
© July 2010 Altera Corporation

NII52017-10.0.0
2. Getting Started with the Graphical
User Interface
The Nios® II Software Build Tools (SBT) for Eclipse™ is a set of plugins based on the
popular Eclipse™ framework and the Eclipse C/C++ development toolkit (CDT)
plugins. The Nios II SBT for Eclipse provides a consistent development platform that
works for all Nios II processor systems. You can accomplish all Nios II software
development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.

This chapter familiarizes you with the features of the Nios II SBT for Eclipse. This
chapter contains the following sections:

■ “Getting Started”

■ “Makefiles and the Nios II SBT for Eclipse” on page 2–8

■ “Using the BSP Editor” on page 2–11

■ “Run Configurations” on page 2–18

■ “Optimizing Project Build Time” on page 2–19

■ “Importing a Command-Line Project” on page 2–19

■ “Programming Flash” on page 2–22

Getting Started
Writing software for the Nios II processor is similar to writing software for any other
microcontroller family. The easiest way to start designing effectively is to purchase a
development kit from Altera that includes documentation, a ready-made evaluation
board, a getting-started reference design, and all the development tools necessary to
write Nios II programs.

Modifying existing code is a common, easy way to learn to start writing software in a
new environment. The Nios II Embedded Design Suite (EDS) provides many example
software designs that you can examine, modify, and use in your own programs. The
provided examples range from a simple “Hello world” program, to a working RTOS
example, to a full TCP/IP stack running a web server. Each example is documented
and ready to compile.

This section guides you through the most fundamental operations in the Nios II SBT
for Eclipse in a tutorial-like fashion. It shows how to create an application project for
the Nios II processor, along with the board support package (BSP) project required to
interface with your hardware. It also shows how to build the application and BSP
projects in Eclipse, and how to run the software on an Altera® development board.

The Nios II SBT for Eclipse Workbench
The term “workbench” refers to the Nios II SBT for Eclipse desktop development
environment. The workbench is where you edit, compile and debug your programs in
Eclipse.
Nios II Software Developer’s Handbook
Preliminary

2–2 Chapter 2: Getting Started with the Graphical User Interface
Getting Started
Perspectives, Editors, and Views
Each workbench window contains one or more perspectives. Each perspective
provides a set of capabilities for accomplishing a specific type of task.

Most perspectives in the workbench comprise an editor area and one or more views.
An editor allows you to open and edit a project resource (i.e., a file, folder, or project).
Views support editors, and provide alternative presentations and ways to navigate
the information in your workbench.

Any number of editors can be open at once, but only one can be active at a time. The
main menu bar and toolbar for the workbench window contain operations that are
applicable to the active editor. Tabs in the editor area indicate the names of resources
that are currently open for editing. An asterisk (*) indicates that an editor has unsaved
changes. Views can also provide their own menus and toolbars, which, if present,
appear along the top edge of the view. To open the menu for a view, click the
drop-down arrow icon at the right of the view’s toolbar or right-click in the view. A
view might appear on its own, or stacked with other views in a tabbed notebook.

f For detailed information about the Eclipse workbench, perspectives, and views, refer
to the Eclipse help system.

1 Before you create a Nios II project, you must ensure that the Nios II perspective is
visible. To open the Nios II perspective, on the Window menu, point to Open
Perspective, then Other, and click Nios II.

Creating a Project
In the Nios II perspective, on the File menu, point to Nios II Application and BSP
from Template. The Nios II Application and BSP from Template wizard appears.
This wizard provides a quick way to create an application and BSP at the same time.

1 Alternatively, you can create separate application, BSP and user library projects.

Specifying the Application
In the first page of the Nios II Application and BSP from Template wizard, you
specify a hardware platform, a project name, and a project template. You optionally
override the default location for the application project, and specify a processor name
if you are targeting a multiprocessor hardware platform.

You specify a BSP in the second page of the wizard.

