Nios Il Debug Client

This tutorial presents an introduction to the Nios Il Debug Client, which is used to compile, assemble, down-
load and debug programs for Altera’s Nios Il processor. This tutorial presents step-by-step instructions that illus-
trate the features of the Nios Il Debug Client.

The process of dowloading and debugging a Nios Il application requires the presence of an actual FPGA device
to implement the Nios Il processor. For the purposes of this tutorial, it is assumed that the user has access to the
Altera DE2 Development and Education board connected to a computer that has Quartus Il (version 5.1 or higher)
and Nios Il software installed.

The screen captures in the tutorial were obtained using the version 1.0 of the Nios Il Debug Client; if other
versions of the software are used, some of the images may be slightly different.

Contents:

Installing the Nios Il Debug Client
Starting the Nios Il Debug Client
Compiling and Downloading Nios Il Applications
Running an Application

Using the Disassembler

Examining Memory Contents

Examining and Changing Register Values
Single Step

Advanced Single Step

Setting a Breakpoint

JTAG UART Console

Introduction

The Nios Il Debug Client is a software application that runs on a host PC connected to a Nios Il System. It allows
the user to compile or assemble Nios Il applications, download the application to the Nios Il system and then
debug the running application. The Debug Client provides functionality that allows the user to:

e Examine register and memory contents.
e Disassemble the machine code present in any memory region.
e Single step through each assembly language instruction in the Nios Il application.

e Set breakpoints that trigger when certain instructions are reached or when certain data addresses are ac-
cessed.

e Examine a graphical view of an Instruction Trace that records the set of recently executed instructions before
a breakpoint is hit.

e View serial output sent through the Nios Il JTAG UART.

1 Installing the Nios Il Debug Client

J Installs E]@
File Edit View Favorites Tools Help l";'
> ir 7~ Search Folders mv
Address E:\University Program\Instals| b a Go
-~

File and Folder Tasks 2 @ n2dient_inst

(Z) Make a new folder a5

€} Publish this folder to @

the Web

[Share this folder

Figure 1: Install File on DE2 CD.

To install the Nios Il Debug Client, proceed as follows:

1. Use Microsoft Windows Explorer to open the folder “University Program/Installs” from the DE2 CD-
ROM. As shown in Figure 1, the folder will contain a single executable file nam@etient_inst

2. Double-Click on thisn2client_instexecutable file. This will bring up the first screen of the installer as
illustrated in Figure 2. Click on thimstall button and proceed to the next step. During the install, you will
be asked if you would like a shortcut to the Nios Il Debug Client to be placed onWnudows Desktop
Answering yes will install an icon similar to the one shown in Figure 3 on your desktop.

3. Assuming that the install was successful, the screen shown in Figure 4 will be displayed. Cliclanghe
button to complete the installation. Should an error occur, a dialog box will suggest the appropriate action.
Errors include:
e Quartus Il Software is not already installed or the Quartus Il version is too old.
e Nios Il SDK Software is not already installed or the version is too old.

%4 Nios 1l Debug Client Setup g [

Welcome to the Nios Il Debug Client
Setup Wizard

This wizard will quide wou through the installation of the
debug client. Please note that vou must have previously
installed a version of Altera's Quartus II software (version
5.1 or abowve) along with Altera's Mios II Syskem
Developrient kit {wersion 5.1 or abowve),

Click Here

Cancel

Figure 2: Nios Il Debug Client Install Wizard.

e

Mios IT Debug Client

Figure 3: Nios Il Debug Client Desktop Icon.

£ Nios Il Debug Client Setup \g [

Completing the Nios 1l Debug Client
Setup Wizard

Mios IT Debug Client has been installed on your computer.

Click Finish to close this wizard.

< Back

Figure 4: Nios Il Debug Client Install Finished.

2 Starting the Nios Il Debug Client

Before starting the Nios Il Debug Client, ensure that a Nios Il System has been downloaded onto the DE2 De-
velopment and Education board. This tutorial assumes that the example Nios 1l system provided on the DE2
CD-ROM has been downloaded.

If you have chosen to install a Windows Desktop Shortcut, you may start the Nios || Debug Client by double
clicking on the associated icon. If you have not installed the shortcut or wish to start the Debug Client in an
alternative manner, proceed as follows:

1. Start theNios Il SDK Shellfrom the Windows Start Menu by following the links froAltera > Nios I
Development Kit > Nios Il SDK Shell. This step is illustrated in Figure 5.

B Nios IT Development Kit 5.0 Click Here
T Mios II Development Kit - Evaluation Edition 5.0° PR
&

& QuartusI15.0

Uninsta|l Location: D:

Figure 5: Starting the Nios Il SDK Shell.

2. The Nios Il Debug Client can now be started from the Nios Il SDK shell as shown in Figure 6. Enter the
command2clientin the SDK shell and press Enter.

