . . . qT }, for the given observation sequence
 O = (O1, O2, … OT}, we need to define the quantity

δt(i) = max P[q1,q2,…qt = i, O1, O2 . . . Ot/λ]

q1,q2,…..qt

That is, δt(i) is the best score (highest probability) along a single path, at time t, which accounts for the
first t observations and ends in state Si. By induction we have

δt+1(j) = [max δt(i) aij] . bj(Ot+1).

To retrieve the state sequence, we need to keep track of the argument that maximized, for each t and j.
We do this via the array ψt(j). The complete procedure for finding the best state sequence can now be
stated as follows:

1. Initialization:

 δ1(i)= πi bi(O1), 1 ≤ i ≤ N

 ψ1(i)=0

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

144

2. Recursion:

 δt(j)= max [δt-1(i)aij] bj(Ot) , 2 ≤ t ≤ T ; 1 ≤ j ≤ N

 ψt(j)= argmax [δt-l(i)aij], 2 ≤ t ≤ T ; 1 ≤ i≤ N ; 1≤ j ≤ N

3. Termination:

 P* = max [δt(i)]

 1≤i≤N

 qT* = argmax [δt(i)]

 1≤i≤N

4. Path (state sequence) backtracking:

 qt*= ψt+1(qt+l*), t = T - 1, T - 2, .. 1.

The lattice (or trellis) structure given in Figure 1 efficiently implements the computation of the Viterbi
procedure.

Figure 1. Lattice Structure

. . .

Solution to Problem 3
The third, and by far the most difficult, problem of HMMs is to determine a method to adjust the model
parameters (A, B, π) to maximize the probability of the observation sequence given the model. There is
no known way to analytically solve for the model, which maximizes the probability of the observation
sequence. In fact, given any finite observation sequence as training data, there is no optimal way of
estimating the model parameters. We can, however, choose λ = (A, B, π) such that P(O | λ) is locally
maximized using an iterative procedure such as the Baum-Welch method.

To describe the procedure for re-estimation (iterative update and improvement) of HMM parameters,
we first define ξt(i,j), the probability of being in state Si at time t, and state Sj, at time t+1, given the
model and the observation sequence,

 SOPC-Based Word Recognition System

 145

ξt(i,j)= P(qt=Si,qt+1=Sj | O, λ).

We can write ξt(i,j) in the form

ξt(i,j) = P(qt=Si,qt+1=Sj,O | λ)/ P(O| λ)

 = αt(i) aij bi(Ot+1) βt+1(j)/ P(O| λ)

 N N

 = αt(i) aij bi(Ot+1) βt+1(j)/ [∑ ∑ αt(i) aij bi(Ot+1) βt+1(j)]

 i=1 j=1

We have previously defined γt(i) as the probability of being in state Si at time t, given the observation
sequence and the model; hence we can relate γt(i) to ξt(i,j) by summing over j, giving

 N

 γt(i)= ∑ ξt(i,j)

 j=1

If we sum γt(i) over the time index t, we get a quantity that can be interpreted as the expected (over
time) number of times that state Si is visited, or equivalently, the expected number of transitions made
from state Si (if we exclude the time slot t = T from the summation). Similarly, summation of ξt(i,j) over
t (from t = 1 to t = T - 1) can be interpreted as the expected number of transitions from state Si to state
Sj. That is,

 T-1

 ∑ γt(i) = expected number of transitions from Si

 t=1

 T-1

 ∑ ξt(i , j) = expected number of transitions from Si to Sj in O.

 t=1

Using the above formulas (and the concept of counting event occurrences), the method for re-estimation
of the parameters of an HMM is as follows:

Π’j = expected frequency (number of times) in state Si at time (t = 1) = γ1(i)

a’ij = expected number of transitions from state Si to state Sj / expected number of transitions from state
Si

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

146

 T-1 T-1

 = ∑ ξt(i,j) / ∑ γt(i)

 t=1 t=1

b’j(k)= expected number of times in state Sj and observing symbol vk / expected number of times in state
Sj

 T T

 = ∑ γt(i) / ∑ γt(i)

 t=1 t=1

such that Ot=vk

Based on the above procedure, we iteratively use λ’ in place of λ and repeat the re-estimation
calculation, to improve the probability of O being observed from the model until some limiting point is
reached. The result of this re-estimation procedure is a maximum likelihood estimate of the HMM. We
use a terminating condition of λ’ not varying by more than a certain fraction (say 10%) from λ.

Training
Training the HMM for each digit in the vocabulary is done using the Baum-Welch algorithm. The
codebook index will be the observation vector for the HMM.

Recognition
Recognition of the uttered digit is found by employing the maximum likelihood estimate such as Viterbi
decoding algorithm. This implies the model with the maximum probability will be the uttered digit.

Performance Parameters
This section describes the performance parameters for the project.

Recognition Accuracy
100% recognition accuracy for a three–user dependent system implemented with input from the trained
vocabulary alone.

Design Implementation Times
Total design run time for recognition:

■ 96.53 s (full software implementation)

■ 93.936 s (with floating-point multiplication operation of the Viterbi decoding process block
implemented as custom block and the rest as software)

Implementation time for the recognition process (excluding preprocessing step) and finding the
probability for the input digit for all models using the Viterbi block in software: 5.48 s.

 SOPC-Based Word Recognition System

 147

Implementation time for a floating-point multiplication operation of the Viterbi decoding process block
implemented as a custom block: 0.5 ms (Refer to Snapshot 4 in the Appendix). The Viterbi block uses
4810 such multiplications, so the estimated run time of the whole Viterbi process using the custom
block is 2.405 sec.

Implementation time for a floating-point multiplication operation of the Viterbi decoding process block
implemented as software: 5.7 ms (Refer to Snapshot 5 in the Appendix).

Speed-up factor achieved by using custom block: 11.4 times.

Design Metrics
Memory requirement—M4Ks (Refer to Snapshot 1 in the Appendix):

■ Whole design: 9 out of 20

■ Custom block alone: 2 out of 9

Logic area used: 4,233/5,980 logic elements (LEs).

Design Architecture
Figure 2 shows the software block diagram.

Figure 2. Software Design Block Diagram of Front-End Feature Analysis for HMM

Sampled
Speech S(n)

Pre-Emphasis
LPF

Block into
Frames

NA MA

Windowing Each
Frame

Auto Correlation
Analysis

W(n)

LPC/Cepstral
Analysis

Cepstral
Weighting

LPC/
Cepstral

Coefficients

Wc(n)

Vector
Quantization

Vector
Code Book

LPC Feature Analysis
Observation vectors are obtained from speech samples by performing VQ of LPC coefficients. The
overall system is a block processing model in which a frame of NA samples is processed and a vector
for each frame is computed.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

148

The steps in the processing are as follows:

1. Pre-Emphasis—A first-order digital network processes the digitized speech signal to spectrally
flatten the signal.

2. Blocking into Frames—Sections of NA consecutive speech samples are used as a single frame with
the overlap between adjacent frames being MA.

3. Frame Windowing—Each frame is multiplied by an NA sample hamming window w(n) to
minimize the adverse effects of chopping an NA-sample section out of the running speech signal.

4. Autocorrelation Analysis—Each windowed frame of speech samples is autocorrelated with a lag of
10.

5. LPC/Cepstral Analysis—The LPC coefficients (Q) of order 10 are computed from the
autocorrelation coefficients using Durbin’s recursion method, and LPC derived cepstral vectors are
computed.

6. Cepstral Weighting—The Q-coefficient cepstral vector Cl(m) at time frame ‘l’ is weighted by a
window WC(m) of the form.

WC(m)= 1+ (Q/2) sin(Πm/Q), 1≤ m ≤ Q

to yield the weighted cepstral coefficient as

C’l(m)=Cl(m) . WC(m)

7. VQ—For a HMM with discrete observation symbol density, VQ is required to map each continuous
observation vector into a discrete codebook index. Once the codebook of vectors has been obtained,
the mapping between continuous vectors and codebook indices becomes a simple nearest neighbor
computation, that is, the continuous vector is assigned the index of the nearest (in a spectral
distance sense) codebook vector. Thus, the major issue in VQ is the design of an appropriate
codebook for quantization. We have taken codebook size as 128.

Figure 3 shows the hardware design block diagram.

 SOPC-Based Word Recognition System

 149

Figure 3. Hardware Design Block Diagram

Observation
Sequence

Finding Nearest
Codebook Entry

Codebook
Index

HMM Model
for Digit 1

Model Parameters
λ = {N, A, B, π}

HMM Model
for Digit 2

Model Parameters
λ = {N, A, B, π}

HMM Model
for Digit M

Model Parameters
λ = {N, A, B, π}

Software Part

Probability of
Observed Digit
Being Digit 1

Probability of
Observed Digit
being Digit 2

Probability of
Observed Digit
Being Digit M

Select
Maximum

Index of
Recognized Digit

Hardware Part

The Hidden Markov Model (HMM)
Recognition is achieved by maximizing the probability of the digit W, given the acoustic evidence, A,
that is, choose the digit W such that

P(Ŵ|A)=max P(W|A)

 w

Elements of a Discrete Hidden Markov Model
N is the number of states in the model

M is the number of distinct observation symbols per state. We denote the individual symbols as

A = {aij}, the state transition probability distribution where

qt is the state of the HMM at time t

B is the observation symbol probability distribution in state j, B = {bj(k)}, where

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

150

π is the initial state distribution π ={ πi } where

Given appropriate values of N, M, A, B, and π, the HMM can be used as a generator to give an
observation sequence

where each observation Ot is one of the symbols from V, and T is the number of observations in the
sequence. A complete specification of an HMM requires specification of two model parameters (N and
M), specification of observation symbols, and the specification of the three probability measures A, B,
and π.

Design Methodology
We used an Altera UP3 board using a Cyclone™ EP1C6Q240C8 FPGA with a Nios II soft-core CPU.
The board has 128 Mbytes of SRAM and 8 Mbytes of SDRAM, and we used both memories for our
design. The SDRAM is particularly important because the SRAM alone cannot handle our data and
program (Refer to Snapshot 6 in the Appendix). We used a PLL for clock input to the SDRAM for clock
skew minimization. The PLL was generated using the Altera MegaWizard® Plug-In Manager.

Design Flow in Training
First, the input speech samples were preprocessed to extract the feature vectors. Then the codebook was
built, serving as the reference code space with which we compare the input feature vectors. We have
worked with both K-Means and Binary split algorithms and we decided to use the Binary split algorithm
in our final design since it is more efficient. Then for training the HMMs, the same weighted cepstrum
matrices for various users and digits are compared with the codebook, and their corresponding nearest
codebook vector indices are sent to the Baum-Welch algorithm for training a input index sequence
model. The Baum-Welch model is an iterative procedure and we have kept the iteration limit as 20. We
now have three models for each digit corresponding to the three users in our vocabulary set, and we
average the A, B, and π matrices over the users to generalize it. For the design to recognize the same
digit uttered by a user for whom the design has not been trained, the zero probabilities in the B matrix
have been replaced by a low value so that on recognition it gives a non-zero value. This overcomes the
problem of less training data to some extent. Training is done in software and we have included the
speech samples required for the software design as arrays. See Figure 4.

 SOPC-Based Word Recognition System

 151

Figure 4. Training

Preprocessing

 Appending the weighted cepstrum
for all digits in vocabulary

Weighted Cepstrum Coefficients

Speech
Samples

 Compressing the vector space by
vector quantization

 Finding the index of the nearest
code book (in an Euclidian sense)
vector for each frame (vector) of the
input speech

Training the HMM for each digit for
each user and averaging the para
meters viz A, B, p over all the users

Trained Models for Each Digit

Design Flow for Recognition
The input speech sample is preprocessed to get extract the feature vector. Then the index of the nearest
codebook vector for each frame is sent to all the digit models out of which the model giving the
maximum probability is chosen. Viterbi is computation intensive, so the processing steps in it have been
ported to the FPGA for better speed of execution. After the soft-core processor has completed all the
preprocessing steps, the required data is passed to the hardware to do the rest of the processing. Data is
through the dataa and datab ports and the prefix port used for the control operations. (Refer Snapshots
2a and b in the Appendix.) See Figure 5.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

152

Figure 5. Data Processing

Preprocessing

Finding the index of the nearest
code book (in an Euclidian sense)
vector for each frame (vector) of the
input speech.

Code Book Weighted Cepstrum Coefficients

Speech Sample to be
Recognized

Find the probability of the input
being digit k=0 to 9.

Digit Models
for All Digits

Find the model with maximum
probability and the corresponding digit.

Implementation Summary
Number of states of the HMMs, N: 10

Codebook size, M: 128

Order of LPC, P: 10

Number of weighted cepstrum coefficients per frame vector, Q: 11

Number of digits: 0 – 9

Speech sampling rate: 8 KHz, PCM encoded

End point detection (VAD): short-time energy-based thresholding

Feature analysis: LPC analysis

HMM training for multiple observation sequence: ensemble training (direct parameter averaging)

Design Features
Performance comparison of hardware and full software implementation could be done with the help of
the facility to measure the running time of the code (Refer to comparison Snapshots 4 and 5 in the
Appendix).

The HMM is rich with mathematical structure as the training of the model uses the Baum-Welch
algorithm and the recognition decoding employs the Viterbi algorithm. Hence, these algorithms can be
efficiently implemented using FPGAs.

 SOPC-Based Word Recognition System

 153

The Nios II processor enables the optimum sharing of hardware and software implementations by
executing more computation intensive tasks in hardware and the remaining algorithm blocks in
software.

Implementation issues include:

■ The Viterbi design was too big to be implemented as such in the Cyclone device. So we decided to
implement only the main processing part (i.e., the floating point multiplication) in hardware. We
included the synthesis report of the whole Viterbi block alone using the LeonardoSpectrum™ tool
using another APEX™ FPGA (Refer to Snapshot 3 in the Appendix).

■ Scaling. As T becomes sufficiently large, the range of the multiplication factors starts to reach
exponentially to zero. The basic scaling procedure is used is to multiply these factors by a scaling
coefficient so that they do not exceed the precision range of the machine. Over and above this,
since all the values in the Baum-Welch and Viterbi algorithms are probabilities, maintaining is of
utmost importance for proper results. Therefore, we have used a floating-point data format in the C
program with a structure (mantissa and exponent) and used a normalization function, which
removes the leading zeros and accordingly adjusts the exponent whenever it is called.

■ Initial Estimates of HMM Parameters. There is no simple or straightforward answer to the above
question. Either random (subject to the stochastic and the nonzero value constraints) or uniform
initial estimates of the π and A parameters have to be used. However, for the B parameters, good
initial estimates are helpful in the discrete symbol case. We have used uniform initial values for A
and B and random values for π.

■ Insufficient Training Data. The observation sequence used for training is finite. Thus there is often
an insufficient number of occurrences of different model events (e.g., symbol occurrences within
states) to give good estimates of the model parameters. One solution to this problem is to increase
the size of the training observation set, which is often impractical. A second possible solution is to
reduce the size of the model (e.g., number of states, number of symbols per state, etc) at the
expense of the recognition rate. For the design to recognize a digit in the vocabulary uttered by a
user for whom the design has not been trained, the zero probabilities in B matrix have been
replaced by a low value so that on recognition it gives a non-zero value. This implementation
overcomes the problem of less training data to some extent.

Conclusion
We learned that the Nios II processor is powerful enough to implement a full speech recognition
process. Its memory and logic capabilities enabled us to implement the design. We implemented the
whole design in C++ in a PC environment to check the functionality. We then ported it to the FPGA
environment. That gave us a good knowledge of the issues involved in porting a software code to the
SoC environment. Finally, we learnt how to include custom block in a design, how to communicate with
it from the soft-core processor, what the problems are that may crop up in such a process, and how to
solve them.

Probable Future Improvements
■ Implementing floating point vector dot product as custom block in the short term.

■ Optimizing the Viterbi part so that it can be fitted into the Cyclone device.

■ Implementing other computation intensive tasks in the design like LPC processing in hardware to
improve recognition time.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

154

■ Using Bakis model, which is claimed to model speech signals better.

■ Using flash memory for using file read/write functions in the soft-core processor itself.

■ Accessing SDRAM from software and hardware to pass large data, which is our requirement.

Results
The hardware and software results were verified and were found to match. The process of
software/hardware co-design using SOPC is much different than conventional methods such as using
microprocessor-based software routines alone or ASIC/FPGA-based full hardware implementation
alone. It helped us to achieve the best of both worlds. The ability to include our hardware as a custom
design in the FPGA and calling it from the software using custom instructions provided added flexibility
to our design. We identified the computation intensive blocks in the design and were able to port it to the
hardware for better speed. The soft IP cores helped us speed up our design time. We learned to pass data
from the soft core to the hard core processor and tackling the issues in the process helped us to gain
better understanding of the Nios II processor.

 SOPC-Based Word Recognition System

 155

Appendix: Implementation Snapshots
Snapshot 1. Fitter Summary for Custom Block

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

156

Snapshot 2a. Recognition Process for Digit 7 Uttered by User 1 as Input

 SOPC-Based Word Recognition System

 157

Snapshot 2b. Recognition Process for Digit 7 Uttered by User 1 as Input

Snapshot 3. Synthesis Report of Whole Viterbi Block Implemented in
EP20K1000EFC896 Device

Info: Attempting to checkout a license to run as LeonardoSpectrum Level 1 Altera
Info: License passed
Session history will be logged to file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/exemplar.his'
Info, Working Directory is now 'C:\Exemplar\LeoSpec\v19991j\bin\win32'
->set _xmp_enable_renoir FALSE
FALSE
Info: system variable EXEMPLAR set to "C:\Exemplar\LeoSpec\v19991j"
Info: Loading Exemplar Blocks file: C:\Exemplar\LeoSpec\v19991j/data/xmplrblks.ini
Messages will be logged to file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/exemplar.log'...
LeonardoSpectrum Level 1 Altera - v1999.1j (build 6.108, compiled Apr 6 2000 at 12:57:38)
Copyright 1990-1999 Exemplar Logic, Inc. All rights reserved.

--
-- Welcome to LeonardoSpectrum Level 1 Altera
-- Run By ecad@VLSI-33
-- Run Started On Fri Sep 23 12:13:10 India Standard Time 2005
--
No constraint for register2register
No constraint for input2register
No constraint for input2output
No constraint for register2output
->set register2register 1073741824.0
1073741824.0
->set input2register 1073741824.0
1073741824.0
->set register2output 1073741824.0
1073741824.0
->set input2output 1073741824.0
1073741824.0
->_gc_read_init
->_gc_run_init
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" }
 "D:/nios_modelsim/viterbi_ver4.v"
->set part EP20K1000EFC896
EP20K1000EFC896
->set process 1
1
->set flex_use_cascades TRUE
TRUE
->set chip TRUE

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

158

->set macro FALSE
FALSE
->set area TRUE
->set delay FALSE
FALSE
->set report brief
brief
->set hierarchy_auto TRUE
TRUE
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf"
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
->set novendor_constraint_file FALSE
FALSE
->set target apex20e
apex20e
->_gc_read
-- Reading target technology apex20e
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`...
Library version = 1.6
Delays assume: Process=1
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" }
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'...
-- Loading module viterbi_ver4
-- Compiling root module 'viterbi_ver4'
"D:/nios_modelsim/viterbi_ver4.v",line 92: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot.
Encodings for _STATE_NAME_ values
 value _STATE_NAME_[27-0]
===================================
 _STATE_0 ---------------------------1
 _STATE_1 --------------------------1-
 _STATE_2 -------------------------1--
 _STATE_3 ------------------------1---
 _STATE_4 -----------------------1----
 _STATE_5 ----------------------1-----
 _STATE_6 ---------------------1------
 _STATE_7 --------------------1-------
 _STATE_8 -------------------1--------
 _STATE_9 ------------------1---------
 _STATE_10 -----------------1----------
 _STATE_11 ----------------1-----------
 _STATE_12 ---------------1------------
 _STATE_13 --------------1-------------
 _STATE_14 -------------1--------------
 _STATE_15 ------------1---------------
 _STATE_16 -----------1----------------
 _STATE_17 ----------1-----------------
 _STATE_18 ---------1------------------
 _STATE_19 --------1-------------------
 _STATE_20 -------1--------------------
 _STATE_21 ------1---------------------
 _STATE_22 -----1----------------------
 _STATE_23 ----1-----------------------
 _STATE_24 ---1------------------------
 _STATE_25 --1-------------------------
 _STATE_26 -1--------------------------
 _STATE_27 1---------------------------

"D:/nios_modelsim/viterbi_ver4.v",line 164: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 215: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 248: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 307: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 285: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 307: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 343: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 378: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 417: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 417: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 440: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 487: Error, static loops are not allowed in implicit state machines.
No constraint for register2register
No constraint for input2register
No constraint for input2output
No constraint for register2output
->_gc_read_init
->_gc_run_init
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" }
 "D:/nios_modelsim/viterbi_ver4.v"
->set chip TRUE
->set macro FALSE
FALSE
->set delay FALSE
FALSE
->set hierarchy_auto TRUE
TRUE
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf"
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
->set sdf_write_flat_netlist TRUE
TRUE
->set target apex20e
apex20e
->_gc_read
-- Reading target technology apex20e
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`...
Library version = 1.6

 SOPC-Based Word Recognition System

 159

Delays assume: Process=1
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" }
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'...
-- Loading module viterbi_ver4
-- Compiling root module 'viterbi_ver4'
"D:/nios_modelsim/viterbi_ver4.v",line 92: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot.
Encodings for _STATE_NAME_ values
 value _STATE_NAME_[27-0]
===================================
 _STATE_0 ---------------------------1
 _STATE_1 --------------------------1-
 _STATE_2 -------------------------1--
 _STATE_3 ------------------------1---
 _STATE_4 -----------------------1----
 _STATE_5 ----------------------1-----
 _STATE_6 ---------------------1------
 _STATE_7 --------------------1-------
 _STATE_8 -------------------1--------
 _STATE_9 ------------------1---------
 _STATE_10 -----------------1----------
 _STATE_11 ----------------1-----------
 _STATE_12 ---------------1------------
 _STATE_13 --------------1-------------
 _STATE_14 -------------1--------------
 _STATE_15 ------------1---------------
 _STATE_16 -----------1----------------
 _STATE_17 ----------1-----------------
 _STATE_18 ---------1------------------
 _STATE_19 --------1-------------------
 _STATE_20 -------1--------------------
 _STATE_21 ------1---------------------
 _STATE_22 -----1----------------------
 _STATE_23 ----1-----------------------
 _STATE_24 ---1------------------------
 _STATE_25 --1-------------------------
 _STATE_26 -1--------------------------
 _STATE_27 1---------------------------

"D:/nios_modelsim/viterbi_ver4.v",line 216: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 249: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 308: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 286: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 308: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 344: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 379: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 418: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 418: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 441: Error, static loops are not allowed in implicit state machines.
"D:/nios_modelsim/viterbi_ver4.v",line 488: Error, static loops are not allowed in implicit state machines.
No constraint for register2register
No constraint for input2register
No constraint for input2output
No constraint for register2output
->_gc_read_init
->_gc_run_init
->set input_file_list { "D:/nios_modelsim/viterbi_ver4.v" }
 "D:/nios_modelsim/viterbi_ver4.v"
->set chip TRUE
->set macro FALSE
FALSE
->set delay FALSE
FALSE
->set hierarchy_auto TRUE
TRUE
->set output_file "C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf"
C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
->set target apex20e
apex20e
->_gc_read
-- Reading target technology apex20e
Reading library file `C:\Exemplar\LeoSpec\v19991j\lib\apex20e.syn`...
Library version = 1.6
Delays assume: Process=1
-- read -tech apex20e { "D:/nios_modelsim/viterbi_ver4.v" }
-- Reading file 'D:/nios_modelsim/viterbi_ver4.v'...
"D:/nios_modelsim/viterbi_ver4.v", line 526: Warning, system task enable ignored for synthesis
-- Loading module viterbi_ver4
-- Compiling root module 'viterbi_ver4'
"D:/nios_modelsim/viterbi_ver4.v",line 93: Info, Enumerated type _STATE_NAME_ with 28 elements encoded as onehot.
Encodings for _STATE_NAME_ values
 value _STATE_NAME_[27-0]
===================================
 _STATE_0 ---------------------------1
 _STATE_1 --------------------------1-
 _STATE_2 -------------------------1--
 _STATE_3 ------------------------1---
 _STATE_4 -----------------------1----
 _STATE_5 ----------------------1-----
 _STATE_6 ---------------------1------
 _STATE_7 --------------------1-------
 _STATE_8 -------------------1--------
 _STATE_9 ------------------1---------
 _STATE_10 -----------------1----------
 _STATE_11 ----------------1-----------

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

160

 _STATE_12 ---------------1------------
 _STATE_13 --------------1-------------
 _STATE_14 -------------1--------------
 _STATE_15 ------------1---------------
 _STATE_16 -----------1----------------
 _STATE_17 ----------1-----------------
 _STATE_18 ---------1------------------
 _STATE_19 --------1-------------------
 _STATE_20 -------1--------------------
 _STATE_21 ------1---------------------
 _STATE_22 -----1----------------------
 _STATE_23 ----1-----------------------
 _STATE_24 ---1------------------------
 _STATE_25 --1-------------------------
 _STATE_26 -1--------------------------
 _STATE_27 1---------------------------

"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(237)(8) is unused, optimizing...
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(238)(8) is unused, optimizing...
"D:/nios_modelsim/viterbi_ver4.v", line 39:Info, D-Flipflop reg_si(239)(8) is unused, optimizing...
Info: Finished reading design
->_gc_run
-- Run Started On Fri Sep 23 13:24:10 India Standard Time 2005
--
-- optimize -target apex20e -effort quick -chip -area -hierarchy=auto
Using default wire table: apex20e_default
Warning, View .work.viterbi_ver4.INTERFACE needs partitioning, you may want to optimize this block in "auto
dissolve" hierarchy mode...
Warning, View .work.viterbi_ver4.INTERFACE needs partitioning, you may want to optimize this block in "auto
dissolve" hierarchy mode...
Warning, View .work.cx0.partition_vx0 needs partitioning, you may want to optimize this block in "auto dissolve"
hierarchy mode...
-- Start optimization for design .work.cx2.partition_vx0
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 6961 106 1809 0 810 688 07:07
-- Start optimization for design .work.cx0.partition_vx0
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 8351 116 2411 0 467 545 07:43
-- Start optimization for design .work.cx1.partition_vx0
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 6087 73 1472 0 606 331 01:56
-- Start optimization for design .work.viterbi_ver4.INTERFACE
Using default wire table: apex20e_default
 est est
 Pass LCs Delay DFFs TRIs PIs POs --CPU--
 min:sec
 1 7435 58 1767 0 2 18 03:24
Using default wire table: apex20e_default
-- Start timing optimization for design .work.viterbi_ver4.INTERFACE
No critical paths to optimize at this level

Cell: viterbi_ver4 View: INTERFACE Library: work

 Number of ports : 20
 Number of nets : 31206
 Number of instances : 29214
 Number of references to this view: 0

Total accumulated area:
 Number of GND: 4
 Number of I/Os: 20
 Number of LCs: 28938
 Number of Memory Bits: 7680
 Number of VCC: 1

Device Utilization for EP20K1000EFC896

Resource Used Avail Utilization

I/Os 20 896 2.23%
LCs 28938 38400 75.36%
Memory Bits 7680 540672 1.42%

 Clock Frequency Report

 Clock : Frequency

 clk : 12.1 MHz

 Critical Path Report

 SOPC-Based Word Recognition System

 161

Critical path #1, (unconstrained path)
NAME GATE ARRIVAL LOAD

clock information not specified
delay thru clock network 0.00 (ideal)

reg_i5(7)/regout apex20_lcell_normal 0.00 2.30 up 1.45
modgen_add_6752_ix86/combout apex20_lcell_arithmetic 4.96 7.25 up 2.05
modgen_mux_6996_ix304/cascout apex20_lcell_normal 2.01 9.26 up 1.22
modgen_mux_6996_ix306/combout apex20_lcell_normal 0.53 9.79 up 1.22
modgen_mux_6996_ix310/cascout apex20_lcell_normal 2.04 11.83 up 1.22
modgen_mux_6996_ix312/combout apex20_lcell_normal 0.53 12.36 up 1.22
ix1500353/cascout apex20_lcell_normal 2.01 14.36 up 1.22
ix1500226/combout apex20_lcell_normal 0.53 14.89 up 1.22
ix1415575/Y NOT 1.49 16.38 up 1.22
modgen_mux_6996_ix730/combout apex20_lcell_normal 3.10 19.48 up 1.55
modgen_gt_7005_ix39/combout apex20_lcell_arithmetic 4.96 24.43 up 2.05
ix1507344/combout apex20_lcell_normal 3.39 27.82 up 1.64
ix6362/Y NOT 4.20 32.02 up 2.05
ix1504380/combout apex20_lcell_normal 2.18 34.21 up 1.22
modgen_mux_7532_ix316/cascout apex20_lcell_normal 1.98 36.19 up 1.22
modgen_mux_7532_ix318/combout apex20_lcell_normal 0.53 36.71 up 1.22
modgen_mux_7532_ix342/combout apex20_lcell_normal 2.18 38.90 up 1.22
ix1504445/cascout apex20_lcell_normal 1.98 40.88 up 1.22
ix1503646/combout apex20_lcell_normal 0.53 41.41 up 1.22
ix15950/Y NOT 1.49 42.90 up 1.22
modgen_mux_7532_ix730/combout apex20_lcell_normal 3.10 45.99 up 1.55
modgen_gt_7522_ix23/cout apex20_lcell_arithmetic 2.01 48.00 up 1.22
modgen_gt_7522_ix25/cout apex20_lcell_arithmetic 0.09 48.09 up 1.22
modgen_gt_7522_ix27/cout apex20_lcell_arithmetic 0.09 48.18 up 1.22
modgen_gt_7522_ix29/cout apex20_lcell_arithmetic 0.09 48.27 up 1.22
modgen_gt_7522_ix31/cout apex20_lcell_arithmetic 0.09 48.35 up 1.22
modgen_gt_7522_ix33/cout apex20_lcell_arithmetic 0.09 48.44 up 1.22
modgen_gt_7522_ix35/cout apex20_lcell_arithmetic 0.09 48.53 up 1.22
modgen_gt_7522_ix37/cout apex20_lcell_arithmetic 0.09 48.62 up 1.22
modgen_gt_7522_ix39/combout apex20_lcell_arithmetic 0.53 49.15 up 1.90
ix1507591/combout apex20_lcell_normal 4.96 54.11 up 2.05
ix1507333/combout apex20_lcell_normal 4.90 59.00 up 2.05
ix1501713/combout apex20_lcell_normal 3.70 62.70 up 1.73
ix1502628/combout apex20_lcell_normal 2.21 64.91 up 1.22
ix1503203/combout apex20_lcell_normal 2.16 67.07 up 1.22
ix1507603/combout apex20_lcell_normal 2.47 69.53 up 1.34
ix1507602/combout apex20_lcell_normal 3.10 72.63 up 1.55
ix1502721/combout apex20_lcell_normal 2.21 74.84 up 1.22
ix1503153/combout apex20_lcell_normal 2.21 77.05 up 1.22
ix1497841/combout apex20_lcell_normal 4.87 81.92 up 2.05
reg_e_delta(5)(7)/ena apex20_lcell_normal 0.00 81.92 up 0.00
data arrival time 81.92

data required time (default specified - setup time) not specified

data required time not specified
data arrival time 81.92

 unconstrained path

-- Design summary in file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.sum'
-- Writing file C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.edf
Info, Writing xrf file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.xrf'
-- Writing file C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.xrf
Info, Writing batch file 'C:/Exemplar/LeoSpec/v19991j/bin/win32/viterbi_ver4.tcl'
-- CPU time taken for this run was 3017.14 sec
-- Run Successfully Ended On Fri Sep 23 14:14:27 India Standard Time 2005
0
Info: Finished Synthesis run

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

162

Snapshot 4. Hardware Floating Multiplier Custom Block & its Run Time with System
Frequency of 48 MHz (Run Time Mentioned as Number of Clock Ticks)

 SOPC-Based Word Recognition System

 163

Snapshot 5. Software Floating Multiplier & its Run Time With System Frequency of 48
MHz (Run Time Mentioned as Number of Clock Ticks)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

164

Snapshot 6. Memory Usage Summary in Nios II IDE

 Intelligent Card Technology-Based Biometrics Identification System

 165

Second Prize

Intelligent Card Technology-Based
Biometrics Identification System

Institution: Institute of Information Science, School of Computer, Beijing
JiaoTong University

Participants: Tang Hui, Liu Lulu, and Qin Lunming

Instructor: Ding Xiaoming

Design Introduction
The design of a secure-identity authentication system involves a complicated decision-making process
that verifies security certificates on-the-fly. When creating this design, we had to make a choice
between design complexity and security considerations to arrive at an optimized solution. Combining
biometrics recognition with smart card technology helped us design a good security/authentication
system. Figure 1, an excerpt from a thesis of the Smart Card Alliance, 2004, illustrates the advantages
of this approach.

Figure 1. Relationship between the Smart Card with Biologic Features & Security Level
(Palm Print Recognition)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

166

Advances in biometrics recognition and smart card technologies have enabled designers to use them in
many applications. We carefully reviewed the status of these two technologies to use the best principles
in our design, and then we combined our design knowledge with the Altera® system-on-a-
programmable-chip (SOPC) concept. We used the cutting-edge features of the Nios® II soft core
processor to develop a Smart Card Biometrics System. For the biometric feature, we used palm print
identification because of its usage worldwide and because we have a strong theoretical foundation on
the biometrics of palm printing. (We are also familiar with voice print biometrics.) Given this backdrop,
we can design richly featured, highly secure identification systems based on either technology.
Alternatively, we can combine both palm print and voice print to arrive at a multimode biometric
feature smart card.

Application Scope
Combining biometrics recognition with smart card technologies allows high-performance deployment in
many areas. For example, biometrics recognition technology can enable an enhanced security level
feature for smart card applications. Additionally, using smart card technology saves time in storing and
retrieving data from a local database, thus accelerating the matching process. The application scope and
solutions that are available today using these two technologies are described as follows:

■ School e-Card—Today, most schools are still using magnetic cards, which have severe limitations
such as short lifespan, limited data volume, and poor security performance. Instead, using a
combination of biometrics and smart card technologies, schools can enhance security, data volume,
card lifetime, and application scope.

■ Talent Card—At present, the Beijing Talent Service Center is developing relevant standards for the
talent industry, and is going to distribute cards, using smart card technology, for all talents to
facilitate planning and management. Security is a big factor because of the importance of the talent
cards. Incorporating biometrics into the smart card will undoubtedly ensure high security for the
whole system.

■ High-Class Club Member Card—Member cards of a high-class club are very valuable. Losing a
card results in a loss to both the club and the card owner. Combining biometrics recognition with
smart card technologies can make member cards more secure.

■ Door Lock Management System—The biometrics recognition system will be a great advantage in
the performance of a door lock secure management system. These systems are traditional security
applications in which one can deploy biometrics and smart card technologies to a great advantage.

The users for these applications is decided by the application scope. Our smart card biometrics
recognition system has a variety of users ranging from high-end users, such as senior club members, to
ordinary users such as school students and residents in a housing colony.

Advantages of Using the Nios II Processor
There are two main advantages of using the Nios II processor: it can be broken into modules and
configured. Each subsystem is composed of function modules, which coordinate with each other to form
a complete system. The SOPC design approach minimizes the system’s reliance on submodules during
the design process and increases the cohesion between modules. Therefore, our system design tasks are
divided into small modules. Taking this design approach we can rapidly build a complete system with
greater precision that meets the design requirements. This design method minimizes the influence of a
single module on the whole system.

 Intelligent Card Technology-Based Biometrics Identification System

 167

The Nios II processor features configurable, built-in hardware and software system modules. We can
configure the system dynamically for different system requirements during the development stage to
optimize system performance under different conditions.

Function Description
In applications involving biometric recognition, the recognition function needs to be executed with
precision at high speed for large-scale deployment of the system. The essence of biometric system
design is to speed up the processing in each segment while ensuring precise recognition. Based on this
concept, our system has distinct features in many aspects. Our system implements the features described
in the following sections.

Collecting Biometric Data & Transmission in DMA Mode
A simulated collector collects the biometric data, which saved development time. We also reduced the
time required for image data transmission after collection. Because the data is stored in blocks, it can be
transmitted in DMA mode. The Nios II processor provides good support for data transmission in DMA
mode, which makes it possible for designers to select appropriate transmission mode to meet the design
requirements.

Biometric Data Extraction & Compression, DSP Builder &
Customized User Instructions
The extraction and compression of biometric data is complicated because it involves digital signal
processing (DSP). We had some problems determining which algorithm was more effective when
deployed under an embedded system environment. To solve the problem, we tested existing algorithms
in a PC environment, and chose the most appropriate algorithm that met the practical requirements for
use in an embedded system.

It was quite difficult to achieve real-time processing using software mode while executing the
algorithm. Therefore, we used a hardware mode to accelerate processing in key segments of the
algorithm to satisfy the system design requirements. Specifically, we used the following approaches:

■ The MATLAB software is easy to use and allows for quick computation of arithmetic operations,
so we used it to perform algorithm-level emulation. Next, we generated hardware modules using
Altera’s DSP Builder tool, and integrated it into our system as the system’s DSP module. This
approach enhanced system performance.

■ We implemented frequently called basic functions and statements used during processing with the
Nios II processor’s customizable user instructions. These custom instructions improved the
processing speed.

Card Reader/Writer Integration & User-Defined Peripherals
To integrate the smart card reader/writer module, we removed the redundant serial port components and
assigned the Rx/Tx pins of the serial port to the extended I/O using SOPC Builder. This scheme made it
possible to operate the card reader/writer module and collection module in one daughter board. Then,
we integrated the control unit of the card reader/writer to the system bus using customized peripheral
feature of the system. In this way, we simplified the control design and ensured faster data processing.
Because the biometric feature data in the smart card is stored in blocks, we used DMA transmission
mode to reduce processing time during transmission.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

168

Control of a Complex System Using RTOS vs Multi-Core
Technology
We tried to avoid a complex control mode scheme using the modularization concept during the control
design of the whole system. However, we anticipated that the system complexity might exceed our
expectations at the early stages of the design. Fortunately, the Nios II processor solved the problem by
making it easy to load the real-time operating system (RTOS) to the system. The management of real
time tasks, memory, and peripheral devices using the real time operating system allowed us to take
advantage of the capabilities of Nios II processor fully. By doing so, we enhanced the utilization of
system resources and processing capability, reduced processing time, and speeded up the system
response. In our opinion, you can also consider the multi-core operation in your design.