Specifying the Hardware Platform

You specify the target hardware design by selecting a SOPC Information File
(.sopcinfo) in the SOPC Information File name box.

Specifying the Project Name

Select a descriptive name for your project. The SBT creates a folder with this name to
contain the application project files.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 2: Getting Started with the Graphical User Interface 2–3
Getting Started
1 Letters, numbers, and the underscore (_) symbol are the only valid project name
characters. Project names cannot contain spaces or special characters. The first
character in the project name must be a letter or underscore. The maximum filename
length is 250 characters.

The SBT also creates a folder to contain BSP project files, as described in “Specifying
the BSP”.

Specifying the Project Template

Project templates are ready-made, working software projects that serve as examples to
show you how to structure your own Nios II projects. It is often easier to start with a
working project than to start a blank project from scratch.

You select the project template from the Templates list.

1 The hello_world template provides an easy way to create your first Nios II project and
verify that it builds and runs correctly.

Specifying the Project Location

The project location is the parent directory in which the SBT creates the project folder.
By default, the project location is under the directory containing the .sopcinfo file, in a
folder named software.

To place your application project in a different folder, turn off Use default location,
and specify the path in the Project location box.

Specifying the Processor

If your target hardware contains multiple Nios II processors, CPU name contains a list
of all available processors in your design. Select the processor on which your software
is intended to run.

Specifying the BSP
When you have finished specifying the application project in the first page of the
Nios II Application and BSP from Template wizard, you proceed to the second page
by clicking Next.

On the second page, you specify the BSP to link with your application. You can create
a new BSP for your application, or select an existing BSP. Creating a new BSP is often
the simplest way to get a project running the first time.

You optionally specify the name and location of the BSP.

Specifying the BSP Project Name

By default, if your application project name is <project>, the BSP is named
<project>_bsp. You can type in a different name if you prefer. The SBT creates a
directory with this name, to contain the BSP project files. BSP project names are
subject to the same restrictions as application project names, as described in
“Specifying the Project Name”.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–4 Chapter 2: Getting Started with the Graphical User Interface
Getting Started
Specifying the BSP Project Location

The BSP project location is the parent directory in which the SBT creates the folder.
The default project location is the same as the default location for an application
project. To place your BSP in a different folder, turn off Use default location, and
specify the BSP location in the Project location box.

Selecting an Existing BSP

As an alternative to creating a BSP automatically from a template, you can associate
your application project with a pre-existing BSP. Select Select an existing BSP project
from your workspace, and select a BSP in the list. The Create and Import buttons to
the right of the existing BSP list provide convenient ways to add BSPs to the list.

Creating the Projects
When you have specified your BSP, you click Finish to create the projects. The SBT
copies required source files to your project directories, and creates makefiles and
other generated files. Finally, the SBT executes a make clean command on your BSP.

f For details about what happens when Nios II projects are created, refer to “Nios II
Software Projects” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook. For details about the make clean command, refer to “Makefiles”
in the same chapter.

Navigating the Project
When you have created a Nios II project, it appears in the Project Explorer view,
which is typically displayed at the left side of the Nios II perspective. You can expand
each project to examine its folders and files.

f For an explanation of the folders and files in a Nios II BSP, refer to “Nios II Software
Projects” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

Building the Project
To build a Nios II project in the Nios II SBT for Eclipse, right-click the project name
and click Build Project. A progress bar shows you the build status. The build process
can take a minute or two for a simple project, depending on the speed of the host
machine. Building a complex project takes longer.

During the build process, you view the build commands and command-line output in
the Eclipse Console view.

f For details about Nios II SBT commands and output, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

When the build process is complete, the following message appears in the Console
view:

[<project name> build complete]
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–5
Getting Started
If the project has a dependency on another project, such as a BSP or a user library, the
SBT builds the dependency project first. This feature allows you to build an
application and its BSP with a single command.

Configuring the FPGA
Before you can run your software, you must ensure that the correct hardware design
is running on the FPGA. To configure the FPGA, you use the Quartus® II Programmer.