B3 SOPC Builder 5.1 ﬂﬂ
B

[SOPC Builderl% n2client

Enter
nZclient

Figure 6: Starting the Nios 1l Debug Client.

After startup, the Nios Il Debug Clier8ettings Window will appear as shown in Figure 7. Nios Il systems
have a user configurable architecture. The designer may choose from a variety of peripherals and memory options
in Altera’s SOPC Builder. The Nios Il Debug Client needs information describing the Nios Il system that is being
targetted. Systems created by Altera’'s SOPC builder are describedptfyfde located in the project’s main
directory. This file contains information about all the peripherals connected to the Nios Il processor as well as
the memory map. The Nios Il Debug Client can use this information to debug applications for any Nios Il based
system.

e mE %]

Hios Il System Properties

Click Here
||j example_system e |E

. % de?_demo.ptf

SOPC Builder PTF File

File Hame: |d82_demu.ptﬂ

Files of Type: |SOPC Builder PTF Files (.ptf) Click Here

Program Memory sdram
Sected Memary Size : 8192 Khytes

Click Here

Confirm

Figure 7: Nios Il Debug Client Settings Window.

The Settings Windowallows the user to choose the location of th# file that describes their particular Nios
Il System. It also tells the Nios Il Debug Client where it should download the target software application. This will
typically be a symbolic name, created in SOPC builder, that describes a memory device. By default, the first time
that the Debug Client is started,@f file describing the example Nios Il System shipped with DE2 CD-ROM will
be selected and trmlrammemory will be chosen to hold the target application. To change the defaults, proceed
as follows:

1. Select the directory that contains yaptf file by using the_ook In: drop down list.
2. Double Click on the appropriatetf file in the SOPC Builder PTF File area.
3. Select the approriate memory device from Bregram Memory drop down list.

4. Click on theConfirm button. These settings will remain for all subsequent runs of the Nios Il Debug Client.
Only theConfirm button will need to be pressed if no changes are required.

After a few seconds, the Nios Il Debug Client window will appear. The startup screen is shown in Figure 8.

< Nios Il Debug Client (n2client) = |=| m

File Help

| S
Click Here |

Connect Using
’VUSB-Elaster [UsE-0]

-|

“Rpgict

~NIOS Il Debug Output

5

Disassemble | Memory | Advanced | Conscle | Trace | Debug | | Regster | velue |
1| ||RO (zero) noooonon - |- |
= et gty 00000000
Rz noooooan
R3 noooooan
R4 00000000
RE noooooan
Ra noooooan
R7 nonnnnon
R& noooooan
R® noooooan
R10 noooooan
RlL 00000000
R1z noooooan
R13 noooooan
R14 noooooan
R1E T
R1& noooooan
RI7 noooooan
RiE nonnnnon
R12 noooooan
Rz0 noooooan
RZ1 gooooooo ||
R nooopoon |-
rInteresting Memony

Type Address Data

4]

l [»]
Di hle Controls rBreak +Watch
Start Address {or Symbal) Murn Instructions |

rHext Instruction

NOE

L
~NIOSI mmm;@u Here ||
| Compile & Load

Figure 8: Nios Il Debug Client.

3 Compiling and Downloading Nios Il Applications
To compile and download a Nios Il application, proceed with the following steps:

1. As shown in Figure 8, the first step (highlighted with the circlg@dnvolves selecting the cable that will
be used to communicate with the DE2 Development and Education board. This cable should have a name
similar toUSB-Blaster [USB-Q]

= Open
Look In: |D deZdemo '|

File Mame: |test.s | Click Here
 S—
-

Files of Type: |F\ssambly Language Source Files {.5)

1 Click Here

ED YO TR

Figure 9: Open File Dialog Box.

2. Next, click on theCompile & Load button. A dialog box, shown in Figure 9, will appear. Select the
directory that contains your application source file usingltbek In: drop down list. Note that some
sample applications are included on the DE2 CD.

3. For the purposes of this tutorial, we assume the existance of an assembly language source fitestamed
The Nios Il Debug Client is capable of compiling and downloading:

o S-Record Files: These file havessecextension and contain raw machine code instructions and data.

e Assembly Language Source Files: These files haeeatension and contain human readable Nios
Il instructions. The Nios Il Debug client will call the Nios Il assembler to convert these files into
an equivalent S-Record format. The S-Record file will then be downloaded into the Nios Il memory
space.

e C-Language Source Files: These files haveextension and contain C-Language code. The Nios Il
Debug Client will call thegcccompiler to compile the source code into assembly language and finally
to the machine code in S-Record format. Again, the S-Record file will then be downloaded.

To select an Assembly Language source file, the user must ensufssi@nhbly Language Source Files
(.s)is selected from th€&iles of Typedrop down list.