Performance Parameters
Effective recognition and speed are the most important performance parameters for the biometric
identification system. Our goal was to enhance the recognition rate and processing speed. For faster
processing, we took advantage of Altera’s design platform and reduced recognition speed to an
acceptable figure. This figure included the time for a single recognition process (including complex pre-
processing, feature extraction, compression, and smart card reading) to within 4 seconds, without any
design modification.

To effectively verify the recognition rate, we exercised the system 200 times, each time verifying the
palm print samples against a database of palm print samples library. The experimental data indicated
that through the selection of an appropriate threshold value, the system can resist all of the 200 attacks.

The excellent performance of the Nios II processor made it easy for us to realize our design goals. We
chose the Nios II/f core because we had a strict requirement with regard to the processing speed.
Combining the Nios II processor and FPGA design, we developed an ideal mix of processor,
peripherals, memory, and I/O interface. This design approach enabled us to meet the design
requirements with a high resource utilization: 92% of logic element (LE) usage and 84% of on-chip
memory usage.

Using the Nios II processor helped us enhance system performance by modifying function blocks, even
amidst design stages. For example, we used a 50-MHz MCLK and the Nios II/s core, but this design
required 12 seconds to extract voice prints, which was unacceptable. Next, we used a 75-MHz MCLK
and the NiosII/f processor, and added ICACHE and DCACHE functions, which took about 3 seconds to
extract the biometrics data and met our design requirements.

We were able to enhance system modules’ performance further by using RTOS, DMA, and user-defined
instructions from the Nios II processor.

Design Architecture
Taking palm-print recognition as an example, this section describes the design flow and system
modules. For other biometric systems, the difference lies in the collection and feature extraction
modules. The rest of the modules remain the same, which is a major advantage of using SOPC in a
modular design.

The system has two major functions: registration and authentication. In the registration function, the
system has to complete at least the extraction and comparison of biometric data and card reader/writer
control. During registration, the palm print feature data is extracted through a palm print collection
terminal and is stored in the smart card using the card reader/writer module. Figure 2 outlines the
registration and authentication system tasks.

 Intelligent Card Technology-Based Biometrics Identification System

 169

Figure 2. Registration Process Diagram of Palm Feature

During authentication, both the smart card and related palm print data are displayed. The collected palm
print data is compared with the palm print data stored in the smart card in real time through processing
of data in collection terminal. The authentication is a success when the two data values are consistent
with each other, or else the authentication fails. See Figures 3 through 7.

Figure 3. Authentication Process Diagram of Palm Print Data

Biometric
Capture

Image
Processing

1010
0110
1101

Image

Biometric
Matching

1010
0110
1101

Live Template

Stored
Template

95%

Matching Score

Template
Extraction

Storage
Device (Card or

Database)

Figure 4. Simple Block Diagram of Biometric System

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

170

Figure 5. Design Diagram of System Hardware

 FPGA

Capturer

Nios II
RTOS

Reader

LED

LCD

SRAM

Flash

Av
al

on
 B

us

Capturer
Interface

Reader
Interface

LED
Interface

LCD
Interface

SRAM
Interface

Flash
Interface

DSP
Module

DMA
Controller

Figure 6. Operating System & Task Distribution Diagram

 Intelligent Card Technology-Based Biometrics Identification System

 171

Figure 7. Main Task Workflow Diagram of the System

Is Collection
Module Ready?

Preprocessing

Feature Extraction

Is Card Reading
Module Ready?

Read Features
Data in Card

Feature Contrast

Data Monitoring

YES YES

Authentication
Succeeds

Authentication
Fails

NO
YES

System
Initialization

NO NO

Design Methodology
This section describes the design methodology for the system.

Design Environment
For the purposes of this contest, we wanted to use a common design environment based on UP3
education suites. Based on the UP3 board, we developed and realized many basic modules, such as
palm print (voiceprint) collection, preprocessing, feature extraction, and the read/write tasks of the
smart card. Due to a lack of sufficient resources on the UP3 board, it was hard to meet the design
requirements for system speed, design integration, and hardware processing speed. Therefore, we
decided to switch to Altera’s development board during the middle phase of the design.

Design of System Hardware
Figure 8 shows the SOPC Builder tool settings.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

172

Figure 8. System Design Configuration

Design Implementation
We broke down the system tasks into five parts:

■ Biometric Feature (Data) Collection Module

■ Preprocessing Module

■ Voice Information Preprocessing

■ Feature Data Extraction & Compression

■ Smart Card Read/Write Module

Biometric Feature (Data) Collection Module
The biometric feature collection module is the indispensable front-end, whose quality of data collection
directly impacts the recognition effectiveness of the whole system. This module also affects the
collection speed, which can undermine system performance if not addressed properly.

In the voiceprint data collection system, data is captured through PC microphone and audio card. For
collecting palm print data, we simulated camera collection action and processed this data using the
SAA7113 chip. The SAA7113 chip in turn is controlled by I2C bus, whose control module is realized
using the customized peripheral function feature available with the Altera SOPC Builder design tool.
Also, thanks to the availability of many intellectual property (IP) cores and customized peripherals, you
can easily integrate them into your system using SOPC Builder. This is one of the major advantages of
SOPC design.

We designed the IP core that controls camera and external storage devices and integrated it into the
system; this IP core can complete most of the control operations of palm print image collection. We
wrote this IP core in VHDL and its function module is shown in Figure 9.

 Intelligent Card Technology-Based Biometrics Identification System

 173

Figure 9. Front-End Palm Print Collection Control Module

Preprocessing Module
The collected palm print image data contains many kinds of noise and features different palm print
sizes, whose image locations may vary based on the angle of exposure. So it is necessary to preprocess
the collected image that forms the basis of the palm print feature extraction so it can be compared with
stored image data. Therefore, the preprocessing module plays a key role in the system’s palm print
recognition effectiveness. The preprocessing module we used has a three-step approach:

■ Area of Interest Positioning—The positioning algorithm first makes a binary processing of the
source image, and then obtains data of the interested area using a geometry morphology algorithm.
The existing positioning algorithm is quite complicated, so it is realized mainly with software. Due
to the large size of the image, we used hardware to perform binary processing, and subsequently
used DMA to transmit the image data to the main storage.

■ Image Balance—Because the captured image data is easily affected by light, we performed light-
balance processing to set the image data on a grayscale standard. To complete the image balance,
we analyzed the image grey histogram, and then processed this data by hardware.

■ Median Filter—Median filtering is a common method to remove noise effects present in the signal.
We developed a parameterized median filter hardware module that can handle a 2-D median filter
on an N[x]N window. In our system, we used a 3[x]3 window to perform median filtering on the
interested area to remove noise.

Voice Information Preprocessing
Voice preprocessing includes quantifying, split frame, pre-weighting, breakpoint checking, and
removing noise from voice data.

■ We digitized the input simulation voice signal by quantifying and sampling the audio signal. The
digitized signal is then downloaded onto the development board flash memory.

■ The voice signal remains stable from 10 ms up to 30 m, which means all algorithms have to process
data within this short time period. We chose a 30-ms voice sample as a data frame in our design.

■ Because the voice signal is affected by the glottis pulse shape and lip radiation, the voice-signal
spectrum brings down the high-frequency component, which equals to a 6-db drop per octave. To
remove this effect, we enhanced the high-frequency component using a pre-weighted, simple, first-
order FIR filter, in the form of H(z)=1-a*z-1. The pre-weight filter helps to compress the dynamic
range of the input voice effectively, and makes the linearity forecast analysis more stable.
Moreover, this high-pass filter can also filter the DC component in the input signal.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

174

It is important to determine the voice signal start and end points correctly. Some popular voice
parameter data that help to judge voice signal start and end points include short-time energy, short-time
average power, and short-time zero-cross rate.

Feature Data Extraction & Compression

We used the I2DPCA algorithm to perform feature extraction on the preprocessed palm print image.
The I2DPCA is a proven subspace analysis algorithm whose validity has been verified in laboratory
analysis. A major advantage of the I2DPCA algorithm lies in the fact that it helps you to reduce feature
dimensions while ensuring a high-recognition rate. Because there is limited storage space on a smart
card, the I2DPCA algorithm was a great help in storing the palm and voice feature data. But deploying
the I2DPCA algorithm was not easy; it took complex arithmetic operations that included many iterative
floating-point operations. To ensure real-time operation of the system, we added custom instructions for
addition, subtraction, multiplication, and division operations on floating-point data.

The extraction of voice print data features involves keeping the language content while preserving
individual voice characteristics. There are two kinds of voice characteristics: the difference of inborn
vocal organs, such as the acoustic duct length and vocal cords and acquired speech characteristics, such
as the dialect and tones. Because it is hard to extract these characteristics separately, we stored both.

Presently, the Mel-Frequency Cepstral Coefficients (MFCC) method is extensively used to differentiate
speakers’ voice feature parameters. The MFCC method involves computing real voice signals, applying
a FFT on them, and then convoluting the resulting logarithm energy spectrum with Mel-Scale
Triangular Filter. Finally, we carried out a discrete cosine transform (DCT) on the vector composed by
filter outputs.

Smart Card Read/Write Module
This module uses ZLG500B from ZLG Corporation. The following table describes the system interface
definition.

Pin Symbol Type Description
J2-1 CTRL Output Control wire output
J2-2 BZ Output Buzzer signal output, high usually, output square-wave or low-level enabled
J2-3 CON485 Output RS485 control, low usually, high during TXD sending
J2-4 VCC PWR Power plus end
J2-5 RST Reset MCU reset, high-level enabled
J2-6 GND PWR Power minus end
J2-7 RXD Input UART receiving end
J2-8 TXD Output UART sending end

Adding two serial ports and three PIOs into SOPC Builder completed the hardware design of this
module. We had to assign the pins of the serial port to receive/send and set up the baud rate accordingly.

We defined the following control characters in our software design:

#define STX 0x20 //Start of Text
#define ACK 0x06 //Affirmative Acknowledgment
#define NAK 0x15 //Not Affirmative Acknowledgment
#define ETX 0x03 //End of Text

For communication purposes, the host sends data to the ZLG500B device, and after it executes the
command, it returns the state of command execution and relative data to the Nios II processor. The
receiving/sending part must be initialized before communication starts. First, the Nios II processor

 Intelligent Card Technology-Based Biometrics Identification System

 175

sends out an STX, and waits for the ACK response from the ZLG500B device. If the Nios II processor
does not receive a response within 10 ms or receive a NAK, it sends another STX. It repeats this action
three times. Then, the Nios II processor quits the transmission mode and returns an error code to the
main program that processes the error. On the other hand, if the Nios II processor receives the ACK
response from the ZLG500B device, it sends out a block of data, and transmits an ETX to signal the end
of transmission. The following table shows the format of Nios II transmission:

Nios II
Processor

Data
Transmission

Direction

ZLG500B Description

STX ——>
 <—— ACK
DATA+ETX ——>

If the Nios II processor is unable to receive an ACK
or NAK within 10 ms, it resends STX at least once;
after receiving an ACK, the Nios II processor must
send data within 50 ms, and the time interval
between 2 bytes sent must be less than 10 ms.

After this, the Nios II processor waits for status data and response from the ZLG500B device. If it does
not receive a response within 300 ms, the Nios II processor quits transmission mode and reports an error
code to main program. The format of ZLG500B transmission is shown in the following table:

ZLG500B Data
Transmission

Direction

Nios II
Processor

Description

STX ——>
 <—— ACK
DATA+ETX ——>

ZLG500B won’t resend STX if it hasn’t received
ACK within 50ms.

The biometric feature information read from a user’s smart card is matched with collected data using the
above processes. During matching of biometric features, the algorithm adopts Euclidian distance to
represent the distance between two palm print features. First, the palm print feature data in the user’s
smart card are read into system and matched with palm print features obtained using the described
processing tasks. By converting the obtained biometric feature data from a floating-point to fixed-point
format, the smart card can process data faster and can conserve storage space.

The SOPC concepts utilized in our design are described as follows:

■ Modular System Design—In the early stages of design, we spent extra time partitioning the system
design. Design partitioning is useful because it helps to define every task of the system. It also
helps to simplify system design, thereby improving the designers’ confidence. Based on the
partitioned modules, the applications’ scope and expandability can be correctly evaluated at the
beginning of the design cycle. Therefore, it is possible to initiate marketing tasks during product
design while simultaneously working on R&D, which is a great benefit to enterprises because it
reduces the product’s launch period.

■ System Integration—Embedded systems need to have a balanced design that encompasses aspects
of product volume, power, and design integration. Therefore, it is important that designers carefully
think over integration and balance between integration and cost during the realization of the system.
In our design, besides the front-end collection module, all other system functions were completed
using a development board, which made it possible to achieve a highly integrated design under the
same design goals. It would be very difficult to realize the system without using a soft core
processor based on an FPGA design approach.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

176

■ Diverse Implementation of Different Modules—The implementation methods are diverse for
different modules. For example, the front-end collection module used an IP core for its realization
while the preprocessing module relied on software and hardware (processing arithmetic functions
based on customized instructions). The palm feature extraction module adopted a combination of
software and hardware and the smart card module used built-in peripherals. Thanks to the SOPC
methodology, it was quite easy to implement these modules using Altera’s development tools.

■ Diversification of Module Combination—After attaining the basic design goals of the design, we
could easily redesign using the existing modules, if needed. For example, using the µC/OS-II
operating system, we added a general packet radio transmission (GPRS) module, and at the same
time managed to run the registration recognition program. Thus, we were able to display two
subtasks with GPRS on LCD, greatly enhancing the application scope of the system.

Further, the choice of biometric feature can be selected using palm print data collection module or
voiceprint module. Or, we can also choose a multi-module biometric feature module, which can
handle both voice and palm print data with enhanced security features.

■ System Upgrade—Using the SOPC approach, it is fully possible to reconfigure the system both at
the beginning and middle of design cycle. If need be, you can also reconfigure the system after
completing the design.

 Intelligent Card Technology-Based Biometrics Identification System

 177

Design Features
The following table shows a comparison of system demands versus SOPC design platform features:

 System Demand Platform Features
Hardware High-speed computing capacity is

required in the extraction and
compression of biometric features
and feature matching.

When integrating a smart card reader
module with the system, the
traditional method of serial port
communication will not help in
achieving a highly integrated system.

When designing system hardware, the designer can use
SOPC Builder development platform to choose between a
hardware acceleration module or a DSP module according
to system demands so as to meet the special requirements
of hardware acceleration.

SOPC design is convenient for management and operation
of peripherals. For our system, the serial port can be
located at the expanded I/O interface easily to realize
interconnection between boards. By doing so, you can
avoid the serial port’s unreliability of long wire connection.
Furthermore, the smart card reader module can be
integrated into the system as a user-defined peripheral to
improve system integration.

Software Currently, the most efficient extraction
and compression algorithms as well
as matching of biometric features
algorithms are all available on PC and
are simulated using simulation tools
like MATLAB. The embedded
implementation will not be as efficient
because of above reasons.
The effective and coordinated
operation of modules requires the
best use of RTOS.

The Nios II processor can be adapted to enhance and
reduce system performance according to specifications. For
example, we can take advantage of the Nios II processor’s
flexibility and clipping of data values when comparing the
advantages of arithmetic with embedded systems to choose
the best option for implementation. Additionally, the FPGA
provides advantages in time sequence and logical
processing. The custom instructions are crucial for high-
speed processing in some applications.

In a Nios II system, the RTOS is very easy to deploy, which
makes it easy for a designer to handle a complex system.
In addition, the multi-processor kernel technology and DMA
functions ensure excellent system performance.

Feature
upgrades
and cost

System developers expect quick
launch of products and a longer life-
cycle to sharpen the competitive edge
and beat rivals. At the same time,
users want the latest features in their
products.

Cost is a crucial element in the
development of embedded systems.
Therefore, lowering the system cost
through design is a key problem for
designers at the beginning of the
project.

Because the FPGA is a programmable device, the time to
market is relatively short. The Nios II processor’s flexibility
coupled with Altera’s integrated development kit, abundant
reference designs, powerful hardware development tools
(SOPC Builder), and software development tools (Nios II
IDE) make it easy to achieve all the expected design goals.
The Nios II processor allows easy upgrade of both
hardware and software in real time.

An FPGA-based system design integrates processor,
peripheral, memory, and I/O interface to lower cost,
complexity, and power consumption.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

178

Conclusion
Referring to the design requirement documents provided in the contest, we summarized our system
design in the following table:

Design
Phase Category Score Examples

5 The design adopts two tasks of RTOS: high PRI of major task is the
processing of biometric features the subtask is the LCD display.

4 Design uses a DSP algorithm. The palm print recognition uses AOI-
orientated algorithm of the lab and I2DPCA feature-based
recognition algorithm. Voice print recognition adopts FFT transforms.

3 Design uses greater than 70% LE/memory utilization (refer to
compilation report LE/memory utilization which are 92% and 84%,
respectively).

Complexity

2 Design uses more than two masters on Avalon® bus (DMA
utilization).

5 Design realized customized peripherals and customized instruction
on the same chip. These included customized peripherals
idt71lv424, I2C control and customized peripherals floating point
instructions.

Design Concept

Functionality

2 Design connects more than eight peripherals on SOPC bus.
Design
Implementation

Completeness 5 Design fulfills complete software implementation and hardware
demonstration.

Documentation

Completeness

5 We submitted an integrated design document with diagrams and
complete description of the final design.

Throughout this paper, we have described the convenience of using the Nios II processor and an SOPC
design approach for embedded designs. Using tools like the Quartus II software and SOPC Builder, as
well as embedded debugging software, gave us great confidence while accomplishing our design.

Altera provided us with an excellent design approach—SOPC design based on the Nios II processor and
an FPGA as well as popular design tools—Quartus II software and SOPC Builder. At the same time,
Altera and many third-party providers supplied plenty of debugging software. We made good use of
these tools in our design, which shows our design strength.

Early on in the design cycle we needed to be careful in formulating our design so that we could solve
problems with a clear mind. A strong careful beginning also helped avoid problems and is a good design
technique. It is natural that we would still encounter some problems, but a solution to these problems
enables a ‘great leap’ in reaching the design goals. Of course, this maturity towards problem solving
comes from being exposed to many design approaches and experience.

There are many ways of implementing the design and a specific implementation depends on the design
target and ease of implementation. Do abstain from trying to realize all functions in software owing to
your familiarity with the C programming language. Also, your familiarity with VHDL may make you
overlook publicly available IP resources. Make sure that the SOPC design based on Altera FPGAs calls
for a simplified design and emphasizes the idea of system analysis design in an embedded system. This
approach is not to be confused with module design, which is a necessary requirement. This is the trend
of embedded design today.

The quality of a design team is very important. Good coordination between team members is important
to accomplish increasingly complex embedded design systems.

 Real-Time Driver Drowsiness Tracking System

 179

Second Prize

Real-Time Driver Drowsiness Tracking
System

Institution: School of Electronic and Information, South China University of
Technology

Participants: Wang Fei, Cheng Huiyao, Guan Xueming

Instructor: Qin Huabiao

Design Introduction
Our real-time drowsiness tracking system for drivers monitors the alertness status of drivers during
driving. The system judges whether the driver is distracted or dozing, and monitors the driver’s
continuous working hours, vehicle speed, and other information. When the system finds extreme fatigue
or other abnormal conditions with the driver’s behavior it alerts with a voice warning.

Drowsy driving is an invisible killer for drivers especially while driving on highways. An amazing fact
derived from a large number of traffic accidents is that about 20% of traffic accidents are due to drivers’
drowsy driving. In addition, drowsy driving is the reason for 22%-30% of severe traffic accidents
resulting in death, ranking it as the top of the cause list. So drowsy driving is undoubtedly very
dangerous for traffic security. Chinese and international vehicle manufactures are all busy in designing
drowsy-driving monitor devices. Most of them have deployed advanced test technology combining
embedded systems and intelligent control technology to design their drowsy driving monitor systems,
so as to reduce traffic accidents caused by drowsy driving. Our system was designed for the same
purpose.

This design adopts the Altera® Nios® II soft core embedded processor and combines image processing
and mode identification functions to complete the design of the whole system. We have also used
Altera’s Cyclone® FPGA to build the necessary peripheral circuits. Taking advantage of the unique self-
defined instruction mode of the Nios II processor, we have deployed pure hardware mode to realize
image processing algorithms, which greatly improve the system’s real-time performance, accuracy and
reliability.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

180

The system uses a camera to capture the driver’s image, and makes a collaborated analysis to the image
information using the processor and an image-processing module before dispatching data to the Nios II
processor. The system judges whether the driver is distracted or dozing, and takes appropriate action.
For example, it issues a voice warning immediately when the driver is about to doze off. In addition, the
system can monitor the driver’s continuous driving hours and driving speed. In this case, if the driver
has been driving continuously, for example, for five hours or more and/or the driver is over the speed
limit set by road management, the system will send appropriate warning signals. Further, the system
can also record the driver’s status, driving hours, speed and vehicle status and store this information as
evidence in case of a traffic accident. In this way, the system can monitor the driver’s status in real-
time, restrict driver’s mistakes while driving, and effectively prevent serious traffic accidents caused by
drowsy driving.

The system, which is based on the Altera system-on-a-programmable-chip (SOPC) concept, utilizes the
rich logic resources of the Cyclone FPGA to implement complex system-level functions while
integrating the Nios II soft core processor. When compared to traditional DSP designs, our SOPC
design approach simplifies design complexity, simplifies debugging, and derives a scalable system. The
SOPC approach also makes system maintenance and upgrades easy when required.

The system can be used on long distance coaches, trucks, and cars.

Function Description
The following functions comprise the real-time drowsiness tracking system for drivers:

■ Judge driver alertness based on the inputs received during day and night driving conditions and
deliver the information to the Nios II processor for further processing

■ Capture the driver’s image in real time, then process and analyze it to judge whether the driver’s
eyes are open or closed or if he is dozing. If the driver is found dozing while driving, a warning
voice signal will be sent.

Due to the strict real-time performance requirement of the system, we implemented the image-
processing algorithms in hardware. The implementation difficulty and robustness of the algorithm will
have to be comprehensively studied when choosing the algorithm. The basic image processing
algorithm can be realized in the following three steps (for a detailed algorithm flow, see Figure 1):

1. Face-Zone Positioning—Pre-process the original image of the driver to determine the zone of face
and capture it. In this way, the image zone, which needs further processing, can be shrunk to speed
up the processing. In addition, this technique also lightens the influence of a complex background
for face feature judgment.

2. Eye-Zone Positioning—Determine the position of eyes in face zone, and capture driver’s image
eyes zone for further processing.

3. Eyes Open/Close Judgment—Analyze the open/close status and winking frequency of the driver’s
eyes to determine whether the driver is distracted or dozing.

Figure 1 shows the image processing algorithm flow.

 Real-Time Driver Drowsiness Tracking System

 181

Figure 1. Image Processing Algorithm Flow of Real-time Drowsiness Tracking System
for Drivers

Image Collection

Image Grayscale
Extraction

Confirm Head Zone

Y

Y

N

Search Face Zone

Capture Face Zone
Image

Search Eyes Zone

Confirm Eyes Zone

Capture Eyes Zone
Image

Judge Eyes Status

N

Performance Parameters
The following table shows the correct judgment rate testing.

Test
Scenario

Sample
Number

Correct
Judgment

Threshold
Value

Correct
Judgment Rate

Notes

Day 80 54 1000 67.5%
Night 60 43 1100 71.7%
Uniform
Background 80 54 1000 67.5% Day

Complex
Background 80 50 1000 62.5% Day

The following table shows the program response time.

Transmitting
Time of One-
Frame Image

Head Check
Module

Processing
Time

Head Check
Module

Processing
Time

Head Check
Module

Processing
Time

Total
Response

Time

33.3 ms 2.56 ms 2.56 ms 0.27 ms 80 ms

The image collection module includes camera and external SRAM. We have used the digital, color
CMOS image sensor OV7620 from US-based OmniVision as the image collection device. The OV7620

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

182

is a 300k pixel image sensor that is compact, affordable, powerful, and easy to use. The sensor provides
high quality digital images with a 10-bit dual-channel A/D converter, which meets the system’s
resolution requirements. In addition to being a CMOS image sensor, the OV7620 also features the
following items:

■ 326,688 pixel, 1/3-inch sensitive area, VGA/QVGA format.

■ Supplies color and black/white image data in interlace and line scan mode.

■ Supports output digital format: YCrCb4: 2: 2, RGB4: 2: 2 and RGB original image data.

■ Outputs 8- or 16-bit image data in CCIR601, CCIR656, and ZV interface mode.

■ Configurable through internal registers to meet the application image requirements.

■ Output window can be adjusted from 4 x 4 to 664 x 492.

■ Automatic gain and white balance control, 1 - 500 times automatic exposure range.

■ Multiple adjusting functions such as brightness, contrast, gamma correction, and sharpness.

■ Operates from a single 5-V supply, power rating of < 120 mW, standby power loss < 10 uW.

Because the OV7620 outputs 8-bit wide data, the external SRAM is based on the IDT71V424 device
that has the same data width as the OV7620. The IDT71V424 buffers the driver’s image. The
IDT71V424 is a 512-Kbit SRAM device with a read/write period of 10 ns, which meets the system
requirement.

Design Architecture
Figure 2 shows the system hardware design.

 Real-Time Driver Drowsiness Tracking System

 183

Figure 2. System Architecture of Real-Time Drowsiness Tracking System for Drivers

32-Bit
Nios II

Processor

General-Purpose I/O

Tri-State
Bridge

Data

Inst

JTAG
Debug Module

Timer

I2C Controller

Head Check
Module

Custom
SRAM

Controller

Gray Scale
Signal Custom

SRAM

Camera

Eye Check
Module

Eye Judge
Module

DMA Controller

Tri-State
Bridge

JTAG Connection
to Software Debugger

EP1C6Q240

Flash
Memory

SRAM
Memory

Buttons,
LEDs,

Switches

Custom SRAM
Write Module

Custom
SRAM
(Spare)

Figure 3 shows the software flow.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

184

Figure 3. Software Flow of Real-Time Drowsiness Tracking System for Drivers

Design Methodology
This section describes the hardware and software design.

Hardware Design of the System
The hardware design consists of the OV7620 control module, the read/write control module of the
external SRAM, and the hardware realization of the relevant image processing algorithm (core part).

OV7620 Control Module
We configured the OV7620’s internal register with the serial camera control bus (SSCB), to change the
camera-operation mode. The SCCB bus, which complies with I2C Bus specifications, is a popular bus
mode used by image sensors, currently. The SCCB bus includes two signal lines, SCL and SDA, which
represent the clock and serial data I/O, transmit start, address, stop and read/write data commands.

The OV7620 outputs a 27-MHz synchronization clock with a 320 x 240-resolution image data at 30
frame/second speed. Therefore, it is quite difficult to implement a system at such high data speeds when
extracting images by the Nios II processor directly. To solve this problem, we developed an
independent OV7620 control module with I2C Bus control using the C programming language to

 Real-Time Driver Drowsiness Tracking System

 185

configure the camera and read/write the OV7620’s control registers. In this way, we can avoid using the
SCCB bus. As far as the Nios II processor is concerned, image collection can be realized just by sending
start and configuration commands, waiting for the completed signal return from control module, and
storing data in external SRAM.

First, the OV7620 is initialized and configured by camera control module via the SCCB bus to operate
as a sensor with QVGA format (320 x 240), 30 frame/second, 16-bit, YCrCb4: 2: 2 digital video signal
output, default image saturation, brightness and contrast, AGC, and white-balance control. Then the
frame synchronization signal VREF, line synchronization signal, and pixel clock signal PCLK,
generated by OV7620 are received and are referred to when writing data to external SRAM.

External SRAM Read/Write Control Module
Saving the image data collected by the camera to the external SRAM is a major system design
challenge. The image-processing algorithm used by the system has a strict specification with regard to
image quality. Further, when we save images in external SRAM, due to cable crosstalk and noise from
other components, many transmission errors could occur during SRAM read/write operations.

To solve these problems and enhance system precision, we reduced the system clock from 48 MHz to
30 MHz. Our tests have shown that the system makes almost no mistakes when reading and writing to
SRAM at lower clock rates.

As referred to earlier, the pixel clock output by the camera is at 27 MHz. Since the PCB is compact and
mounted on a vehicle, even pixel data observed with a 500M-sample logic analyzer appears to be
unstable under such a high frequency, let alone the pixel data extracted using the FPGA. Therefore, we
decide to configure the camera as a QVGA sensor, 16-bit output, ignoring color difference signal and
extracted brightness signal only. In this way, the actual pixel output frequency of the camera gets
reduced to 6.75 MHz, and then we can extract stable pixel data using the FPGA.

The SRAM control module, written in Verilog HDL, judges when the data signal is valid according to
field synchronization, line synchronization, and pixel clock signal output by the camera, generates the
CS, WE, and address signals needed in SRAM writing, and writes pixel data to the appointed SRAM
address. Because the Nios II processor and our control module control SRAM, we wrote a multi-path
noise suppressor program to assign control signals to SRAM.

Hardware Realization of the Relevant Image Processing Algorithm (Core
Part)
The image-processing algorithm of the design was realized in hardware. Using Verilog HDL, all
hardware modules were developed and attached to the Avalon® bus as the Nios II processor’s
peripherals. Each module has its own register and task logic sub-module. The Nios II processor calls the
DMA controller to transmit different image data to the three SRAM-based algorithm modules using the
following process:

1. The Nios II processor starts the DMA controller, transmits the whole image to the first module
(the face check module), responds to the interruption signal from the module after it starts
running, and writes operating result from the module.

2. The processor enters the result of the face check module into the second module (the eye check
module), starts the DMA controller again, inputs face data, writes the operating module data,
finds line position of the smallest point and judges the position of eyes.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

186

3. The processor enters eye data to the third module (the eye-complexity calculation module) via
DMA controller. This module outputs the ultimate eye-complexity calculation results to the
Nios II processor for judgment.

In the above operation, the threshold values of several operating data in algorithm hardware module are
entered by the program in the Nios II processor. These threshold dates were obtained through actual
tests while running the system.

System Software Design
The software design comprises camera control and invoking of algorithm modules. The code flow is
shown in Figure 3. The flow is as follows:

■ The system software first invokes init_button_pio() function to set up a user interrupt service to
start the camera control program after a button-interrupt response.

■ The function init_camera() initializes the camera and sets its working mode by writing data to
camera register.

■ The function camera_sent() sends control signals to the camera to send image data.

■ The program writes camera data to SRAM in SRAM control module, and then enters the algorithm
module.

■ The function DayCheck() judges whether it is day or night according to the external input and
modifies the hardware input parameter with this value.

■ The function HeadCheck(), EyeCheck() and JudgeEye()are three key hardware modules that invoke
the following subfunctions, respectively.

■ PhEnable(address) is the write reset signal for entered module address parameter.

■ Sram2Dma_io(sram_start,data_length,ph_address) invokes the DMA controller, and enters
data_length long data to algorithm module address of ph_address from the SRAM address of
sram_start.

■ Values exchanged between each module are selected according to the output result of DayCheck()
function. When set to night conditions, the output MAX_DATA of head check module is selected as
the driver’s head starting position, and MIN_DATA as the driver’s head ending position. This is
reversed in a daytime situation. The EyeCheck() function selects the smallest point as eye position
based on the day/night entry value, and it is set to the second point at night, and third point at
daytime. In addition, the complexity threshold in JudgeEye() is also modified according to the
day/night entry.

■ The function SendWarning() controls the lamp according to the judging value. The lamp is on and
sends warning if the driver’s eyes are closed, and it will be off when the driver’s eyes are open.

Our design debugging process proceeded as described below:

Early-term—System programming, algorithm research. We made the plan, specified the functions
realized in this plan, and partitioned the functions separately as to be realized in hardware or software
modules. We collected the camera materials, researched image identification algorithm, and adopted the
most appropriate scheme for the design.

 Real-Time Driver Drowsiness Tracking System

 187

Mid-term—Write program, implement tests. This area was divided into three parts:

1. Camera control—Read and writer registers via I2C Bus using the Nios II processor and enter the
camera output image to PC for observation and analysis. Adjust the focus, analyze the image
quality and brightness, and make preliminary plan on algorithm parameters and threshold figures.

2. SRAM read/write—By means of image comparison by the camera and recovered image from
SRAM, verify the read/write logic and final clock frequency.

3. Algorithm modules—The algorithm plan adopted in this design comprised three modules. A certain
number of images were selected, and were divided into two parts: eye open and eye close.
MATLAB simulations were made on each modules to confirm the operation results and generate
ModelSim-simulated .txt document and hardware processed .bin document. Compile HDL files
and make time sequence simulation on documents generated by MATLAB in a ModelSim
environment. Then download .bin document to flash storage, read image data (content of .bin
document) to SRAM by invoking the HAL function, simulate the output data of the camera, invoke
DMA to transmit data to run in hardware, and use SignalTap® II to observe the resulting data.

Then, we compared the two simulation results with hardware data output, debugged, and selected the
appropriate thresholds.

Late-term—Combined adjusting. Because each part provides image data to the next module in mid-
term, each module ran under normal mode under the condition that the image data has met the
requirements of the lower-level module. We debugged the system hardware under bright and dark light,
day and night conditions in a complex environment to determine the threshold parameters.

Design Features
The design features are as follows:

■ System image processing adopts a pure hardware approach that relies on parallel processing and
pipelined technology. Compared to the DSP system that completes corresponding processing
algorithms based on serial instructions, our system greatly reduces the speed of image data
collection and processing, which meets the real-time requirements of the system.

■ During the processing and judging for the image information, multiple modes of identification
algorithm were adopted comprehensively, which made image processing flexible. This approach
enhanced system accuracy and reliability.

■ SOPC Builder not only provides abundant intellectual property (IP) resources and parameter
selection, but also supports user-defined IP. This design approach helped us to realize the algorithm
using the hardware description language method and enabled us to define the IP of the algorithm as
special instruction via self-defined instruction mode. We used this approach to invoke software
modules when implementing repeated operations during image processing and thus reduced system
processing speed.

■ The Nios II system based on an FPGA offers extra design capability and extensibility, which can be
used to adjust the algorithm complexity and balance the robustness and real time performance
according to application requirements. We can also use this flexibility to load or remove input and
output modules and other peripheral devices according to application requirements, such as an on-
board entertainment module, anti-theft module, and GPS positioning module.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

188

■ This design adopts DMA as transmission mode, thus ensuring data input data of one pixel in a
clock cycle, which remarkably speeds up data transmission. DMA transfers save almost 75% of
transmission time when compared with using the Nios II processor for transmission. In addition,
DMA does not utilize any bus resource. Therefore, we could use the Nios II processor to implement
other functions at the time of DMA transmission.

Conclusion
The Nios II soft core processor represents a brand new concept in embedded design and overturns many
of the traditional embedded system design concepts. The three-month contest provided us with a better
understanding of this design approach.

Based on the Nios II processor as its core element, the embedded system design platform features
remarkable flexibility. SOPC Builder provided us with abundant peripheral resources. The fact that we
could write our own peripheral modules freely by adding self-defined logic was of crucial importance to
us. For instance, in our real-time drowsiness tracking system for drivers, the I2C bus module that
controls the camera and the module implementing the image processing algorithm were all integrated in
the Nios II processor and managed by the Nios II processor to be the peripheral of Avalon bus. Using
self-defined logic, instead of writing logic modules that are independent of the Nios II system, could
speed up the design flow and improve system compatibility.

The advanced debugging tools embedded in the Altera system impressed us a lot as well for it give us a
big help in system design. Compared with the general logic analyzer instrument, the SignalTap® II
embedded logic analyzer is more flexible and stable. The key difference was in that we could observe
the floating situation of internal signal in the FPGA, and debug the logic compiled by ourselves in an
intuitive mode. Besides, we often found a certain logic module worked normally in a single synthesis
but failure occurs when it was synthesized with other logic modules. LogicLock™ technology solves
this problem well. The powerful design and debug tool made the designing easier and more convenient.
For us, the biggest improvement in the Nios II processor is the introduction of the integrated
development environment (IDE) which provides a unified visualized interface for program, debug, and
download operation. Thanks to this IDE, there was no need to memorize the complicated compile, link,
and download instructions.

It is a big challenge for us to write the image-processing algorithm operated on the PC as a hardware
module and integrate it into the Nios II system. Although the Real-time Drowsiness Tracking System
for Drivers in this text is only a rudimentary application that needs further enhancements, it is a basic
design that inspects driver’s alertness in driving. In addition, the excellent upgradeability of the Nios II
processor will make it easy for us to improve the algorithm and optimize the system in the future.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 189

Third Prize

High Aberrance AES System Using a
Reconstructable Function Core
Generator

Institution: I-Shou University, Department of Computer Science and Information
Engineering

Participants: Chen JianHong, Liu Yu, and Chia-Hau Shiu

Instructor: Ming-Haw Jing

Design Introduction
Cryptography is an essential part of communication or information security. The Advanced Encryption
System (AES) was launched as a symmetrical cryptography standard algorithm by the National Institute
of Standard and Technology (NIST) in October 2000. Rijndael provides the AES algorithm’s
architecture, and the algorithm’s operation modules are based on finite field mathematics. Coding
contains the SubBytes, ShiftRows, MixColumns, AddRoundKey, KeyExpansion modules, and the
corresponding transcoding module. We use a look-up table (LUT) for the SubBytes and KeyExpansion
modules. This LUT, which is referred to as an S-box, takes up 256[x]8-bit memory.

In addition to containing the original AES specification, a flexible architecture is needed to produce
additional inputs that can change to irreducible polynomials, Affine transform matrix, and round
number parameters. This algorithm design makes AES decryption impossible even with the golden key,
and its variability can be expected to increase by more than 10 million times. This design needs the
software and hardware to cooperate, and takes advantage of the FPGA architecture to realize a highly
variable AES quickly.

Using the SOPC Builder tool we were quickly able to set up parameters to generate the Nios® II control
modules required for development. The Nios II microprocessor uses a RISC core, and can be combined
with a variety of peripherals, custom instructions, and custom hardware accelerators, including
algorithm logic operation, bit (group) operation, data transfer, flow control, condition instruction, and so
on. You can program these hardware accelerators as function calls in the C or C++ languages. Our
system adds fundamental components based on finite field mathematics and implements a high-speed

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

190

calculator and functional modules in software. We also performed special functions with custom
instructions and used the GNU C/C++ compiler and Eclipse IDE.

Design Concept
We used hardware-software co-design to complete the test platform for the AES software and hardware
data. Using the test platform, we were able to properly assess AES hardware and the control program
module operation as shown in Figure 1.