In the Windows operating system, you start the Quartus II Programmer from the
Nios II SBT for Eclipse, through the Nios II menu. In the Linux operating system, you
start Quartus II Programmer from the Quartus II software.

The project directory for your hardware design contains an SRAM Object File (.sof)
along with the .sopcinfo file. The .sof file contains the hardware design to be
programmed in the FPGA.

f For details about programming an FPGA with Quartus II Programmer, refer to the
Quartus II Programmer chapter in Volume 3: Verification of the Quartus II Handbook.

Running the Project
This section describes how to run a Nios II program using the Nios II SBT for Eclipse.
You can run a Nios II program on Nios II hardware, such as an Altera development
board, or you can run it in the Nios II ModelSim® simulation environment.

f A separate Nios II instruction set simulator is also available through the Lauterbach
GmbH website (www.lauterbach.com).

To run a software project, right-click the application project name, point to Run As,
and click Nios II Hardware or Nios II ModelSim. This command carries out the
following actions:

■ Creates a Nios II run configuration. For details about run configurations, refer to
“Run Configurations” on page 2–18.

■ Builds the project executable. If all target files are up to date, nothing is built.

■ If debugging on hardware, establishes communications with the target, and
verifies that the FPGA is configured with the correct hardware design.

■ Downloads the Executable and Linking Format File (.elf) to the target memory

■ Starts execution at the .elf entry point.

Program output appears in the Nios II Console view. The Nios II Console view
maintains a terminal I/O connection with a communication device connected to the
Nios II processor in the SOPC Builder system, such as a JTAG UART. When the
Nios II program writes to stdout or stderr, the Nios II Console view displays the
text. The Nios II Console view can also accept character input from the host keyboard,
which is sent to the processor and read as stdin.

To disconnect the terminal from the target, click the Terminate icon in the Nios II
Console view. Terminating only disconnects the host from the target. The target
processor continues executing the program.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
www.lauterbach.com

2–6 Chapter 2: Getting Started with the Graphical User Interface
Getting Started
Debugging the Project
This section describes how to debug a Nios II program using the Nios II SBT for
Eclipse. You can debug a Nios II program on Nios II hardware, such as an Altera
development board, or you can debug it in the Nios II ModelSim simulation
environment.

To debug a software project, right-click the application project name, point to Debug
As, and click Nios II Hardware or Nios II ModelSim. This command carries out the
following actions:

■ Creates a Nios II run configuration. For details about run configurations, refer to
“Run Configurations” on page 2–18.

■ Builds the project executable. If all target files are up to date, nothing is built.

■ If debugging on hardware, establishes communications with the target, and
verifies that the FPGA is configured with the correct hardware design.

■ Downloads the .elf to the target memory.

■ Sets a breakpoint at the top of main().

■ Starts execution at the .elf entry point.

The Eclipse debugger with the Nios II plugins provides a Nios II perspective,
allowing you to perform many common debugging tasks. Debugging a Nios II
program with the Nios II plugins is generally the same as debugging any other
C/C++ program with Eclipse and the CDT plugins.

f For information about debugging with Eclipse and the CDT plugins, refer to the
Eclipse help system.

The debugging tasks you can perform with the Nios II SBT for Eclipse include the
following tasks:

■ Controlling program execution with commands such as:

■ Suspend (pause)

■ Resume

■ Terminate

■ Step Into

■ Step Over

■ Step Return

■ Setting breakpoints and watchpoints

■ Viewing disassembly

■ Instruction stepping mode
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 2: Getting Started with the Graphical User Interface 2–7
Getting Started
■ Displaying and changing the values of local and global variables in the following
formats:

■ Binary

■ Decimal

■ Hexadecimal

■ Displaying watch expressions

■ Viewing and editing registers in the following formats:

■ Binary

■ Decimal

■ Hexadecimal

■ Viewing and editing memory in the following formats:

■ Hexadecimal

■ ASCII

■ Signed integer

■ Unsigned integer

Just as when running a program, Eclipse displays program output in the Console
view of Eclipse. The Console view maintains a terminal I/O connection with a
communication device connected to the Nios II processor in the SOPC Builder system,
such as a JTAG UART. When the Nios II program writes to stdout or stderr, the
Console view displays the text. The Console view can also accept character input from
the host keyboard, which is sent to the processor and read as stdin.