4. Select the application to be downloaded. For this tutorial, thedgesis selected.

5. Finally click on theOpen button. After a few seconds, the Nios Il Debug client will download the machine
code into memory. The first few instructions are then disassembled and displayed as shown in Figure 10.

& Nios Il Debug Client (n2client) (==

File Help

Connect Using
MIOS Il Debug Output Registers
Cisaszemble | Memary | Advanced | Consale | Trace | Debug Register Walue
RO (zera) 00000000 |«
Rl (at) deadbeef
RE deadbeef
R3 deadbeef
R4 deadbeet
RE deadbesf
Ri deadbeef
R7 deadbeef
Ra deadbeet
RO deadbeef
R10 deadbeef
R1L deadbeef
R1Z deadbeef
R13 deadbeef
R14 deadbesf
R1G deadbeef u
R16 deadbeef
RI7 deadbeet
R1g deadbesf
R19 deadbeef
Rz0 deadbeef
REL deadbeef
R22Z deadbeef 3
Interesting Memory

Type Address Data

Disassemble Controls

Break + Watch
Start Address {or Symbal) 00300000 Mum Instructions 10

Mext Instruction
0x00800000: orhi RZ, zero, 00

Restart m Single Step Diisplay Memaory

Disconnect k Run Disassemble

NIOSI Controls

Figure 10: Source File loaded and Disassembled.

Users who wish to gain insight into details of the assembly or compilation process may Zebilgpane
of the Nios Il Debug Client, as illustrated in Figure 11. The first section oftebug pane contains all of the
commands used to convert a source file into machine code in the S-Record format. The user may choose to use
these commands at the command prompt ofNies [| SDK Shellor use them as part of ldakefilein a more
complex project.
& i3

File Help |

Connect Using

HIOS Il Debug Output Repisters
Disassemble | Memory | Advanced ! Console | Tiy 4\ [RebLg _ Regster | vae |
FIT sys_‘:me:\t Y\u 7 \ \t (1 \l o1/ ||RO (zera) 00000000 |~ |
PTF: ledg "0x00000310"; |l ||R1 {at) deadbeet
BTT: ledr "0:000008400; =l [|rz deadbesf
FTT: s.w "OxRO0000E50" R3 dBathBf
e e
: timer_250ms "0 ;
PTF: hex_diszplay "0x00000830"; RE dBO.thB'F
FTT: wgacen_0 “0x00020000%; L[| ||R& deadbeef
b ok mezy 0 "0x00003000"; RT deadbeef ||
chewdy 2 F for sdram Ra deadbesf
. . 3] deadbeet
Optio stting program memory location to @ 00800000 I deadbest
=== As®embling C:/de2demo/test.s R11 deadbeef
tera new/kitsfnios2/binf/nios2-gnutoolsfH-i686-po-cygwin/bin/nios2-elf-as.exe —-gstabs -I R1Z jgﬁgggi
. . . . R13 zadbes
d: t 3 ewfkits/nios2/componentsfaltera nios2/sdkfinc C:/de2demo/test.s o C:/de2demo/test.s.o ni4 deadbest
=== e Assembling R1E6 deadbeef ||
na ¢
=== Lintking C:/de2demo/test.s.o Interesting Memory
tera new/kits/nios2/hin/nios2-gnutools/H-i686-pc-cygwin/bin/nios2-elf-1d.exe -Ttext=00500000 Type | Address | e |
-e t 4 u _start -g -o C:/de2demoftest.elf C:/de2demoftest.s.o
=—= Linking
=== Cr&ating SREC C:/de2demo/test.srec
d:faltera new/kits/nios2/bin/nios2-gnutools/H-i686-po-cygwin/bin/nios2-elf-objcopy.exe -0 srec Break + Watch
C:fde2demoftest.elf C:/de?demoftest.srec - -
-
Hext Instruction
0x00800000: orhi RZ, zero, 0x0 -
HIOSII Controls
| Restart ‘ | Single Step ‘ | Display Memory ‘
| Disconnect ‘ | Run ‘ | Disassemble ‘

Figure 11: Debug Information.

TheDebugpane will also be populated with other types of advanced information as the debugging session pro-
gresses. The Nios Il Debug Client is a graphical interface that communicates witlosf2egdb-serveprovided
with Altera’s Nios Il SDK The nios2-gdb-serveprovides a set of low-level routines that allow for debugging
an application running on a Nios Il system. A description of the commands and protocol for communicating
to the server is described nitp://sourceware.org/gdb/current/onlinedocs/gdb_33.html#
SEC684. The Debug pane displays each of these low level commands and responses received for every action
performed in the Debug Client.