Figure 1. Co-Design of Software & Hardware

2iA

i2A

Today, many designers use a fixed irreducible polynomial for higher efficiency and a smaller footprint
of the AES intellectual property (IP). For long-term use, however, the fixed irreducible polynomial has
been proven to make the system’s golden key obvious, thus increasing the decryption rate of
confidential files. The decryption methods include side channel, time channel, and power side channel
attacks. Some systems can even be decrypted by an inside job. To overcome these deficiencies, we
designed an AES with high variability that can generate a LUT in real time through parameter input to
provide a dynamic AES core. See Figure 2. The input variables of this system are different from that of
the traditional AES, which cannot decrypt the encrypted document. See Figure 3.

Figure 2. AES with High Variability

Hardware (FPGA Base)

Nios II Development Kit, Cyclone Edition

Encryption / Decryption

Software (PC Base)

Diversified AES Parameter

Generator

 M: Affiner Transform Matrix
 Num: Round Num
 C: Constant
 F(x): lrreducible Polynomial

Data In:Image

Data in Data Out

Multi-Parameters & Data
Show Result

Parameters

 High Aberrance AES System Using a Reconstructable Function Core Generator

 191

Figure 3. Traditional AES Cannot Decrypt the Encrypted Document

Based on Rijindael’s AES theory, we divided the functions into encoding and transcoding. The
operation module for both parts is shown in Table 1 (each module is described in later sections). The
generation of the S-Box form (see “Implementation Method” for more information) is the key to using
AES theory. However, this generation must largely use finite field mathematical operations, such as
multipliers and squarers. These operations can be realized in software, so we can generate the required
S-Box and (Inv) S-Box. See Figure 4. This group integrates the operation modules of the AES
encoding/transcoding functions and requires the inclusion of four main components: (Inv)SubBytes,
(Inv)ShiftRows, (Inv)MixColumns and (Inv)AddRoundKey. You can implement the functions using the
Nios II software or by using hardware to accelerate the complete flow of encoding/transcoding. For
instance, the (Inv)ShiftRows and (Inv)MixColumns components are created in hardware.

Table 1. Encoding/Transcoding Algorithm in Rijndael’s AES Theory

Encryption Decryption Our
Implementation

AddRoundKey
for Round=1 to N-1
SubBytes
ShiftRows
MixColumns
AddRoundKey
end for
SubBytes
ShiftRows
AddRoundKey

InvAddRoundKey
for Round=1 to N-1
InvShiftRows
InvSubBytes
InvAddRoundKey
InvMixColumns
end for
InvShiftRows
InvShbBytes
InvAddRoundKey

Bold : Software or
Hardware

Italic : LUT

The architecture of the AES operation core can be divided into three types (see Figure 4):

■ Hardware component—Operation efficiency for accelerating the AES.

 Operation component of the AES theory: (Inv)ShiftRows, (Inv)MixColumns.

 Selection of the demultiplexer for encryption/decryption.

■ Operation of the dynamic table—Generation of (Inv)S-Box and (Inv)Key Expansion.

■ Software operation—Establishment of the dynamic table, system combination, core component
control and operation control, data flow control, and interface control.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

192

Figure 4. Architecture of the AES Operation Core

On Chip

Nios II
Processor

On-Chip
Debugging

DMA
Controller

Avalon
Bus

Data Memory

Multiplexer

(Inv)SubBytes

(Inv)MixColumes

Instruction Memory

SDRAM Controller

UART

PIO

Ethernet 10/100

M4K RAM

Sets of LUTs

SW

(Inv)Shift Rows

(Inv)AddRoundkey

Hardware

Diversified AES Application Scope
The application scope includes:

■ Secure wireless communications.

■ Protect network routers.

■ Secure electronic financial transactions.

■ Secure video surveillance systems.

■ Encrypted data storage.

■ Secure network storage systems.

Target Users
The target users include:

■ Manufacturers of wireless network bridges and wireless network adapters that support the AES
security mechanism.

■ Manufacturers of encrypted VPN products or firewalls.

■ Manufacturers of encrypting chips for mobile phones.

■ Manufacturers of private network hardware or high-capacity hardware array.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 193

■ Manufacturers of ATM secure-exchange devices.

■ Manufacturers of portable communications or storage systems.

■ Manufacturers of private sensor network devices.

Nios II Development Kit
We used the Nios II Development Kit, Cyclone™ Edition, which contains the Cyclone EP1C20FC400
FPGA, to implement our design. The board features 36-Kbyte RAM, 1-Mbyte SRAM, 16-Mbyte
SDRAM, 8-Mbyte flash, 10/100 Ethernet PHY/MAC, two serial ports (RS-232 DB9 port), and so on.
See Figure 5.

Figure 5. Nios II Development Kit, Cyclone Edition

Function Description
This section describes the functionality of the system.

Expected Functionality
To implement this design we:

1. Used the Quartus® II software version 5.0 to implement the various APUs in VHDL for a high-
variability AES system.

2. Designed LUT generator and co-processors.

3. Built the entire AES system using Altera’s system-on-a-programmable-chip (SOPC) design
methodology.

4. Completed real-time transmission of plain text and cryptograph using a 115.2 Kbps UART
interface.

5. Completed 128-bit AES encoding/trancoding with SOPC Builder’s C++ compiler.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

194

6. Supported a multi-variable input interface to generate different AES encoding/transcoding
processes.

Implementation Method
We used the following implementation method:

1. Completed various APUs designed by VHDL for a high variability AES system.

a) According to the AES theory, three input methods can generate a high-variability AES
system: the irreducible polynomial, the Affine transform matrix, and round numbers.

b) The APUs were coordinated according to the input requirements of the multiplier, squarer,
S-Box, KeyExpansion, (Inv)SubBytes, (Inv)ShiftRows, (Inv)MixColumns, and
(Inv)AddRoundKey.

c) Compiled VHDL code in the Quartus II software version 5.0, and completed functional
validation.

d) According to the specification of Federal Information Processing Standard Publication
197, completed simulation of the software with BCB version 6.0, and validated it.

2. Designed the LUT generator and co-processor.

a) Analyzed the operation structure of SubBytes and InvSubBytes according to input
parameters, and generated the key required by S-Box and (Inv)S-Box form in the software.

b) Downloaded and stored the generated S-Box, (Inv)S-Box, and Key to the development
board.

3. Built the system using the Altera® SOPC Builder tool.

a) Initiated data sampling using the Cyclone FPGA standard functions.

b) Added to the user’s customized PIO. See Figure 6. The setting of each PIO is shown in
Table 2.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 195

Figure 6. Add User’s Customized PIO

Table 2. Customized PIO Specification

Name Size Direction Purpose
Aes_data0~15 8 bits Bidirectional Transmit encrypted data
aes_ctl_out 32 bits Export Control external AES components

4. Defined UART baud rate: set as 115.2 Kbps, no parity, data bit=8, stop bit=1; as shown in Figure 7.

Figure 7. Communication Setting of UART Component

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

196

5. Completed 128-bit AES encoding/transcoding process with the SOPC Builder C++ compiler.

a) Compiled GUI interface program with the SOPC Builder C++ compiler.

Figure 8. Provide User’s Input Parameter Interface

b) Based on the Federal Information Processing Standard Publication 197 specification, we
completed the software test platform, which validated the whole system, as shown in
Figure 9.

Figure 9. Comparison of Specification (Up) & Test Platform (Down)

Round
Number

Start of
Round

After
SuBytes

After
ShiftRows

After
MixColumns

32 88 31 e0
43
f6
a8

5a 31 37
30 98 07
8d a2 34

2b 28 ab 09
7e ae f7 cf
15 d2 15 4f
16 a6 88 3c

a0 88 23 2a
fa 54 a3 6c
fe 2c 39 76
17 b1 39 05

04 e0 48 28
66 cb f8 06
81 19 d3 26
e5 9a 7a 4c

d4 e0 b8 1e
bf b4 41 27
5d 52 11 98
30 ae f1 e5

19 a0 9a e9
3d f4 c6 f8
e3 e2 8d 48
be 2b 2a 08

d4 e0 b8 1e
27 bf b4 41
11 98 5d 52
ae f1 e5 30

Input

1

Round Key
Value

c) According to the integration of the test data, testing system, and the test pattern provided
by the specification of Federal Information Processing Standard Publication 197, in Figure
10, the numbers marked in red are the result of the encoding/transcoding process.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 197

Figure 10. Encoding/Transcoding Results by Test Pattern Input

6. Supported a multi-variable input interface to generate different AES encoding/transcoding
processes, as shown in Figure 11.

Figure 11. Multi-Variable Input Interface

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

198

Performance Parameters
The key function of the system while operating on this group is to perform the graphics for
encoding/transcoding. Because AES is a symmetric-password system, the method for encoding and
transcoding exception sequences is almost the same and the analysis of the following performance
parameters lists only the encoding process. The graphics encoding in this group is a 256[×]256-pixel, 8-
bit bitmap. Because the system can process 128-bit data each time, it needs 256[×]256[×]8 ÷ 128 =
4096 times encoding in all.

Four encoding functions—including SubBytes, ShiftRows, MixColumns, and AddRoundKey—are used
during every encoding process, with each function needing a great number of memory read/write
actions (in this group, data memory is set as external SDRAM). The performance analysis is shown in
Table 3.

Table 3. Performance Analysis During Encoding

Memory
Function Description Read

(Times)
Write

(Times)

Expected Number
of Cycle (Times)

Load this encoding data from memory (128 bit) 16 16 400
SubBytes 48 16 3200
ShiftRows 16 16 5600
MixColumns 16 16 5600
AddRoundKey 32 16 2400
Write Encoded Data to Memory (128 bit) 16 16 400
Flow and Peripheral Control 0 0 2000

Experimenting with minimum and maximum round, the minimum round is 3 and the maximum round is
11.The numbers shown in bold in Table 3 must be operated repeatedly in accordance with different
rounds, and the time of the repeated operation is Round-1. We have arranged the expected time and the
actual (experienced) time in Table 4, and added the completed PC software simulation time for
comparison. It is obvious that the Nios II/s, the standard processor, outperforms the PC software port.

Table 4. Time Analysis

Round
Number Expected Time (s) Use Time

(s)

PC
Software

Simulation
(s)

3 [400+(3200+5600+5600+2400)×2+400+2000]×20ns ×
4096 � 2.98 3 4

11 [400+(3200+5600+5600+2400)×10+400+2000]×20ns ×
4096 �13.99 13 27

Design Architecture
This section describes the design architecture.

System Design
Figure 12 shows the system design diagram.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 199

Figure 12. Diagram of System Design

Define System

Processor
Component Library

Peripheral
Component Library

Custom Instruction

Composing CPU

Selecting & Composing
IP & Peripheral

Block-Based
Connection

Generation

SOPC Builder
Interface

EDIF Document
HDL Source
Document
Testbench

Assembling &
Installment

User Customized
IP

Quartus II

Development Hardware

Verification &
Debugging

Altera
FPGA

On-Chip
Debugging

GNU Pro Compiler

User Code
Program Library

RTOS

Development Software

JTAG Interface

C Header
Document

User Library
Peripheral Driver

IP Module Group

AES Algorithm
Implementation

Generate SOPC
System Define System

GNU Pro Tools

Download

We created the user link library of the system. See Table 5 for each program.

Table 5. System Program Description

Function Name Function Description
Load Parameters Load Parameters from PC Port
Receive Image From PC Load Pictures from PC Port
Encryption Encrypting
Decryption Decrypting
Send Cipher to PC Return Completely Encoding Buffer to PC
Send PlainText to PC Return Completely Decoding Buffer to PC
Text Device Test Device
Change Mode Switch Automatic Mode and Debug mode
Print Source Buffer Return Gradually Source Buffer to PC
Print Cipher Buffer Return Gradually Encoding Buffer to PC
Print Plaintext Buffer Return Gradually Decoding Buffer to PC

Figure 13 shows the system diagram.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

200

Figure 13. System Diagram

Hardware Design
This section describes the hardware design. We first created the multiplier, including the product and
modulation. See Figure 14.

Figure 14. Multiplier Design Diagram

. . .

...
...

For the product: Computing the result (c with 15 bits) of two 8-bit operations that are multiplied by b.
See Figure 15 for the theory, and Figure 16 for the waveform diagram.

Figure 15. Product Design Module

 High Aberrance AES System Using a Reconstructable Function Core Generator

 201

Figure 16. Product Simulation Waveform Diagram

For modulation: Input into C (15 bits), rank-reduced according to different f (x) (where f (x) must be an
irreducible polynomial), the result is M (8 bits). The hardware circuit is shown in Figure 17, where f7
and f6 denote the top bit and secondary top bit of f (x). These values are input at one port of this layer’s
AND gate.

Figure 17. Modulation Hardware Circuit Diagram

a1
4 m
x7

in
st

AN
D

2
a1

3
in

st
8

X
O

R

a1
4 m
x6

in
st

1

AN
D

2
a1

2
in

st
9

X
O

R
m

x7
in

st
19

A
N

D
2

in
st

24

XO
R

a1
4 m
x5

in
st

2

AN
D

2
a1

1
in

st
15

X
O

R
m

x6
in

st
16

A
N

D
2

in
st

25

XO
R

a1
4 m
x4

in
st

3

AN
D

2
a1

0
in

st
14

X
O

R
m

x5
in

st
17

A
N

D
2

in
st

31

XO
R

a1
4 m
x3

in
st

4

AN
D

2
a9

in
st

13

X
O

R
m

x4
in

st
18

A
N

D
2

in
st

30

XO
R

a1
4 m
x2

in
st

5

AN
D

2
a8

in
st

12

X
O

R
m

x3
in

st
20

A
N

D
2

in
st

29

XO
R

a1
4 m
x1

in
st

6

AN
D

2
a7

in
st

11

X
O

R
m

x2
in

st
21

A
N

D
2

in
st

28

XO
R

a1
4 m
x0

in
st

7

AN
D

2
a6

in
st

10

X
O

R

in
st

27

m
x1

in
st

22

A
N

D
2

XO
R

m
x0

in
st

23

A
N

D
2

XO
R

a[14..0]

mx[7..0]

INPUT
VCC
INPUT
VCC

f7

f6

a 5
in

st
26

For (Inv)ShiftRow: Combine ShiftRow and (Inv)ShiftRow components and send required parts by
multiplexer. Sel=0 is required one for encoding and sel=1 is required for decoding. See Figures 18 and
19.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

202

Figure 18. (Inv)ShiftRow Design Diagram

SR

InvSR

0

1

Data Out
[127..0]

sel

Data In
[127..0]

Figure 19. (Inv)ShiftRow Simulation

For (Inv)MixColumns: combine and design MixColumns and InvMixColumns components, generate
different Word_MixCs in accordance with input different MixColumns Polynomials; the Word_MixC
exports encoding/transcoding data at the same time it is encoding for sel = 0, transcoding for sel=1. See
Figures 20 and 21.

Figure 20. (Inv)MixColumns Design Diagram

MC

MC

MC

MC

Date In
[31..0]

0
1

sel

Date Out
[31..0]

Inv

 High Aberrance AES System Using a Reconstructable Function Core Generator

 203

Figure 21. (Inv)MixColumn Simulation

Software Design Flow
The function flow is as follows:

1. Automatic software simulation—Create an S-Box and complete encryption/decryption simulation
and image encryption/decryption process. See Figure 22.

Figure 22. Automatic Software Simulation Flow

2. Hardware encryption/decryption—The RS-232 interface is used to pass parameters and data and to
receive the data after verification. See Figure 23.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

204

Figure 23. Hardware Encryption/Decryption Flow

Set Communication Port

Send Parameter

Send Image

Hardware Encrypt Hardware Decrypt

Hardware Encrypt & Decrypt

Receive Image

Show Image

See Table 6 for the description of the software pseudo-code and function.

Table 6. Software Pseudo-Code

DAES Encryption DAES Decryption
Load_Parameter
Generate_Encrypt_SBox
Key_Schedule

for Image_rowcount=1 to row
for Image_colcount=1 to column

AddRoundKey
for round=1 to N-1

SubBytes
ShiftRows
MixColumns
AddRoundKey

end for
SubBytes
ShiftRows
AddRoundKey

end for
end for

Load Parameter
Generate_Decrypt_SBox
Key_Schedule

for Image_rowcount=1 to row
for Image_colcount=1 to column

InvAddRoundKey
for round=1 to N-1

InvShiftRows
InvSubBytes
InvAddRoundKey
InvMixColumns

end for
InvShiftRows
InvShbBytes
InvAddRoundKey

end for
end for

See Table 7 for the software function description.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 205

Table 7. Software Functions Description

Coordinate All Required Functions
Basic function:
Multiplication Multiplication that operates on finite field
Inverse Inverse element that operates on finite field
Matrix Inverse Inverse Matrix that computes Affine Transform Matrix
Image Process Sub-program of image process
Debug RS232 communication Sub-program sent by UART interface
AES function:
Load Parameter Load parameter, user can change source parameter
Generate_Encrypt_SBox Generate_Encrypt_SBox: Required S-Box for generation of

encryption
Key Schedule Key is expanded for the use of AddRoundkey
Create Encrypt S-Box Table that creates S-Box
Create Decrypt S-Box Table that creates (Inv)S-Box
Key Expansion Key that creates each Round
Encrypt Encrypted sub-program
Decrypt Decrypted sub-program

The key functions are described as follows:

1. Parameter input—The user can input parameters and increase variability function. See Figure 24.

Figure 24. Parameter Input Interface

2. Data verification—Provide complete encryption/decryption process. See Figure 25.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

206

Figure 25. Data Verification Interface

3. Image process—Load a 256[x]256, 8-bit image and perform encryption/decryption process. See
Figure 26.

Figure 26. Image Process Interface

 High Aberrance AES System Using a Reconstructable Function Core Generator

 207

4. Debug communication—Based on RS-232 communication handle, the hardware returns the data to
make debugging easy. See Figure 27.

Figure 27. Communication Debug Interface

Design Methodology
This section describes the design methodology.

Realization Method
The realization method includes the following steps:

1. Definition of the AES system—Including the processor, memory, and peripheral components.

2. Generation of the system—Generate the document using the SOPC Builder tool.

3. Design the hardware—Build the required components with VHDL code, and incorporate, compile,
and simulate the circuits.

4. Design the software—Use the Nios II integrated development environment (IDE) to generate the
related headers and drivers, write the application program, and compile it as an .elf executable file.

5. Simulation—Simulate with the ModelSim software tool. If there is a problem, return to step 2 to
modify the system design software/hardware.

6. Verification—Perform verification by downloading the software/hardware with the JTAG port onto
the RAM of the Cyclone development board.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

208

7. Test—Produce test results by combining the user interface software of the PC port development
board and by delivering huge volumes of data for measurement.

Design Process
The SOPC design approach provides an integrated software/hardware with an IDE including logic part
(IP design), storage part (RAM), and computation core (CPU or DSP). The process of our system
design is as follows:

■ Selection of algorithm and core—We were able to handle the entire AES operation process with the
Nios II processor by adopting Rijndael’s AES algorithm. We added input variables to generate the
dynamic form that is stored on the on-chip RAM.

■ Selection of the IP and design of custom IP components—Our design uses general-purpose IP
components, whose detailed explanation files can be downloaded from Altera’s website.
Additionally, we developed custom IP components according to the requirements of the system
design and connected it onto Avalon® bus.

■ Design of the software/hardware system—Software and hardware modules are used together in this
design. This method creates challenges because the development of the software involves the plan
and assignment of hardware resources, and is dependant upon system performance. However, the
SOPC Builder and the Nios II IDE tools provide us with an integrated software/hardware design
development system, making it easy to accelerate the design process.

Design Features
■ Dynamic Form Generation—Based on the three input variables, the dynamic form of the S-Box

and MixColumns Matriqs are generated and stored in RAM. Thanks to the FPGA architecture, we
can use the Nios II processor to control the operation component of each AES, and perform data
move, access, and operation with the Avalon bus. In this way, we have successfully implemented
the high variability AES password system on the FPGA.

■ 100% Realization of Software/Hardware—The software/hardware platform of the Diversity AES
project was successfully designed in this group, greatly improving the security of the AES.

■ Personalized Demo Program—In this group, the whole Diversity AES process is shown at the
software port by AutoRun, which enables the user to understand quickly the design operation.

■ Connecting Three Customized IP Functions to the Nios II Core—Because the Nios II processor is
flexible, we were able to design the PIO of external communication according to the design
requirements. This means we were able to combine (Inv)ShiftRow, (Inv)MixColumn, and
demultiplexer to accelerate the efficiency of the AES encoding/decoding operations in this group.

■ Solution to UART-Related Envelope-Packet Transmissions—Because the UART IC on the
development board connects with a 25-MHz quartz oscillator, frequency errors may occur. As a
result, a few envelope packets may not be delivered during a large volume data transmission.
Therefore, we reduced the envelope packets in this group, making them suitable for transmission
and successfully solving the problem.

 High Aberrance AES System Using a Reconstructable Function Core Generator

 209

Conclusion
During Altera’s 2005 Nios II processor competition, our design group divided the design tasks into
system integration, hardware development, and software design as follows.

■ System—The convenience of the Nios II IDE and the SOPC Builder tools gave us the flexibility to
realize the design quickly on a prototype machine, which accelerated the development process.
Through this competition, we have learned the process of consumer-electronics product
development. The SOPC design approach reduces the cost of manpower and material resources
during development. Because of this, we believe that the design approach will become popular in
the future. While we did not add many components, this competition made us appreciate the
potential of more system integration capabilities. Additionally, we hope that Altera can provide a
variety of demo board demonstration programs that will enable interested students to quickly grasp
the development process of FPGA designs.

■ Hardware—In this competition, we used a top-down design approach and planned the complete
design of the hardware in the beginning. This meant that a set of data stream rules needed to be
established at the start of the planning stages. These rules eliminated problems during the design
stage, allowing the project to be completed on time. Teamwork became an integral part of this
contest. Although the Quartus II tool was easy and flexible to use, there were design issues that
required experience; for example, using different frequencies while accessing the RAM. In
conclusion, this competition provided us with an important opportunity to learn about teamwork
and problem-solving, understand system development, and resolve challenging design questions.

■ Software—We developed the necessary software interface, stressing communication and message
exchange with the Nios II processor. We completed this task with the RS-232 interface, and learned
a lot about message transmission. We adopted the SOPC Builder C++ tool to create the software
design for the Window’s interface. We used it as a verification tool and managed to perform Nios II
communication debugging for the phase test. We hope to learn more about SOPC design in the
future!

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

210

Third Prize

Wireless Multifunction Digital Storage
Center

Institution: Beijing University of Industry

Participants: Chen Zhuo, Dai Nan, and Fang Dongyu

Instructor: Xu Xiangdong

Design Introduction
With the ever increasing use of data-transmission networks, data is increasing in geometric progression,
and the traditional storage network architecture cannot cope. To deal with the massive amounts of data,
data storage architecture is evolving to centralize data and features expandability, adaptability and
reliability. This evolution now serves large enterprises and system management enterprises (SMEs).
Interestingly, studies now show that many customers set aside a significant amount of their IT budget to
handle storage. A wireless multifunctional digital storage center can efficiently provide mass data
storage.

A wireless multifunctional digital storage center has centralized data and features a separate OS for data
management and network performance enhancement. This cost-effective design meets the requirements
of SME data transmission and storage. The system provides wireless network access applicable to
wireless office environment and enables network access through an RJ-45 network interface. This setup
makes it convenient for users accessing the WAN and LAN ports to set task allocation for the device.
The shared document database on user management ensures the safety of stored data; the operation and
management tasks controlled by web interface, LCD, and keypad make it easy to use the device. For
experienced users who are familiar with Linux commands, the device provides a Java command-line
mode for remote control.

Our design is based on an Altera® FPGA and the Nios® II processor, as well as Altera development tools.
We applied system-on-a-programmable-chip (SOPC) design principles and used the Microtronix tool to
migrate the uCLinux OS and integrated wireless data transmission storage, user management, FTP
server, web server, Windows document share directory service, remote upload/download, and remote
control functions. The uCLinux OS handles dispatching and management tasks of the system and
ensures expandability of the product design. For enhanced performance, users can upload software to
update the device in the software layer.

 Wireless Multifunction Digital Storage Center

 211

Our design is based on embedded SOPC technology that integrates Ethernet, compact flash card,
SRAM, and PIO interfaces with the system to facilitate the functional modules integration with the
whole system. The design uses a TCP/IP connection to connect to the Internet directly to perform data
storage/transmission and system control based on the user’s requirement, simplifies data
upload/download, and facilitates document management. See Figure 1.

Figure 1. System Flow Chart

Start

Initialization

Receive

Receive

TCP Packaging

IP Packaging

´Transmit Data

End

Receive IP
Packaging

Unpack IP Package & TCP
Layer

Unpack TCP Package &
Send to Application Layer

Web Server Processes
Messages

Function Description
The system contains the following parts:

■ Multi-User Storage Management System—The operation rights of managers and common users
are kept separate, and are validated with passwords. This mechanism has enhanced device data
security and improved resource utilization.

■ Management & Control Base on Web Interface—To establish a web service function, the uCLinux
OS can read the device state information any time. At the same time, users can control the storage
center with a web browser using the common gateway interface (CGI) protocol. Common users
can only access functions such as examining system status and remote download, whereas
managers can perform additional functions, such as user addition/deletion, open/close of Samba
and FTP services, FTP and Samba directory setting, restart of system, and disconnection of FTP.

■ FTP Function—This function establishes FTP service on uCLinux OS, which is the same
principle as a Web server function.

■ Windows Shared Directory—This function helps the user to migrate Samba software onto the
uCLinuxoperating system and realizes file sharing using the SMB communication protocol. It also
helps the user view the shared directory of the product on the network.

■ Local LCD and Keypad Control—By interfacing the LCD and keyboard, users can read and
control the local device status using the PIO signal lines of development panel. Our system can
automatically receive the DHCP IP address distribution, and the IP address can be set manually by

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

212

the user if no DHCP server is configured. You can also read the IP address that has established the
FTP connection in real time, as well as the download task name and status.

■ Wireless Network Access—The product can be used in a wireless office environment with a access
point (AP) supplied by Huawei Corporation.

■ Java Telnet Application (JTA)—This application should not be confused with the Java Transaction
application programming interface (API). This application is a client tool that integrates telnet and
ssh, and gives advanced users a command-line mode for the device based on the Linux OS.
Furthermore, mobile devices that support Java can carry out access and control, thereby improving
the expandability of the device.

Performance Parameters
CPU: Nios II/f Core
JTAG DEBUG LEVEL: LEVEL 1
Small LCD refresh time: 0.1 µs
Small LCD response time: 1000 ns
LCD Size: 128[x]64 lattice
Time interval for reading information on LCD system: 5 seconds (on a time-sharing basis)
Average memory utilization: 75%
Capacity of CF card: 16 MByte (extendable)
Size of uCLinuxoperating system: 2012 KByte (kernel)
File system size: 3,612 KByte
Nios II kernel frequency: 50 MHz
Nios II kernel Mps: 23 MIPS (Dhrystones 1.1)
Number of consumed logic unit: 6,409 / 10,570 (60 %)
Pin utilization: 229 / 427 (53 %)

Design Architecture
Figures 2 and 3 show the design architecture.

 Wireless Multifunction Digital Storage Center

 213

Figure 2. Design Architecture

Figure 3. System Operation

Local
Arean

Network
(LAN)

Handset,
PDA

Internet

Terminal Computer
Connected to

Internet

Computer
Based on

Wired
Network

Computer
Based on
Wireless
Network

Wireless Multifunctional
Digital Storage Center

Router

Wired Transmission
Wireless Transmission

Design Methodology
Altera’s SOPC Builder improves the working efficiency of the design. Using SOPC Builder, we easily
integrated the flash memory, Ethernet, compact flash card, and SDRAM modules together with the IP
kernel provided by Altera. In doing so, we avoided having to design peripheral circuitry, which greatly
reduced the design time and cost.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

214

Our product design is based on the uCLinuxoperating system that handles Samba (network sharing
software of Linux and NT system), ftpd (software supporting FTP service), httpd (the simplest web
server software), Boa (web sever software that can support authentication and CGI), uncgi (analysis
software of webpage form), and wget (download software based on HTTP and FTP protocols running
on Linux’s operating system).

We created the user management and system setting functions using CGI forms, shell scripts, standard
expressions, and the file system.

We can control the LCD by a set of keyboard commands. Users can read the main menus of the data
analysis module and all subfunction menus using up/down keys. The keypad and LCD provide the
interaction between the user and designed module. See Figure 4.

Figure 4. LCD & Digital Keyboard

The LCD control program and the keypad was compiled with the Nios II integrated development
environment (IDE) and uCLinuxdevelopment plug-in provided by Microtroni. We used the
multithreading technique in the uCLinuxoperating system to implement keystroke processing
operations, display screen refresh, and read different system state operations under different rates. In
doing so, we took full advantage of the dispatching function of the operating system and omitted the
more complicated information exchange among function modules to save CPU resources.

With a view to enhance functional features of the system at a later date, we have not fully addressed
features such as the security of CGI and shell script programs, the remote control of handset WAB, the
handling of independent memory space for multi-user operation, as well as personal ID authentication
of the IC card. Moreover, concerns on the stability of migrated software will require a validation process
that will take a long time to process.

 Wireless Multifunction Digital Storage Center

 215

Design Features
With an SOPC design methodology, our design integrates SDRAM, Ethernet, compact flash, and flash
control interface modules. This methodology helped us to simplify circuit design and reduce costs.
Compared to the available memory devices in the market, our product offers a variety of advantages
such as wireless network access, hierarchical user-management mode, reliable security, and multi-
control mode.

■ Wireless Network Access—Adapting the device for wireless AP mode, users can easily access an
office network or wireless network, and conveniently move from one network to another.

■ uCLinuxOperating System—Because of the open source nature of uCLinuxoperating system, you
can easily adopt many software modules into the design. In doing so, you can add the relevant
software modules to expand the device functions and update system software.

■ Easy & Maneuverable Control Mode—We can easily manage data and users by deploying the
web browser interface without the need for storage drives. You can do this even with the PDA and
smart phones that can access network to carry out remote setting of the device. The local LCD and
keypad can monitor the device in real time, directly manage the system using with control panel
on storage center even when the Internet is unavailable.

■ Hierarchical User Management & Virtualized Storage—By adopting a hierarchical user-
management system, in which the administrator and normal users are provided with separate
rights and different control capabilities for the system, you can enhance system security. The
process works as follows: users log into the storage center via a password authentication system,
which is adopted by different levels of administrators to prevent unauthorized access.

■ Remote Download Based on FTP & HTTP—The user can access the LAN or WAN where the
device is located, and can download data remotely and store into the device.

■ JTA (Java Telnet Application)—Any mobile equipment supporting Java can be used to control the
equipment, which makes for easy expansion of storage applications.

Conclusion
In this design competition, we gained considerable knowledge of the Nios II processor and Altera’s
development tools, and realized the benefits brought by the SOPC design concept and understood the
development features of Nios II processor.

The building block system of SOPC design enables flexible custom peripherals to suit different needs;
Altera has provided drivers for most of the peripherals, which reduces the difficulty of hardware design,
shortens development cycles, increases reliability of design, and helps those unfamiliar with IP core
development to integrate system modules. Furthermore, we have access to many resources via the
network, which greatly expanded our scope and depth of development, reflected the flexible and
comprehensive features of embedded development, and significantly reduced development cost.

With the Nios II embedded processor and uCLinuxoperating system, many Linux resources can be
adapted into applications, which eliminates repeat development of application software, thereby
simplifying software development and reducing cost.

In the development process, however, we also found some disadvantages of the Nios II processor
application and SOPC development. For instance, the development board lacks expandability; we hope

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

216

that in the future the development board will allow the user to control more pins, and that it will
integrate more interfaces.

Thanks to Altera and Cytech for providing this competition as a learning opportunity for us.

 Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation

 217

Third Prize

Nios II Soft Core-Based Double-Layer
Digital Watermark Technology
Implementation System

Institution: China University of Science and Technology

Participants: Lian Jiezhen and Ye Qingfeng

Instructor: Liang Xiaowen and Li Yuhu

Design Introduction
With increasingly powerful functions available from digital imaging software, the reliability and
authentication features of digital images are gradually decreasing. Therefore, reliability and
authentication are important for a wide range of digital image applications. Digital watermarking
provides digital copyright protection, ensures integrity, and assists during digital transmission. The
technology guarantees the reliability and authentication of digital images. We can expect to see more
usage of digital watermarking in the future.

Today, digital watermarking algorithms are generally realized in software. However, such algorithms
have low execution efficiency and suffer from not being robust enough to withstand hacking.
Watermarking technology implemented in hardware can overcome these weaknesses. Additionally,
hardware-based watermarking offers high reliability, imperviousness to hacking, and high-execution
speed. Thus, hardware-based watermarking can be deployed safely in applications that need high
reliability and speed. Given today’s advances in FPGA technology, we can implement hardware-based
watermarking technology quite efficiently. In particular, with its outstanding performance and
numerous design advantages, the Altera® Nios® II embedded soft-core processor is the first choice to
implement a hardware-based watermarking system.

Application Scope
Our project is designed to monitor devices in public places, aid in forensics, provide traffic-offense
monitoring identification of medical images, and important news pictures.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

218

Target Users
Our design targets users with special requirements regarding the credibility of digital images, such as
government departments, traffic offense governing agencies, courts, hospitals, and the media.

Why We Chose the Nios II Processor for Our Design
We chose the Nios II processor for the following reasons:

■ Being completely customizable, the Altera Nios II processor has high performance, and supports
flexible product development designs at low cost.

■ The Nios II processor’s customizable instruction set can accommodate complicated arithmetic
operations and can accelerate algorithm processing, which provides faster execution than
implementing these operations in software.

■ A configurable design enhances system performance. Implementation of a watermarking algorithm
requires a custom instruction set, DCT/IDCT hardware accelerator, and so on. The configurable
design approach enabled us to achieve our performance goals in a short time.

■ The MicroC/OS-II and real-time operating system (RTOS) in the Nios II integrated development
environment (IDE) are very user friendly.

■ Based on the Nios II processor, we can enhance system performance by adjusting the Avalon®
switch fabric. This technology supports multiple parallel data channels to achieve high throughput
in watermarking applications.

■ Implementing the processor, peripherals, memory, and I/O interface in a single FPGA can reduce
the total system cost.

■ Rapid system implementation. We could go from the original concept design to system realization
in a short time because of using the Nios II processor. Additionally, we could easily upgrade the
hardware and software on site. The flexibility allows us to design products in line with the latest
specifications and equipped with new features.

■ Unmatched levels of flexibility. The Nios II processor features complete customizability and
reconfiguration. For example, it supports three processor cores, peripherals, the Avalon switch
fabric, custom instructions, and hardware acceleration. All of these functions can be implemented
using commonly available Altera FPGAs.

■ Powerful combination of Altera intellectual property (IP) functions and FPGAs. Using IP optimized
for the FPGA architecture, we can redesign standard functions easily, rapidly customize hardware
peripherals, focus on design partitioning, and improve our design knowledge.

■ Integrated development kits. The Quartus® II software, SOPC Builder, ModelSim®-Altera software,
and SignalTap® II embedded logic analyzer provide a complete set of test and debug tools for
hardware design. With the Nios II IDE, it is possible to simplify software design and all software
development tasks, such as program editing and debugging.

 Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation

 219

Function Description
While designing the system for this project, we gave consideration to whether the implementation was
feasible and practical. The two-layer digital watermarking algorithm features IPR protection,
authentication, creation identification, and other functions.

Function 1
This design implements both IPR protection and creation functions, and delivers the following
advantages:

■ Adds watermarking to the image without affecting the nature of the original image.

■ Provides unique watermarking that is difficult to counterfeit.

■ Allows you to generate a large number of watermarks.

■ Supports authentication and watermarking identification without the original image.

■ The watermarking can resist the JPEG compression algorithm with a high compression ratio.

■ The watermarking offers strong resistance to ordinary geometrical transforms, such as low-pass
filtering, sharpening, and scaling.

■ Several watermark effects can be applied simultaneously, thereby protecting the intellectual
property rights (IPRs) of the owner and purchaser.

■ The algorithm is secure from strong attacks, such as collusion attacks and extra watermarking, to
authenticate images effectively. Where images have been modified, we can show the part that was
modified, which helps to distinguish common operations, such as JPEG compression, from
deliberate image modification.

The image processing algorithm should be the first design objective when creating digital image
watermarking technology in hardware. We designed a two-layer digital watermarking algorithm for this
design contest. In our algorithm, we selected the secure Gaussian random sequence as the watermarking
signal on the first layer. Additionally, to make the watermarking more secure, the watermark data is
generated by a unique key that generates a unique watermark. The second layer watermark is based on a
look-up table algorithm for the authentication of the image’s integrity and reliability. Finally, we
simulated the algorithm with the MATLAB software to verify whether the algorithm correctly realized
the functions required for two-layer watermarking.

Function 2
We used the Nios II development board to implement the watermarking algorithm. A PC performs real-
time tasks for proper operation of the algorithm. In practical applications, the detection algorithm cannot
be implemented on a development board. Instead, it is more likely to be implemented on a PC.
Therefore, we needed to design the host system and a user-friendly graphical user interface that features
all control and detection functions. We designed the GUI to be very user friendly and to enable users to
intuitively see and operate functions of the two-layer digital watermarking system.

To implement the watermarking algorithm, we needed to create the communication system between the
Nios II development board and the host system. Because the USB interface did not work well for us in
practice, we used a JTAG UART serial port instead. Communication was based on the host-based file
system module in Nios II version 5.0 and operational instructions for files from the C-language library.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

220

Because we needed to simulate the algorithm in early stages in the MATLAB environment, and because
the detection algorithm involves complex mathematical computations, we decided to use the MATLAB
software to design the host control and detection system as well as the GUI.

In our design, you can display the original image, modified watermarking image, added watermarking,
and detected watermarking simultaneously, to facilitate easy comparison on the same display. At the
same time, using multiple buttons, users can easily perform operations such as AuthWatDect,
OriImgDect, Start, Add, and so on. We designed these buttons to have corresponding functions on the
host system. For example, pressing the Add button to add images first invokes the corresponding
function on the host system to generate a 128-bit key. Pressing the Start button notifies the Nios II
system to start the watermark computation.

The host system mainly detects authentic watermarking and its integrity on a PC. Pressing the
AuthWatDect button starts detection of authentic watermarking. The system obtains threshold values,
after calculating the relevant peaks, to judge whether a watermark has been added and the type of
watermark. Pressing the OriImgDect button starts the integrity detection based on data values from a
look-up table. If the image was not modified, the detection image in the look-up table is white. If the
image has been modified, the modified part in the detection image is black.