To disconnect the terminal from the target, click the Terminate icon in the Console
view. Terminating only disconnects the host from the target. The target processor
continues executing the program.

Creating a Simple BSP
You create a BSP with default settings using the Nios II Board Support Package
wizard. To start the wizard, on the File menu, point to New and click Nios II Board
Support Package.

The Nios II Board Support Package wizard enables you to specify the following BSP
parameters:

■ The name

■ The underlying SOPC Builder design

■ The location

■ The operating system

1 You can select the operating system only at the time you create the BSP. To
change operating systems, you must create a new BSP.

■ Additional arguments to the nios2-bsp script
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–8 Chapter 2: Getting Started with the Graphical User Interface
Makefiles and the Nios II SBT for Eclipse
1 For details about nios2-bsp command arguments, refer to “Details of BSP
Creation” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

After you have created the BSP, you have the following options for GUI-based BSP
editing:

■ To access and modify basic BSP properties, right-click the BSP project, point to
Properties and click Nios II BSP Properties.

■ To modify parameters and settings in detail, use the Nios II BSP Editor, described
in “Using the BSP Editor”.

Makefiles and the Nios II SBT for Eclipse
The Nios II SBT for Eclipse creates and manages the makefiles for Nios II software
projects. When you create a project, the Nios II SBT creates a makefile based on the
source content you specify and the parameters and settings you select. When you
modify the project in Eclipse, the Nios II SBT updates the makefile to match.

Details of how each makefile is created and maintained vary depending on the project
type, and on project options that you control. The authoritative specification of project
contents is always the makefile, regardless how it is created or updated.

By default, the Nios II SBT manages the list of source files in your makefile, based on
actions you take in Eclipse. However, in the case of applications and libraries, you
have the option to manage sources manually. Both styles of source management are
discussed in the following sections.

Eclipse Source Management
Nios II application and user library makefiles are based on source files and properties
that you specify directly. Eclipse source management allows you to add and remove
source files with standard Eclipse actions, such as dragging a source file into and out
of the Project Explorer view and adding a new source file through the File menu.

You can examine and modify many makefile properties in the Nios II Application
Properties or Nios II Library Properties dialog box. To open the dialog box,
right-click the project, click Properties, and click Nios II Application Properties or
Nios II Library Properties.

Table 2–1 lists GUI actions that make changes to an application or user library
makefile under Eclipse source management.

Table 2–1. Modifying a Makefile with Eclipse Source Management

Specifying the application or user library name (1)

Adding or removing source files (2)

Specifying a path to an associated BSP (3)

Notes to Table 2–1:

(1) Modified in the Nios II Application Properties or Nios II Library Properties dialog box.
(2) For details about adding and removing project source files in Eclipse, refer to the Eclipse help system.
(3) Modified in the Project References dialog box.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–9
Makefiles and the Nios II SBT for Eclipse
After the SBT has created a makefile, you can modify the makefile in the following
ways:

■ With the Nios II SBT for Eclipse, as described in Table 2–1.

■ With Nios II SBT commands from the Nios II Command Shell.

When modifying a makefile, the SBT preserves any previous non-conflicting
modifications, regardless how those modifications were made.

1 When the Nios II SBT for Eclipse modifies a makefile, it locks the makefile to prevent
corruption by other processes. You cannot edit the makefile from the command line
until the SBT has removed the lock.