4 Running an Application
To run the target application on the DE2 board, execute the following steps:

1. Return to theDisassemblgpane and Click th&un button as shown in Figure 10.

£ Nios Il Debug Client (n2client) (=
File Help
Connect Using
NIOS Il Debug Output Registers
Disassemble | Memory | Advanced | Conscle | Trace | Debug B9t o el
RO (zera) 00000000 |- |
R1 (at) deadbeef
R2 deadbeef
R3 deadbeef
R deadbeef
RE deadbest
Ré deadbeef
R7 deadbeef
RE deadbeef
RO deadbeef
Rr10 deadbeef
R11 deadbeef
RiZ deadbest
R13 deadbeef
R14 deadbeef
R1G deadbeef |
Rl deadbeef
RI7 deadbeef
R18 deadbeef
R19 deadbest
r2o deadbeef
RZ1 deadbeef
R22 deadbeef b
Interesting Memory
Type Address Data
Disassemble Controls Break + Watch
Start Address {or Symbal) 00800000 Murn Instructions 10
Next Instruction
0x00800000: orhi RZ, zero, 0x0
NIOSII Controls
Halt k

Figure 12: Program Running.

2. While the application is running, the Nios Il Debug Client will only have a single button that is enabled.
This is theHalt button and is shown in Figure 12. This button can be used to stop the execution of the target
application and allow for debugging.

10

é

File Help

Connect Using

NIOS Il Debug Output Registers
Cisaszemble | Memary | Advanced | Consale | Trace | Debug Register Walle
RO (zero) 00000000 |- |
R1 (at) deadbesf
RZ 00dez000
R2 oooooool
Ret deadbeef
RE noooooan
R& 1197REZR
oogo0010;: - R7 noooooan
Ra noooooan
R9 deadbeef
R1O ooooong4n
Rr1 deadbeef
Riz noooooan
R13 aoooooon
Ri4 deadbest
R1B deadbeef m
Rlg deadbeef
H Program Halced! pIT deadbeet
r18 deadbeef
R19 deadbeef
RZ0 deadbeef
R21 deadbest
R22 deadbeef 3

Interesting Memorny
Type Address Data

Disassemble Controls Break + Watch
Start Address (or Symbal) 00300000 Mum Instructions 1o

Figure 13: Program Stopped.

Next Instruction
0x0080002c: ori R7, zero, 0Oxl

NIOSII Controls

3. Click on theHalt button as shown in Figure 13. The Nios Il Debug Client will then pop up a dialog box
indicating that the application has been halted. Pres®thdutton and proceed to the next step.

11

£ Nios Il Debug Client (n2client) (=)<
File Help
Connect Using
HIOS Il Debug Output Registers
Disassemble |, Memory | Advanced | Conscle Nrace | Debug | %ﬁ
Zero -
- A B C D E[| |kt deacheet [
R2 00de2000
|| ||r2 00000001
ABCDE |y deatheet
RE 00000000
e |[re 11976225
00800010: scroll{C:/de2demo/test.5:21}: & e
00800010: orhi R10, zero, 0x0 9 deadbest
00800014: ori R10, R10, 0x880 R10 00000840
00800018: stwio R2, 0x0(R10) o deacheet
: . e : R12 00000000
0080001c: orhi R10, zero, 0x0 R13 anoaoonn
00800020: ori R10, R10, 0x840 R4 deadbest
00800024: stwio R6, 0x0(RL10) RIS deatbect 17
e e . R16 deadbeef
00800028: add R12 <- zero, Zero RI7 deadbect
0080002c: outer delay loop{C:/de?demo/test.s5:33}: R18 deadheet
0080002c: ori R7, zero, 0xl R deadhect
e shr r RZ0 deadbeet
00800030: 1nner delay loop{C:/deZdemo/test.s:35}: R21 deadbeet | |
00800030: addi R7, R7, -0xl Rz2 dendbeet b
00800034: add zero <- Zero, Zero Interesting Memory
00800038: bne zero, R7, -0xc @inner delay loop{C:/deZdemo/test.s:35 Type | Address | Data |
4
Bl{|| rBreak + watch
falal faNaNal =l 4 =i 1 1 r P =l 1+ o = . A1 L
<] = [»] =
Next Instruction :
0x0080002c: ori R7, zero, 0Oxl -4
NIOSI Controls
‘ Restart ‘ ‘ Single Step ‘ ‘ Diisplay Memary ‘
‘ Disconnect ‘ ‘ Run ‘ ‘ Disassemble ‘

Figure 14: Instruction Trace.

4. Once the application has been halted, the user can view an instruction trace that shows the recently executed
instructions just before the point at which the halt occured. This is accomplished by clicking dratiee
tab as shown in Figure 14.

5. Notice also that the values of the various Nios Il registers have been updatediadisterstable. These
values contain the register contents at the halt point.