Function 3
A core function of the system is to create the two-layer digital watermarking algorithm with the Nios II
soft core processor. The system comprises two functions, which are implemented as follows:

■ The digital cameras supporting external monitors are connected with the right interface to allow
high-speed data transfer. This process ensures a reliable, practical watermarking implementation.
We used the JTAG UART for data downloading and appropriate switches to ensure communication
with mainstream digital cameras and hosts at high speed.

■ Extend the functions of a digital watermarking system with peripheral components. During the
insertion of a watermark, the text “watermarking…” is displayed on the LCD. When a watermark is
successfully added, the text “it is great” appears, making the system more humanistic.

Performance Parameters
This section describes the system’s performance parameters.

Fixed-Point Arithmetic
Because of the real-time requirement of the application, we relied on Nios II fixed-point processing, and
implemented the arithmetic to handle fixed-point processing to determine the suitable value
arrangement, ensuring computing efficiency and accuracy. In the design’s arithmetic calculations, the
RGB signals in the original image pixel are set to 8-bit data. To cater to negative value components that
might be produced during the YCbCr conversion to color space, we set the Y, Cb, and Cr as 9-bit (-256
to +255) data. Similarly, the two-dimensional DCT conversion results fall in the range of -2048 to 2047,
and the quantified value by the quantizer falls within the range of -128 to 127. The LUT design is set to
256 digits.

Optimization of Division
Because the Nios II processor has no special arithmetic instructions, division operations are performed
by successive subtraction, which consumes a lot of computing resources. Although we encounter fewer
division operations in arithmetic computation, e.g., in normalized operation of partial weight factors, the
division operation still has a certain influence on performance. Therefore, we tried to compute these

 Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation

 221

operations in an optimized way to approximate values through binary shifting and module arithmetic.
Because, shift arithmetic can be performed with other operations, we can improve the computing speed
while ensuring accuracy. This method also helps conserve system resources.

Using Parallel Processing with the FPGA & Nios II Processor
A lot of multiply-accumulate (MAC) operations are applied during discrete cosine transform (DCT)
conversion and during the addition of Gauss serial watermarking with copyright protection. Using the
Nios II processor, we can adjust system performance using the Avalon switch fabric, which supports
several parallel data channels and helps to implement image watermark processing.

Memory Management
The Nios II processor offers unprecedented flexibility through its customizable and reconfigurable
architecture. It features a powerful combination of optimized IP for the FPGA system architecture,
which allows us to add SDRAM, SRAM, and flash using the SOPC Builder tool. We use these tools to
implement a large scale, real time system with abundant memory resources.

Communication Between the Development Board & Host PC
The JTAG UART interface must only be used for communication because the UP3 board needs to use a
special USB-Blaster™ data cable for downloading. Because the UART interface has a slow
communication speed, we adopted several measures to avoid a time-penalty for using the Nios II
processor for image processing, and to utilize CPU resources more efficiently. For example, the image
that needs to be processed is read in eight lines of data each time and sent back to the host PC after
processing. Then, we read the next eight lines of data, and repeat the previous steps. The host PC and
Nios II processor are linked via the JTAG UART interface, which greatly influences the interactive
speed between them, and limits the whole image processing speed.

A new function provided in the Nios II processor version 5.0 also facilitates file output. Selecting the
software component in the syslib engineering attribute, and then choosing Add this software
component in the Altera host-based file system, you can read/write host PC files in debug mode.

To implement the watermarking algorithm arithmetic, we integrated the first and second layer
watermarking. Figure 1 shows the watermark insertion arithmetic block diagram. Figure 2 explains the
watermark extraction arithmetic block diagram. Our performance tests showed that combining two-
layer watermarking has no influence on an individual layer’s performance. However, this combination
allows you to determine the sequence of multiple watermarking without any interference, in case they
were added to an image.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

222

Figure 1. Arithmetic Insertion of Double-Layer Digital Watermarking

Figure 2. Arithmetic Extraction of Double-Layer Digital Watermarking

In Figure 3, the host system sends images that need to be watermarked to the Nios II processor via a
USB-Blaster communication interface. After applying double-layer digital watermarking, images are
sent back to the host. Normal operations are handled by the host PC in real time. Arithmetic testing
cannot be performed in the Nios II system, but can be done in the host PC. Therefore, we designed an
easy-to-use host system that features all control and testing functions.

Figure 3. Digital Watermarking Flow Chart

JTAG
UART

Binary Image

Grayscale
Image

PC Host
Nios II
System

Adding Double-
Layer Digital

Watermarking

JTAG
UART

Nios II
System PC Host

In Figure 4, external SDRAM has more memory space in the Nios II hardware system, and the SRAM
can be used for faster storage and access. Therefore, we employed multi-master bus technology to

 Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation

 223

install SRAM to handle faster data requiring rapid storage, process some commands, and variables of
operating system. On the same bus, we can use the peripheral 8-Mbit SDRAM as data cache.

Figure 4. Nios II Hardware System

Nios II CPU

SRAM SDRAM JTAG
UART PIO

Avalon Bus for Data Address

Avalon Bus for Instruction
Address

Design Methodology
Our design methodology involved the following steps:

1. Design the arithmetic algorithm and improve simulation to enable the Nios II processor to execute
parallel processing fully.

2. Propose a system hardware block diagram and simplify the design flow by deploying powerful IP
cores for easy design configuration.

a) This task involved communication between modules that have different interfaces. Using
Altera’s system-on-a-programmable-chip (SOPC) design technology, it was easy to create
the control interface for these modules, avoid extra peripheral circuits, and reduce overall
system design costs.

b) We could add the IP cores of SRAM, SDRAM, and flash memories directly. However,
this method can lead to bus collusion. Therefore, we designed a bus-multiplexing module
in HDL using the Quartus II software. Based on this design, three signals ensured a non-
collision operation, which highlights the powerful flexibility and control made possible
through the user-defined configuration of the Nios II processor. It also illustrates the
tremendous advantage of the Nios II soft core, and highlights the fact that the combination
of the Nios II processor and an FPGA meets the future market demands perfectly.

c) We chose the CPU based on available hardware resources. Considering the actual situation
of the EP1C6, we used it as the standard CPU for the design, which was sufficient to meet
our needs. This selection illustrates the advantage of using an embedded CPU like the
Nios II processor. When you choose a CPU in a hard-core development board like the
ARM MCU, it cannot be changed. Therefore, this design approach does not provide
design configuration flexibility, leads to low design re-use, and has limited application
usage when compared with the Nios II processor.

d) Because we could not use the USB interface for high-speed data transmission, we chose
JTAG UART serial communication IP core to communicate with the host PC. We selected
the LCD IP core to display prompt information on the LCD. Using the IP cores can save
significant time and cost when implementing peripheral circuits and interface protocols.
Additionally, components can be easily added or removed, and component parameters can

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

224

be changed. By using the Nios II processor, we can fully accomplish the configuration of
an embedded system from CPU to peripheral circuits, as planned.

e) Because the current SOPC Builder library does not have a built-in way to target the flash
parameters of the UP3 board, we needed to use a separate Flash Programmer User Guide,
which was provided in the installation directory of the Nios II processor, to program the
flash memory. After debugging and compilation, we successfully programmed the flash
memory to perform the whole FPGA data configuration.

3. Employ the Nios II IDE for software development.

a) On a stand-alone PC, we used a C program to compile and debug software.

b) We built new modules in the IDE, finished control of the LCD display by programming a
module available in the LCD template. We also needed to debug the main program in IDE
mode. First, we needed to burn the hardware into the FPGA, then we programmed the
peripherals. During debugging, we thought that utilization of the Nios II software was not
sufficient. “Run as Hardware” needed to be recompiled before being written in hardware
language for each iteration, so the debugging process was very slow.

c) For the read/write of the host-PC file system, we used the Host Based File System in the
Nios II processor version 5.0 in the Debug As Hardware mode. When we tried the Nios
software version 1.1, it failed. We think it would be useful if the Host Based File System
could be performed in a “Run As” mode condition.

d) The program can be run under SDRAM and SRAM, separately. To conserve data in case
of a power failure, we can burn the program into flash memory by using a flash
programmer. Then, we reset the address of the CPU to flash memory, and we can
automatically configure the FPGA after power up. Then, the program and files can be read
into SRAM and SDRAM easily.

4. We designed a host system with test functions and a user friendly GUI, which intuitively shows the
effect after Nios II processing.

In this design, the algorithm arithmetic of adding watermarking is performed on the Nios II
development board. Normally we do this addition using a host PC in real time. In a practical
application, the test arithmetic cannot be performed on the development board, but we can do it on a
PC. Therefore, we needed to design a host system with total control and testing functions, and a user-
friendly graphical user interface (GUI). Using this GUI, users can intuitively operate and implement the
double-layer digital watermarking system.

Because the pre-simulation of arithmetic calculations was performed in the MATLAB software, and the
testing arithmetic involves many complicated mathematical operations, we designed the host control,
testing, and GUI using the MATLAB software.

The host system is mainly designed for testing watermark copyrighting and integrity. If you need to test
watermark copyright, click AuthWatDect. Following this command, the threshold is obtained after
computation of relevant peaks and judging whether watermarking has been added; if so, the program
determines which watermarking was added. If you need to test the watermark integrity, click
OriImgDect to test the LUT; if the image is not modified, the testing diagram of the LUT is white,
otherwise, black spots appear on the modified parts.

 Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation

 225

Design Features
To perform two-layer digital watermarking, we designed the system using a local restructuring concept
to come up with a strong anti-interference capability for the watermarking function. This process also
made it possible to inspect the watermark effectively without the original document. Additionally, the
embedded basis of two-layer watermarking algorithm allows us to distinguish, reliably, if images have
been modified, and when modified, those areas are marked. We can deploy the watermarking algorithm
in a digital image application and have it processed in the frequency domain. The algorithm uses a
visual masking model for extra robustness. The two-layer watermarking algorithm also features the IP
protection and production authentication functions.

The Nios II processor aids in algorithm implementation in the following aspects:

■ To evaluate the execution of algorithm, we need to look at the DCT transformation, random
number generation, and local weighting factor calculations in the visual model. Thanks to the
powerful processing capability of the Nios II CPU, we can add user-defined instructions and a
hardware accelerator (such as a DCT/IDCT hardware accelerator). Additionally, the Nios II
processor’s broadband converting architecture supports multiple parallel data channels to speed up
overall processing.

■ A programmable system is necessary to generate the algorithm according to a hardware-based
digital watermarking system. Therefore, we naturally thought of using an FPGA in our design.
During the design stage, we faced the problems of development costs and technical difficulties. We
were able to overcome these problems because the Nios II embedded soft core delivers better
price/performance and lowers technical hurdles in development. Using the Nios processor we were
able to implement the processor, peripherals, memory, and I/O interface on a single FPGA, which
helped us to reduce the total system cost. Additionally, Altera’s comprehensive developing tools for
the Nios II processor and GUI provided many optimized IP cores, which reduced the software
development cost. Therefore, we were able to pay more attention to the design details and
completed the digital watermarking system.

■ The digital watermarking technology we chose to design is a hot IT technology at present, and will
have a wide application in the future. Altera’s SOPC design approach allowed us to keep the
technology lead in digital watermarking, but also can ensure an early entry into the market with
hardware-based products. In this way, we can reap benefits quickly.

The Nios II soft core processor offers flexibility, which helps make choices between multiple
system setup combinations to achieve optimum performance, features, and cost goals. Using the
Nios II processor in a design allows us to put our products into market faster and prolong the
product lifecycle. According to the varying requirements of our users, the Nios II processor can be
implemented using on-site hardware and we can add software upgrades easily. In this way, we can
make the product comply with the latest specifications, have the latest features, avoid processor
obsolescence, and hold off competition.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

226

■ The two-layer digital watermarking technology software should be created on different Nios II
hardware systems to provide a strong migration capability. The design contest required us to create
the design on the UP3 board. However, we believe the software part of the two-layer watermarking
algorithm can be migrated easily to other FPGA development boards.

Altera has embedded MicroC/OS-II in the Nios IDE, which let us set up RTOS for Nios II
processor applications quickly.

 The MicroC/OS-II RTOS provides portable, modifiable, reducible, real-time multi-task
functions. Therefore, a MicroC/OS-II based program can be migrated to other Nios II hardware
system easily without worrying about the low-level hardware. Additionally, the MicroC/OS-II
program supports all HAL services, and you can use it to invoke the API function in HAL. The
RTOS can run on different processors to provide the same API interface for users.

 Because our algorithm is quite complicated, the multi-tasking operation of MicroC/OS-II
RTOS fully exerts CPU utilization and modularizes the application. When designing
complicated applications, designers often adopt a hierarchical model to make it easy to design
and maintain the software modules. Additionally, the MicroC/OS-II RTOS allows you to split
the application into several tasks, further simplifying the design of the system.

■ We designed the Nios II flow diagram after the overall design and validation of the algorithm. The
key problem was how to implement the design with the Nios II processor better and faster. The
technical support and detailed help files of the Nios II processor enabled us to have a quick start
and rapidly master the programmable design skills. We believe that our two-layer watermarking
algorithm is an optimized implementation.

Conclusion
This contest helped us better understand the Nios II processor. We think the Nios II processor will be
widely used in the future because of its new design methods and modes, especially the SOPC concept,
which is described as follows:

■ The Nios II processor complies with the developing trend of industrial technology—software-like
hardware design. Using the Nios II processor can reduce the developer and material costs, thereby
improving competitiveness. Additionally, the software-like hardware design makes simulation to
hardware easy, reducing hardware design errors.

■ The Nios II processor enhances system robustness, which is an advantage of a single chip solution.
The Nios II soft core and its development platform help the developer to build most of the modules
flexibly. Corresponding drivers can be developed for most of the peripherals used, minimizing
design errors.

■ The Nios II processor helps users to protect their intellectual property. Primarily, we can prevent
reverse engineering when we use the Nios II processor in our designs.

■ The Nios II processor is significant, because it exploits a new, development space for FPGAs
implementing SOPC-based designs. The UP3 board we used uses a Cyclone™ FPGA, and provides
excellent support with a great number of logic units. Additionally, the Cyclone devices’s low cost
and its configurability will push DSP users to use the combination of FPGA and the Nios II
processor for system designs to achieve better performance.

 Nios II Soft Core-Based Double-Layer Digital Watermark Technology Implementation

 227

The success of this Nios II design development was possible due to:

■ The Nios II processor’s excellent hardware scheme, which made it possible to complete the design
with merely a few external hardware parts and allowed us to utilize the development board’s
resources fully.

■ Judicious usage of the Nios II processor’s flexibility helped us to implement the synchronization of
various hardware modules and design software, which sped up the design significantly.

The experience we had from the design is described as follows:

■ When designing with conventional (hard core) processors, the designer needs to pre-plan how to
generate address decode and control signals. Once errors occur during validation, it is very difficult
and complicated to make the necessary modifications. The Nios II processor eases this situation.
You just need to connect the corresponding function module with the FPGA, paying attention to the
interface and timing. Additionally, SOPC Builder provides a lot of parameterized IP and hides a
great deal of initialization details from the designer, such as the UART baud rate, flash timing, and
address line, making it easy to develop the system. The tool also provides complete C language
header files and hides hardware details, which simplifies software development.

■ Abundant peripherals and easy integration. SOPC Builder helps designers design with SOC and IP.
Besides providing many IP cores based on Avalon bus, the tool also supports an open IP integration
environment. The users can easily integrate their IP with SOPC Builder, which protects their IP and
promotes design reuse.

■ The Nios II soft core processor still needs further improvement, however. It is affected by system
design complexity, the FPGA, and some other factors when the CPU wants to run with a stable
frequency. Sometimes the invoked phase-locked loop (PLL) module is not stable enough in the
actual debugging process. The hardware prompt “leaving processor paused” occurs occasionally,
which may be due to variance of the actual frequency from the PLL and that of the marked
frequency. In this case, you could power off to restart the board, or reprogram the hardware a few
times.

■ The tool version and license need to be handled carefully when using the Quartus II software and
Nios II IDE. You need to upgrade if there is a new version of the tool. There is no problem with
hardware settings and hardware during earlier debugging efforts. However, an error always occurs
in the SOPC Builder tool when reading and writing host system files. We wanted to realize it by
means of a JTAG UART. We used version 1.1 of the tool previously, which does not contain the
software component of host based file system. We often failed at the very beginning when we
wanted to operate the host file with the standard C library function, using the example of character
device operation using the string character. Then we upgraded to Nios II version 5.0, which adds
the “filling the file on the pc” module. Its drawback is that it works only in debug mode. We hope
that Altera can address this problem in future versions. In addition, it is better to upgrade the
Quartus II tool to the latest version, 5.0, to avoid licensing problems.

■ When Altera introduced the Nios II soft core processor, abundant documentation was provided on
the Altera web site, ranging from hardware operation and software guides to a many software
routines. Altera also made timely updates. Although there is a big difference between the Nios II
and Nios processors, we solved the general problems by referring to the detailed technical
documents. However, in our opinion, the documentation is not completely reliable sometimes. For
instance, we could have failed if we had followed the guide when we made a flash programmer
with target board. Finally, we implemented it by adding asmi and some other modules. If more
Nios II guidebooks are available in the Chinese language, using the Nios II processor would be
much easier.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

228

Third Prize

Portable Vibration Spectrum Analyzer

Institution: Institute of PLA Armored Force Engineering

Participants: Zhang Xinxi, Song Zhuzhen, and Yao Zongzhong

Instructor: Xu Jun and Wang Xinzhong

Design Introduction
We designed a portable vibration spectrum analyzer based on the Altera® Nios® II soft core processor
and FPGA. The instrument is used in fault monitoring and diagnosis of rotary machines, which are used
in battle tanks, armored cars, and vehicle engines. The operation of these vehicles may be affected by
abnormal vibrations for different reasons, including serious accidents that may lower fighting strength
and productivity. To solve the vibration diagnostics problem, we planned to design a portable vibration
spectrum analyzer. Our instrument can analyze the vibration spectrum of rotary machines such as
engine and gear case in real time.

First, vibration signals are collected by vibration sensor and sent to the FPGA after being processed by a
high-speed A/D converter. Next, we perform digital filtering of these signals using the FPGA and send
the data to the Nios II processor for fast Fourier (FFT) transformation using hardware acceleration,
Finally, the Nios II processor analyzes the spectrum of transfered results and displays the relevant time
domain waveforms and spectrum curves as well as a few major parameters such as major peak value
and major lobe frequency on a color LCD.

Our system can display both time domain waveforms and spectrum curves in real time and store the
required waveform and frequency into flash memory through a key-press action. Playback of
waveforms is also available. By observing the spectrum curve, a technician can zero in on some
abnormal vibration frequency and troubleshoot the faulty condition. In this way, imbalance,
misallignment, and bush fragmentation may be expediently detected. Using the instrument, mechanics
can quickly handle problems and avoid accidents and potential damage to vehicle engines. The systems’
reliable multi-task real-time operating system (RTOS) µC/OS handles management tasks. The 256-
color, 320 x 240 LCD display helps to migrate µC/GUI to the system; the systems’ graphical user
interface (GUI) enables convenient and user-friendly operation. The instrument can be used to monitor
and analyze rotary machine vibrations and thus offer considerable military and economic benefits to
users.

 Portable Vibration Spectrum Analyzer

 229

We chose Altera system-on-a-programmable-chip (SOPC) solution including the Nios II processor for
the following reasons:

■ The Nios II soft core processor is implemented in an FPGA, changing the traditional
microcontroller unit (MCU) plus FPGA system. The device combines control and digital signal
process functions into the FPGA and enables a system on a chip that results in compact designs
with reduced power consumption.

■ The Nios II based system has headroom for system upgrades. Because Nios II is a soft core
processor, you can upgrade the CPU if you do not need to alter the peripheral hardware; in this
way, designers can enhance system performance and prolong product life cycles.

■ The system uses several digital signal processing functions such as FFT and finite impulse response
(FIR). With the matching development environment, we can customize the peripheral intellectual
property (IP) based on Avalon® bus using customized instructions. By doing so, we have greatly
improved the digital signal processing capacity of the system and realized associated logic circuitry
using the FPGA.

In a high-speed digital system, faster signals make a transmission line of a PCB connection, and
therefore signal integrity is impacted because of crosstalk, connection topology of chips, pin distribution
and package, geometric and electrical property of the PCB, and voltage reference panel. Integrating
these high-speed signals into an FPGA can solve most of these problems. In addition, this approach
makes the best use of FPGA resources.

Function Description
The system enters into the wait master display after power up; the display shows design name and
function overview; a prompt to press any key to continue appears at the bottom of the display; on
pressing a key, the system enters master mode.

The structure of system master display is shown in Figure 1.

Figure 1. System Master Display

SAVE

LOAD

SET

NUM

16

Time Domain
Waveform

Frequency
Waveform

Sampling Frequency
Number

Windows
Function

Storage Unit
Choice

f

Function
Switch

Load

Save
Waveform

Storage Unit
Number

Amplitude
Value

Frequency
Size

5 V

2.5 V

0 V

0

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

230

Figure 2 shows the second level menu options.

Figure 2. Second Level Menu Options

The systems’ major functions and their implementation are as follows:

■ Real-time display of spectrum and real-time measurement of main lobe frequency—The real-time
display and measurement of vibration signal spectrum are major functions of the system.
Observation of vibration spectrum will help to detect vibrations that may cause fault or danger,
making it possible to troubleshoot engines. After entering the main menu, the system will
automatically perform FFT for the collected time domain digital signals. Next, these time domain
signals are transformed into frequency domain signals, and spectrum analysis is performed and a
spectrum curve is displayed on LCD. Because we have used a customized hardware floating-point
multiplier to accelerate key algorithms in the FFT, it takes less than 0.1 s for one 512-point FFT.
Because a naked eye can only distinguish 10 frames/s flushing speed, the software FFT algorithm
accelerated by application hardware meets the required system performance for a real-time display
of signal spectrum. To help the technicians, we have designed a real-time display function for easy
display of main lobe frequency.

■ Real-time display and measurement of time domain waveform—The time domain signal waveform
is an important reference for engine diagnostics. To facilitate comparison with frequency and
relevant analysis, the time domain waveform is displayed in real time on the waveform area. The
time domain waveform features amplitude coordinates, from which the amplitude information can
be measured. On the time domain waveform, the peak-to-peak value of time domain waveform
signal is also displayed. Any change in the amplitude of vibration signal can be detected through
observing the peak-to-peak value, helping in easy diagnostics.

■ Storage and playback of time domain and frequency domain waveforms—To facilitate diagnostics
using analysis and review of time domain and frequency domain waveforms, we have designed
storage and playback functions of these waveforms. When any time domain waveform is deemed
useful by technicians, you can press the Save button to store it. While storing, pressing Num button

 Portable Vibration Spectrum Analyzer

 231

changes the storage position. The storage action saves the current waveform and also the peak-to-
peak value and main lobe of spectrum. The system can save 64 frames of waveforms and spectrum
data on flash memory.

■ 9-level adjustable sampling frequency—To improve the frequency resolution of the sampling
signal, you can press the SAM button to set the sampling frequency of A/D controller and set the 9-
level sampling frequency using a 4-bit control word. The sampling frequency is implemented
through a controlling hardware-frequency divider.

■ Hardware-only digital filter accelerates digital signal processing—This system performs
hardware-only digital filtering on collected signals. Three states have been set including, high pass,
low pass, and no filter, selectable through the FIR button. The maximum and minimum frequencies
of high-pass filter and low-pass filter are respectively, multiple values of 0.05x and 0.45y of
sampling frequency. Because we have used a hardware filter, the system delivers excellent real-
time performance. Because the FIR filter time cycle is shorter than the A/D transform cycle, there
is no signal loss or delay. The digital filter uses an FIR algorithm to effectively filter out the
interference noise of the device. The hardware filter uses a 16-tap direct FIR design and the filter
parameters are fixed.

■ Windows settings of waveforms—For the system, we have set two window modes: a rectangular
window, and a Hanning window. Because the system samples 512 points and processes it with
FFT, it is equivalent to rectangular window in the sampling process; for a Hanning window, the
system can restrain side lobe effectively. When time domain signal is obtained, it can weight the
window function. The weighting function of Hanning window is:

)2cos(5.05.0)(
N

nnwH
π−= , 1,,1,0 −= Nn K (2.1)

The button WIN adds a window and the effect is displayed in real time.

■ Customized pulse-width modulation (PWM) peripherals generate standard waveforms for self-
check—By setting the peripheral PWM controller, a square wave signal with set frequency and
pulse width can be generated. Before testing the vibration signal, the square wave signal can be
tested initially so that the system can make accurate detection. The PWM controller based on the
Avalon interface is easily customized and the waveform can be output through a program
controlling the PWM.

■ Migrate µC/GUI to the system for easy operation—To make the display easy to operate, we
transferred the graphic user interface µC/GUI to the system. With the display interface, diagnostics
can be easily made by observing the frequency curve and functions set through buttons.

■ Management with µC/OS Multi-tasking Real-time Operating System—Because the system has
multiple tasks requiring real-time operation, we used an RTOS to manage the tasks. The Nios II
integrated development environment (IDE) provides the µC/OS whch has been used in many MPU
applications. In our system, we have assigned five major system tasks, such as the button scan,
LCD display/refresh, A/D collection, FIR control and flash timing storage.

Performance Parameters
The most important technical issues for the dynamic signal analyzer are frequency range, accuracy, and
dynamic range. The frequency range is the range of frequencies an analyzer can detect. This depends on

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

232

the A/D converter and sampling speed. In addition, this function is also related to the bandwidth of the
modulation-adjustment amplifier filter.

Amplitude-value accuracy refers to the full range accuracy of a corresponding frequency. This
parameter depends on absolute accuracy window flatness and electronic hash level; a typical single
channel’s absolute accuracy is ±0.15~±0.3dB and the matching accuracy between channels is
0.1~0.2dB. The phase error between channels is 0.5~2 [deg].

Dynamic range depends on the word value (digits) of the A/D converter; furthermore, this also relates to
the stop-band attenuation and FFT arithmetic error of the anti-alias filter as well as the background
noise of electronic instruments.

Other major technical issues are described in the following sections.

Input section
Input impedance: Impedance of test instruments without being powered up. Generally, it is about 1-M
Ω, which does not impact testing when coupled with external impedance.

Input-coupled mode: DC and AC.

Input range: the allowable voltage range of input.

Amplitude value error: ±0.1~±0.3dB.

Phase error: ±0.5~±1.0 deg.

Triggering mode: Free running, input signal triggering, signal source triggering, and external triggering.

Triggering level: Enables the operation of instruments.

Section of Analysis
Frequency range: Signal range available for detection.

Sampling frequency: Generally, it is 2.56 x analyzed frequency range.

Sampling points: Number of data points used in FFT operations.

Window function: Weighting modes of window functions.

Average mode: Provides average values of linearism, exponent, and peak value.

Parameters of the System Design
We surveyed the available test instruments in the market, and fixed the major parameters in our system
to be:

■ Frequency measurement range: 0~100 kHz

■ Dynamic range: 60 dB

■ Amplitude value accuracy: ±0.3 dB

 Portable Vibration Spectrum Analyzer

 233

■ Input range: 0~5 v

■ Amplitude value error: ±0.3 dB

■ Phase error: ±0.5

■ Sampling frequency: 788 Hz~200 kHz. This is separated into nine segments: 200 kHz, 100 kHz, 50
kHz, 25 kHz,13 kHz, 6,300 Hz, 315 Hz, 1575 Hz, and 788 Hz.

■ Spectrum resolution: With different sampling frequencies, the resolutions are set at 393.8 Hz, 196.9
Hz, 98.4 Hz, 49.2 Hz, 24.6 Hz, 12.3 Hz, 6.2 Hz, 3.1 Hz, and 1.5 Hz.

■ Time domain waveform range : 0~5000 mV.

■ Accuracy of spectrum major lobe frequency: ±0.5%

■ Sampling points: 512.

■ Windows: RSectangular and Hanning

■ Measurement accuracy of time domain peak-to-peak value: ±3%

■ Time-domain-amplitude value error: ±3%

■ Storage of time domain and frequency domain waveforms: 64 frames

Testing the Measurement Setup
To check our design and validate the test parameters, we carried out measurements for a group of sine
waves, using a signal generator. Next, we changed the waveform and amplitude values to get different
data and analyzed the results. Here is the list of several major parameters.

Experiment instruments:

■ JW—2B DC stabilization voltage supply one

■ GFG—8255A signal generator one

■ XJ4453A digital oscilloscope one

■ Test board one

System Test Solution
The system test solution is shown in Figure 3.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

234

Figure 3. System Test Solution

Experiment environment: room temperature: 24 degrees

Frequency Measurement Range
Measurement of lowest frequency:

Item
Measurement

Times

Set
Value
(Hz)

Measured
Value
(Hz)

Absolute
Error
(Hz)

Relative
Error (%)

1 0.03 0 -0.03 0
2 0.7 0 -0.7 0
3 1.23 0 -1.23 0
4 1.65 1 0.65
5 2 1 1

When the lowest sampling frequency is 788 Hz, the lowest resolution of system is 1.5 Hz, so the error is
comparatively large when measuring low frequency. In our system, frequencies below 1.5 Hz will be
considered as 0 Hz. The error in low frequency collection is due to the deficiency of system resolution.
Therefore, we need to improve the system resolution at a later stage.

When the sampling frequency is 200 Hz, the system can detect waveforms within a frequency range
100±0.4 kHz; considering the resolution, the waveform is deemed as100 kHz.

Accordingly, based on this calculation, we think the frequency range of the system meets the design
objectives. Further, in real applications, mechanical shocks contain low wave frequencies, making it
possible to use our instrument without impacting measurements.

Spectrum Major Lobe Accuracy
Considering the massive data we need to process, for brevity’s sake we show only data for the highest,
lowest, and middle frequencies.

 Portable Vibration Spectrum Analyzer

 235

Method: Input the sine signals generated by the signal generator into the detection system.

Sampling frequency: 778 Hz Resolution: 1.5 Hz

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 36.8 36 0 0
2 24.1 24 0 0
3 11.7 12 0 0
4 14.5 15 0 0
5 8.8 9 0 0
Average 0 0

Sampling frequency: 200 kHz Resolution: 393.8 Hz

Item
Measurement

Times

Set Value
(Hz)

Measured
Value (Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 39.6 K 40.165 K 171 0.43
2 51.4 K 51.978K 184 0.36
3 21.0K 21.263K 0 0
4 5.03K 5.119K 0 0
5 60.38K 61.428K 652 1.08
Average 0.332

Sampling frequency: 25 kHz Resolution: 49.2 Hz

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 2.08K 2.116K 0 0
2 0.725K 0.738K 0 0
3 4.24K 4.331 42 0.99
4 9.98K 10.139 109 1.10
5 1.60K 1.624K 0 0
Average 0.402

Conclusion: Through analysis of the three different sampling frequency experiments, we feel the system
accuracy of ±0.5% was achieved and it meets the design requirements.

Time Domain Peak to Peak Value Accuracy
Method: input the sine signal generated by signal generator into the digital oscilloscope and system.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

236

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 3.24 3.15 -0.09 2.77
2 2.61 2.53 -0.08 3.06
3 1.50 1.45 -0.05 3.33
4 3.82 3.76 -0.06 1.57
5 1.30 1.26 -0.04 3.07
Average 2.76

Analysis: The peak-to-peak value of waveform generated by signal generator is unstable in
measurement. Therefore, the medium value is comparatively stable when taking the reading. Because
the measured value of system is the mean value processed by the system, it is an accurate value.

Time Domain Waveform Amplitude Accuracy

Item
Measurement

Times

Set Value
(Hz)

Measured
Value
(Hz)

Absolute
Error (Hz)

Relative
Error (%)

1 2.40 2.36. -0.04 1.67
2 1.83 1.89 0.06 3.28
3 1.06 1.10 0.04 3.37
4 0.84 0.81 -0.03 3.57
5 1.32 1.35 0.03 2.27
Average 2.832

Conclusion: With the experiment, the repeat (copy) accuracy of time domain waveform meets the
requirements of our design.

Analysis and conclusion of system measurement: Through the analysis of experiment data, we were
able to show that the basic performance of the system met our design objectives. The test indexes that
were not perfect enough will be further improved.

Design Architecture
The hardware design block diagram is shown in Figure 4. The bold line highlights block diagram of the
FPGA internal hardware circuit. The FPGA external circuit modules include A/D and signal-
conditioning circuitry, keyboard, LCD, SDRAM, SRAM and flash memories.

 Portable Vibration Spectrum Analyzer

 237

Figure 4. Hardware Design Block Diagram

Stratix FPGA

Key

320*240
LCD

8 M Flash

16 Mbyte
DRAM

1 M SRAM

High-Speed AD
& Conditioning

Unit

PWM Output

Keyboard
Controller

LCD Interface

FIR Hardware

LCD Controller

Tri-State Bus

SRAM
Interface

FIR Control

SDRAM
Interface

FIFO Control

Flash Interface

Self-
Customized

PWM

AD Storage
Hardware FIFO

AD Sample
Hardware
Controller

UART or Other
Interfaces

On-Chip
RAM/ROM

Nios II
Processor

Self-Customized
Floating-Point
Multiplication

Instruction

Timer

Nios II Processor

The software is implemented based on a Hardware Abstraction Layer (HAL) provided by the Nios II
IDE. The software tasks are handled by a multitasking real-time operating system, the µC/OS II, which
improves program readability and simplifies program development. We added a graphical user
interface, µC/GUI for the LCD display to make it more user-friendly.

Six tasks comprise the software structure of the whole system, including the system main task, keyboard
scanning, LCD display, A/D sampling, FIR control and flash timing storage. Where necessary, we can
add other tasks.

The overall software structure is shown in Figure 5.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

238

Figure 5. Software Block Diagram

Design Methodology
Our system design is based on Altera’s SOPC solution. During the design process, we fully utilized the
technical advantages of SOPC design for the system software/hardware synergy. By doing so, we were
able to realize system functions within a very short time. A detailed description of hardware and
software design follows.

System Hardware Design
Figure 6 shows the Block Design File (.bdf) diagram of the overall hardware design of system
peripherals, including A/D controller, FIR filter, and A/D FIFO.

Figure 6. Hardware Design BDF

clkin
key
data_s
sel[3..0]

cs
din

clk_ad
clk_fifo_wr

fifo_data[11..0]
ram_wraddr[8..0]

ads784
1

inst98

clk
mode[1..0]
x[11..0]

fim

inst8

y[11..0
]

OUTPUT ad_dclk

OUTPUT ad_din

OUTPUT ad_cs

fifo1
data[11..
0]
wrreq
wrclk

wrfull

rdreq
rdclk

q[11..0]

rdempty

12 bit¡Á512 word
inst97

in
st

4

N
O

T

 Portable Vibration Spectrum Analyzer

 239

The symbol diagram of Nios II processor is shown in Figure 7. It shows the peripherals that Nios II
integrates with the processor unit.

Figure 7. Nios II Symbol

Figure 8 shows the integrated IP modules of SOPC Builder.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

240

Figure 8. Integrated IP Modules

In this system, the Nios II CPU uses the Standard type configuration.

Lcd_data, lcd_a, lcd_rd, lcd_rw, lcd_busy and lcd_cs are all peripherals of PIO type. They are used to
simulate the control timing of an external LCD controller to control the LCD.

Ad_in: Data to send the sample data in FIFO to Nios II processor for processing.

Rd_clk,rd_req,rd_emp: Control line of A/D FIFO.

Selfir: Control line used for setting filter type.

Selfir: Control line used for controlling A/D sample frequency.

Pwm_test: Output port of self-customized PWM peripheral used for system self-test.

Now, we will describe the design process of each module in detail from the following aspects.

Design of PWM Peripheral Logic Based on Avalon Bus Interface

The Avalon bus structure promoted by Altera is used to connect the processor with its peripherals to
build an SOPC system. Besides defining connection port between master device and slave device, the
Avalon bus also defines the connection timing between the master device and slave device.

 Portable Vibration Spectrum Analyzer

 241

The Avalon data bus supports three widths: byte, word, and double word. When a transfer is finished,
Avalon bus will perform a new transfer on the next clock cycle between either previous master and
slave devices or new master and slave devices.

As a bus structure dedicated to SOPC design, the Avalon bus differs greatly from traditional ones. For
better understanding of its architecture, we have to give detailed explanations on some words.

■ Bus cycle—A cycle of Avalon bus starts when the master clock rises and ends when it goes down.
The bus cycle is used as reference for the timing of bus control signals.

■ Bus transfer—Avalon bus transfer is the reading and writing of data. It can take one cycle or
multiple cycles according to the master and slave devices being used.

■ Master port—A set of ports on the master device. Directly connected to the Avalon bus, these ports
initiate data transfer on the bus. One device may have several master ports.

■ Slave port—A set of ports on the slave device. Directly connected with the Avalon bus, these ports
generate data interaction with the master port on Avalon bus. A master device may have slave port.

■ Master/slave device group—A group consisting of a master device and a slave device that both
require data interaction. They transfer data through the master port and slave port and connect with
the Avalon bus.

An Avalon bus comprises multiselector and arbiter. A system can have several Avalon bus modules. An
Avalon bus features:

■ A maximum address space of 4-G bytes.

■ All signals are synchronized with its clock.

■ Offers independent address line, data line and control line for each peripheral, which simplifies
peripheral interface.

■ The multiselector can automatically establish dedicated data channel for the transfer of data.

■ Can automatically generate chip select signals for the peripherals.

■ Its parallel multiple master device structure allows simultaneous data transfer of multiple master
devices.

■ It has an interrupt processing function. Each peripheral has an independent signal line for interrupt
request connected to the Avalon bus. The Avalon bus can generate the corresponding interrupt
signal and then transfer it to Nios II.

Because of these advantages, Altera has added user-customizable logic to the SOPC system interface.
As long as the interface and logic are designed and defined in accordance with specifications for the
Avalon bus interface, the user-defined peripherals can be added to the system using development tools.

PWM Peripheral Function Design
We have designed the PWM peripherals to be Avalon bus slave peripherals. The bus controls the PWM
by modifying its registers. The registers’ addresses can be automatically mapped into the system, which
can be modified in software.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

242

The PWM is required to have functions as follows:

■ Set cycle—Sets the number of cycle (using a 32-bit register) through clock_divide port, and sets the
output cycle to be clock_divide times of clk, maximum 232=4294967296 times of clk.

■ Set duty cycle—Sets the ratio of low to high level (using a 32-bit register) duty_cycle, the value of
which shall be less than that of clock_divide.

■ Control PWM output—Decides whether PWM outputs or not with the control function.

Verilog HDL Design of PWM Logical Function
The core of PWM peripheral is a counter. It controls counter cycle with clock_divide, and the output is
the result of the contrast between duty_cycle and counter.