If you want to exclude a resource (a file or a folder) from the Nios II makefile
temporarily, without deleting it from the project, you can use the Remove from
Nios II Build command. Right-click the resource and click Remove from Nios II
Build. When a resource is excluded from the build, it does not appear in the makefile,
and Eclipse ignores it. However, it is still visible in the Project Explorer, with a
modified icon. To add the resource back into the build, right-click the resource and
click Add to Nios II Build.

1 Do not use the Eclipse Exclude from build command. With Nios II software projects,
you must use the Remove from Nios II Build and Add to Nios II Build commands
instead.

Absolute Source Paths and Linked Resources
By default, the source files for an Eclipse project are stored under the project directory.
If your project must incorporate source files outside the project directory, you can add
them as linked resources.

An Eclipse linked resource can be either a file or a folder. With a linked folder, all
source files in the folder and its subfolders are included in the build.

When you add a linked resource (file or folder) to your project, the SBT for Eclipse
adds the file or folder to your makefile with an absolute path name. You might use a
linked resource to refer to common source files in a fixed location. In this situation,
you can move the project to a different directory without disturbing the common
source file references.

A linked resource appears with a modified icon in the Project Explorer, to distinguish
it from source files and folders that are part of the project. You can use the Eclipse
debugger to step into a linked source file, exactly as if it were part of the project.

Specifying a path to an associated user library (3)

Enabling, disabling or modifying compiler options (1)

Table 2–1. Modifying a Makefile with Eclipse Source Management

Notes to Table 2–1:

(1) Modified in the Nios II Application Properties or Nios II Library Properties dialog box.
(2) For details about adding and removing project source files in Eclipse, refer to the Eclipse help system.
(3) Modified in the Project References dialog box.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–10 Chapter 2: Getting Started with the Graphical User Interface
Makefiles and the Nios II SBT for Eclipse
You can reconfigure your project to refer to any linked resource either as an individual
file, or through its parent folder. Right-click the linked resource and click Update
Linked Resource.

f For information about working with linked resources, refer to the Eclipse help system.

User Source Management
You can remove a makefile from source management control through the Nios II
Application Properties or Nios II Library Properties dialog box. Simply turn off
Enable source management to convert the makefile to user source management.
When Enable source management is off, you must update your makefile manually to
add or remove source files to or from the project. The SBT for Eclipse makes no
changes to the list of source files, but continues to manage all other project parameters
and settings in the makefile.

1 Editing a makefile manually is an advanced technique. Altera recommends that you
avoid manual editing. The SBT provides extensive capabilities for manipulating
makefiles while ensuring makefile correctness.

In a makefile with user-managed sources, you can refer to source files with an
absolute path. You might use an absolute path to refer to common source files in a
fixed location. In this situation, you can move the project to a different directory
without disturbing the common source file references.

Projects with user-managed sources do not support the following features:

■ Linked resources

■ The Add to Nios II Build command

■ The Remove from Nios II Build command

Table 2–1 lists GUI actions that make changes to an application or user library
makefile under user source management.

1 With user source management, the source files shown in the Eclipse Project Explorer
view do not necessarily reflect the sources built by the makefile. To update the Project
Explorer view to match the makefile, right-click the project and click Sync from
Nios II Build.

Table 2–2. Modifying a Makefile with User Source Management

Specifying the application or user library name (1)

Specifying a path to an associated BSP (2)

Specifying a path to an associated user library (2)

Enabling, disabling or modifying compiler options (1)

Notes to Table 2–2:

(1) Modified in the Nios II Application Properties or Nios II Library Properties dialog box.
(2) Modified in the Project References dialog box.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 2: Getting Started with the Graphical User Interface 2–11
Using the BSP Editor
BSP Source Management
Nios II BSP makefiles are handled differently from application and user library
makefiles. BSP makefiles are based on the operating system, BSP settings, selected
software packages, and selected drivers. You do not specify BSP source files directly.

BSP makefiles must be managed by the SBT, either through the BSP Editor or through
the SBT command-line utilities.

f For further details about specifying BSPs, refer to “Using the BSP Editor”.