12

5 Using the Disassembler

To disassemble the contents from a particular set of memory locations, proceed as follows:

&

File Help

Connect Using

NIOS Registers

Disassembl1 ory | Advanced | Conscle | Trace | Debug Register Walue
1| ||RO (zerd) 0oooonoo. |- |

k1 fat) deadbeef

rZ deadbeef

R3 deadbeef

R4 deadbest

113 deadbeef

Rd deadbeef

R7 deadbeef

rg deadbeef

3 deadbeef

Rr10 deadbeef

kil deadbest

r12 deadbeef

k13 deadbeef

R14 deadbeef
Rr1B deadbeef —

16 deadbeef

RIT deadbeef

R18 deadbest

19 deadbeef

rza deadbeef

Rzl deadbeef
Rzz deadbeef b

Interesting Memory
Type Address Data

Disassemble Controls Click Here Click Here Break + Watch

Start Address (or Symbal) scroll T Mum Instructions

Mext Instruction
0x00800000: orhi R2, =zeroc, 0x0

NIOSII Controls

Restart Single Step

m Display Memory

Disconnect Run * 4 Disassemble

Figure 15: Using the Disassembler.

1. Click on theDisassembldab as shown in Figure 16.

2. Enter the starting address of the memory block to be displayed as a HEX value (there is no need to use a
prefix such as “0x”) in theStart Address text field. The user may also choose to enter a symbolic name
which was present in the original source file. The Nios Il Debug Client will map this name to an address
and use this value as the starting address. If the symbolic name is not found, an error will be issued.

3. Enter the number of instructions to be disassembled irNilma Instructions text field. This is a decimal
value. Note that the maximum value is limited to 64 instructions.

4. Click on theDisassemblebutton and the disassembled source code will appear in the text area. Note that
the disassembler will display both your original source code and the disassembled instructions if possible.

This is typically possible for files that were assembled or compiled. It is not possible for manually created
S-Records that contain only machine code.

5. If desired, a printed copy of the contents of the text area can be produced by clickingRrirthbutton.

13

6 Examining Memory Contents

To examine the contents of the Nios Il memory space, execute the following steps:

£ Nios Il Debug Client (n2client) (=)<

File Help

Connect Using

NIOS Il [Registers
DisassembleSiemory | Advanced | Consele | Trace | Debug | | Regster | vae |
1‘\ RO (zero) 0oooonoo. |- |
121 || ||R {at) deadbeef
00800000: 00300034 10837394 s: gg‘gﬁ“ﬂ”ﬂ?
00800008 : 0007883a 000dB83a pé deachest
00200010: 02BO0034 52822014 RE 00000000
00200018: 50800035 02800034 Rt 11975225
00200020: 52821014 51800035 :g gggggggg
008000Z8: 0019883 01c00054 R dparbect
00800030: 39ffffcd 0001883a L [/[[r10 00000840
00800038: 383ffdle 02800034 Rl deadbeet
00800040: 52821414 52000037 gig gggggggg
00200048 63000044 431a403a A doadboot
00200050: 683ffele 18000226 RIS deasheef |
00200058 : 1004d13a 00000106 R16 deadbeef
D0800060: 1004913a 114003cc gg SESSEZEI
=2 l=1=3
00300068 28000226 0007883a R19 deadbeot
00800070: 00000306 117c002c RZ0 deadbeef
00800078: 28000126 00c00044 =1 || ||r21 jeaﬂ:ee}(L
RzZ cadbee
IR | Click Here ' Interesting Memory
Start Address 500000 2 | [Mem Format Typs | Address | Data |
Click Here]
End Address [s00100 w s y
Fill Yalue | (ElfzELs < LAIHD

Next Instruction
0x00&0002¢c: ori R7, zero, 0xl

NIOSII Controls Click Here |>
‘ Restart ‘ ‘ Single Step | ; l g) Diisplay Memaory ‘

Disassemble ‘

‘ Disconnect ‘ ‘ R

Figure 16: Examining Memory.

1. Click on theMemory tab as shown in Figure 16.

2. Enter the starting address of the memory block to be displayed as a HEX value (there is no need to use a
prefix such as “0x”) in thé&tart Address text field.

3. Enter the ending address of the memory block to be displayed as a HEX value (again, there is no need to
use a prefix such as “0x”) in thend Addresstext field.

4. Select the format of the memory display from tdem Format list. In Figure 16, the valu82-bit Words
is selected.

5. Finally, click on theDisplay Memory button. The Nios Il Debug client will respond by fetching the
requested data and displaying it in the Memory text area.