Here is the Verilog HDL program source code for programming control cycle and pulse width.

always @(posedge clk or negedge resetn) //PWM Counter Process
begin
 if (~resetn)begin
 counter <= 0;
 end
 else if(pwm_enable)begin
 if (counter >= clock_divide)begin
 counter <= 0;
 end
 else begin
 counter <= counter + 1;
 end
 end
 else begin
 counter <= counter;
 end
end

always @(posedge clk or negedge resetn) //PWM Comparitor
begin
 if (~resetn)begin
 pwm_out <= 0;
 end
 else if(pwm_enable)begin
 if (counter >= duty_cycle)begin
 pwm_out <= 1'b1;
 end
 else begin
 if (counter == 0)
 pwm_out <= 0;
 else
 pwm_out <= pwm_out;
 end
 end
 else begin
 pwm_out <= 1'b0;
 end
end

The timing simulation of PWM peripheral is shown in Figure 9.

 Portable Vibration Spectrum Analyzer

 243

Figure 9. PWM Simulation

Design & System Integration of Avalon Interface Files
After finishing the design of PWM functions, we moved onto design the interface timing between
function modules and Avalon bus. The interface timing is mainly responsible for transferring the bus
signals to the register on control-function module to handle the communication between bus and control
registers. The bus signals that are related to slave interface peripherals include clk, resetn, chip_select,
address, write, write_data, read, and read_data. The address is mainly used to transfer the bus address
and copy the address to register. Then, after selecting the appropriate control registers, the signals
including write, write_data, read and read_data will perform reading and writing operations on these
registers.

Customization & Integration of Hardware Floating-Point Multiplication,
Addition & Subtraction Instructions
Floating-point multiplication is generally used in digital signal processing (DSP) algorithms. Because
the Nios II processor does not have a floating-point multiplication instruction, defining a hardware
floating-point multiplication instruction will remarkably speed up related DSP algorithms. This was
implemented by taking advantage of the Nios II system’s well-defined interface that allows user-defined
hardware instructions. We simply need to call these user-defined instructions in the program to
complete the execution of algorithms.

IEEE Standard Single-Precision Floating Point Number Standard
IEEE754 criteria defines binary floating-point number standard as 32-bit (single precision) and 64-bit
(double precision) numbers. Because the system uses a 32-bit floating-point number, detailed
instructions are defined for single-precision floating-point number. For standard of double precision
floating-point number, please refer to related material.

It is indicated as:

 N=(-1) s*M*2E-'z' (5.1)

N in (5.1) indicates floating-point number; S is sign bit value (positive number when the 31st bit is 0,
and negative number when the 31st bit is 1). E represents 8 binary index from the 23rd to 30th bit, whose
value is that from 0 to 255, and hence can indicate value between 2-m to 2}z'. M refers to binary
decimal shown by mantissa. It is indicated as:

 M=1+m2}2-'+mz}2-z+m}o2-' } } – mot (5.2)

m in the formula indicates the ith number in the corresponding mantissa, which is 0 or 1.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

244

It can be displayed as 1.0101 * 23, its sign bit in corresponding floating-point is OB, index part is
10000010B, mantissa is olo_ loo0_ 0000_ 0000_ 0000_ ooooB, and the whole 32 bit figure shows the
value is 0100 0001 0010 1000 0000 0000 0000 0000B.

In practice, there are 5 cases for M and E, which should be processed differently:

1. (1) E=255,M-1}0 N does not represent a number

2. (2) E=255,M� 1=0 N = (-1)s*�

3. (3) 0<E<255 N = (-1)s * M * 2E-'z'

4. (4) E=O,M� 1 } 0 N = (-1)s * (M� 1) * 2}-}z}

5. (5) E=O,M-1= 0 N = (-1)s * 0

During floating-point operations, it is overflow as in cases 1, 2 and E > 255, and zero as in case 5.

Design of Single-Precision Floating-Point Number Multiplication
According to IEEE754 standard, the algorithm of single precision floating-point number multiplication
can be de divided into sign bit calculation, index bit calculation, and remainder multiplication
calculation. The first two are easy to realize. The sign bit is two multiplicands sign bit; the index
calculation is done by adding two 8-bit binary integers without symbol and subtracting 127 from the
result; and then estimate whether the overflow summation is 0. The remainder multiplication calculation
is the most difficult to implement because of floating-point number multipliers. The remainder
multiplication calculation can be transformed into multiplication of two 24-bit integers without symbol.
Therefore, the key to the designing of floating-point multiplier lies in the realization of a high-
performance multiplier hardware of 24-bit integers without symbol.

The basic design concept of the current hardware multiplier is consistent with manual multiplication
operation. First, obtain partial products, and then add partial products to get the result. The calculation is
clear and easy and needs less hardware resources. However, it suffers from time delay disadvantage,
with increasing multiplier digits. To reduce the computing time, you can consider using many improved
algorithms, such as Booth, improved Booth, Wallace Tree, and Dadda.

Integration of Customization Instruction
The guide can be used to integrate custom instruction into the system after the designing of hardware
multiplier and the corresponding interface unit (see Figure 10). The zxx_fp_mu instruction planted in
the left library can be seen after the integration. In addition, the added customization multiplication
instruction can be seen in right hand after clicking Add.

 Portable Vibration Spectrum Analyzer

 245

Figure 10. Integrating Custom Instructions

The following macro definition of floating-point multiplication and addition and subtraction can be seen
in system.h after the compiling of the project document we have established. According to the macro
definition, we could use ALT_CI_FP_MULT_CI(A,B) to operate hardware floating-point
multiplication between A and B.

System macro definition document:

#define ALT_CI_FP_MULT_CI_N 0x00000000
#define ALT_CI_FP_MULT_CI(A,B) \ __builtin_custom_inii(ALT_CI_FP_MULT_CI_N,(A),(B))
#define ALT_CI_FP_ADD_SUB_CI_N 0x00000002
#define ALT_CI_FP_ADD_SUB_CI_N_MASK ((1<<1)-1)
#define ALT_CI_FP_ADD_SUB_CI(n,A,B)\
__builtin_custom_inii(ALT_CI_FP_ADD_SUB_CI_N+(n&ALT_CI_FP_ADD_SUB
_CI_N_MASK),(A),(B))

Designing a Pure Hardware FIR Digital Filter
There are always high frequency noises in vibration signal, which will affect the result of the spectrum
analysis. In addition, unnecessary high frequency or low frequency signals are expected to be filtered in
case of a specific pertinence; therefore, FIR digital filter is designed to filter unnecessary frequency
waveforms. Concerning of real time requirements, FPGA logic resource is adopted to design pure
hardware digital filter, to meet system requirements.

Operating Principle of FIR Digital Filters
Digital filter is a time-invariant discrete-time system used to complete signal filter processing with finite
precision algorithm. Its input is a group of digital quantity and output is another group of digital
quantity after transformation. The digital filter features in high stability, high precision, and high
flexibility. As the development of digital technology, designing filter by digital technology is receiving
more and more attention and application.

The system function of a digital filter can be indicated as constant coefficient linearity difference
equation that shows input and output relations directly from H(z), i.e.

∑
−

=

−=×=
1

0
][][][][][

L

k
knfkxnfnxny

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

246

It can be seen that digital filter uses a certain operation to transform input serial to output serial. Most of
ordinary digital filters are liner time-invariant (LTI) filters.

The digital filter can be divided into an infinite impulse response (IIR) filter and finite impulse response
(FIR) filter according to the time characteristic of unit impulse response h(n). Concerning of the discrete
time domain, it is called an IIR series if the system unit sample should be extended to infinite length;
and a FIR series in case of finite length serial.

Compared with an IIR filter, a FIR filter has many unique advantages that can satisfy the requirements
of amplitude frequency response when getting strict linearity phase characteristic to keep its stability.
An IIR filter can be used for a non-linearity phase of a FIR filter. A FIR filter can be applied in wide
ranging applications since the signal is required to have no clear phase distortion during data
communications, voice-signal processing, image processing, and adaptive processing, whereas an IIR
filter has a problem with frequency dispersion. For this reason, we have used FIR digital filter in this
system.

Basic Structure of a FIR Digital Filter
A FIR filter includes three basic structures: direct form, cascade form, and frequency sample form.
Direct form is the most popular structure and is adopted in our design. Therefore, we discuss only the
direct form FIR filter here.

The direct form FIR filter is also referred to as tapped delay line structure or transversal filter structure.
As you can see from the above table, each tapped signal is weighted by the appropriate coefficient
(impulse response) along this chain, and you get the output Y(n)} via the addition of products.

Hardware Realization of FIR Digital Filter
The digital filter is based on the FIR algorithm, because it is more mature in filtering out random
jamming. The filter hardware design is based on a 16-tap direct form FIR filter. The filter has a fixed
coefficient. When the normalized frequency parameter is determined, the coefficient of the filter is first
calculated with a math tool and then it is fixed in VHDL code.

The VHDL program of direct form FIR design is shown below:

if clk'event and clk='1' then
case modem is
when "01" => -- high-pass

 y<=(-2*(tap(0)+tap(15))-(tap(0)+tap(15))-
 (tap(0)+tap(15))/2+64*(tap(1)+tap(14))+16*(tap(1)+tap(14))
 -52*(tap(2)+tap(13))+41*(tap(3)+tap(12))-172*(tap(4)+tap(11))
 +2*(tap(5)+tap(10))+(tap(5)+tap(10))/2-385*(tap(6)+tap(9))
 +462*(tap(7)+tap(8)))/1024;

 for i in 15 down to 1 loop
 tap(i)<=tap(i-1); --tapped delay line: shift one
 end loop;
 tap(0)<=x;

when "00" -------------------------low-pass-----
=>………………………

The advantage of direct form FIR filter design lies in the fact that you can get the result in a single
period since parallel operations are made by multiple hardware multipliers and adders. However, this
method uses up many logic resources due to parallel operations.

We can use a two-bit control word to select “High Pass,” “Low Pass,” or “None” status. The Nios II
processor issues the control word, which can be set up using the SOPC Builder development tool.

Figure 11 shows the timing simulation.

 Portable Vibration Spectrum Analyzer

 247

Figure 11. Timing Simulation

Figure 12 shows the symbol generated by the system.

Figure 12. Symbol

Design of A/D Sample Controller
To translate vibration sensor’s simulation signal output into a digital signal, we deployed a serial 12-bit
A/D ADS7841 to collect the sensor output. Keeping the main CPU focused on other system tasks, we
designed an A/D hardware controller in an FPGA to control A/D samples and send sample data to A/D
FIFO. Based on the control word output by the Nios II processor, we can also change sample frequency.
Generally, frequency analysis error is due to the spectral leakage resulting from imprecise
synchronization of sample window and actual waveform. Common methods to eliminate spectral
leakage errors are based on hardware synchronization and windows processing techniques.
Synchronization using phase-locked loop (PLL) circuitry is commonly employed in hardware
synchronization. Therefore, a precise sample clock generated by an FPGA-based PLL circuit is used to
implement strict sample synchronization to prevent overlapping and interval between windows, while
synchronizing with the measured signal.

The ADS7841 device is a 4-channel, 12-bit sample simulation/digital converter with 8-, or 12-digit
programmable output data under -40 to ~85 degree working temperature. The devices’ typical power
loss is 2 mW for a 200-kHz conversion clock and 5-V power input with a reference voltage from 0.1 V
~5 V. The ADS7841 features a power-down mode with 15 µW as the lowest power loss.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

248

The basic circuit connection of ADS7841 is shown in Figure 13.

Figure 13. Circuit Connection

The device has an external reference and external clock pins with 2.7 V ~ 5.25 V as the working voltage
range. The external reference voltage changes from 100 mV to +Vcc. The reference voltage has a direct
influence on the range of input simulation signal. The input simulation signal circuit is determined by
the ADS7841 conversion clock. The input of simulation signal is connected to one of the four input
channels. The ADS7841 chooses the appropriate channel based on the control data input from DIN pin

out (A0, A1 and A2) and SGL / DIF . Relation between A0, A1, A2 and SGL / DIF and 4 channels
and COM end is shown in Tables 1 and 2. This design is only for one channel input signal.

Table 1. Single-ended channel mode (SGL / DIF HIGH)

Table 2. Multiple-ended channel mode (SGL / DIF LOW)

The CHO channel can be selected for sample, therefore, A2=0, A1=0, A0=1 and SGL/ DIF =1 should
be set in control word input from DIN. In order to output 12-bit data after conversion, the MODE pin
out should be made low. In order to ensure normal operation of the ADS7841 device during data
conversion, we should prevent the ADC from entering power-down or low power loss modes, by setting
PD1 and PD0 to 1.

 Portable Vibration Spectrum Analyzer

 249

The timing diagram of ADS7841 is shown in Figure 13. The device needs 24 DCLK inputs to complete
the conversion process. You need to program the ADC with the control word during the first, eight
clocks. The conversion process enters sample mode when ADS7841 gets the control word denoting a
specific channel for conversion. The ADC enters hold mode after the input of three DCLKs control
word and then performs 12-bit data conversion after the lapse of 12 DCLKs.

From Figure 14, it is clear that the conversion clock frequency of ADS7841 F CLK=24 F DCLK. Due
to hardware restrictions, the conversion frequency could utmost reach 200 kHz, in case of a 5-V power
input. Because this design caters for only 3.3V levels of power and reference voltages, conversion
frequency cannot reach 200 kHz. In addition, the conversion frequency cannot be too low as it relates to
the discharge time of the ADC, confining the input sinusoidal signal to a certain frequency band.

The A/D conversion module accepts the simulation signal, converts it, and stores it in RAM. When all
data has been converted and stored in RAM, the ADC begins to read data from RAM.

Figure 14. ADS7841 Timing Diagram

We need to program the A/D converter with control signals such as CS LD and control word DIN.
Further, the output serial data from the ADC needs to be converted into a parallel format and fed
directly to RAM. In addition, through programming, we need to realize RAM read/write, control clock,
and address signals.

To effect changes in sample frequency, we designed a 4-bit control port that receives the control word
sent from Nios II soft-core processor. Then, based on the received control word, the A/D controller
changes sample frequency.

The VHDL source program is shown below:

 if clkin'event and clkin='1' then
 case sel is
 when "0001" => clk_s<=div(1);
 when "0010" => clk_s<=div(2);
 when "0011" => clk_s<=div(3);
 when "0100" => clk_s<=div(4);
 when "0101" => clk_s<=div(5);
 when "0110" => clk_s<=div(6);
 when "0111" => clk_s<=div(7);
 when "1000" => clk_s<=div(8);
 when "1001" => clk_s<=div(9);
 when others=> clk_s<=div(1);
 end case;
 end if;

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

250

Figure 15 shows the A/D controller design.

Figure 15. A/D Controller Design

sel[3..0] is the sample-frequency control port.

Design of A/D Sample FIFO
The A/D sample data cannot be sent to the Nios II processor for immediate processing because the CPU
has other scheduled tasks to perform. Therefore, some sample data needs to be buffered for processing
by the ADC to save CPU time. Hence, we have designed a FIFO memory module to buffer A/D sample
data. When data in the FIFO memory is full, the CPU starts processing it. We designed a dual-port, 512-
word deep, 12-bit FIFO keeping in mind our 512-point FFT. We customized the FIFO design using
components from Altera Library of Parameterized Modules (LPM). Figure 16 shows the customized
FIFO symbol diagram.

Figure 16. FIFO Symbol

Figure 17 shows the FIFO time sequence.

 Portable Vibration Spectrum Analyzer

 251

Figure 17. FIFO Time Sequence

System Software Design
The software design depends on the HAL API provided by Nios II IDE with the multi-tasking RTOS
µC/OS II, managing all tasks. This approach greatly improved the readability of the program structure
and made it easy for us to develop program modules. We wrote the LCD driver program and migrated
the embedded GUI function packages (µC/GUI) onto the Nios II-based system. Utilizing the graphics
functions provided by µC/GUI, we developed the waveform curve drawing function, window function
and button operation function for a user-friendly display operation. Once again, programming with the
µC/GUI greatly reduced our programming effort and made it possible for us to develop a user-friendly
GUI. Figure 18 shows the software structure.

Figure 18. Software Structure

The system software comprises five tasks: system main program, keyboard scan, LCD display, A/D
sampling, FIR control, and flash memory timing tasks.

For task intercommunication, we have used global variables instead of mechanisms, such as traffic
handling, email, and message queue. When designing function tasks, we need to avoid transferring the
same function to different tasks for function reuse. A detailed description of task designs will follow in
the next section. The software design flow is described next.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

252

Design of 320 x 240, 256-Color LCD Driver
Thanks to the simple interface of LCD drive panel, we could use the IO interface to simulate the control
timing of drive panel. This was done by writing a simple driver program that was able to read/write data
onto LCD. During the operation, the program could specify any one of 256 colors of the LCD.

The description of drive panel interface is as follows:

Ports:
CS WR RD A1 A0 D[7..0]
H X X X X HIZ
L L H 0 0 write data to controller
L L H 0 1 write X to controller
L L H 1 0 write Y to controller
L L H 1 1 write X to controller(for read data)
L H L 0 0 read data from controller
L H L 0 1 lock data written to X as parameter

According to the interface description, the driver program first writes in the coordinates x,y, then color
data, when doing a read/write operation for a point on LCD. The subroutines of writing x, y coordinates,
and color data are defined as follows:

Color data subroutine:

void set_lcdwr_d_c(int x)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);

}

X coordinate writing subroutine:

void set_lcdwr_x_c(int x)
{ IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x01);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);
}

Y coordinate writing subroutine:

 void set_lcdwr_y_c(int x)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x2);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);}

Subroutine for writing the x coordinate when reading a color value:

void set_lcdwr_x_c_rd(int x)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x3);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0xff);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE, x);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);}

 Portable Vibration Spectrum Analyzer

 253

Subroutine for reading color data:

unsigned int set_lcdrd_d_c(void)
{unsigned int m;
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x0);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0x00);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x0);
 m = IORD_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x1);
 return m;}

Subroutine for parameter look-up table:

void set_lcdrd_d_c_l(void)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_A_BASE, 0x01);
 IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DATA_BASE, 0x00);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x0);
 IORD_ALTERA_AVALON_PIO_DATA(LCD_DATA_BASE);
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x1);}

Subroutine for writing parameters:

void lcd_write_para(int para)
{ set_lcdwr_x_c(para);
 set_lcdrd_d_c_l();
}

Based on the data writing subroutines as above, the functions of read-dot and write-dot have been
developed. The subroutine for write-dot is defined as follows:

void lcd_write_dot(int x,int y,int d)
{
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RW_BASE, 0x1);
 set_lcdwr_y_c(y);
 if (x>=256)
 {set_lcdwr_x_c(1);
 set_lcdwr_x_c(x%256);
 set_lcdwr_d_c(d); }
 else
 {set_lcdwr_x_c(0);
 set_lcdwr_x_c(x);
 set_lcdwr_d_c(d);
 }

 }

Subroutine for read-dot is defined as follows:

unsigned int lcd_read_dot(int x,int y)
{ unsigned int m;
 IOWR_ALTERA_AVALON_PIO_DATA(LCD_RD_BASE, 0x1);
 set_lcdwr_y_c(y);
 if (x>=256)
 {
 set_lcdwr_x_c(1);
 set_lcdwr_x_c_rd(x%256);
 m=set_lcdrd_d_c();
 return m;
 }
 else
 {set_lcdwr_x_c(0);
 set_lcdwr_x_c_rd(x);
 m=set_lcdrd_d_c();
 return m;
 }
}

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

254

Besides these basic LCD driver functions, we wrote other functions as follows:

void lcd_init_controlernios (void)

void showimage(unsigned char imageadd[],int imagesize) and other basic drive functions.

Migration of µC/GUI onto Nios II System
μC/GUI is a good graphics software for embedded systems developed by US-based Micrium
Corporation. The software is open-source, portable, reducible, stable, and highly reliable. Using the
μC/GUI, you easily display text, curves, graphics, and window objects (button, edit box, and bar-slide)
on the LCD as you would on Windows OS. In addition, μC/GUI software provides a simulation library
based on Visual C to help developers to simulate various effects of μC/GUI based on Windows OS.

Although μC/GUI can greatly reduce the difficulty of LCD display tasks in embedded systems, we need
to develop separate driver programs to handle LCDs with screens of different resolution.

μC/GUI Structure

Software architecture of μC/GUI is shown as Figure 19. The μC/GUI function library provides user
programs with a GUI interface including text, 2-D graphics, input device buttons, and window objects.
The input devices could include keyboard, mouse or touch screen; 2-D graphics elements could include
picture, beeline, polygon, circle, ellipse, and circular arc; window objects include buttons, edit box,
progress bar, and checkbox. Using GUIConf.h header file, you can configure memory, window
manager, support for OS and touch screen, as well dynamic configuration of memory size.

Further, you can define LCD hardware attributes such as LCD size, color, and interface functions in the
LCDConf.h file.

Figure 19. Software Architecture

 Portable Vibration Spectrum Analyzer

 255

Migration Process

Modifying LCDConf.h Header file
The LCDConf.h file defines the size and color of LCD, and is modified to handle LCD parameters.

#define LCD_BITSPERPIXEL 8 //Bits Per Pixel
#define LCD_SWAP_RB 1 //if picture element DB is swapped

//Size of screen L and W pixel

#define SCR_XSIZE (320)
#define SCR_YSIZE (240)
#define LCD_XSIZE (320)
#define LCD_YSIZE (240)

The LCD read/write function is associated with hardware in which zxxniosdriver.c is customized, and
the standard read/write functions are replaced with previously defined read/write functions.

static void SetPixel(int x, int y, LCD_PIXELINDEX c)
{ lcd_write_dot(x, y,c);}
unsigned int GetPixelIndex(int x, int y)
{ lcd_read_dot(x, y);}

Support options for the GUI can be changed by modifying the GUI.h file; when no LCD and memory
devices are used, the values of the two devices are set to 0;

#define GUI_OS (1) /* Compile with multitasking support
#define GUI_WINSUPPORT (1) /* Use window manager if true (1)
#define GUI_SUPPORT_MEMDEV (0) /* Support memory devices */
#define GUI_SUPPORT_TOµCH (0) /* Support a touch screen (req.

#define GUI_SUPPORT_UNICODE (1)

In addition, several important files as above need to be modified, such as GUI_X.c and GUI_waitkey.c,
but we will not discuss them here. System design can be performed directly by functions provided by
the GUI when µC/GUI is migrated to the Nios II processor.

Software Optimization of FFT Algorithm Design

FFT Fundamentals
The fast Fourier transform (FFT) is an improvement on the discrete Fourier transform DFT algorithm.

The formula of a traditional DFT is as follows:

∑
−

=

==
1

0

)()]([)(
N

n

nK
NWnxnxDFTkX

 , 1−≤≤ Nkn (5.3)

∑
−

=

−==
1

0

)(1)]([)(
N

n

nK
NWnX

N
nXIDFTkx

, 1−≤≤ Nkn (5.4)

In which,

nk
N

jnk
N eW

π2

=

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

256

According to the formula, the result of)(kX is obtained when every)(nx term is multiplied by

relative
nk

NW
 and then adding them. That is, N times of complex multiplication and N-1 times of

complex addition. Computing)(kX)(1−≤≤ Nkn) needs N2 times of complex multiplication and
)1(−NN times of complex addition. A complex multiplication needs four operations of real number

multiplication and two operations of real number addition, computing)(kX (1−≤≤ Nkn) needs
24N times of real number multiplication and)1(2 −NN times of real number addition. When the

number value of N is larger, for example, if it is 1024, you would need four million multiplications,
which means real-time signal processing requires a high-speed processor.

But research has shown that the character of
nk

NW
 can be exploited to improve the operation efficiency

of DFT. These include:

■ Periodicity of
nk

NW
:

nk
NW

=
kNn

NW)(+
 (5.5)

■ Conjugate symmetry of
nk

NW
:

nk
NW −

= (
nk

NW
)=

)(kNn
NW −

 (5.6)

■ Condensability and expandability of
nk

NW
: NW

= nNW / NW
 = NnW

 (5.7)

By taking advantage of above
nk

NW
, properties and rearranging the order of)(nx or (and))(kX and

disassembling the sequence of)(nx and (or))(kX into some segments, we can reduce the number of
complex multiplications and enhance the operation speed of DFT, leading to the origin of FFT..

Radix-2 FFT Algorithm

If the length of sequence)(nx equals
MN 2= , in which M is an integer (if M is not an integer, 0 is

added to meet this requirement), by disassembling, the least DFT operation unit is 2-point. The least
DFT operation unit in FFT operation is usually called radix, and hence, this algorithm is called radix-2
FFT algorithm of DFT.

)(nx is first divided into two sub-sequences by N’s odd number and even number:

⎩
⎨
⎧

+=
=

)12()(
)2()(
rxrf
rxre

 10 −≤≤ Nr (5.8)

 Portable Vibration Spectrum Analyzer

 257

DFT of N point is written as:

kr
N

N

r

N

r

rk
N WrxWrxkX)12(

12/

0

12/

0

2)12()2()(+
−

=

−

=
∑∑ ++=

rk

N

N

r

k
N

N

r

rk
N WrxWWrx 2/

12/

0

12/

0
2/)12()2(∑∑

−

=

−

=

++=
, 1−≤≤ Nkn (5.9)

According to the condensability and expandability of
nk

NW
 and

rk
N

rk
N WW 2/
2 =

, the formula is:

kr
N

N

r

N

r

rk
N WrfWrekX)12(

12/

0

12/

0

2)()()(+
−

=

−

=
∑∑ +=

)()(kFWkE k
N+= (5.10)

in which,

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

∑

∑
−

=

−

=

12/

0
2/

12/

0
2/

)()(

)()(

N

r

rk
N

N

r

rk
N

WrfkF

WrekE

 12/0 −≤≤ Nk (5.11)

)(kE and)(kF are the result of DFT of N/2, it is known from the character of DFT:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+=

)
2

()(

)
2

()(

NkFkF

NkEkE

Thus, this formula is written as follows:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−=

+
+

++=+

+=

)()(

)
2

(
)

2
(

)
2

()
2

(

),()()(

kFWkE

NkF

Nk

NWNkENkX

kFWkEkX

k
N

k
N

 12/0 −≤≤ Nk (5.12)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

258

According to the formula above, as long as DFT)(kE and)(kF of two N/2 points is computed, the
X (k) of all N points could be done by the linear combination of the formula (5.12). Due to

MN 2= and
122/ −= MN being even numbers, the analysis may be continued until the last cell

needing only two DFT points. As shown in Figure 20, the operation of the formula (5.12) is represented
by signal streaming; the formula is called butterfly operation structure (butterfly operation) because the
flow figure appears as a butterfly, also called twiddle factor.

Figure 20. Radix-2 Butterfly Cell

Some basic properties of radix-2 DIT FFT are derived according to the algorithm theory and twiddle
factor above:

Resolve Series

From the analysis above,
MN 2= is divided into M levels, of which every level contains N/2 butterfly

operation, so the number of total butterfly operations is N/2 x M.

Operand Estimation
According to Figure 21, every butterfly operation needs one complex multiplication and two complex

additions (subtractions), FFT of
MN 2= point altogether needs MN ×2/ of complex

multiplications and MN × of complex additions (subtractions).

Radix-2 algorithm can reduce the arithmetic operation of DFT by half, which greatly increases
computing speed.

Figure 21. 8-Point Radix-2 Algorithm Topology

 Portable Vibration Spectrum Analyzer

 259

Radix-4 FFT Algorithm

Make
MN 4= then:

∑∑
−

==

+=
14/

0
4/

3

0
)4()(

N

n

nk
N

l

lk
N WlnxWkX

 (5.13)

make respectively 3414,24,4 +=+=+== rkrkrkrk ¼° ,and r=0,1,…,4/N-1,According to
the formula (5.13), as follows:

∑

∑

∑

∑

−

=

−

=

−

=

−

=

+−++++=+

+−+−++=+

++++++=+

++++++=

1
4

0
4/

3

1
4

0
4/

1
4

0
4/

2

1
4

0
4/

))]
4

3()
4

(()
2

()([()34(

))]
4

3()
4

(()
2

()([()14(

))]
4

3()
4

(()
2

()([()24(

))]
4

3()
4

(()
2

()([()4(

N

n

nr
N

n
N

N

n

nr
N

n
N

N

n

nr
N

n
N

N

n

nr
N

WWNnxNnxjNnxnxrX

WWNnxNnxjNnxnxrX

WWNnxNnxNnxnxrX

WNnxNnxNnxnxrX

 (5.14)

Complex multiplications except for one imaginary number (j), may be not used in the basic cell of
radix-4 algorithm. The series of FFT operations are decreased by half because of the algorithm of radix-
4, so the number of multiplication required can also be relatively reduced.

Figure 22. Basic Cell of Radix-4 Algorithm

Splitting Algorithm
The basic principles of a splitting algorithm are to use radix-2 algorithm for an even sequence number
output, radix-4 algorithm for an odd sequence number output. The Fourier transform algorithm is an

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

260

FFT algorithm, that has the least multiplication and addition times for all algorithms of
MN 2=

known.

The formula of splitting algorithm is as follows:

14/,,1,0,))]
4

3()
4

(()
2

()([()34(

14/,,1,0,))]
4

3()
4

(()
2

()([()14(

12/,,1,0,))]
2

()([()2(

1
4

0
4/

3

1
4

0
4/

1
2

0
2/

−=+−++++=+

−=+−+−++=+

−=++=

∑

∑

∑

−

=

−

=

−

=

NrWWNnxNnxjNnxnxrX

NrWWNnxNnxjNnxnxrX

NrWNnxnxrX

N

n

nr
N

n
N

N

n

nr
N

n
N

N

n

nr
N

K

K

K

(5.15)

Considering that the 512-point sampled data takes less system resources and the Nios II processor
contains hardware multiplier, a simpler radix-2 algorithm is adapted in the system.]

FFT Cell Design
There are two schemes for the realization of FFT: hardware and software.

FFT Hardware Design
The operation cells of FFT are filled into sample-data RAM, Addwindow cell, dual-port DRAM of
operation data, selector switch of multi-channel data, address generator, butterfly operation cell, twiddle
factor ROM, result data FIFO, and control cell.

 Portable Vibration Spectrum Analyzer

 261

Figure 23. FFT Cell Architecture

Butterfly Operation Cell Design
The butterfly operation cell is an important part of FFT operation cell, as it takes charge of performing
radix-2 operation on input data, and then delivers data results. The structure is shown in Figure 24.

Figure 24. Architecture of Butterfly Operation Cell

VCC
x2[15..0] INPUT

VCC
wy 1[15..0] INPUT

VCC
wx1[15..0] INPUT

VCC
y 2[15..0] INPUT

VCC
x1[15..0] INPUT

VCC
y 1[15..0] INPUT

VCC
clk INPUT

VCC
rest INPUT

VCC
start INPUT

mx1[15..0]OUTPUT

mx2[15..0]OUTPUT

my 2[15..0]OUTPUT

my 1[15..0]OUTPUT

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst1

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst2

Signed
multiplication

dataa[15..0]

datab[15..0]

clock

aclr
clken

result[31..0]

lpm_mult0

inst3

A

B
A-B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub1

inst5

A

B
A+B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub0

inst6

A

B
A+B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub0

inst7

A

B
A-B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub1

inst8

A

B
A-B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub1

inst9

A

B
A+B

dataa[15..0]

datab[15..0]
clock

clken
aclr

result[15..0]

lpm_add_sub0

inst10

datain[15..0] dataout[15..0]

datacov

inst4

datain[15..0] dataout[15..0]

datacov

inst11

clk

reset

start

qout[2..0]

start_crl

inst12

multresult1[31..0]

multresult1[31..16]

multresult2[31..16]

multresult2[31..0]

multresult3[31..0]

multresult4[31..0]

multresult3[31..16]

multresult4[31..16]

rest

rest

rest

rest

rest

rest

rest

rest

rest

rest

rest

clk

clk

clk

clk

clk

clk

clk

clk

clk

clk

start

clk

clk

start

q[2..0]

q[0]

q[0]

q[0]

q[0]

q[1]

q[1]

q[2]

q[2]

q[2]

q[2]

rest

inx2[15..0]

iny 2[15..0]

inwx[15..0]

inwy [15..0]

inx2[15..0]

inwx[15..0]

iny 2[15..0]

inwy [15..0]

inx2[15..0]

inwy [15..0]

iny 2[15..0]

inwx[15..0]

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

262

The design of butterfly operation cell completely depends on radix-2 operation, and butterfly operation
cell is composed of four multipliers, three adders, and three subtractors.

Design of Other Cells
Sampled data RAM: Store collected data.

Window cell: Select different types of window functions.

Dual-port DRAM of operation data: Store the data during butterfly cell operation. Dual-port DRAM is
used for handling complex data, and is matched with the real and imaginary parts of complex data,
respectively.

Address generator: Generate sequential addresses, control data output of dual-port DRAM.

Twiddle factor ROM: Store twiddle-factor data which is the value of
nk

NW

Selector switch of multi-channel data: Due to butterfly operation, the data cell usually imports or
exports two data values each time; where as RAM only reads and writes a data value once. The multi-
channel transform switch can make data streaming more stable.

Result data FIFO: Stores data sent in by next cell.

Data Type & Length Selection
Data type directly affects the speed of operation, so it is necessary to adopt a compliant-data type.

We used 16-bit integer data type in the design, for the following reasons:

1. Our system’s A/D converter handles 12-bit data, and the maximum value (A) it can export is not
greater than 4096, and data (B) stored in twiddle factor ROM are the data magnified by 216 times, the
result of A multiplied by B is less than 228 and greater than 232.

2. The data multiplied is reduces b 216 at once to ensure that the operation of addition cell is correct.
According to the principle of radix-2 algorithm, the last result should not be greater

than
16294069 <× , and no overflow occurs.

Operation Flow
The A/D’s sampling memory cell data are stored in dual-port DRAM. Computing starts when data
storage is complete and a signal is sent. At first, address generator generates a set of addresses, and
reads the data from DRAM and computes the radix-2 of FFT. A drive signal is generated while a
compute cycle is finished, which enables the address generator to generate new address. When this FFT
is completed, it signals the controller to read the data in DRAM to FIFO.

Operation Time
FFT is computed by a serial method in this system.

Giving due consideration to the stability of data streaming, the serial algorithm in the system needs
seven periods for every butterfly operation, and the number of sampled data in the system is 512,
resulting in a total period of 9×256×7� 16128. To this you need to add the time for collection of data

 Portable Vibration Spectrum Analyzer

 263

cell writing to dual-port DRAM and the delivery of dual-port DRAM data to FIFO, which results in the
system requiring a total of 16128+512×2=17152 periods.

Some Issues with Hardware
Designing an FFT using hardware would have put a strain on the systems’ hardware resources because
of the FPGA’s limited capacity. In addition, it is quite possible that there would be hardware delays
during the execution of FFT algorithm.

Method of Software Implementation
There are proven methods and different software tools available for the realization of FFT. Considering
the independence we enjoyed during system design, we decided to showcase our creativity by writing
the FFT algorithm of radix-2, instead of using the popular splitting algorithm.

Figure 25. FFT Software Programming Flow

Series m>9

Start

Does the Series End?

Butterfly Operation

m>1

Y

N

Y

N

Adjust Array
Sequence

End

N

Primary program of butterfly cell on radix-2 algorithm:

 for(m=0; m<M; m++)
 {
 is=0; ie=id;
 do
 {
 n2=id;
 for (i=is; i<ie; i++)
 {
 k=(i-is)*t;
 xtr=xr[i+n2]; xti=xi[i+n2];
 xr[i+n2]=(xtr*wr[k]-xti*wi[k]);
 xi[i+n2]=(xtr*wi[k]+xti*wr[k]);

 xtr=xr[i]; xti=xi[i];
 xr[i]=xtr+xr[i+n2];
 xi[i]=xti+xi[i+n2];
 xr[i+n2]=xtr-xr[i+n2];
 xi[i+n2]=xti-xi[i+n2];
 }
 is=is+id*2;
 ie=is+n2;

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

264

 } while(is<N);
 id=id*2;
 t=t/2;

 }

By adapting hardware design to match the software design flow we were able to improve system
performance. For example, by choosing parts that would execute slowly in software, we used hardware
to speed up these areas, ensuring that the software adoption did not slow down the system performance.
Our FFT cell designed using software is very stable and easy to manage and modify, and offers high
controllability. So our decision to use software was vindicated in the design of the system. Although we
could still use a series of optimizing algorithms involving hardware to speed up the FFT where we
could process a 512-point FFT in less than 100 ms, it is a good enough performance because human
eyes only distinguish a 10-frames per second images. Therefore, we have met the FFT processing
algorithm’s needs in real time application. We have optimized software design based on the aspects
described in the following sections.

Custom Hardware Floating-Point Instruction Accelerating Key Algorithm
Although large numbers of multiplication operations are used in FFT operation, the system only uses
512 points as FFT. Therefore all parameters during FFT operation are defined as long integers without
overflow, and this definition is controlled within acceptable number range. However, when we design
more points of FFT or need to have higher definition for FFT, a float-point number range is necessary
for FFT operation. Then, custom float-point multiplication instructions will greatly speed up FFT
operations. After FFT is complete, the pattern value of every complex number is required to render a
spectrum curve. In this case, floating-point number multiplication must be adopted for handling easy
overflow of long integer variables because of extra index operations. The operation unit that computes
one FFT with 512-point needs 1024 power operations, and hence a hardware floating-point
multiplication instruction will greatly quicken the computing speed; tests show a hardware floating-
point multiplication instruction can enhance 20% speed for the pattern value of FFT computing result.

The program for computing pattern value is as follows:

for(i=0;i<n/2;i++)
 {
 xr[i]=sqrt((float)xr[i]*(float)xr[i]+(float)xi[i]*(float)xi[i]);
 }

After using hardware floating-point multiplication instruction, it is as follows:

for(i=0;i<n/2;i++)
 {
 xr[i]=sqrt(ALT_CI_FP_MULT_CI(xr[i],xr[i])+ ALT_CI_FP_MULT_CI(xi[i],xi[i]));

 }

We decided to select 32-bit signed integer when selecting data types. The speed of software operation is
obviously quicker during integer operations as against that of floating-point data. Using 32-bit integer
data fully meets our requirement without overflow. Computing method matches that of hardware. Some
tweaks have been added to the design because of the errors that crept in after adopting 32-bit integer
data format: (1) Twiddle factor is magnified 1000 times while it is stored, and then it is reduced after
computation to ensure the accuracy of next-level operation; (2) software is used for rounding while
accepting or rejecting data.

Use system’s on-chip hardware multiplier.