Using the BSP Editor
Typically, you create a BSP with the Nios II SBT for Eclipse. The Nios II plugins
provide the basic tools and settings for defining your BSP. For more advanced BSP
editing, use the Nios II BSP Editor. The BSP Editor provides all the tools you need to
create even the most complex BSPs.

Tcl Scripting and the Nios II BSP Editor
The Nios II BSP Editor provides support for Tcl scripting. When you create a BSP in
the BSP Editor, the editor can run a Tcl script that you specify to supply BSP settings.

You can also export a Tcl script from the BSP Editor, containing all the settings in an
existing BSP. By studying such a script, you can learn about how BSP Tcl scripts are
constructed.

Starting the Nios II BSP Editor
You start the Nios II BSP Editor in one of the following ways:

■ Right-click an existing project, point to Nios II, and click BSP Editor. The editor
loads the BSP Settings File (.bsp) associated with your project, and is ready to
update it.

■ On the Nios II menu, click Nios II BSP Editor. The editor starts without loading
a .bsp file.

■ Right-click an existing BSP project and click Properties. In the Properties dialog
box, select Nios II BSP Properties, and click BSP Editor. The editor loads
your .bsp file for update.

The Nios II BSP Editor Screen Layout
The Nios II BSP Editor screen is divided into two areas. The top area is the command
area, and the bottom is the console area. The details of the Nios II BSP Editor screen
areas are described in this section.

Below the console area is the Generate button. This button is enabled when the BSP
settings are valid. It generates the BSP target files, as shown in the Target BSP
Directory tab.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–12 Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor
The Command Area
In the command area, you specify settings and other parameters defining the BSP. The
command area contains several tabs:

■ The Main tab

■ The Software Packages tab

■ The Drivers tab

■ The Linker Script tab

■ The Enable File Generation tab

■ The Target BSP Directory tab

Each tab allows you to view and edit a particular aspect of the .bsp, along with
relevant command line parameters and Tcl scripts.

1 The settings that appear on the Main, Software Packages and Drivers tabs are the
same as the settings you manipulate on the command line.

f For detailed descriptions of settings defined for Altera-provided operating systems,
software packages, and drivers, refer to the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

The Main Tab
The Main tab presents general settings and parameters, and operating system
settings, for the BSP. The BSP includes the following settings and parameters:

■ The path to the .sopcinfo file specifying the target hardware

■ The processor name

■ The operating system

1 You cannot change the operating system in an existing BSP. You must create
a new BSP based on the desired operating system.

■ The BSP target directory—the destination for files that the SBT copies and creates
for your BSP.

■ BSP settings

BSP settings appear in a tree structure. Settings are organized into Common and
Advanced categories. Settings are further organized into functional groups. The
available settings depend on the operating system.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Software package and driver settings are presented separately, as described in “The
Software Packages Tab” and “The Drivers Tab”.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–13
Using the BSP Editor
The Software Packages Tab
The Software Packages tab allows you to insert and remove software packages in
your BSP, and control software package settings.

At the top of the Software Packages tab is the software package table, listing each
available software package. The table allows you to select the software package
version, and enable or disable the software package.

1 The operating system determines which software packages are available.

Many software packages define settings that you can control in your BSP. When you
enable a software package, the available settings appear in a tree structure, organized
into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

1 Enabling and disabling software packages and editing software package settings can
have a profound impact on BSP behavior. Refer to the documentation for the specific
software package for details. For the read-only zip file system, refer to the Read-Only
Zip File System chapter of the Nios II Software Developer’s Handbook. For the NicheStack
TCP/IP Stack - Nios II Edition, refer to the Ethernet and the NicheStack TCP/IP Stack -
Nios II Edition chapter of the Nios II Software Developer’s Handbook.

General settings, operating system settings, and driver settings are presented
separately, as described in “The Main Tab” and “The Drivers Tab”.

The Drivers Tab
The Drivers tab allows you to select, enable, and disable drivers for devices in your
system, and control driver settings.