14

7 Examining and Changing Register Values

The process of changing a register value is as follows:

£ Nios Il Debug Client (n2client) (=)<
File Help

Connect Using

NIOS Il Debug Output Registers
Disassemble Memory \Advanced | Comscle | Trace | Diebug | i
Double Click
= Here &
00800000: D0B00034 10837894 s: E”te{gl‘a‘g Hex
00800008: 0007893a 000dRE3a na
00800010: 02800034 52822014 RS
00200018 50800035 02800034 Rt
R7
00800020: 52821014 51800035 o 000000
D0R000Z6: D019883a 01e00054 RO deadbeet
00800030: 39ffffcd 0001883a || |/|[r2 00000E40
00800038: 383ffdle 02800034 Rl deadbest
. R12 00000000
00800040: 52821414 52000037 o9 10000000
00800048: 63000044 431a403a R4 deadhest
00800050: 683ffele 18000226 R1G deadbeef [
00800058: 1004d13a 00000106 R16 deadbeef
RI7 deadbeet
00R00060: 1004913a 114003ce o e
00800068: 28000226 0007883 R1D deadbest
00800070: 00000306 117c00Zc R20 deadheet
00800078: 268000126 0000044 |+ || |[R21 deadbeef | |
pz2 deadhest b
Memory Controls)
Interesting Memory
Start Address [s00000 | [Mem Format Typs | Address | Data |
Evtes
End Address [so0100 |
5 Break + Watch
Fil Value [| | write to Memary reak v HHate

Next Instruction

0x00&0002¢c: ori R7, zero, 0xl -

NIOSII Controls

‘ Restart ‘ ‘ Single Step ‘ ‘ Diisplay Memaory ‘
‘ Disconnect ‘ ‘ RLIN ‘ ‘ Disassemble ‘

Figure 17: Changing a Register Value.

1. Changing the value in regist&7 is illustrated in Figure 17. Double click on the text field associated with
R7 and enter a new HEX value. Press fieter key to complete the change.

15

X

“ -

File Help |

Connect Using

HIOS Il Debug Output Registers
Disassemble * Memory | Advanced | Conscle | Trace |, Debug | | Regster | vale |
RO (zero) 00000000 |- |
1= || ||RL {at) deadbesf
. RZ 00422000
00800000: 00800034 10837894 03 P
00800008: 0007883a 000d383a R deadbeet
00800010: 02800034 52822014 A | |[rs 00000000
00800018: 50800035 02800034 2 | |[R8 11975225
R7 chedef12
00800020: 52821014 51800035 o P,
00E00028: 0019883a 01c00054 RO doadbest
00E00030: 39ffffed OO018E3a R10 00000840
00800038: 383ffdle 02800034 R11 deadbeet \\W
. R12 00000000
00800040: 52821414 52000037 ni3 n0000000
00800048: 63000044 431a403a P4 deadbeet
00800050: 683ffele 18000226 R15 deadbeef [
00200058: 1004d13a 00000106 RIS dendbeef
RI7 deadbeef
00E00060: 1004913a 114003
= = R18 deadbeet
O0EO006E: 28000226 OO07883a R1D deadbest
00800070: 00000306 117c00Zc Rz0 deadbeet
00800078: 28000126 00c00044 =] |||[R2t deadbeet ||
R22 deadbeet i
Memory Controls)
Interesting Memorny
Start Address 500000 | -Mem Format Type | Address | Data |
Bytes
16-Bit Words
End Address [s00100 |
" Break + Watch
Fil Value [| | wirite to Memory feak v ¥vate
nstruction
0=0080002c: ori R7, zero, 0Oxl -4
NIOSI Controls
‘ Restart ‘ ‘ Single Step ‘ ‘ Diisplay Memary ‘
‘ Disconnect ‘ ‘ Run ‘ ‘ Disassemble ‘

Figure 18: Register Value Changed.
2. Figure 18 shows the result of changing the contents of registéo the HEX valueabcdef123

Although, only a change dR7 has been described, all registers (including the program counter) can be
changed in the same manner.

16

8 Single Step

The Nios Il Debug Client makes it possible to single step through a downloaded program. Each step consists of
executing a single assembly language instruction and returing control to the Nios 1l Debug Client. If the user has
chosen to compile a C-program, the single steps will still correspond to assembly language generated from the
C-code. The functionality of stepping through entire statements in the high level source is not supported by the
Nios Il Debug Client; however, thidios Il Integrated Development Environmeuaipports these advanced features.
Notice in Figure 18 that the Nios Il Debug Client indicates thatMet Instruction to be executed is one

which will load the registeR7 with the valuel. This will be different in your case depending on the application
downloaded and where it was stopped; however, the general technique of the single step will remain the same.