Optimize twiddle factor cell. Traditional FFT software algorithm always computes temporarily when it

is used, but
)2sin()2cos(

2

nk
N

jnk
N

eW
nk

N
jnk

N
πππ

−==
−

 is comprised of sine (cosine) function,

 Portable Vibration Spectrum Analyzer

 265

and so software takes a lot of time. Thus, the importance of conserving memory in hardware design is
applied to the system, that is, twiddle factor is computed early during initialization phase, and is stored
in memory. When, it is used, it can be directly transferred according to memory address.
5) When the pattern value of the last result is computed, the 32-bit integer data is forced into floating-
point data, to avoid overflow and ensure accuracy of next-level operation.

Design & Realization of AddWindow Processing Algorithm

Principle of AddWindow
Spectrum analysis is key to modern dynamic signal analysis including FFT and mean square spectrum
analysis – power spectrum density (PSD). Following FFT, spectrum density is computed directly with
signal FFT.

PSD on the basis of FFT can be computed according to the formula:

∑

∑

=

=

=

=

a

a

n

i
kiki

a
kxy

n

i
kiki

a
kxx

fXfY
Tn

fG

fXfX
Tn

fG

1

*
^

1

*
^

)()(2)(

)()(2)(

 (5.16)

in which an
 is the number of sample (average time), T is sampling period.

Because data processed by computer is discrete, the collected sampling signal is also discrete. Besides
N, the values of other points are regarded as 0. In this case, leak occurs in the transformation process,
i.e., the frequency component of one point is leaked to other frequencies. Window function can fix
leakage of signal problems. Therefore, it is very significant to select the appropriate window function.

Leak indicates that the power of one narrowband in)(
^

ωS is expanded to adjacent frequency band,

which makes)(
^

ωS lose strength. Leak is generated for the result of main lobe convolution of

)(ωS and Window spectrum)(ωW .

The main factor determining resolution is the length of used data or the length of data window.

BWkN /2π> , of which BW is the distance of two spectrum-peaks in)(ωS .

Common Window functions include rectangle window, trigonometric function, Hanning window,
Hamming window, Kaiser window, Blackman window and flat top window. The common windows
adopted by our dynamic signal analyzer system involves rectangle window, Hanning window, and flat
top window.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

266

1. Rectangle Window

⎪⎩

⎪
⎨
⎧ −−=−=

=
ÆäËü

»ò

,0
2

,,1,0,1,
2

1,,1,0,1
)(

NNnNn
nwR

KKK

 (5.17)

2. Hanning Window

)2cos(5.05.0)(
N

nnwH
π−=

 , 1,,1,0 −= Nn K (5.18)

3. Flat Top Window

,]2cos2)[()(
3

1
0 ∑

=

+=
k

kRF knaanwnw π
 1,,1,0 −= Nn L (5.19)

Of which
091581.053929.0,95573.0,99948.0 3210 ==== aaaa

Realization of AddWindow
In the system, two types of AddWindows are set up including rectangle window and Hanning window.
For rectangle window, the 512 point FFT processing is done every time when it is sampled; for Hanning
window, it can drive down sidelobe effectively, and directly perform window function weighing after
time-domain signal is completed. In the program, the time-domain signal samples are made using
AddWindow, which functions in the system as follows:

void winhanning(long int win[])
{int i;
 for(i=0;i<512;i++)
 {
 win[i]=(long int)(win[i]*hcos[i]);
 }
}

of which hcos[] is coefficient array of AddWindow, and has completed computing when initialization,
the program is as follows:

for (i=0; i<512; i++)
 {
 hcos[i]=0.5-0.5*cos(0.01227185*i);

 }

The program structure does not compute cosine and multiplication every time when windowing which
saves system time, and occupies less memory.

Design of Waveform Memory & Playback Program
For effective analysis and review of time-domain and frequency domain waveforms, we have designed
the memory and playback function. Waveform and parameter data are stored in external flash, and we
can realize store and read of data by hardware abstraction layer flash read/write interface function
provided by HAL.

 Portable Vibration Spectrum Analyzer

 267

The main flash read/write functions are as follows:

fd=alt_flash_open_dev(EXT_FLASH_NAME);
alt_read_flash(fd, offset, rdfft, length);

alt_erase_flash_block(fd,offset,65536);
alt_write_flash(fd, offset, wrfft, length);

The first function is used to make initialization operations before flash is read/written; the second
function is to read data containing some length bytes, and place the read data to array rdfft[]; the third
function is to erase flash block, where the relative blocks must be erased before it writes data to
memory.

The following two arrays are defined to store time-domain waveform, frequency-spectrum curve and
relative parameters:

unsigned char fftm[64][512]�
 long int wfv[128];

 in which, first 64 bits of wfv[128] is used to store peak-value of time-domain waveform, later 64-bit
data is used to store mainlobe frequency of frequency spectrum.

The program of flash storage operation is as follows:

load_line_data(0x300010,fftm,32768);
 load_line_data(0x310000,wfv,512);
 for(i=0;i<256;i++)
 {
 fftm[pnum-1][i]=wave[i];
 fftm[pnum-1][i+256]=ffti[i];
 wfv[pnum-1]=everyw;
 wfv[pnum-1+256]=maxf;
 } // read data from flash;
 write_line_data(0x300010,fftm,32768);
 write_line_data(0x310000,wfv,512);

The program of flash reading data operation is as follows:

load_line_data(0x300010,fftm,32768);
 load_line_data(0x310000,wfv,512);
 for(i=0;i<256;i++)
 {
 wave[i]=fftm[pnum-1][i];
 ffti[i]=fftm[pnum-1][i+256];
 everyw=wfv[pnum-1];
 maxf=wfv[pnum-1+256];
 }

Partition of µC/OS Tasks & Their Design
Our system has five tasks, and the design of each of these tasks follows:

System Main
This task responds to keystroke commands and it is the most important part of system operation. With
different key input, the program processes different states; when no keystroke is sensed, the task
commands the A/D to sample and buffer the data in FIFO and compute FFT, and display the computed
frequency spectrum on LCD. Data collection and spectrum display on LCD are the two important
functions of the main task.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

268

void maintask(void* pdata)
{
 while (1)
 {
 OS_ENTER_CRITICAL();//Close up all interruptions
 waitbuttonpress(edge_capture);
 OS_EXIT_CRITICAL();Open up all interruptions
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}
waitbuttonpress(edge_capture); this function responds to keystroke input.

Keyboard Scan Task
Scans keys, and when a key is pressed, the program assigns the captured key value to the global variable
Edge_capture, which is used by the system main-task program. When we designed the Button_pio, we
initialized the port to capture keystroke values as a falling-edge transition, with no interrupt option.

void keyscan(void* pdata)
{
 while (1)
 {
 edge_capture = IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

Displaying Updated Tasks on LCD
During system initialization, a window is displayed on LCD and waveforms are displayed using the
main task function. However, parameters of some process states (represented as bars) change
continually following keystroke action during system operation. To handle this, we designed a display
update task, which takes charge of updating these parameters of different states on the LCD bar; for the
parameters of every state, we have defined the related global variables.

Here is a partial listing of update task program that is responsible for display update of peak-to-peak
value of time-domain signal and main-lobe frequency of spectrum.

void lcdrefresh(void* pdata)//refresh the lcd;
{
 while (1)
 {
 GUI_SetBkColor(GUI_BLACK);
 GUI_ClearRect(78, 3, 225, 13);
 GUI_SetColor(GUI_WHITE);
 GUI_SetFont(&GUI_Font10_1);
 GUI_DispStringAt(“vol: mv”, 58, 3);
 GUI_SetColor(GUI_RED);
 GUI_DispDecAt(everyw,80,3,4);
 GUI_SetColor(GUI_WHITE);
 GUI_DispStringAt(“freq: hz”, 140, 3);
 GUI_SetColor(GUI_RED);
 GUI_DispDecAt(maxf,165,3,6);

Omitting…………………………………………………………….
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

A/D Collection & FIR Control Task
Controls sampling frequency of A/D converter and filter type of FIR according to key input. The routine
changes sampling frequency and filter type by the received user parameters.

 Portable Vibration Spectrum Analyzer

 269

void ad_fir(void* pdata)
{
 while (1)
 {
//Sample value delivered according to main task, changes the sampling frequency of

ADC.
 IOWR_ALTERA_AVALON_PIO_DATA(SELFRE_BASE, sam);
 //From value delivered according to main task, changes the sampling frequency of ADC.
 IOWR_ALTERA_AVALON_PIO_DATA(SELFIR_BASE, frem);
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

Flash Memory Timing Task
During system initialization, all waveforms and parameters stored in flash memory are read into RAM
memory. Thus, the system can save into flash memory each time while viewing waveforms during
testing. You need to store data to middle array or you can directly read from middle array, and therefore
the display of waveform is continuous. Nevertheless, the disadvantage with this method is that all stored
data will be lost in case of system power-down. To avoid loss of data, the flash memory task
continuously stores data to middle of array. The program is as follows:

 void saveflash(void* pdata)//refresh the lcd;
{
 while (1)
 {
for(i=0;i<256;i++)

 {
 fftm[pnum-1][i]=wave[i];
 fftm[pnum-1][i+256]=ffti[i];
 wfv[pnum-1]=everyw;
 wfv[pnum-1+256]=maxf;
 } // read data from flash;
 write_line_data(0x300010,fftm,32768);
 write_line_data(0x310000,wfv,512);

Omitting…………………………………………………………….
 OSTimeDlyHMSM(0, 0, 3, 0);
 }
}

Design Features
This section describes the design features.

Implemented System-On-a-Chip with High Integration &
Reliability
We were able to realize functions of the whole system (control and signal processing) on an FPGA, a
result that is unparalleled when compared to traditional designs. As a 32-bit soft-core microprocessor
with high performance, Nios II can be configured in an FPGA. Therefore, we can use it to implement a
programmable system-on-a-chip function.

Custom Instruction Speeds Up Design Implementation
Because a great many floating-point multiplication operations are needed during the execution of FFT
software algorithm and there is no hardware floating-point multiplication instruction in Nios II
processor, we decided on a customized instruction. An excellent feature of the Nios II lies in the fact
that you can design customized instructions. Our hardware floating-point multiplication instruction was
designed with a general LE and added onto the instruction system. In addition, we defined a few other
digital signal processing instructions. Using this design approach, we were able to significantly speed up
the operation of digital signal-processing algorithms.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

270

The digital filter was realized in hardware, which significantly speeded up digital signal processing.

Using the rich logic resources in the FPGA and based on a powerful development environment, we
designed a digital hardware FIR filter with selectable high pass and low pass options. This filter speeded
up digital signal processing.

Customization of Avalon Bus Interface IP LCD PWM Controller
An easy guide is provided in the SOPC Builder tool that helps engineers design IP cores based on the
Avalon bus interface. Because the tool is integrated in software, we could easily design the interface
driver program and added it onto the hardware abstraction layer, which makes system design easy. For
instance, using the SOPC Builder tool, we could complete the design quickly even while adding several
PWM controllers according to design requirements. This is one of the major benefits of an open bus
interface.

Use of µC/OS II & µC/GUI
The powerful functionality and processing speed of Nios II processor, coupled with C-language support,
made it convenient to migrate the µC/OS RTOS to the processor. Thanks to the Nios II IDE, we were
able to develop applications easily and quickly. Based on the LCD control interface, we could migrate
the µC/GUI to the system. Then, we made changes to software based on the GUI which resulted in a
user-friendly system.

Soft Cores Made Interface Design Simple
Because Nios II is a configurable soft core processor, we could freely add the I/O interface according to
design requirements. For example, we added several I/O interfaces for internal and external connection
to/from the FPGA. Also, we adopted many peripherals in our design, such as an LCD controller
interface, A/D controller, and FIR filter, which needed many I/O interfaces to communicate with the
Nios II processor. Taking advantage of Nios II soft core, we could complete the design easily.

Conclusion
The design contest helped us to understand the following:

■ A synergy of hardware/software in design is possible taking the Nios II design approach. For
instance, we learned that customization instructions are a better method to accelerate key
algorithms when realizing FFT with hardware or software design approach. Also, the algorithm
flow could be easily controlled by software while resorting to hardware optimization where
necessary. Traditionally, in system design you would design software first based on the hardware.
In this design contest, for the first time, we could design hardware according to the software. For
instance, we designed a customized hardware floating-point multiplier instruction according to the
existing FFT algorithm. This is the first time we experienced the most interesting
hardware/software synergy.

■ Because some interfaces need a lot of customization, we needed to have a deep understanding of
bus interface protocols, transport protocols, and peripheral interface. Previously we had worked on
designs whose hardware was fixed. This contest deepened our understanding of the hardware layer.

■ The differences between hardware and software design lie in SOPC design. We always need to
design logic with HDLs and design software with C language. From the contest, we know more
about the differences between hardware and software design.

 Portable Vibration Spectrum Analyzer

 271

■ We need more communication with other designers since SOPC technology is a very new and
emerging technology. We have made many friends through the Nios II design contest, and in turn
learned many things from them. In addition, the Nios II forum www.niosforum.com is always
available for us to discuss problems with designers all over the world.

Appendix
Flow Summary

http://www.niosforum.com/

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

272

Fitter Resource Usage Summary

 SOPC-Based Servo Control System for the XYZ Table

 273

Third Prize

SOPC-Based Servo Control System for
the XYZ Table

Institution: Southern Taiwan University of Technology/Motor Engineering
Research Institute

Participants: Dai Fuyu, Cai Xing’an, and Chen Jiasheng

Instructor: Ying-Shieh Kung

Design Introduction
Electric power is mainly derived from a combination of an engine and a motor. The motor converts
electrical power into mechanical energy, which is widely used in home appliances and industrial
mechanical tools. When addressing specific applications, motor-driven tools generally need to make
speed changes or have accurate positioning. In these applications, it is necessary to have a highly
efficient servo-motor control to position the tools’ movements accurately.

There are direct current (DC) and alternating current (AC) motors. DC motors used to be popular in the
industry because of their simple controls—you only needed to control the armature voltage to vary the
motor’s speed. Because the motor’s carbon brush and convector were mechanical components, they
would produce sparks and cause damage when the motor was running, which was one major
shortcoming of the DC motor. In addition, the DC motor posed a threat to the environment, had a short
lifecycle, and was expensive to maintain.

AC motors can be classified into three different types: the synchronous motor, the induction motor, and
the reluctance motor. The stator and rotor of an AC motor are the only contact bearing components. The
spinning of the rotor is caused by the stator’s magnetic field, and needs more complicated control
technology (such as the magnetic field guide control) to implement different movements. With the
development of semiconductor control devices, the computation required for AC motor control is easily
met. Because of this advantage, AC motors are very popular today.

This project was created to study and design an integrated chip of multi-axis AC permanent magnet
synchronous servo motor control system using system-on-a-programmable chip (SOPC) concepts using

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

274

an Altera® FPGA and the Nios® II embedded processor. We used the device to implement a three-axis
XYZ table servo-control system, as shown in Figure 1.

The SOPC-based servo control system for XYZ table design mainly includes two modules: software
and hardware. The software module is implemented using the Nios II processor, with programs
handling communication between the control chip and PC, process control of three-axis XYZ table
servo movement, and computation of movement tracking. Altera’s FPGA implements the hardware
module, which includes the functions to control the position of three motors on the three-axis XYZ
table, a six-group PI controller algorithm computation, a three-group optical encoder signal-detection
circuit, a three-group current-estimation circuit, a three-group vector-control coordinate conversion
circuit, and a three-group space vector pulse width modulator (SVPWM) signal output.

Hardware digital circuits implement all position controllers of the three motors. We implemented the
process control module in software because the computation is complicated and needs to be flexible.
Further, the sampling frequency is not high. For instance, the moving track control is about 100 Hz. The
position servo control of the three AC motors on the three-axis XYZ table must be implemented in
hardware because the algorithm requires a faster execution speed (SVPWM frequency is 12 kHz,
counter frequency is 3 - 4 MHz). Both the software and the hardware modules can run concurrently. In
this way, you can improve the control feature of a three-axis XYZ table servo system. The three-axis
XYZ table servo-control chip completed in this design offers digital control, improved system
performance, and stability. The device also helps reduce the controller’s size and cost. Figure 1 shows a
block diagram.

Figure 1. Block Diagram of XYZ Table Servo Control System

A
va

lo
n

Bu
s

Our design can be applied in a variety of applications including CNC computer lathe processes,
electrical-discharge machines, engraving machines, professional-drafting machines, mold and metal
surface treatment, and high-tech semiconductor surface technology treatment.

We previously implemented the integrated design of AC servo system by using Texas Instruments’
243DSK development board and Altera’s FPGA, which combined a microprocessor and FPGA
architecture. As this design used a double-chip architecture, it needed an extra network control chip and
linkage socket in case of additional network control. Unfortunately, this design approach resulted in
increased system module size and costs. We combated these issues by using the Nios II development
board. It is compact, economical, has a more stable control system design, and features a modular
design. In addition, the powerful hardware circuits of Nios II development board offer functions such as
a network control chip and extended memory. Therefore, we designed SOPC hardware with the Nios II
development board and managed to complete the design much faster than the previous effort.

 SOPC-Based Servo Control System for the XYZ Table

 275

The SOPC Builder environment makes it easy to use the Nios II hardware development kit to create the
required Nios II processor functionality, develop the complicated logic circuits, and easily modify the
computing parameters. In addition, by using design partition techniques, we judiciously implemented a
few fixed mode and high-speed logic operations in hardware. Then, using the Quartus® II integrated
development environment (IDE), we quickly implemented and verified our hardware circuit design.
Taking full advantage of the high performance Nios II embedded processor and the abundant logic
resources of Stratix® FPGA, we were able to quickly and easily implement our design.

Function Description
This section provides a functional description of the system.

Integrated Function of Three-Axis XYZ Table System Chip
Figure 2 shows the inner structure of three-axis XYZ table system chip. There are two modules in this
FPGA-based system design. The software module is implemented using software programs in the
Nios II processor and includes functions that handle the communication between the control chip and
PC, process control of three-axis XYZ motor movement, and movement-track computation. The
hardware module is implemented in the FPGA, with functions comprising the position control of three-
AC motors on three-axis XYZ table, including six-group PI controller algorithm computation, three-
group QEP detection circuit, three-group current estimation circuit, and three-group SVPWM signal
output.

The position controllers of the three motors are all implemented using hardware digital circuits. In this
way, the controller chip can receive the PC’s remote control commands and send out the position
control angle of three-axis motors after its computation by the software module. After being processed
by the hardware module’s three-axis XYZ position loop control circuit calculation, this data is then sent
to the PWM signal of each axis for a precise control of three-axis motor shift to target position. The
FPGA design approach can minimize the controller size, and the Nios II processor makes the system
design flexible. In this way, we can improve the three-axis XYZ table servo control performance and
reduce costs.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

276

Figure 2. Inner Structure of Three-Axis XYZ Table Servo System Integrated Chip

Coordinate
Transformer

SVPWM

ADC

INV

X Axis

DC

PMSM

A/D

A/D

QEP

(Y Axis)

Encoder

...

sin/cos

PI

PIPI

Speed

- +

-
id2

PLD

+

-
-

+

Coordinate
Transformer

SVPWM

ADC

INV

X Axis

DC

PMSM

A / D

A / D

QEP
Encoder

sin/cos

PI

PIPI

Speed

+

- +

-
id*

PLD

£
-

+

Tr
aj

ec
to

ry
Pl

an
ni

ng

S
eg

ue
nt

ia
l

C
on

tro
l

E
th

er
ne

t
In

te
rfa

ce

(Y Axis)
. . .

. . .Y Axis

X Axis

Z Axis
Iq*

Nios II Processor

(Module 1)

System Architecture Description
The system, Figure 1, consists of:

■ Three-axis XYZ servo table—This mechanism has three moving axis, and each axis is driven by a
permanent magnet AC synchronous servo motor for linear movement, together with a ball screw. It
features a maximum range of 300 mm. The power rating of the AC synchronous motor is 200 W,
features Hall Sensor measurement of the magnetic pole position, and rotor or magnetic pole
position measurement by incremental optical encoder (2,500 PPR); the transient current limit is
about 10A (max). The rating speed is 2,500 rpm. The range of the ball screw is 5 mm/pitch.

■ Converter of three-group AC motor—As shown in Figure 1, each group driver individually drives
the AC servomotor on XYZ table. The power crystal of the driver is based on Toshiba’s IGBT, and
we also used Toshiba’s TLP250 Photo integrated circuit (IC). The converter receives the PWM
signal sent by the FPGA to drive the AC motor.

■ FPGA chip—We used the Altera Stratix II EP2S60F672C5ES FPGA, featuring 24,176 ALM, 492
I/O, 36 DSP blocks, and a total of 2,544192 bits of on chip memory. We have also used one Nios II
embedded soft core featuring 32-bit CPU, 16-Mbyte flash memory, 1-Mbyte SRAM, and 16-Mbyte
SDRAM. These hardware resources can easily be adopted in the design of a three-axis XYZ table
servo movement control chip.

Detailed System Description
This section describes the system in detail.

 SOPC-Based Servo Control System for the XYZ Table

 277

Mathematical Model of a Permanent Magnet Synchronous Motor
The equivalent electric circuit of the permanent magnet synchronous motor is shown in Figure 3, where
the voltage equation’s reference coordinates are settled on the synchronous rotation coordinates.

Figure 3. Motor Axis d & q Mode

Llfr = Lfr - Lmd rfr

+
ifr

+

--

Ufr

Vdr

rdr
Lidr = Ldr - Lmd

frג

drLmdג

Llds = Lds - Lmd

dsג

- +

ωeגqs

+

-

Vds

rs

ids
idr

(a) Axis d Mode

+

-

Vqr

rqrLlqr = Lqr - Lmq

qrLmqג

Llqs = Lqs - Lmq

qsג

-=

ωeגds

+

-

Vqs

rs

iqs rqr

(b) Axis q Mode

According to Figure 3, the axis d-q voltage can be shown as:

The voltage is calculated to:

The motor torque produced by axis d flux and axis q current is:

Machinery dynamic equation obtained after loading is:

Combining the above three equations with the current controller of each axis, we can obtain the control
block diagram during permanent magnet synchronous motor coupling, see Figure 4.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

278

Figure 4. Control Block Diagram When Permanent Magnet Synchronous Motor
Coupling

kp +
ki

s
1

LdsS + rs
qsג

Lds

fג
+

+

ωe P
2

Lqs

-+

Vds

+i*ds

kp +
ki

s
1

Lqss + rs
dsג

-

+
Uqs

+
iqs

*

-

iqs -

+
3P
4

Te

+

TL

1
Jms + Bm

ωr
-

-

ids

In this case, when the axis d current is set to 0, the motor torque or speed is only controlled by axis q
current. This allows us to simplify the control block diagram as in Figure 5.

Figure 5. Diagram of Control Block

kp +
ki

s
1

Lqss + rs
Kt

+
i*qs

-

iqs
-

+

TL

1
Jms + Bm

ωr

Kw

kp +
ki

s

Vqs Te

By the above permanent magnet synchronous motor control principle, the motor servo controller design
is based on both the closed-circuit control and signal feedback by encoder of permanent magnet
synchronous motor, making position control more accurate. Based on the above single-axis position
control, we extended the system into a three-axis servo-moving controller (see Figure 6).

 SOPC-Based Servo Control System for the XYZ Table

 279

Figure 6. Three-Axis Servo Control Diagram

Point-to-Point Multi-Axis Track Planning & Design
For multi-position track planning, this design adopts a point-to-point track design. The point-to-point
track design ignores the intermediate track and handles only the points of arrival and departure, to and
from the destination. The design also takes into account the simultaneous departure and arrival, or
featuring acceleration and deceleration functions upon departure and arrival. The input of point-to-point
multi-axis design block diagram is equivalent to the rotation angle of each axis (1, 2, 3), the
maximum angular speed of each axis being (W1, W2,, W 3), acceleration and deceleration times Tacc and

sampling time td, while output is the position command *
rθ of each axis. The design takes the following

computational steps:

1. Calculate total executing time

T1=MAX(1/W1, 2/W2, 3/W3)

Because total executing time should not be less than accelerating and decelerating time

Tacc, therefore,

T=MAX(T1, Tacc)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

280

2. Revise total executing time as integral. Multiple of sampling time

N′ =[Tacc/td] and N=[T/td]

Among which, N is Interpolated point, and [] is Gauss function, therefore,

T′ =N* td and accT′ = N′ * td

3. Revise speed

Order),, 321(L θΔθΔθΔΔ
r

T/LW ′=′
rr

4. Calculate accelerating and decelerating value

accTWaaaA ′′= /),,(321

rr
Δ

5. Calculate intermediate position command

(1) Accelerating segment:

2
0 t*A*

2
1XX

rrr
+=′

Among which, t =n* td and 0<n N1

(2) Even speed segment:

t*WXX 1

rrr
+=′

Among which, t =n* td and 0<n N2

(3) Decelerating segment:

)t*A*
2
1t*W(XX 2

2

rrrr
−′+=′

Among which, t =n* td and 0<n N3

And among
),,(*

3
*
2

*
1 rrrX θθθΔ′

r

,
*
nrθ is the position command value of the n-axis.

The design refers to Altera’s Stratix II EP2S60F672C5ES, which is used in constructing three-axis XYZ
table servo movement control chip. The chip includes three-axis XYZ position loop control circuit,
SVPWM circuit, QEP estimation circuit, and current estimation circuit. In this way, the controller can
receive optical encoder signals of three-axis motor simultaneously, compare them with command
position, and then send out PWM signal for each axis after calculation by Nios II and FPGA to drive the
power crystal for precise control of three-axis motor shift to target position. In general, the application

 SOPC-Based Servo Control System for the XYZ Table

 281

of the FPGA can not only minimize the controller size, but also improve the three-axis XYZ table servo
control performance and reduce costs.

System Functions Accomplished by the Design
We used Visual Basic to develop three-axis XYZ table HCI movement and supervision software, and
issue three-dimensional coordinates command through a remote PC. We were also able to set up the
remote servo control mechanism through network transmission, and after track calculation by the
Nios II processor we can obtain one point to another data in space, and rotation angle for each axis. The
command for motor rotation position is obtained after track planning by position, computing by PI
controller’s position servo control, and the output of PWM command to calculate the PWM hardware
circuit to drive motor driver. Then, after QEP hardware circuit computation, we were able to control
motor to the required position. At this point, we sent back the sensor measurement for each axis position
to Nios II CPU for conversion into three-dimensional coordinates, and transferred to HCI of remote PC
through network, so the user can observe whether or not the motor has reached the required position.

Implementation of Hardware & Software Modules
The hardware and software modules are described as follows.

Hardware
Build a three-group power board, three-group motor driving circuit board, three-group analog-to-digital
converter ADC converter circuit which includes the interface between three-axis motor driving board
and FPGA chip, and power conversion circuit.

Software
First, we needed to write an HCI of PC that can transmit and receive through the network, and design a
CPU core based on Altera’s Stratix II EP2S60F672C5ES FPGA. This combination featured the
necessary network transmission function and the required hardware interface for servo control, to
implement a complete servo motor control chip. We developed the three-group SVPWM to produce the
signal for driving AC motor circuit board, three-group QEP processor circuit to measure motor position.
There are two functions involved in calculating the servo control position; the first function sets up
network transmission/receiving mechanism, while the second, based on the required movement control
equation for the practical use of three-axis XYZ table, writes the required response to movement. After
resolving solution space vector, the space coordinates are sent back to the PC through the network to
observe whether or not it has reached the required position.

Performance Parameters
For this experiment, we set the control interrupt frequency at 1 kHz in the Nios II processor, which is
the most basic and important working frequency in the controller. The following is the measured
interrupt time by Nios II CPU. In Figure 7, we can see that after several computing intensive steps, the
Nios II CPU can precisely obtain the 1-kHz interrupt frequency required for the experiment, without
any mismatch of control frequency. (1 stands for entering interrupt cycle, 0 stands for leaving interrupt
cycle.)

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

282

Figure 7. Obtaining the Frequency

Figure 8 is a point-to-point echelon speed-change track after Nios II CPU computation. The blue line
stands for the command and the green line stands for the feedback signal. The working frequency is
100 Hz after the interrupt frequency is issued, subject to acceleration, uniform velocity, and
deceleration.

Figure 8. Echelon Track Designing Position Command & Feedback

0
200 400 600 800 1000 1200

0

10

20

30

40

50

Time (ms)

Position
(mm)

1

2

3

Command

Figure 9 shows a designing position command with 5-cm radius circular track after calculations. The
working frequency is 50 Hz after the interrupt frequency is removed.

Figure 9. Echelon Track Designing Speed & Feedback

200 400 600 800 1,000 1,200

-80

-60
-40
-20

0
20
40
60
80

Time (ms)

Speed
(rpm)

1

2

3

Command

Feedback

Feedback

Figures 10, 11, and 12 show the circular track position and its sine waveforms.

 SOPC-Based Servo Control System for the XYZ Table

 283

Figure 10. Circular Track Position Command

5 2.5 0 2.5 5

5

Position (cm)

4
3
2
1
0
1
2
3
4
5

Position
(cm)

Figure 11. Sine Waveform (Command & Feedback) of Circular Track Position Command

250 500 750 1,000 1,250 1,500

2.5

5

Time (ms)

Position
(mm) 0

2.5

5

Figure 12. Sine Waveform (Position Error) of Circular Track Position Command

We can see from the above response identify that the response on the echelon track design is quite good,
and the circular track position response can be seen from the sine waveform position error. The motor
position control is also quite efficient.

Figure 13 shows the whole required track based on the computation of the CPU module’s point-to-point
track design, building the PI controller, speed, and position estimation module through the CPU. It
draws Altera’s logo using the XYZ table, with a working frequency set to 100 Hz, 50 Hz, and 25 Hz.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

284

Figure 13. Required Track

Figure 14 shows the 3-D circular track position command after computation by the Nios II CPU with
the working frequency set to 50 Hz.

Figure 14. Circular Track Position Command

In this experiment, the Nios II processor was of crucial importance. The Nios II processor provided
powerful debugging during the design process, which is an inseparable key function for system design.
While we used the Nios II processor mainly for the controller design, we also used it to design multi-
group PI controller, speed and position estimating module, 3-D circular track, point-to-point track,
echelon speed-change track, and one-group 1-kHz interrupt program. Also, after filtering out the
interrupt frequency, we obtained the various requires working frequencies.

Design Architecture
The three-axis XYZ table servo control system based is shown in Figure 15, and its experimental
system is shown in Figure 16. The system consists of the following parts:

■ Three-axis XYZ table—There are three moving axis, and each axis driven by permanent ac
synchronous servo motor in linear movement together with a ball bearing guiding screw, as shown
in Figure 15.

■ FPGA development board—This board is the system core. We used Altera’s Stratix II
EP2S60F672C5ES FPGA to develop a control chip of the three-axis XYZ table.

 SOPC-Based Servo Control System for the XYZ Table

 285

■ Three-group ac motor converter—The converter can receive the output PWM signal of control
chip, and invert it into different voltages to control AC motor.

■ PC—Develop supervision software for the man-machine interface.

Figure 15. Three-Axis XYZ Servo Table

Figure 16. Three-Axis XYZ Table Servo Control Experimental System

The inner hardware circuit of the three-axis XYZ table server system integrated chip is shown in
Figure 17, which includes two modules. Module 1 is implemented in the Nios II processor by software,
with functions including communication between the control chip and PC, process control of the three-
axis XYZ table movement, and computation of the moving track. Module 2 is implemented in the
FPGA, with the execution of three-axis servo controller for the table. The detailed circuit diagram of
module 2 is shown in Figure 17, which includes six-group controller arithmetic, three-group QEP
detecting circuit, three-group current estimating circuit, and three-group SVPWM signal output. Circuits
are shown in Figures 17 and 18.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

286

Figure 17. Inner Hardware Circuit of Three-Axis XYZ Table System Integrated Chip

Figure 18. Three-Axis XYZ Table System Integrated Chip Inner Module 2—Three-Axis
Servo Control Circuit

Figure 19 shows the proportion integral (PI) controller.

Three-axis Servo Control Circuit
(PLD Implementation)
(Module 2)

Three-axis QEP Estimating and Current
Estimating Circuit (PLD implementation)

Nios II Processor Moving Program and
Track Planning (Module 1)

Magnetic Field Guiding Control
Circuit

SVPWM Circuit

PI Controller Circuit

 SOPC-Based Servo Control System for the XYZ Table

 287

Figure 19. PI Controller Circuit Block Diagram

Figure 20 shows the QEP treatment circuit.

Figure 20. QEP Estimating Circuit Block Diagram

Figure 21 shows the SVPWM circuit.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

288

Figure 21. SVPWM Circuit Block Diagram

Determine
Regional

Comparable
Value Circuit

T1

T2

PWMB

PWMC

Calculate
Tx,Ty,Tz &

T1,T2
µçÂ·

Calculate
Taon,
Tbon,
Tcon
µçÂ·

PWM
Comparable

Circuit

PWM
Comparable

Circuit

Dead-Band
Generating

Circuit

PWMA

Clk

Taon

Tbon

Tcon

Clk

CMP1

CMP2

CMP3

Clk PWM1

PWM2

PWM3

PWM4

PWM5

PWM6

DBE

Triangular Wave
Generating Circuit

Frequency
Removing

Generating Circuit

DBT
CK

CLK

Regional
Identity
Circuit

clk

VRFX

VRFY

VRFZ

XA

Sx
Q

Figure 22 shows the software design flow chart for the control chip.

Figure 22. Nios II Three-Axis Servo Application Control Flow Chart

Start of
Main Program

Initial Interrupt

Initial Timer

Set PI Gains
of Each Axis

Computation of
Position Command

Loop Calculation of Output of
PI Controller (X, Y & Z Axis)

Start of I SR
(Each 1 kHz)

Computation of
Position for Each Axis
from Motion Trajectory

Command

Read QEP & Calculate
Position (X, Y & Z Axis)

Calculation of Position
Error & Velocity Error

(X, Y & Z Axis)

Calculation of
Speed Loop (X, Y & Z Axis)

Calculation of Control
Effort (X, Y & Z Axis)

Return

 SOPC-Based Servo Control System for the XYZ Table

 289

Design Methodology
The design methodology involved the following steps:

1. Develop the IP core of motor drive and design three-group AC servo motor drive using the VHDL
language in the Quartus II integrated development environment (IDE), including magnetic field
guiding control module, QEP estimation circuit, linear-optical scale position estimation, and current
estimation circuit, ADC chip driver circuit, and SVPWM circuit.

2. Modify the Nios II processor, using SOPC Builder, to be the controller of the motor drive, design
EMS memory unit flash and SDRAM, Avalon® tri-state bridge, system ID peripherals, JTAG
UART, timer, and Avalon PIO. Next, design the reset address and exception address in flash
memory and SDRAM, respectively. Finally, design the PLL for the CPU and SDRAM clock.
Program the value of the motor drive obtained by the PIO using the Nios II processor, the output
value of which is used for drawing waveforms in the MATLAB software for validation.

3. Design three-axis servo controlling system hardware which includes three-group power, three-
group motor drive board, three-group motor required DC power, FPGA development board, and
interface circuits for hardware including ADC circuit, linear optical scale signal receiving circuit,
limit switch signal receiving circuit, and so on.

4. Design the motor controller and design one-group, 1-kHz interrupt program using the Nios II IDE.
Develop many sub-programs: echelon track design, rotundity track design, PI controller, speed
estimator, position estimator, and so on. First, calculate the required track by the main program, and
then execute the PI controller, speed, and position estimator, moving the track program and the
control program by a 1-kHz interrupt.

5. Integrate the three-axis servo control system, expand the original CPU to the Nios II processor to
handle a three-axis servo control system, and combine the newly modified CPU with the three-axis
motor drive and position estimating circuit. Next, output the previously written moving track
program to the Nios II processor, whose motor drive circuit calculates the obtained command value
and acquires the PWM signal. The signal is sent to the motor drive board via the FPGA
development board and the necessary circuits to drive the AC Servo Motor.

6. Verify the program and check system whether the system is correct and efficient. Apply the
previously designed program and control system on XYZ table to the Nios II processor-based
system. Obtain the motor position and the speed feedback signal, output the command value
compared with the feedback value, and verify and modify the controller’s arithmetic parameter,
until the controller’s efficiency improves.

Design Features
We implemented our three-axis permanent AC synchronous servo motor control system design by using
a complex arithmetic three-dimensional movement control. We converted the coordinates using the
Nios II CPU and realized the remote control and monitoring through network mechanisms. While
developing this project, we used the Nios II processor’s powerful functions to quickly modify the
system’s computing parameters, verify its correctness, and were able to greatly reduce the design time.

Conclusion
This contest enabled us to develop a better understanding of the Nios II processor. By using the Nios II
processor, we could easily design our system, which includes many embedded processors, on-chip and
off-chip EMS memory, high-speed I/O ports, and network functions. The Altera development tools let

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

290

us develop our own multi-functional IC quickly. Additionally, we could modify the CPU hardware at
any time for multi-purpose development using the SOPC Builder tool. As for the Nios II IDE part, we
hope to use the Nios II debug function to shorten the software development time significantly. Altera’s
ability to develop and update the Nios II IP and functions was extremely important. For example, using
custom instructions we can accelerate the hardware computation speed, which can improve our system's
efficiency. We hope that Nios II users across the globe will exchange ideas more frequently for the
purpose of improving future designs. This exchange will promote the advantages of the Nios II
processor and help to boost the development of SOPC technology.

 Networking Remote-Controlled Moving Image Monitoring System

 291

First Prize

Networking Remote-Controlled Moving
Image Monitoring System

Institution: National Chung Hsing University

Participants: Cai Jingtao

Instructor: Cai Qingchi

Design Introduction
Our design focuses on establishing a real-time image monitoring system that can be operated under user
commands to achieve real-time network monitoring. Users navigate a browser-like user interface in the
manner of web browsing to remote control real-time image inspection. The application scope is
security, home usage, and unmanned exploration. See Figure 1.

Figure 1. Motion Image Monitoring System

This design is different from fixed-monitor image inspection systems because it realizes integrated
monitoring without any dead angle. For instance, parents can keep an eye on their kids using remote
controls and a monitoring interface instead of using computer monitors at fixed locations in their homes.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

292

The system design uses the Nios® II processor for implementing the basic peripheral components. It
takes advantage of the powerful flexibility provided by the Nios II processor, as well as the support for
real-time operating system (RTOS) to establish an integrated system. Additionally, the Cyclone™
FPGA supports low-cost performance by allowing hardware customization.

Function Description
The functional description of our design is as follows.

■ Real-time image acquisition—Connect the CMOS image sensor with the programmable I/O (PIO)
interface circuit to get the value of picture points (gray scale) and then compose RGB images with a
simple de-mosaic algorithm.

■ Real-time image compression—The algorithm compresses the image into JPEG format to improve
the processing efficiency, and then uses hardware/software co-design to implement the Discrete
Cosine Transform (DCT) algorithm in the JPEG compression system in hardware. Additionally, we
designed a DCT algorithm as a custom peripheral meeting the requirements of the Avalon® bus
standard. We used software to implement other algorithms.

■ Graphical user interface (GUI)—The design uses a web server as a simple GUI in a web-browser
format. The GUI monitors picture display and control interface. The common gateway interface
(CGI) programs handle control and communication.

■ Motion control—The mobile part of the design integrates the driver’s integrated circuit (IC) and its
circuitry with two DC motors on a custom-designed circuit board. The board also supports a pulse
width modulator (PWM) component on the Nios II processor to control the motor through the
PWM-signal output.

■ Wireless network transmission—Because the Cyclone FPGA does not provide a wireless network
interface, our design uses the available interface with a wireless bridge to accomplish wireless-
network transmission.

■ System integration—The system’s motherboard is based on the Nios II development board and the
Cyclone FPGA. We designed a circuit board to integrate the drive circuit and power supply.
Further, we used a lead-acid battery as the system’s power supply to meet embedded system
application requirements.

Performance Parameters
The major performance parameters of the design depend on the frame rate of the JPEG encoder. The
process of composing a frame includes:

1. Image acquisition: the PIO controls the CMOS image sensor to capture a 320 x 240 gray-level
image.

2. Image processing: realize de-mosaic motion in an easy way to synthesize RGB images.

3. Image compression: carried out in accordance with the encoder output, in standard JPEG format.

In the JPEG standard baseline mode, our design uses hardware to implement the DCT algorithm.
Software programs fill the other related performance functions. We implemented the JPEG compression
in software by migrating the IJG Library. Then, the hardware/software co-design of the JPEG encoder is

 Networking Remote-Controlled Moving Image Monitoring System

 293

complete. Finally, the compressed data is delivered to the remote user through the network transmission
by reading and displaying the received JPEG images through a browser interface.

The following table shows the image of QVGA resolution (320 x 240) processed by our system as well
as the time spent in various processes.

Process
Image

Fetching
De-Mosaic
Algorithm

JPEG
Encoder

Time 0.2 sec 0.11 sec 0.83 sec

For testing purposes, the design uses the Cyclone FPGA with an operating frequency of 50 MHz and
0.87 FPS efficiency.

Because the DCT operations are time consuming, the DCT is more easily created in hardware when
using the JPEG-compiled code system. However, planar DCT can be realized with current high-speed
algorithms such as the IJG Library that provides fixed-point and floating-point DCT functions.
However, the DCT is still more compute-intensive than the JPEG operation.

The following table shows time spent on processing one block (8 x 8 pixels) per frequency period.
Software refers to the fixed-point fast DCT function provided by the IJG library and hardware is the
DCT component that is executed through the Avalon bus interface.

Note: Data processing includes execution time of a single measurement function and accounts for data
transfer into memory.

Method Software Hardware

Time 4,000 clocks 450 clocks

Using the table above, the design successfully implements the JPEG image compression system on the
Nios II processor using hardware/software co-design, freeing up system resources during DCT
computation.

Design Architecture
Figure 2 shows the system architecture.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

294

Figure 2. System Architecture

The main system is based on the Nios II Development Board, Cyclone Edition, and we used the
peripherals of the development board in this design. The system comprises the following functions:

■ It adopts Nios II/f (fast) core and adds hardware multiplier/divider/shifter selectively.

■ It stores the hardware and software programming files into flash.

■ It adopts SDRAM as memory storage for bigger programs.

■ Storage devices of the system use a compact flash (CF) card and two SRAM devices.

■ UART interface is used as system-console interface.

■ It applies a PHY/MAC chip of the development board to implement wireless-network transmission,
connecting with the wireless bridge through an RJ-45 network interface.

■ For image acquisition, the system connects to an external CMOS image sensor and uses the PIO to
realize a picture-element read interface.

■ It uses hardware to implement the DCT, and we designed custom peripherals to work with the
Avalon bus and added DMA for data read/write.

■ In the motion mechanism, we added a PWM controller to output the PWM signal to the IC motor
drive and implement the normal/reverse control for the DC motor.

Figure 3 shows the software flow chart.

 Networking Remote-Controlled Moving Image Monitoring System

 295

Figure 3. Software Flow Chart

HTML
UI

Command

MJPEG
CGI httpd

Command Motion
Controller

JPEG
Encoder

Hardware
DCT

HW/SW
Co-Design

MJPEG
User

A major feature of the design is its simple user interface. The remote user merely needs to connect to
the self-defined IP address of the system using the network browser. The web server then provides
service for the user, including JavaScript programs to handle real-time image monitoring of pictures in
motion JPEG mode.

Additionally, the mobile control interface can execute forward, backward, and stop motions easily. The
software design and development is based on the Microtronix Nios II Linux distribution version 1.3
RTOS, using a CF card to qualify the system as a read/write file.

The communication between web control interfaces is created with CGI programs. When the user
executes an image-monitoring function, the system acquires an image immediately, performs JPEG
compression with the combination of software and hardware, and delivers the images to the web. At the
same time, the user can control the image mobility and adjust the brightness to achieve real-time and
interactive motion-monitoring function. Figure 4 shows the GUI.

Figure 4. GUI

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

296

Design Methodology
Figure 5 shows the detailed design steps, various system tasks, and their inter-working:

Figure 5. Design Steps Flowchart

The flowchart is based on a top-down integrated system design concept, which is divided into two parts:
system design and architecture design.

■ System-on-a-Programmable-Chip (SOPC) System Design:

 The hardware design includes configuring the basic Nios II SOPC environment and
customizing peripherals that are compatible with the Avalon bus. These peripherals include
CMOS image interface circuit, hardware DCT, and PWM controller.

 The software module comprises RTOS tasks including the file system routines, the GUI
design, and various system tasks. Refer to Figure 5 for more details.

■ Architecture Design:

 The main mobile device comprises a chassis with two Maxon DC motors and wheels to handle
movements such as forward, backward, and circumrotation (in the manner of differential
rotation).

 Networking Remote-Controlled Moving Image Monitoring System

 297

 A motor driver and a power circuit comprises driver and optocoupler devices. We designed a
board that integrates all IC and driver circuits.

 The system’s power supply uses two 12-V lead-acid secondary batteries. This circuit features a
simple filtering-protection circuit, switch, and connection.

■ System Integration:

 Figure 6 shows a fully integrated system.

Figure 6. Fully Integrated System

Front View Back View

Design Features
Using the Nios II processor, you can simplify the customized SOPC design concept and verify your
designs realistically. Furthermore, FPGA resources can be applied creatively to implement various
functions depending on user’s special requirements. These requirements could include functions such as
hardware DCT and a PWM controller. In this way, the designer can integrate most functions into one
FPGA.

The core module of the design is the JPEG encoder, which we implemented through hardware/software
co-design. This design also showcases the FPGA advantage at its best. We created the DCT in hardware
to realize the JPEG encoder and designed a custom interface that followed Avalon bus requirements.
Next, we wrote the DCT output data in memory for processing in software with streaming DMA to save
operation time.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

298

The general features of the system design are described in the following three points:

Technical Standards
We have successfully used the Nios II processor to fulfill the IP camera function, thus meeting market
needs. Additionally, we have added the remote control mobile function for extra benefit.

Our system boasts a highly integrated design and features an easy-to-use GUI and RTOS environment.

We used nearly all peripherals of the Nios II development board. We integrated most functions into the
low-cost Cyclone EP1C20 FPGA and the logic element (LE) utilization exceeds 90%.

Design Creativity
Our system integrates a mobile mechanism that can be controlled easily using existing fixed monitoring
systems available in the market to produce an innovative design. This system is a balanced product
between consumer electronics and a robot.

Adaptability
The no-dead-angle remote monitoring function in this design is flexible and can be used to handle many
applications. Potential users include home, factory, and commercial establishments.

Our design’s modular architecture is similar to the common IP camera. We implemented our system
with the low-cost Cyclone FPGA. Moreover, the mobile system attachment is very economical and can
be deployed in consumer applications requiring no-dead-angle remote control. Additionally, the system
does not require expensive interface devices, and all its functions can be realized using semiconductor
ICs, which can be mass-produced easily.

The outstanding features of the system design:

■ Easy-to-use GUI—It can monitor the situation on-site through the web.

■ Mobility—Control the car with a remote network and extend the monitoring scope of the original
fixed-monitoring system to any location.

■ Utilize Nios II and FPGA features to implement the functionality, keeping the total cost lower than
many competing solutions—Meet the IP Camera functions based on market expectations with the
low cost Nios II processor and Cyclone FPGA.

■ Design uses RTOS—Adopt Microtronix Nios II Linux Distribution v1.3 as the OS system.

■ Custom peripheral for hardware acceleration—Added a DCT custom peripheral to accelerate the
JPEG encoder.

■ Two custom peripherals without hardware acceleration— Added Altera’s PWM controller for
handling motor control functions. Added Microtronix’s Compact Flash Component to access the
CF card data.

■ Performs graphic acceleration/uses the DSP algorithm—Through hardware/software co-design,
managed to increase the frame rate of motion JPEG.

■ Used DMA as another master device on Avalon bus—Acquired DCT-output data with streaming
DMA.

 Networking Remote-Controlled Moving Image Monitoring System

 299

■ Greater than 90% LE/memory utilization.

■ Connected over 15 main peripherals on Avalon bus.

Conclusion
When we used the Nios II processor to implement our design, we were very impressed with the
convenience it provided. Our design benefited greatly from its features. For example:

■ Complete and coherent development environment—The SOPC design process, software design,
and verification were made easy by using the Nios II processor, thanks to Altera’s convenient
development tools.

■ Abundant and flexible peripheral support—Peripherals can be fully integrated and peripheral
components customized by designers easily and quickly.

■ Quick verification—Because the system architecture is based on digital logic design, we were able
to get clear and detailed information by simulation software during the system verification.

Altera’s Nios II processor platform using FPGAs can be adapted for teaching, experimenting, and quick
product development in many diverse applications.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

300

Third Prize

Embedded Electric Power Network
Monitoring System

Institution: Jiangsu University

Participants: Xu Leijun, Guo Wenbin, and Sun Zhiquan

Instructor: Zhao Buhui

Design Introduction
Electric power is the mainstay of a nation’s economy and the lifeline of industrial production and social
life. All parameters of an electric grid, especially harmonic parameters, are related to the quality of
electricity generated, which guarantees safe operation of electric equipment. Therefore, this design
combines a web-based electric grid parameter measurement system with a video-monitoring system to
arrive at an integrated monitoring system of embedded electric grid/station. In the measurement of
electric grid parameters, we check the voltage, current, harmonics, etc. in the target areas. The video
section monitors the key instruments and environment and transfers these results to a web interface in
real time. Therefore, no matter where the monitoring personnel are, they can observe the electric grid
parameters and inspect both equipment and environment in real time, as long as they are connected to
the Internet. Our design applies to electric stations at all levels, enterprises with requirements of a
reliable network, as well as applications requiring remote monitoring.

The Altera® system-on-a-programmable-chip (SOPC) solution is a flexible, efficient solution,
integrating the function modules necessary to system design such as CPU, memory, and I/O interface
into an FPGA. The SOPC design approach makes for a flexible system design allowing you to modify,
expand, and upgrade system modules using Altera-supplied software and hardware tools. We chose the
Nios® II soft core embedded processor because of its low cost and abundant FPGA logic resources,
which can cater to the demands of different applications. In addition, Altera provides a complete
solution based on the Nios II processor, which includes the Quartus® II and integrated development
environment (IDE) tools, further reducing product development cost.

 Embedded Electric Power Network Monitoring System

 301

Function Description
The system design consists of two parts: the measurement and delivery of electric grid parameters and
video monitoring.

Measurement & Delivery of Electric Grid Parameters
Our measurement circuit uses an application-specific DSP chip to collect, store, and send the following
data:

■ A measurement of valid values

■ The harmonic component of three-phase voltage/current and neutral current

■ The voltage imbalance factor

The DSP chip also measures real power, reactive power, power factor, power supply frequency, and
power cut times, calibrated against the national standard precision.

During measurement, the three-phase voltage and current circuitry was isolated using voltage and
current sensors for data collection and attenuation, and then sent to A/D converter with 128 sample
points in every phase. The DSP chip performed FIR filtering, fast Fourier transform (FFT) operation,
storage, and display of sample data. The communication between the circuit being measured and the
Nios II processor was conducted through a serial port, based on the Modbus protocol.

Remote measurement of electric grid parameters can be divided into two parts: measurement of real-
time electric grid data and monitoring power cut data. Measuring the real-time electric grid data is
handled through a web interface. When the user clicks the Measure Now button in a web browser, a
measurement command is sent to the system based on the Nios II processor, which in turn instructs the
DSP chip to start real-time measurement. Then, the DSP chip returns the measurement results back to
the web browser for users to verify. For example, the application software displays history of the most
recent 25 blackouts.

The measurement functions of the electric grid parameters are realized in a dynamic web page display,
using the Boa web server under uClinux and common gateway interface (CGI) technology. When the
user sends a measure/check data command through the web browser, CGI scripts compiled with C
language send the user command to the web server (Boa), which interprets and executes the CGI script
and sends the results back to the browser.

Video Monitoring
Video monitoring is needed to guarantee safe, normal operation of important measuring instruments in
real time. To implement video monitoring, our system has two critical components: video data
collection and video data transmission.

Video data collection is realized using both hardware and software. The hardware part comprises a web
camera and USB adaptor. Today, web cameras are a popular low-cost network video capture devices
that are convenient for use in embedded applications. Because there is no support for USB devices on
the Cyclone™ EP1C20 board included in the Altera Nios II development kit, we designed a USB
interface to read video data from a web camera. We developed the software modules by modifying open
source software like vgrabbj and xawtv, whose main function is to capture video from a web camera
and convert it to the JPEG format. Next, this video data is sent to the network in real time using CGI.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

302

We implemented video transmission using CGI and the web server. Working with the available electric
grid parameters, the application software combines video information with electric grid information in
an easy format that remote users can view through a web browser.

Performance Parameters
The performance is based on electric grid parameters and video image parameters.

■ Electric Grid Parameters—The measurement accuracy of the electric frequency is 0.01 Hz. For the
three-phase voltage and current measurement, the accuracy is 0.5%. For the three-phase voltage
imbalance factor, the accuracy is 0.2%. For the three-phase current imbalance factor, the accuracy
is 1%. The harmonic measurement accuracy meets the GB/T 14549-93 B standard. The shortest
measurement interval is 3 seconds.

■ Image Parameters—The screen-capture function adopts a 320[x]240 JPEG format with a 1-Hz
refresh frequency. This performance meets the requirement of normal video monitoring.

Design Methodology
Our design comprises the following parts: software/hardware modules for measuring electric-grid
parameters, uClinux OS kernel and file system configuration, web server configuration, CGI program
development, USB interface board design, and development of an image capture program.

Hardware Design
The hardware circuitry is based on Texas Instrument’s TMS320LF2407A DSP chip as the computing
engine. The TMS320LF2407A features a 40-MHz clock and a single-cycle instruction execution time of
25 ns. Because the DSP chip operates at 3.3 V, and because all other chips in the system operate at 5 V,
we needed to perform voltage-level conversion. Therefore, we chose the Altera EPM7128S device to
implement level conversion and logic control. We also took advantage of the device’s compatibility
with 3.3-V and 5-V levels for use in communication control and address decoding functions between
the DSP chip and other chips in the system.

To measure the three-phase voltage and current, we designed a protective circuit that deploys voltage
sensors and current transformers for safe isolation from high voltage and currents. This circuit performs
AC attenuation, acts as an anti-aliasing low-pass filter, performs A/D conversion, and passes data to the
DSP chip for computation. The results are displayed and then stored for further analysis. At this point,
all operations, including synchronous sampling by software, measuring signal frequency before
sampling, and calculating sampling frequency based on the signal frequency, must be handled carefully
to avoid FFT errors caused by frequency fluctuations.

Software Design
We can code DSP programs in C or Assembly language; C programs are easily readable, changeable,
and are good for porting. However, their executable code has low efficiency. In contrast, Assembly
language routines yield highly efficient executable code. To improve code efficiency and meet the
requirements of a real-time system, we deployed the C2xxAssembly language routines for each
software module and interrupt program. For example, we used Assembly language to take advantage of
DSP special instructions in the FFT subprogram of the DSP data processing software module: bit-
reversed indirect addressing, which is designed for real-time implementation of FFT arithmetic.

 Embedded Electric Power Network Monitoring System

 303

Configuration of uClinux OS Kernel & File System
We configured the uClinux OS kernel and file system as described in the following section.

■ uClinux Kernel Configuration—The embedded uClinux utilizes a customized Linux kernel with
high flexibility, and is an open-source code that is stable and reducible. In this design, we adopted
the uClinux version 1.3 edition, which was developed by Microtronix for the Nios/Nios II
processor. Further, we reconfigured the kernel according to the requirements of the contest,
utilizing the least system resources and keeping the function execution in mind.

■ File System Configuration—We chose the minimal install option in the interface configuration, and
then added agetty, boa, dhcpcd, ftpd, inetd, init, ping, route, and telnetd.

■ Modification of Kernel Source Code—We modified the USB driver source code, USB controller
SL811HS driver, web camera OV511 driver, and system files such as Kconfig and Makefile.

Web Server Configuration
The web server used in the project belongs to the uClinux file system. uClinux’s own file system
includes two web server programs, httpd and Boa. In our design, we chose the Boa web server because
of its support for CGI. Boa configuration includes the following steps:

1. Open the boa.conf file in the /target/etc/config folder in the established file system.

2. Change ChRoot to /mnt/ide0/www to make the /www file on the compact flash card the main
folder of the web server. When you type IP system, the server automatically analyzes and
searches the web page named index.htm in the main directory, which is also the homepage of this
design.

3. Add the command ScriptAlias /mnt/ide0/www/cgi-bin/ /cgi-bin/ in the ScriptAlias section to map
the forefront folder address with a complete path. This setting saves time for entering an address in
the address column and enhances the security of the system. Defaults can be selected for other
options.

4. Save the configured files. After downloading the file system, create a cgi-bin directory in the
/mnt/ide0/www file for storing CGI scripts.

CGI Program Design
The CGI program enables monitoring from the client, who can issue measurement commands to the
system through the web browser. Upon receiving commands, the CGI program performs the task of
parameter monitoring and image supervision of the electric grid. Because the CGI program is written in
C and embedded in an HTML page, when it is executed, the system can perform measurement
operations on specific ports display the result on a web page for further action.

First, the CGI script called GET receives the analytical QUERY_STRING passed to the web page from
web server, which acts as the customer’s monitoring command center. After receiving the command,
the CGI program decodes it and sends the collected command to the electric grid parameter data
collecting module. Next, it receives the returned data and immediately passes it to the web interface,
which is browsed by supervisors. It is important to note that after the CGI script is programmed and
executed, it should be moved to the relevant directory on the compact flash card. It should also have its
suffix changed to cgi, and attribute changed to executable for the web server to recognize and execute
the CGI program correctly.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

304

USB Interface Board Design
The SL811HS is a widely used USB controller in embedded systems supporting the USB1.1 protocol.
Based on this controller, we designed a USB interface board and used the J16 pin on the Cyclone
development board as the connecting interface to SL811HS hardware. Simultaneously, we programmed
the timing conversion using HDL to conform to Avalon® bus timing and SL811HS timing
specifications, and added it to the user-defined logic in the SOPC Builder tool.

Image Capture Program Design
Our image capture program in uClinux mainly uses video4linux application programming interfaces
(APIs) provided by the kernel, which can capture images using image codecs. The APIs also support the
USB interface and web camera’s driver programs. The main functions of the program include an image
collection device (web camera) initialization, mapping and capture of the current video frame,
converting an image into JPEG format, and saving it to a file. We access this file through CGI, and
display it on the supervisor’s web page, which denotes the completion of the image capture and display
process. Our software program uses several video collection programs, which observe the GPL license
and run on Linux. These programs include vgrabbj, xawtv, and webcam server programs.

Design Features
Our design combines both electric grid parameter measurement and video monitoring tasks, which is
perhaps a first of its kind in the market. We anticipate many application possibilities for our system with
a huge market potential.

Our design is very economical because it uses Altera’s FPGA as the core of the whole system. We
adopted the Nios II processor, a JTAG-based hardware-debugging module that supported JTAG
debugging online, and omitted an external emulator. By using a web camera to perform video capture,
we saved a lot of money. Furthermore, our design is flexible enough to accommodate changes based on
the customer’s actual requirements, and can cater to different applications.

We ported the uClinux real-time operating system (RTOS) to the Nios II processor to take full
advantage of RTOS resources and to facilitate faster system development.

Video capture and compression tasks use complicated computing. Thanks to the Nios II processor’s
powerful data-processing capability, we could accomplish all of the video capture and compression
tasks of our system. Also, the Nios II processor has a superior price/performance ratio, and is a good
choice for most embedded developers.

We can add peripherals to our system without making any modifications to system hardware. For
example, we could use the Cypress SL811HS device as the main USB controller, and can easily
interface the SL811HS chip onto the Avalon bus through user-defined peripherals in the SOPC Builder
tool. We cannot make these types of modifications using other embedded systems based on the ARM
MCU, etc.

By expanding the compact flash card memory as external storage for our embedded system, we can
store dynamic web pages and update data at any time. Again, the enhancement and interconnection of
the compact flash card module can be made quickly using SOPC Builder.

 Embedded Electric Power Network Monitoring System

 305

Conclusion
We learned a lot from this three-month design contest. We gradually developed a through understanding
of the Nios II processor, which enhanced our confidence in it. We also gained a lot of knowledge about
embedded design techniques. In our opinion, Altera’s SOPC design methodology is a highly flexible,
efficient solution. Using SOPC Builder, we could customize the Nios II CPU for our design
requirements and use system resources efficiently. Compared to other 32-bit processors with the same
functions, the Nios II processor offers a very good price/performance ratio. Additionally, the Nios II
IDE development environment has a user-friendly interface, facilitating fast system design and program
debugging. Furthermore, Altera provided many reference designs, some of which we used with some
modifications.

As Altera has improved the Nios II processor, other intellectual (IP) and software companies have
perfected their support for it. For example, we used the Microtronix’s uClinux RTOS, which is an
embedded OS especially tailored for the Nios II processor, in our design. Using the Nios II IDE
environment, we could easily make modifications to the RTOS: we modified the USB driver code to
support our USB web camera better, developed a CGI program for communication with the web server,
and implemented dynamic web page technology. We also edited the programs and grafted them onto
GPL in IDE.

Because of the need for real-time arithmetic computation, we used a special DSP device for the electric
grid parameter measurement. However, we believe we could have implemented the same measurement
circuitry totally in the FPGA if we had used the Stratix® FPGA. Using this device, we could have
integrated all of the system functions, and realized the whole system as a single-chip implementation.
This implementation is what we intend to do in future.

During debugging of the USB web camera function, there appeared to be a collision (in communication)
between the USB controller and the web camera hardware. Although we had tried our best, we could
not solve this problem because of time considerations. Although our video capture software ran very
well on Red Hat Linux 9.0 and Fedora 4, and after a successful edit in IDE 1.1 and 5.0, we failed to
collect images on the EP1C20 board because of this hardware collision. Although the contest has come
to an end, we will keep trying to address this problem to develop a more perfect system.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

306

Third Prize

TCP/IP Offload Engine (TOE) for an
SOC System

Institution: Institute of Computer & Communication Engineering, National
Cheng Kung University

Participants: Zhan Bokai and Yu Chengye

Instructor: Chen Zhonghe

Design Introduction
Today, the Internet plays an important role in everyone’s life. The 100-Mbps network system has
become very popular in schools and offices, while the 1-Gbps network system is deployed in server host
networks such as large portal websites and Storage Area Networks (SAN). Meanwhile, the Internet
SCSI (iSCSI) protocol is recognized as the new standard for the emerging network storage
technology—networking of storage component. However, the iSCSI protocol will place heavy demands
on server processing when applications run on high-speed networks. According to recent studies, you
need 100% efficiency from a Pentium III, 1-GHz processor or 30% efficiency from a Pentium 4 2.4
GHz processor to process the 1-Gbps TCP protocol. Therefore, it is necessary to accelerate network-
processing capability and reduce the CPU load by adding extra hardware.

Accelerating system processing has a bearing on the built-in system featuring network functions. The
network communication protocol performance depends on memory (memory access times) and data
volume. For example, you need lots of memory access to read data when computing checksums, which
leads to an efficiency bottleneck. Additionally, when the network interface controller (NIC) receives
large volumes of data, the data is split into many different segments based on protocol restrictions.
Therefore, subsequent interrupts affect the CPU efficiency. If protocols are processed through additional
hardware and with an enhanced memory management mechanism, the above problems can be solved
effectively.

The left side of Figure 1 shows a standard TCP/IP stack. To implement TCP/IP in an embedded system,
we need two important blocks: the PHY and media access controller (MAC) that function in the
physical layer and data-link layer.

 TCP/IP Offload Engine (TOE) for an SOC System

 307

These function blocks also operate under the local real-time operating system (RTOS) in the third layer
(network layer, IP layer) and the fourth layer (transport layer, TCP layer). Thus, all TCP/IP protocols
can be implemented in a software-only solution. We replaced the network protocol with our TCP/IP
Offload Engine (TOE), which you can see in the system’s architecture on the right side of Figure 1.
TOE uses hardware modules to implement protocols, and uses drivers to communicate with upper-layer
space and operating systems.

Figure 1. Network Protocol Stacking (TCP/IP Stack) & TOE Engine

Figure 2 shows the system overview of our design in the FPGA. The system adopts the Avalon® system
bus. In addition to the TOE architecture, the design includes system main memory, a Nios® II processor,
DMA, the LAN91C111, and a PHY/MAC chip controller. We will describe the TOE’s major functions
and blocks in a later section.

In this system, the Nios II processor functions as the primary controller for data communication
between the MAC, TOE, and main memory. The MAC receives a message box data and sends it to a
data buffer space of TOE (TCP/IP Offload Engine) through firmware, which processes the data and
sends it to the main memory. While transmitting, MAC first sends the data to the internal data buffer
space of the TOE, which then adds headers and transfers it back to the MAC for transmission.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

308

Figure 2. Hardware Overview

Avalon System Bus

Nios II Main MemoryLAN91C111
PHY/MACRJ45

TCP/IP
Offload Rx

Part

Rx Connection
Control

Information
(Rx_CCI)

(16 K SRAM)

Rx Data Buffer
(64 K SRAM)

Tx Data Buffer
(64 K SDRAM)

TOE

Register Files

DMA

Rx Connection
Control Information

(Rx_CCI)
(16 K SRAM)

TCP/IP
Offload Tx

Part

We used the Nios II processor because the Altera® PCI development board provides peripherals such as
the PCI interface and SDRAM, which are required by the system. Although we were unable to achieve
the final goal in this contest, that is to use SDRAM as a data buffer to support more connections and use
the PCI interface to communicate with the upper-layer operating system (OS), we selected the above
development board and related Altera integrated development environment (IDE) to facilitate easy
development and scalability in the future.

Function Description
Although we designed the general TCP function block, we could not complete it due to time constraints.
Therefore, the final product does not provide the TCP function. The paragraphs below will mark this
part as “Unfinished”.

Major Functions & Blocks
Figure 1 shows a complete TCP/IP stack. However, because the whole network protocol is too
complicated, we have only implemented the most used functions of TCP/IP protocols. The white shaded
blocks (ARP, ICMP, IP, UDP, and TCP) in Figure 1 were implemented in our design. Three major
functions are included in this design:

■ Send pings and respond to echo request packets (ARP & ICMP).

■ Provide UDP transmission capability of up to eight connections simultaneously.

■ Establish and manage up to eight TCP connections simultaneously (unfinished).

In the hardware scheme shown in Figure 2, the TOE body includes modules as follows:

■ Four SRAMs (alt_syncram):

• Two 64-KByte SRAMs are used as data buffers, which are temporary packet storage for
receiving and transmitting (Rx and Tx data buffer).

 TCP/IP Offload Engine (TOE) for an SOC System

 309

• Two 16-KByte SRAMs are used as storage blocks for connection control information (CCI) of
receiving end and transmitting end. The two blocks will record the status of data buffer, and the
queue information of protocol processing sub-module. All data except packet data are stored in
this CCI.

■ Rx and Tx protocol processing blocks:

• Rx protocol processing module.

• Tx protocol processing module.

The two protocol processing modules consist of small modules, which are responsible for partial logic
functions of specific protocol layers respectively.

■ Register files (TOE internal buffer), which generally includes the following items:

• CPU control bit.

• TOE status.

• Control buffer of item addition at transmitting end (CPU is used to initiate a buffer group that
sends work instruction).

• Control buffer of item addition at receiving end (CPU is used to initiate a buffer group that
receives work instruction).

• ARP table control buffer.

• UDP control block control buffer.

• TCP control block control buffer (unfinished).

• Protocol modules control buffer.

• Queue substrate of protocol processing sub-module and item number control buffer.

Refer to the “Design Architecture” section for the implementation of each module.

Performance Parameters
Because the TCP module is unfinished, the buffer access times and memory data volume are used for
TCP performance evaluation.

Performance Evaluation
The performance can be evaluated as follows.

■ 100-Mbps wire-speed–In Ethernet applications, the TCP maximum segment size (MSS) is usually
set to 1,460 bytes, while the IP maximum transfer unit (MTU) is set to 1,500 bytes. Therefore, the
size of the message box is often 1,518 bytes (a MAC header is 14 bytes, and a CRC is 4 bytes). In
addition, there are eight bytes of preamble when the MAC transmits a valid message box.
Therefore, to receive a message box it needs 1526[x]8[x]10 ns = 122080 ns = 0.12179 ms, that is
we need to process a frame within 0.12208 ms or 12208 clock cycles.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

310

■ 1-Gbps wire-speed–The timing is 1/10 of the result above, meaning we need to process a frame
within 12.2 µs or 1220.8 clock cycles.

Practical Performance Analysis
The test scenario is:
■ TOE: operation frequency 40 MHz

■ PC transmitting packet: 1 GHz Linux running UDP program

■ Measuring packet volume: 2 GHz Windows XP running Ethereal

TOE Performance
Figure 3 shows the number of packets in different sizes that the TOE can process per second. Rx-Tx
means that when receiving a packet, the TOE always transmits a responding packet in the same size, so
the number of packets processed shall include Rx packet and Tx packet. Rx means a packet in response
is transmitted upon receiving 1,000 packets. Therefore, the number of packets processed is the Rx
packet number. Additionally, the Nios II CPU processes all data replications.

Figure 3. TOE Performance

N
um

be
r o

f P
ac

ke
ts

Pr

oc
es

se
d

pe
r S

ec
on

d

In Rx-Tx testing, when the packet size is 60 bytes, the number of packets processed by the TOE per
second can go up to 1514 bytes (packet size). This is because the TOE has three data replications from
receiving to transmitting: the first from MAC buffer to TOE RxBuffer, the second from TOE RxBuffer
to TOE TxBuffer, and the third from TOE TxBuffer to MAC.

In Rx testing, when the packet is 60 bytes, the number of packets processed by TOE per second can go
up to 1514 bytes (packet size), which is 12 times the size when compared with Rx-Tx testing. This is
because the replication from TOE RxBuffer to TOE TxBuffer is reduced.

 TCP/IP Offload Engine (TOE) for an SOC System

 311

In Rx-Tx testing, when the packet is 60 bytes, the number of packets processed by TOE per second is
12,000; that is, the packets received are 6,000. However, when provided with the same packet size, TOE
only receives 10,664 packets per second in the Rx testing. This is because the CPU has to process data
replications of Rx packets and Tx packets simultaneously.

Provided that the time for data replication is deducted, and if we assume a packet size of 1514 bytes, the
data volume received per second is 6000[x]1514/1000000=9.084 Mbytes.

In Rx testing, when the packet is 60 bytes, the number of packets processed by TOE per second is
10,664. Provided, time for data replication is deducted, and assuming packet size of 1514 bytes, the data
volume received per second is: 10664[x]1514/1000000=16.145 Mbytes.

As a result, the performance bottleneck of TOE lies in the data replication. If the time of data replication
is reduced but the speed is accelerated, the TOE will be able to process 100 Mbps network speed. To
process 1-Gbps data, we need to improve the processor frequency of up to 1 Gbps/16.145 Mbytes =7.8
and 40 MHz x 7.8 = 312 MHz.

Design Architecture
This section describes the system’s architecture.

TOE Hardware System Design Concept
As shown in Figure 4, we divided stacks into two modules: Rx and Tx, which are both ASICs and are
attached to the same system bus. Therefore, they can be controlled by the same embedded CPU and
share a common memory. However, the TCP module needs to communicate with input modules in full-
duplex mode (the size of the sliding window is influenced by ACK reply), and the two modules can
operate independently. The advantage of this design is that the transmitting and receiving allows
parallel processing as long as some appropriate firmware is deployed.

Figure 4. Parallel Processing Module Dividing (Tx & Rx)

Receiving
Tasks

Sending
Tasks

TCP/IP Module

Memory

Memory

Figure 5 shows the relationship between the TCP packet processing module and the buffer. After the
protocol processing is finished on the first layer, the processed data is discarded to the next layer in
order to avoid too much memory-to-memory transfer, so that the processing module of each
communication protocol will be able to read and write using a shared memory.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

312

Figure 5. Protocol Processing Module Required for TCP Packet Processing & Shared
Memory

When it finishes processing a protocol packet, the module notifies the next module of a pointer in the
same shared memory so that the processing flow can obtain the data with minimum memory transfer
volume. However, no memory exceeding three access ports is available for use. Therefore, we need to
determine which memory will come first when reading and writing the buffer via the arbiter circuit
when we connect these modules with the buffer. We need to research whether the different applications
or connections are related in this arbitration mechanism.

Figure 6. Protocol Module Division Design

Rx Module

MAC (Rx)

IP_rx ARP

UDP_rx

ICMP_rx

Rx Frame

ARP_Rx

UDP_Rx

UDP_tx TCP_tx

IP_tx ICMP_tx

TCP_rx

Rx _L4_done

TCP_Rx

Rx_L3_done
(L4rx Processing Req)

ICMP_Rx
IP_RX

Tx_LR_done
(L3 tx processing req.)

UDP_Tx UDP_Tx

Data_Tx_req.
(L4 Tx Processing Req.)

Tx Module

MAC (Rx)

Tx_L3_done
(MAC Tx Req.)

The three major functions (TCP, UDP, and ping) in the document are realized based on the TCP/IP
Protocol Suite by Behrouz A. Forouzan and Sophia Chung Fegan. We have utilized hardware circuits to
complete the logic function of each software module (using multi-cycle based finite state machine to
realize function of single module by stages), and then connect the logic circuit to shared memory for
communication (see Figure 5). To realize parallel processing, the whole TCP/IP stack is divided into
several modules as shown in Figure 6. As mentioned above, such a design approach enables it to receive

 TCP/IP Offload Engine (TOE) for an SOC System

 313

packets while transmitting. Additionally, when a packet is processing TCP, it can accept another packet
to occupy the IP processing module for implementation of protocol-related work on the IP layer. Each
protocol module runs the state machine as shown in Figure 7.

Figure 7. State Machine Structure of Protocol Processing Module

2
Processing

3
Save in the
Next Buffer

1
Wait from

Layer

In short, these sub-modules use multi-cycle logic circuits to work as software modules. The module
group responsible for receiving analyzes the header fields of the message box stored in the data buffer
according to sequence, and then processes this data. The transmitting module clusters add network
headers to the data segment that needs to be transmitted according to user instructions (for example,
driver and system firmware).

Process Communication Queue Among Modules: Buffer
Tables, Connection Control Information (CCI)
The communication among the processing modules is shown in Figure 8 and is realized through queues.
In our design, we implemented it using a buffer table. The buffer table consists of pointers and
information required by packet processing and is stored in the connection control information (CCI)
RAM, pointing at a memory block to store complete packets into the data buffer. Each processing
module is related to at least two tables; one indicates the data pointer where the data is processed, and
the other holds the data pointer required to notify the module on the next layer when the module
processing is finished.

In Figure 8, the lines connecting the blocks indicate table names. Each buffer table has several items,
with data pointers pointing to the packet located in the data buffer. The ARP module captures the data
block required for ARP protocol processing in the ARP_Rx table. It then performs the operation and
store the finished data pointer in the Tx_L3_done table. Finally, it waits for the MAC_Tx module to
read the pointer and output the data. Figure 8 shows the logic-buffer table and the data buffer. In our
design, each data pointer has four fields as shown in Figure 9. Field description is explained following
the data buffer design description.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

314

Figure 8. Buffer Table Scheme

Data Buffer
Received Frame Table

A Block of SRAM Is Used to Store
All the Table Needed for the TOE

<Buffer Tables>

Packet /
Frame Buffer

(64 KB)

Entries with All 0's Are
Empty Ones

Start ptr0
Start ptr1

length 0
length 1 Received Frame Table

IP_rx Table
ARP_rx Table

Rx_L3_done Table

Rx_L4_done Table
Rx_L4_done Table

Start ptr0
Start ptr1

Length 0
Length 1

00000000
00000000
000000000

Figure 9. Data Pointers

In Rx Buffer?

Data Pointer

Slot No. Data Start Offset Data_length

7 Bit 9 Bit 11
Bit

Data Buffer Area Design
To facilitate buffer management, the 64-Kbyte data buffer area is divided into several slots, each
occupied by a message box. The larger message boxes may occupy more slots. In this design, the
number of slots is set in the compiled hardware circuit. We have set 128 slots in the current trial
version, where each slot takes up 512 bytes. In this way, the buffer management is less complex and
requires less CCI storage.

Data pointer fields in Figure 9 can be explained as follows:

■ In the Rx buffer: 1 bit, shows whether data is at the receiving end buffer or the transmitting end
buffer.

■ Slot No.: Number of the first slot occupied by the data.

■ Data start offset: Indicates the start offset of the valid data.

■ Data length: Length of the data.

The second and third bit can be combined to form a 16-bit data buffer address, pointing to the start point
of the data.

 TCP/IP Offload Engine (TOE) for an SOC System

 315

Logically, the data buffer puts the contents of the message box into memory. However, because the
packets are not processed in sequence, a linked list mechanism changes the small usable area into serial
memory blocks, improving the working efficiency of the data buffer. If a frame can obtain a whole list
of serial data while requiring the data buffer, the linked list mechanism is not started; instead, the serial
idle segments are distributed into the frame.

Figure 10. Data Buffer & Linked List

...