& Nios Il Debug Client (n2client) (=

File Help

Connect Using

HIOS Il Debug Output Registers
Disassemble * Memory | Advanced | Console | Trace |, Debug | | Regster | wae |
RO (zera) 00000000 | ~|
=/ || ||RL fat) deadbeef
Rz 00dez000
00E00000: DOBO0034 10837694
R3 00000001
00800008: 0007883a 000d383a R deadbeet |
00800010: 02800034 52822014 A |l||r8 00000000
00800018: 50800035 02800034 2 | |[Re 11975225
R7 00000001
00800020: 52821014 51800035
Ra 00000000 k%
00800028: 0019883a 01c00054 Ro deadbeet
00E00030: 39ffffed 0001883a | || |[r10 00000840
0000036 : 383ffdle 02800034 R11 deadbeef
. R1Z 00000000
00800040: 52821414 52000037 o1 D00D0000
00800048: 63000044 431a403a R4 deadbeet
00800050: 683ff6le 18000226 R15 deadbesf [
00200058: 1004d13a 00000106 L] dendbeef
RI7 deadbeet
00800060: 1004913a 114003
2 = R1B deadheet
00E00068: 28000226 00D07883a R1D deadhest
00E00070: 00000306 117c002c R20 deadbeef
00800078: 28000126 00c000D44 =] | |[R21 deadheef ||
R22 deadbeef i
Memory Controls)
Interesting Memory
Start Address |BDDDDD | Mem Format Type | Addressl Data |
Bvtes
16-Bit Waords
End Address [so0100 | |em .
) Break + Watch
Fil Value [| | wirite to Memory reak v ¥vate

Mext Instruction
0x00800030: addi R7, R7, -0xl -

NIOSII Controls Click Here I»
‘ Restart ‘ ‘ Single Step \‘ (1 ‘ Display Memory ‘
4)‘

‘ Disconnect ‘ ‘ Run ‘ ‘ Disassemble ‘

Figure 19: Single Step.
Click on theSingle Stepbutton as shown in Figure 19. After execution of this single instruction, the Nios Il

Debug Client will update the register values of any affected registers. In this example, weRXpettand this
is indeed the case.

17

9 Advanced Single Step

Often, a user may wish to single step through an application until some set of conditions is satisfied. In this
example, we illustrate how to single step through the application until the con@2efDE2000is met. The

£ Nios Il Debug Client (n2client) (=)<
File Help

Connect Using

HIOS Il Debug Outp Registers
Disassemble |, MemoryShar 4 Yeed | Conscle | Trace | Debug | | Regster | vale |
C . | RO (zero) 00000000 |- |
#pression m R1 fat) deadbeef
R2 == Hde20000] RZ 00d£2000
(2 b p3 00000001
R4 deadbeef
RE noooooan
Rt 11975275
R7 noonoool
Ra noooooan
RY deadbeef
R10 noonoe4n
1351 deadbeef
Riz noooooan
R13 anannann
R14 deadbeef
RIE deadbesf .
R16 deadbeef
RI7 deadbeef
R12 deadbeef
R19 deadbeef
Rz0 deadbeef
R21 deadbeet L
RZ2Z deadbeef 4
Interesting Memony
Type | Address | Data |
Resul
Click Here Break + Watch
3\ Single Step untl (expression == true) -
Mext Instruction—— z
0x00800030: addi R7, R7, —-0xl -
NIOSI Controls
‘ Restart ‘ ‘ Single Step ‘ ‘ Diisplay Memary ‘
‘ Disconnect ‘ ‘ Run ‘ ‘ Disassemble ‘

Figure 20: Advanced Tab.
process is illustrated in Figure 20:
1. Click on theAdvancedtab.

2. Enter the condition to be searched for in Eygressionwindow. Notice that HEX values require the prefix
“H” .

3. Click on theSingle step untilbutton to single step through the program until the condition specified in the
expression expression is met.

18

4. Once the condition has been met, the Nios || Debug Client will stop executing single instructions and return
control to the user as shown in Figure 21. Notice that the vallR2d$ as expected in thRegisterstable.

£ Nios Il Debug Client (n2client) (=
File Help
Connect Using
NIOS Il Debug Output Registers
Disassemble | Memory ' Advanced | Console | Trace | Debug | | Regster | valie &]
E . RO (zera) 00000000
#pression R1 {at) deadbeet 4/
RZ == Hdez0000 RZ Ode20000
R3 noooooan
R4 deadbeef
RE noooooan
Re& 197522k
R7 noooooan
RE 00000000
R9 deadbeef
R10 n0oo0nogs0
R11 deadbeef
R1z noonoool
R13 noooooan
Ri4 deadbeef
R1G deadbeef 1
R16 deadbeef
RI7 deadbeef
RIS deadbeef
R19 deadbeef
R20 deadbesf
Rzl deadbeef |
R deadbeet b
Interesting Memory
Type | Address | Data |
Result
R2=0de20000 ; 1 Break + Watch
Single Step untl (expression == true) hd
Nezxt Instruction =
0x00800064: andi R5, RZ, Oxf -
NIOSII Controls
| Restart | ‘ Single Step | | Diisplay Memaory |
| Disconnect | ‘ Run | | Disassemble |

Figure 21: Single Step Until Condition Met.
More complex expression formulations may be used as C-language style logical expressions are supported.