¡

As shown in Figure 10, the idle spaces in the data buffer are not in series because of the non-sequential
processing. The best way to deal with this mechanism is to connect the idle segments to a linked list.
Except when transferring whole packets (for example, to transfer a message box from MAC to TOE or
from TOE to main memory), other packet headers do not need to support a linked list, because the slot
size is set to far exceed the overall length of all protocol headers. This means that the linked list does
not span the slot while it is processing the packet header.

In Figure 10, we can see that the data buffer and linked list mechanism needs two memory blocks to
support it. These memory spaces are put into CCI, and the resulting CCI memory allocation is shown in
Figure 11. The first memory area is called status bits, where there are a total of 128 data bits. Each one
represents the status of a slot in the data buffer—1 for occupied and 0 for idle. The second memory area
is called linking ptrs (linking pointers), which records the interconnection status of occupied data slots.
Here there are 128 total units, each with a 32-bit data, and each corresponds to one slot. As shown in the
figure, the highest 2-bit indicates the slot status—‘00’ means that the slot is a part of the data that has
not be segmented; ‘10’ means the slot is a node of linked list; ’11’ means the slot is the last node of
linked list. Next to this are two 7-bit fields, respectively, indicating the starting and ending shifts of
valid data; the last 9 bits is a data pointer to the next data slot.

The linked-list mechanism relies on the Nios II processor for management. So when the hardware
module processes headers, the mechanism is not used for one slot. When it needs to send data into TOE,
the Nios II processor detects the idle slot by referring to status bits in the TOE; and if necessary,
initiates a linked-list mechanism to store the data in the TOE. When the data is moved out of the TOE, it
determines whether there is a linked list, then reconnects the processed data and transmits it to the
destination.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

316

Figure 11. CCI Internal Memory Allocation

Status Bit (128 Bit)

Linking Pointers
(128 Words, Each Word
Represents the Linking

Condition of a Slot)

IP_RCV Buffer Table

ARP_RCV Buffer Table

UDP_RCV Buffer Table

TCP_RCV Buffer Table

...

TCP_RCV Buffer Table

Buffer
 Tables

Processing Flow
Figure 12 shows the transmit packet flow.

 TCP/IP Offload Engine (TOE) for an SOC System

 317

Figure 12. Process Flow of Transmitting Packet

setup

Figures 12 and 13 show the transmitting and receiving flows, respectively, in which the Nios II CPU
processes the contents in circle objects (at the beginning and end of flow) via software, while the square
contents are processed by a hardware protocol processing module. The squares that are connected
through broken lines and bold arrows on two sides of the flow show the data structure of single items in
the hardware-processing-module communication queue.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

318

When the TCP_Tx module is transmitted to the IP_Tx module, you need the data pointer and packet
type (see below).

Referring back to the data buffer design in Figures 10 and 11, the data buffers of both the receiving and
transmitting ends have two fields in CCI to record the status of the data buffer. These are status bits and
linking pointers: status bits use 0 and 1 to record if the slot is idle; the linking pointers record the
interconnection status among each slot. When data is transferred into TOE, CPU needs to control the
DMA engine for data transfer and modify the data structure that records the data buffer status. This
operation ensures correct control of the processing module operation.

Figure 12 explains the process flow for packet transmission.

■ When the packet that is going to be transmitted is in the main memory, the CPU checks whether the
status bits in the slot status table denote enough space. There may be three outcomes:

• Sufficient serial space—Setthe status bit of the corresponding space to be used to 1. Set the
status bit of the corresponding Linking_ptrs of slot to be 00.

• Sufficient non-serial space—Set the status bit of the corresponding space to be 1. Each field of
the corresponding Linking_ptrs shall be set.

• Insufficient space—The CPU checks continuously until there is sufficient space.

■ The CPU calls the DMA to transfer the data from the main memory to the Tx_data_buffer.

■ Add an entry into the Tx_data_req and notify the TCP/IP offload engine to transmit some data.

■ In the TCP/IP offload engine, each module has a corresponding table, and the data is processed as
follows: the upper-layer module finishes data processing and adds the pointer to the data that is put
into the table of next layer. In this way, the module knows which data to process by looking at the
table.

■ After the last layer arp_tx in the TCP/IP offload engine finishes processing, it sends out an interrupt
signal. The CPU calls the DMA to transfer the data from the Tx_data_buffer to the MAC buffer to
complete the packet transmission.

Figure 13 shows the receive packet flow.

 TCP/IP Offload Engine (TOE) for an SOC System

 319

Figure 13. Process Flow of Receiving Packet

Packet in MAC Buffer

LAN9C1111 Interrupts
CPU

CPU Checks
Status Bits of Slot

Status Table in CCI

Set Corresponding Status Bits 1

Contiguous
Free Space Non-Contiguous

Free Space

No Free Space

Set All Corresponding
Status Bits of
Linking_ptrs

00

Set All Fields in
Corresponding

Linking_ptrs
CPU Programs DMA to
Move Data from MAC

Buffer to Rx Data
Buffer

Add an Entry to the
Received Frame Table

Set Corresponding Status Bits 1

If TCP

Data_ptr

IP Header
Checksum

TCP
Checksum

Data_ptr

IP Header
Checksum

UDP
Checksum

If UDP

IP_Rx

Data_ptr

TCP
Checksum TCP_Rx

Data_ptr

UDP
Checksum UDP_Rx

DMA Control

Host_data_adr
Data_ptr

Use Information in the
Register Files to Program DMA to

Move Received Data to Host
SDRAM

Slot No. str end M
Slot No. str end M

Copy 1
Copy 2

More bit

Rx_Data_valid interrupt

Read

setup

Host_data_adr
In Register
Files

Software

Figure 13 shows the process flow for packet receiving.

■ When the packet that is going to be transmitted is in the main memory, the CPU checks whether the
status bits in the slot status table indicate enough space. There can be three results:

• Sufficient serial space—Set the status bit of the corresponding space to 1, and the
corresponding Linking_ptrs status bit to 00.

• Sufficient non-serial space—Set the status bit of the corresponding space to 1. Each field of the
corresponding Linking_ptrs shall be set.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

320

• Insufficient space—CPU will check continuously until there is sufficient space.

■ The CPU calls the DMA to transfer the data from the main memory to the Rx_data_buffer.

■ Add an entry into frame_table and notify the TCP/IP offload engine that the data has been received.

■ In the TCP/IP offload engine, each module has a corresponding table, and the data is processed as
follows: the upper-level layer finishes the data processing and adds the pointer pointing to the data
that is put into the table onto the next layer. In this way, the module knows which data to process
by looking at the table.

■ After the last layer Tcp_rx and udp_rx in the TCP/IP offload engine finish processing, it sends out
an interrupt signal. The CPU calls the DMA to transfer the data from the Rx_data_buffer to the
main memory to complete receiving the packets.

Design Methodology
The architecture of the whole system is shown in Figure 14, detailing several main components:

■ Nios II CPU.

■ DMA engine.

■ Main memory constructed by Altera synchronous SRAM (in the future, main memory could be
constructed by the development board DDR SDRAM and SDRAM controller).

■ Tri-state bridge for Lan91c111 PHY/MAC.

■ Custom ASIC TCP/IP Offload Engine.

Figure 14. Hardware Overview

Avalon System Bus

Nios II Main MemoryLAN91C111
PHY/MACRJ45

TCP / IP
Offload Rx

Part

Rx Connection
Control Information

(Rx_CCI)
(16 K SRAM)

Rx Data Buffer
(64 K SRAM)

Tx Data Buffer
(64 K SDRAM)

TOE

Register Files

DMA

Rx Connection
Control Information

(Rx_CCI)
(16 K SRAM)

TCP / IP
Offload Tx

Part

 TCP/IP Offload Engine (TOE) for an SOC System

 321

The interconnection of these components was configured using the SOPC Builder tool, and the data was
transferred into each component through Avalon system bus. Our TOE features the following five
external channels:

■ Access channel of CCI system at receiving end.

■ Access channel of CCI system at transmitting end.

■ Access channel of data buffer system at receiving end.

■ Access channel of data buffer system at transmitting end.

■ Register file access.

These channels connect with the Avalon system bus through the interface to user logic in SOPC
Builder, which is set in slave mode; meanwhile, based on an address mechanism, the Nios II processor
can access five channels of TOE through this interface.

The system is controlled by the Nios II CPU, which executes the program located in the main memory.
The program initializes the lan91c111 and TOE, waits for interrupts, and then executes the
corresponding interrupt service routing (ISR).

The system features the ISR described as follows.

Lan91c111 PHY/MAC ISR
When the processed packet is put into the MAC buffer and the subsequent interrupt is generated, the
CPU shall do the following:

■ Check status bits in the slot status table to find if the rx_buffer has enough space for the packets.

■ Packets are transferred from the MAC buffer to the rx_buffer by calling the DMA function.

■ Add an entry to the Rx_frame.

TOE ISR
The CPU checks for the type of interrupt served by the TOE_status_reg:

■ Interrupt receiving packet—The CPU calls the DMA to transfer the processed packets to the main
memory.

■ Interrupt transmitting packet—The CPU calls the DMA to transfer the processed packets to the
MAC buffer.

DMA ISR
The CPU checks status bits in the slot status table to find out whether the Tx_buffer has enough space
for packets.

■ Packets are transferred from the Rx_buffer to the Tx_buffer by calling the DMA.

■ Add an entry to the Tx_frame.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

322

Design Features
The main features of our system design are as follows:

■ If we used only the Nios II CPU to process the TCP/IP network protocol, it would be impossible to
reach 100 Mbps. However, by deploying both the Nios II CPU and the TOE architecture to process
the TCP/IP network protocol, we can reach 100 Mbps.

■ Our architecture modularizes each protocol. Each module performs according to its own rules table.
Therefore, we could easily add new protocols using the flexible TOE architecture.

■ The modules for sending and receiving are separated, and this scheme enables message-box
processing in parallel.

■ Support for eight UDP connections.

■ Hardware ARP table.

■ Hardware UDP connection-management mechanism.

■ When the processing modules handle the message box, they only transfer the pointers to the
message-box, reducing data transfers in memory.

■ Due to the network function created in hardware, we were able to reduce host CPU resources
occupied by network tasks in embedded applications.

■ We can efficiently manage the data buffer by dividing the storage memory into numerous slots,
which simplifies the mechanism of data link list. Also, you can easily change the slot size
configuration to meet different requirements by simply altering the design parameters.

■ The system focuses on network storage devices, so the parameter setting in the current design is set
to optimize storage-network applications.

■ If you take into account the time from the MAC operation to receiving and storing this data onto
destination main memory, our system can process the data packets at 100-Mbps of network speed.

Conclusion
In our opinion, the toughest challenge for the system designer is to have the system verified by
application hardware. Fortunately, Altera’s PCI development board provides an environment that
enables testing of the system and interconnection bus that features CPU, DMA, main memory, PC
bridge, and interconnecting peripherals. You can easily construct the system by using the SOPC Builder
tool, which connects its own IP with the peripherals. For example, our system uses MAC and PHY as
network devices, and we developed firmware using the C language.

We constructed the test environment using SOPC Builder, emphasizing the development of the
hardware processing core. If the IP is implemented, its performance can be measured by using the
SOPC Builder, which will greatly reduce the IP development time. Although this board provides
enough I/O, IP is generally too expensive and we need to devote more effort for developing submodules
in case there are not enough resources in the lab. For instance, we could not achieve the expected results
in the design because there was no proper bridge connecting the DDR SDRAM Controller and the PCI
bus. If we had IP of the trial version or the simulation environment of this bridge peripheral, it would
have helped us to dramatically reduce the system development time.

 Appendix: Nios II Embedded Processor Family

 323

Appendix:
Nios II Embedded Processor Family

Today’s embedded design engineers face a tough challenge: finding a processor with the perfect mix of
features, cost, performance, and manageable life cycle. Altera’s Nios® II processors deliver the perfect
fit every time with fully customizable features and performance, low product and implementation costs,
ease of use and adaptability, and obsolescence-proof design.

The Nios II family of 32-bit RISC embedded processors delivers more than 200 MIPs of performance1
and can consume as little as US$0.35 of logic. Because the processors are soft core and flexible, you
can choose from an unlimited combination of system configurations to meet your performance, feature,
and cost targets. Designing with Nios II processors helps you send products to market faster, extend
your product’s life cycle, and avoid processor obsolescence.

Customizable Feature Set
Rather than being limited to a pre-fab processor, with Nios II processors, you choose the exact
peripherals, memory, and interface features you need—customizing the processor to your
specifications. In addition, you can easily integrate your own proprietary functions to give your design
a unique competitive advantage.

Configurable System Performance
You want a processor with enough performance for both your current and future designs. While the
future is uncertain, designers can easily modify their designs to add multiple Nios II CPUs, custom
instructions, or hardware accelerators—even after the product ships—to achieve new performance
goals. Your system performance can be adjusted through the Avalon® switch fabric, Altera’s specialized
interconnect technology, which supports unlimited parallel data paths for high-throughput applications.

Low-Cost Implementation
When choosing a processor, you may face the choice of either buying more processor than you want
just to get the features you need, or buying less processor than you need to meet your cost goals. Using
low-cost, customizable Nios II processors, you can include as many or as few features as you need, and
you can implement them on a low-cost Altera® device, such as a Cyclone™ II FPGA, for as little as 35

1 Dhrystones 2.1

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

324

cents of logic. By implementing processors, peripherals, memory, and I/O interfaces on a single FPGA,
you’ll also decrease your overall system costs.

Life Cycle Management
To create a successful product, you need to get it to market fast, enhance the feature set to extend its
useful life, and avoid long-term processor obsolescence. Nios II embedded processors can be taken from
concept to system in minutes. They are completely obsolescence-proof with their perpetual, royalty-free
licenses to design and produce Nios II processor-based systems. In addition, by implementing a soft-core
processor on an FPGA, in-field hardware upgrades are as easy as software upgrades, allowing products
to meet the latest standards and incorporate new features.

Unparalleled Flexibility
Completely customizable and reconfigurable, the Nios II processors are adaptable to product
requirements for today and the future.

Three Processor Cores
The Nios II processor family consists of three cores—fast (Nios II /f), standard (Nios II /s), and
economy (Nios II /e)—each optimized for a specific price and performance range (Table 1). All three
cores share a common 32-bit instruction set architecture and are 100 percent binary code
compatible. You can easily add Nios II processors to your systems by using the SOPC Builder tool
featured in Altera’s industry-leading Quartus® II design software.

Table 1. Nios II Processor Family Members

Feature Nios II /f (Fast) Nios II /s (Standard) Nios II /e (Economy)
Description Optimized for maximum

performance
Faster than the fastest and
smaller than the smallest
first-generation Nios CPU

Optimized for minimum
logic usage

Pipeline 6 Stage 5 Stage 1 Stage
Multiplier 1 Cycle* 3 Cycle* Emulated in software
Branch Prediction Dynamic Static None
Instruction Cache Configurable Configurable None
Data Cache Configurable None None
Custom Instructions Up to 256 Up to 256 Up to 256

* Using DSP Blocks in Stratix® or Stratix II FPGAs.

Peripherals
Nios II development kits include a library of commonly used peripherals and interfaces. For a complete
list of SOPC Builder-ready intellectual property (IP) and peripherals, visit
www.altera.com/SOPCBuilderReady.

Using the interface-to-user-logic wizard in the SOPC Builder software, you can also create your own
custom peripherals and integrate them into Nios II processor systems. With SOPC Builder and Altera
FPGAs, you can assemble embedded processor configurations not available in off-the-shelf processors,
letting you create exactly what you need, every time.

Avalon Switch Fabric
The Avalon switch fabric enables multiple, simultaneous data transactions for unmatched system
throughput. SOPC Builder automatically generates an Avalon switch fabric optimized to the specific
interconnect requirements of your system’s processors and peripherals.

 Appendix: Nios II Embedded Processor Family

 325

In traditional bus architectures (Figure 1), a single arbiter controls communication between the bus
masters and slaves. Each bus master requests control of the bus, and the arbiter then grants bus access to
a single master. If multiple masters attempt to access the bus at once, the arbiter allocates bus resources
to a master based on a fixed set of arbitration rules. This can lead to a bandwidth bottleneck as only one
master can access the system bus and its resources at a time.

Figure 1. Traditional Bus Architecture

Master
Masters

Slaves
UART PIO

Program
Memory

Data
Memory

Master

Arbiter

System Bus

Bottleneck

The Avalon switch fabric’s simultaneous multi-master architecture increases your system’s bandwidth
by eliminating this bottleneck (Figure 2). Using the Avalon switch fabric, each bus master gets its own
dedicated interconnect, meaning that bus masters only contend for shared slaves, not for the bus itself.
Each time a component is added or the peripheral access priorities change, SOPC Builder generates a
newly optimized Avalon switch fabric with a minimum of FPGA resource use.

Figure 2. Avalon Switch Fabric Architecture

Slaves

Masters

Program
Memory I/O

Custom•
Accelerator•
Peripheral

I/O
Program
Memory

Data
Memory

Master Master Master

Data
Memory

Avalon Switch Fabric

Arbiter Arbiter

The Avalon switch fabric supports a wide range of system architectures, including single- and multiple-
master systems, and allows seamless data transfers between peripherals with performance-optimized
data paths. Your design’s off-chip processors and peripherals are equally well supported by the Avalon
switch fabric.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

326

Custom Instructions
Custom instructions allow developers using Nios II processors to increase system performance by
extending the CPU instruction set to accelerate time-critical software. Using custom instructions, you
can optimize system performance in a way not possible with traditional off-the-shelf processors.

The Nios II family of processors supports up to 256 custom instructions to accelerate logic or
mathematically complex algorithms normally handled in software. For example, a block of logic that
performs a cyclic redundancy code calculation on a 64-Kbyte buffer operates 27 times faster as a
custom instruction than when performed by software (Figure 3). Nios II processors support fixed and
variable cycle operations, include a wizard for importing user logic as a custom instruction, and
automatically create software macros for use in developers’ code.

Figure 3. Nios II Custom Instructions

Nios II Embedded Processor

+--

&

<<
->>

Out

result

A

dataa

Nios II
ALU

B

datab
Custom•
Logic

Hardware Acceleration
Large blocks of data can be processed concurrently to CPU operation by adding application-specific
hardware accelerators (Figure 4) that act as custom co-processors within the FPGA. Using the cyclic
redundancy code example shown in Figure 3, processing a 64-Kbyte buffer runs 530 times faster with
hardware accelerators than software. SOPC Builder includes an import wizard that allows developers to
add their acceleration logic and DMA channel to the system.

 Appendix: Nios II Embedded Processor Family

 327

Figure 4. Nios II Hardware Accelerator

Program
Memory

Program
Memory

Processor Accelerator

Data
Memory

Avalon Switch Fabric

Arbiter Arbiter
D

M
A

D
M

A

Altera also offers the Nios II C-to-Hardware Acceleration Compiler (C2H Compiler), a productivity
tool that gives embedded developers push-button acceleration of performance-critical C-language
software algorithms. These algorithms are automatically converted into hardware accelerators in the
FPGA that act as coprocessors with a latency-aware, pipelined connection to the processor’s memory
map. With this tool, designers have an easy way to boost performance using a known programming
language and familiar tools, improving productivity and speeding time-to-market.

The C2H Compiler is tightly integrated into the Nios II development environment (Figure 5), leveraging
Altera’s proven SOPC Builder tool and the Avalon switch fabric interconnect to automate the
conversion of ANSI C source code to hardware (register transfer language), integrate the resulting
hardware accelerator into the system’s memory map, and schedule memory transactions with latency-
aware pipelining. It enables developers to quickly prototype functions in software running on the
processor, then easily convert the software into a hardware-accelerated implementation.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

328

Figure 5. C2H Compiler

Device Family Support
You can quickly and easily implement Nios II processors in all of Altera’s mainstream devices. Altera’s
complete range of high-performance, high-density, and low-cost devices gives you the FPGAs to fit any
embedded design. For higher-volume applications, you can implement Nios II processors in HardCopy®
series structured ASICs with no royalties or additional license fee requirements.

Complete Development Tool Suite
Altera’s comprehensive hardware and software tools help you create powerful Nios II processor
systems in minutes. Figure 6 shows the complete Nios II embedded processor design flow. From
concept (at top), through hardware and software implementation, to debug, Altera offers all the tools
you need to get your product to market fast.

 Appendix: Nios II Embedded Processor Family

 329

Figure 6. Nios II Embedded Processor Development Flow

SOPC Builder

Targets

Quartus II Nios II IDE

Hardware Software

Automatic•
Software

Generation

System Library
Header File
Application
Template

Define System

Processors
Peripherals

Memory
Interfaces

RTL Simulation

Instruction Set
Simulator

Target Hardware

RTL System
Description

System
Test Bench

JTAG DebuggerFPGA Configuration

Software
Development

Edit
Compile
Debug

Generate FPGA
Configuration

Synthesize
Place & Route

Compile
Download

Hardware Design
Altera provides a complete set of tools for your hardware design, including the SOPC Builder system
development tool, Quartus II design software, ModelSim®-Altera software, and SignalTap® II embedded
logic analyzer.

SOPC Builder
Hardware design for creating Nios II processor-based systems uses the SOPC Builder system
development tool to specify, configure, and generate systems. Launching from within the Quartus II
design software, SOPC Builder provides an intuitive wizard-driven graphical user interface (GUI) so
you can create, configure, and generate system-on-a-programmable-chip (SOPC) designs. It minimizes
the time spent integrating components into a coherent system. Figure 7 shows a view of the intuitive
SOPC Builder GUI.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

330

Figure 7. SOPC Builder GUI

Quartus II
Altera’s Quartus II design software technology leadership gives you unmatched levels of performance
and ease-of-use. Using Quartus II software, you can easily design, optimize, and verify your Nios II
designs in an Altera device.

When you’re ready to simulate your design, SOPC Builder generates both VHDL and Verilog HDL
simulation models. You can easily simulate Nios II processor-based systems using an automatically
generated simulation environment created by SOPC Builder and the Nios II integrated development
environment (IDE). A full Quartus II software subscription includes ModelSim-Altera software that can
also be used to simulate your Nios II designs.

SignalTap II
The ultimate testbench for engineers who want to see the active processes within their
design is running at speed under real-world system conditions. The challenge is in
accessing nodes buried within the FPGA architecture. The SignalTap II embedded
logic analyzer eliminates this challenge by providing access to nearly any node within
your FPGA design through a standard Joint Test Action Group (JTAG) port to view
design nodes in system and at system speeds.

Software Design
To make the software design flow as easy as possible, you can accomplish all software development
tasks within the Nios II IDE, including editing, building, and debugging programs. As part of the
Nios II IDE, Altera partners with operating system and middleware providers for additional software
development tools.

Nios II Integrated Development Environment
Based on the open, extensible Eclipse IDE project and the Eclipse C/C++ Development Tools project,
the Nios II IDE is the primary software development tool for the Nios II family of embedded
processors. You can complete all software development tasks within the Nios II IDE, including editing,
compiling, downloading, debugging, and flash programming. The Nios II IDE, shown in Figure 8,
provides a consistent development platform that works for all Nios II processor systems. With a PC, an

 Appendix: Nios II Embedded Processor Family

 331

Altera device, and a JTAG download cable, you have everything you need to develop and debug
Nios II processor-based systems.

Figure 8. Nios II IDE

JTAG Debug Module
The Nios II architecture supports a JTAG debug module that provides on-chip emulation features to
control the processor remotely from a host PC. The Nios II IDE communicates with the JTAG debug
module on one or more Nios II processors so you can:

■ Download programs to memory

■ Start and stop program execution

■ Set breakpoints and watchpoints

■ Analyze registers and memory

■ Collect real-time execution trace data

The debug module connects to the JTAG circuitry built into all Altera devices and connects to the host
PC via a download cable (Figure 9). Additionally, debug support for the Nios II processor is available
from several industry-standard providers.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

332

Figure 9. Nios II JTAG Debug Module

Avalon Switch Fabric

JTAG Debug
Module

Nios II Processor

Altera FPGA

Avalon Port

JTAG
UART

Avalon Port Avalon Port

On-Chip
Memory

Debug
Data

Character
Stream

Debugger

JTAG Terminal
JTAG•
Hub

Host PC

Altera
Download

Cable

Built-In
JTAG Controller

Instruction Set Simulator
The Nios II instruction set simulator (ISS) allows you to begin developing programs before the target
hardware platform is ready. The IDE allows you to run programs on the ISS as easily as running on a
real hardware target.

Flash Programmer
Many designs that use Nios II processors also incorporate flash memory on the board. Any CFI-
compliant flash device connected to the FPGA can be programmed using the Nios II IDE flash
programmer. The Nios II IDE flash programmer can also program any Altera serial configuration
device connected to the FPGA, as shown in Figure 10. The Nios II IDE flash programmer is pre-
configured to work with all of the boards available with the Nios II development kits, and can be easily
ported to any custom hardware.

Figure 10. Transmitting Flash Content to the Flash Device

Altera FPGA

Target Board

Altera•
Download Cable

Flash•
Programmer•

Design

CFI Flash•
Device

Host PC

Flash Content

Flash Content

Software Templates
In addition to a project set-up wizard, the Nios II IDE provides software code examples, in the form of
project templates, to help you bring up working systems as quickly as possible.

Each template is a collection of software files and project settings. You can add your own source code
to the project by placing the code in the project directory or importing the files into the project.
Figure 11 shows some of the available software project templates.

 Appendix: Nios II Embedded Processor Family

 333

Figure 11. Software Project Templates

System Software
The Nios II IDE lets you customize systems quickly using system software. With system software (also
referred to as “software components”), you have an easy way to painlessly configure your system for
specific target hardware.

Hardware Abstraction Layer
The hardware abstraction layer (HAL) system library is a lightweight runtime environment that
provides a simple device driver interface for programs to communicate with underlying hardware. As
SOPC Builder and the Nios II IDE are tightly integrated, the HAL system library can be automatically
generated to serve as a board support package for Nios II processor-based designs.

MicroC/OS-II
A complete, portable, ROM-able, preemptive real-time kernel, MicroC/OS-II from Micrium ships with
all Nios II development kits and includes full source code, reference manual, and free developers’
license. When you’re ready to migrate your design to your board, you can purchase a shippers’ license.
A shippers’ license entitles you to a license for three developers to create an unlimited number of
designs for one year on MicroC/OS-II and a perpetual license to support designs created during the
subscription period (to fix bugs and make minor modifications).

TCP/IP Stack
Nios II development kits ship with an open-source lwIPTCP/IP stack that is built to work with
MicroC/OS-II applications and implements the standard UNIX Sockets API. The software is available
as source code with complete documentation, reference designs, and technical support from Altera.

Linux
Linux designers requiring a full-featured operating system with network protocol stack, file system, and
other popular device drivers can download the open source µCLinux port for the Nios II processor
family from www.niosforum.org.

Nios II Development Kits
Altera and its partners offer development kits that give you everything you need to start designing the
perfect processor for your system today: from documentation to download cables, from boards to design
software. One example kit is shown in Figure 12. To find out more, visit Altera’s development kits web
site at www.altera.com/devkits.

Nios II Embedded Processor Design Contest—Outstanding Designs 2005

334

Figure 12. Nios II Development Kit, Cyclone Edition

Learn More
There are several ways to learn more about the Nios II processors, all of which begin by navigating to
the Nios II home page at the Altera web site (www.altera.com/nios2) where you can:

■ View online demonstrations

■ Read in-depth technical documentation

■ Download an evaluation version of the Nios II processors and Nios II IDE

■ Check out the latest Nios II development kits

■ Register to attend on-line or instructor-led training

When you’re ready for the next step, simply order a development kit or contact a sales office. Visit
www.altera.com today for details.

You can also visit the Nios design forum site (www.niosforum.org), where Nios and Nios II users
around the world share ideas, design examples, and other information.

	Foreward
	Preface
	Contents
	High-Speed Image Evidence Collector Based on Dual Nios II Soft Core Processors
	Design Introduction
	Function Description
	Real-Time Character Overlapping
	Early Image Memory
	Image Compression/Decompression
	CF Card File Management System
	GPRS Wireless Transmission of Images
	OSD Display Mode

	Performance Parameters
	Design Architecture
	Design Methodology
	System Function Design & Test
	Hardware Implementation
	Software Implementation

	Design Features
	Dual Nios II Soft Core Processors
	Synchronization of Dual-Camera Asynchronous Images
	Real-Time Character Overlapping
	ASIC Compression & Decompression
	CF Card File Management System
	Image GPRS Wireless Transmission
	OSD
	Highly Integrated SOPC Solution
	Easy System Upgrades
	Collaborative Software/Hardware Development
	Lower System Cost

	Conclusion

	Passive Digital Camera
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Hardware Design
	Software Design

	Design Methodology
	Design Features
	Performance
	Portability
	Low Power Consumption (Abandoned)
	Integration

	Conclusion

	Nios II Processor-Based Hardware/Software Co-Design of the JPEG2000 Standard
	Design Introduction
	Function Description
	Performance Parameters
	Profile Results
	Block Encode Time
	DWT Flow

	Design Architecture
	Design Methodology
	Design Features
	DWT Custom Instructions
	Multi-Threading of Kakadu
	Hardware Peripheral
	Bit-Plane Reorganization
	BPC Module
	AC Module
	Distortion Estimation

	Implementation Results

	Conclusion
	References

	Embedded Network MP3 Playing System
	Design Introduction
	Public Broadcasting System
	CD Audio Player

	Function Description
	MPEG-1 Layer III Coder Architecture
	MP3 Decoder Architecture
	MP3 Archive Description
	Bitstream Format
	Frame Format
	Header Format
	Side Information Format

	MP3 Decode Operation
	Huffman Decoder & Dequantizer
	Reordering
	IMDCT

	Ethernet Protocol
	Embedded Operating System Analysis & Selection
	Comparison between the μC/OS & uClinux Embedded Operating Systems
	Task Scheduling
	File System
	Migration of the Operating System

	Performance Parameters
	Design Architecture
	MP3 Broadcasting Network
	MP3 Broadcasting Receiver
	MP3 Decoder
	LCD Display Panel
	Touch Panel

	Ethernet Chip
	Operating System

	Design Methodology
	 Design Features
	Conclusion

	Implementation of the H.264/AVC Decoder Using the Nios II Processor
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Nios II Configuration & Memory Hierarchy
	Custom Instructions for CAVLC Decoding
	Inverse Quantization & Inverse Integer Transform
	YUV Frame Buffers

	Design Methodology
	Design Features
	Conclusion

	Spectral Estimation Using a MUSICAlgorithm
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	CORDIC Architecture
	Rotation Mode
	Vectoring Mode

	FPGA Implementation
	Test Results & Comparison
	Performance Comparison

	Design Features
	Conclusion

	Nios II Soft Core-Based Full-Color LEDMusic Sight Light Control System
	Design Introduction
	Function Description
	Major System Functions
	System Components
	Display Unit
	Control Unit
	Display Drive Principle
	Display Drive Unit
	Data Communications Unit

	Performance Parameters
	Design Architecture
	Design Methodology
	Hardware Design
	Full-Color Lamp Control IP Core Design
	Function Simulation
	MP3 Design
	SOPC Builder Configuration
	Compiler

	Software Design

	Design Features
	Conclusion
	Appendix

	3-D Accelerator on Chip
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Cryptographic Algorithm Using a Multi-Board FPGA Architecture
	Design Introduction
	Functional Description
	Performance Parameters
	Random Number Generation
	Bit Generation Speed/Throughput
	Random Number Receiver
	Multiplicative Inverse
	Exponentiator
	RSA Integrated
	Execution Time & Throughput

	Design Architecture
	PRBG Based on Block Cipher Techniques
	DES Random Bit Generator
	DES RBG Design
	Implementation Details

	RSA Design
	Random Number Generation
	Architecture of Random Number Receiver
	Random Number Receiver Module
	Random Number Receiver Block Diagram
	Driver Program
	Primality Check Module
	Multiplicative Inverse
	Extended Euclidean Module
	Modulus
	Modular Exponentiation
	Exponentiator
	Systolic Array
	Processing Element
	Modular Exponentiator Block Diagram

	Design Methodology
	RSA Implementation
	Design Flow
	Design Entry
	Random Receiver
	Multiplicative Inverse
	Modular Exponentiation
	Compilation & Synthesis
	Fitting, Placement & Routing
	Interaction with C Driver Program

	Implementation Issues
	Use of External Pins
	16-Bit Implementation
	Modular Design
	Design Scalability
	Testing & Verification
	Processing Time
	Software Implementation

	Design Features
	Conclusion

	SOPC-Based Word Recognition System
	Design Introduction
	Functional Description
	Preprocessing
	Vector Quantization
	Hidden Markov Model
	Three Basic Problems for HMM
	Solution to Problem 1
	Solution to Problem 2
	Viterbi Algorithm
	Solution to Problem 3

	Recognition

	Performance Parameters
	Recognition Accuracy
	Design Implementation Times
	Design Metrics

	Design Architecture
	LPC Feature Analysis
	The Hidden Markov Model (HMM)
	Elements of a Discrete Hidden Markov Model

	Design Methodology
	Design Flow in Training
	Design Flow for Recognition
	Implementation Summary

	Design Features
	Conclusion
	Probable Future Improvements
	Results

	Appendix: Implementation Snapshots

	Intelligent Card Technology-BasedBiometrics Identification System
	Design Introduction
	Application Scope
	Advantages of Using the Nios II Processor

	Function Description
	Collecting Biometric Data & Transmission in DMA Mode
	Biometric Data Extraction & Compression, DSP Builder & Customized User Instructions
	Card Reader/Writer Integration & User-Defined Peripherals
	Control of a Complex System Using RTOS vs Multi-Core Technology

	Performance Parameters
	Design Architecture
	Design Methodology
	Design Environment
	Design of System Hardware
	Design Implementation
	Biometric Feature (Data) Collection Module
	Preprocessing Module
	Voice Information Preprocessing
	Smart Card Read/Write Module

	Design Features
	Conclusion

	Real-Time Driver Drowsiness TrackingSystem
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Hardware Design of the System
	OV7620 Control Module
	External SRAM Read/Write Control Module
	Hardware Realization of the Relevant Image Processing Algorithm (Core Part)

	System Software Design

	Design Features
	Conclusion

	High Aberrance AES System Using a Reconstructable Function Core Generator
	Design Introduction
	Design Concept
	Diversified AES Application Scope
	Target Users
	Nios II Development Kit

	Function Description
	Expected Functionality
	Implementation Method

	Performance Parameters
	Design Architecture
	System Design
	Hardware Design
	Software Design Flow

	Design Methodology
	Realization Method
	Design Process

	Design Features
	Conclusion

	Wireless Multifunction Digital StorageCenter
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Nios II Soft Core-Based Double-LayerDigital Watermark TechnologyImplementation System
	Design Introduction
	Application Scope
	Target Users
	Why We Chose the Nios II Processor for Our Design

	Function Description
	Function 1
	Function 2
	Function 3

	Performance Parameters
	Fixed-Point Arithmetic
	Optimization of Division
	Using Parallel Processing with the FPGA & Nios II Processor
	Memory Management
	Communication Between the Development Board & Host PC

	Design Methodology
	Design Features
	Conclusion

	Portable Vibration Spectrum Analyzer
	Design Introduction
	Function Description
	Performance Parameters
	Input section
	Section of Analysis
	Parameters of the System Design
	Testing the Measurement Setup
	System Test Solution
	Frequency Measurement Range
	Spectrum Major Lobe Accuracy
	Time Domain Peak to Peak Value Accuracy
	Time Domain Waveform Amplitude Accuracy

	Design Architecture
	Design Methodology
	System Hardware Design
	Customization & Integration of Hardware Floating-Point Multiplication, Addition & Subtraction Instructions
	Design of Single-Precision Floating-Point Number Multiplication
	Integration of Customization Instruction
	Designing a Pure Hardware FIR Digital Filter
	Design of A/D Sample Controller
	Design of A/D Sample FIFO

	System Software Design
	Design of 320 x 240, 256-Color LCD Driver
	Migration of µC/GUI onto Nios II System
	Software Optimization of FFT Algorithm Design
	Design & Realization of AddWindow Processing Algorithm
	Design of Waveform Memory & Playback Program
	Partition of µC/OS Tasks & Their Design

	Design Features
	Implemented System-On-a-Chip with High Integration & Reliability
	Custom Instruction Speeds Up Design Implementation
	Customization of Avalon Bus Interface IP LCD PWM Controller
	Use of µC/OS II & µC/GUI
	Soft Cores Made Interface Design Simple

	Conclusion
	Appendix

	SOPC-Based Servo Control System forthe XYZ Table
	Design Introduction
	Function Description
	Integrated Function of Three-Axis XYZ Table System Chip
	System Architecture Description
	Detailed System Description
	Mathematical Model of a Permanent Magnet Synchronous Motor
	Point-to-Point Multi-Axis Track Planning & Design
	System Functions Accomplished by the Design
	Implementation of Hardware & Software Modules

	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Conclusion

	Networking Remote-Controlled MovingImage Monitoring System
	Design Introduction
	Function Description
	Performance Parameters
	Design Architecture
	Design Methodology
	Design Features
	Technical Standards
	Design Creativity
	Adaptability

	Conclusion

	Embedded Electric Power NetworkMonitoring System
	Design Introduction
	Function Description
	Measurement & Delivery of Electric Grid Parameters
	Video Monitoring

	Performance Parameters
	Design Methodology
	Hardware Design
	Software Design
	Configuration of uClinux OS Kernel & File System
	Web Server Configuration
	CGI Program Design
	USB Interface Board Design
	Image Capture Program Design

	Design Features
	Conclusion

	TCP/IP Offload Engine (TOE) for anSOC System
	Design Introduction
	Function Description
	Major Functions & Blocks

	Performance Parameters
	Performance Evaluation
	Practical Performance Analysis
	TOE Performance

	Design Architecture
	TOE Hardware System Design Concept
	Process Communication Queue Among Modules: Buffer Tables, Connection Control Information (CCI)
	Data Buffer Area Design
	Processing Flow

	Design Methodology
	Lan91c111 PHY/MAC ISR
	TOE ISR
	DMA ISR

	Design Features
	Conclusion

	Appendix:Nios II Embedded Processor Family
	Customizable Feature Set
	Configurable System Performance
	Low-Cost Implementation
	Life Cycle Management
	Unparalleled Flexibility
	Three Processor Cores
	Peripherals
	Avalon Switch Fabric
	Custom Instructions
	Hardware Acceleration
	Device Family Support

	Complete Development Tool Suite
	Hardware Design
	SOPC Builder
	Quartus II
	SignalTap II
	Software Design
	Nios II Integrated Development Environment
	JTAG Debug Module
	Instruction Set Simulator
	Flash Programmer
	Software Templates

	System Software
	Hardware Abstraction Layer
	MicroC/OS-II
	TCP/IP Stack
	Linux

	Nios II Development Kits
	Learn More