For example, to check for the condition where regisRtsR2 andR3 all contain the same value the expression
would be:R1==R2 && R2==R3.

19

10 Setting a breakpoint

Breakpoints are special conditions that are checked by dedicated hardware in the Nios Il processor as the applica-
tion is running in real time. The difference between a breakpoint andidlianced Single Steps that breakpoints
only support very limited conditions to be checked for such as:

e An instruction at a particular address has been reached.
e A particular address has been read from.
e A particular address has been written to.
e A particular address has been accessed.
Although the conditions are limited, they are checked in real time as the application is executed.

é

File Help

Connect Using

Registers
Reqgister Walue
RO (zera) 00000000 | ~|
R1 (at) deadbeef
RZ 0de20000
R3 noooooan
Rt deadbeef
RE noooooan
R& 11976220
R7 noooooan
R& noooooan
R deadbeef
R10 n0o00nogsD
R1L deadbeef
R1Z noonoool
R12 ooooooon
R4 deadbeef
R1G deadbeef m
R16 deadbeef
RI7 deadbest
Rr1g deadbeef
R19 deadbeef
R20 deadbeef
r21 deadbeef
R2z deadbeef 3

Interesting Memory

Type Address Data

Disassemble Controls

Click Here k| Click Here
Start Address {or Symbal) 00300000 Mum Instructions 10

Mext Instruction
0x00800064: andi RS, RZ, Oxf

NIOSI Controls
Restart m Single Step Display Memory

Digconneact k 4) Run Disassemble

Figure 22: Setting a breakpoint.

This tutorial will demonstrate setting a breakpoint based on a certain instruction being reached. This is illus-
trated in Figure 22. The process of setting the breakpoint is as follows:

1. First click on theDisassembldab to determine the instruction at which the breakpoint should be set. In this
example, we choose the instructioncaiter _delay loopand determine from the disassembly view that it
is located at addres0002c

20

2. Click on the first text field in th8reak & Watch section. Enter the addre86002¢

3. Click on the drop down list next to the address just entered. Seteak. This corresponds to a breakpoint
when a particular instruction has been reached. Other choices inehatieh (address read fromyywatch
(address written to) analwatch (address accessed either by a read or write).

4. The next step involes running the program by clicking onRio@ button.

5. When the target instruction has been reached, the Nios Il Debug Client will indicate this condition as shown
in Figure 23. ClickOK to continue debugging.

é

File Help

Connect Using

HIOS Il Debug Output Registers

Reqgister Walue
ooooooon =
deadbeef
0de20000
noooooan
deadbeef
noooooan
1197hE2:
noooooan
noooooan
deadbeef
ooooog4n
deadbeef
noooooan
ooooooon
deadbeef
deadbeef m
deadbeef
deadbest
deadbeef
deadbeef
deadbeef
deadbeef
deadbeef 3

Interesting Memory

Type Address Data

Disassemble Controls Break + Watch
Start Address {or Symbal) 00300000 Mum Instructions 10

et Instruction
0x0080002c: ori R7, =zero, 0Oxl

NIOSII Controls

Halt

Figure 23: Breakpoint hit.

21

11 JTAG UART Console

For applications that send text data through the Nios Il JTAG UART (such prthe routine in “C"), the Nios Il
Debug Client is capable of displaying this information. Click on @ensoletab to view any output sent by the
JTAG UART. Text input (i.escan) is not supported at this time.

&

File Help |

Connect Using

NIOS Il Debug Output m Registers
Disassemble | Memory | Advanced | Sgnsole]| Trace | Debug | _ Regster | vabe |
a

—1| ||R0 (zero) 00000000 |~
JTAG UART link estsbhlished using cable "USE-Blaster [USE-0]1", device 1, instance 0x00 || ||RL {at) deadbeef
Sending Code 81 {Right Arm Up} k2 deadbeef
-) R3 deadbesf
Send. Code 84 {Right A I
ending Code {Rig rm Down} 4 deadbeet
Zending Code 829 {Left Arm Up} 3 deadbesf
Sending Code 8c {Left Arm Down} R deadbeef
Sending code 83 {Tilt Body Right} R7 deadbest
. . kg deadbesf
Send Code 8k {Tilt Body Left
ending Code {Ti ody Left} s deadbest
Zending Code £h {Tilt Body Left} pl0 deadbesf
kil deadbest
R12 deadbeef
Rr13 deadbeef
R4 deadbesf
R15 deadbesf -
R16 deadbesf
RI7 deadbeef
k13 deadbeef
R19 deadbeef
1] deadbesf
Rzl deadbeef |
[deadbect !
Interesting Memory
Type Address Data
Break +Watch

Mext Instruction
0x00800000: orhi =sp, zero, 0x100

NIOSI Controls

Halt

Figure 24: Console Tab.

Copyright(©2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

22