At the top of the Drivers tab is the driver table, mapping each component in the SOPC
Builder system to a driver. Each component has a module name, module version,
module class name, driver name, and driver version, determined by the contents of
the SOPC Builder system. The table allows you to select the driver by name and
version, as well as to enable or disable each driver.

1 When you select a driver version, all instances of that driver in the BSP are set to the
version you select. Only one version of a given driver can be used in an individual
BSP.

Many drivers define settings that you can control in your BSP. Available driver
settings appear in a tree structure below the driver table, organized into Common and
Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

2–14 Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor
1 Enabling and disabling device drivers, changing drivers and driver versions, and
editing driver settings, can have a profound impact on BSP behavior. Refer to the
relevant component documentation and driver information for details. For Altera
components, refer to the Embedded Peripherals IP User Guide.

General settings, operating system settings, and software package settings are
presented separately, as described in “The Main Tab” and “The Software Packages
Tab”.

The Linker Script Tab
The Linker Script tab allows you to view available memory in your SOPC Builder
system, and examine and modify the arrangement and usage of linker regions in
memory.

When you make a change to the memory configuration, the SBT validates your
change. If there is a problem, a message appears in the Problems tab in the console
area, as described in “The Problems Tab” on page 2–16.

1 Rearranging linker regions and linker section mappings can have a very significant
impact on BSP behavior.

Linker Section Mappings

At the top of the Linker Script tab, the Linker Section Mappings table shows the
mapping from linker sections to linker regions. You can edit the BSP linker section
mappings using the following buttons located next to the linker section table:

■ Add—Adds a linker section mapping to an existing linker region. The Add button
opens the Add Section Mapping dialog box, where you specify a new section
name and an existing linker region.

■ Remove—Removes a mapping from a linker section to a linker region.

■ Restore Defaults—Restores the section mappings to the default configuration set
up at the time of BSP creation.

Linker Regions

At the bottom of the Linker Script tab, the Linker Memory Regions table shows all
defined linker regions. Each row of the table shows one linker region, with its address
range, memory device name, size, and offset into the selected memory device.

You reassign a defined linker region to a different memory device by selecting a
different device name in the Memory Device Name column. The Size and Offset
columns are editable. You can also edit the list of linker regions using the following
buttons located next to the linker region table:

■ Add—Adds a linker region in unused space on any existing device. The Add
button opens the Add Memory Region dialog box, where you specify the memory
device, the new memory region name, the region size, and the region’s offset from
the device base address.

■ Remove—Removes a linker region definition. Removing a region frees the
region’s memory space to be used for other regions.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–15
Using the BSP Editor
■ Add Memory Device—Creates a linker region representing a memory device that
is outside the SOPC Builder system. The button launches the Add Memory Device
dialog box, where you can specify the device name, memory size and base
address. After you add the device, it appears in the linker region table, the
Memory Device Usage Table dialog box, and the Memory Map dialog box.

This functionality is equivalent to the add_memory_device Tcl command.

1 Ensure that you specify the correct base address and memory size. If the
base address or size of an external memory changes, you must edit the BSP
manually to match. The SBT does not automatically detect changes in
external memory devices, even if you update the BSP by creating a new
settings file.

f For information about add_memory_device and other SBT Tcl
commands, refer to “Tcl Commands” in the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

■ Restore Defaults—restores the memory regions to the default configuration set up
at the time of BSP creation.

■ Memory Usage—Opens the Memory Device Usage Table. The Memory Device
Usage Table allows you to view memory device usage by defined memory region.
As memory regions are added, removed, and adjusted, each device’s free memory,
used memory, and percentage of available memory are updated. The rightmost
column is a graphical representation of the device’s usage, according to the
memory regions assigned to it.

■ Memory Map—Opens the Memory Map dialog box. The memory map allows
you to view a map of system memory in the processor address space. The Device
table is a read-only reference showing memories in the SOPC Builder system that
are mastered by the selected processor. Devices are listed in memory address
order.

To the right of the Device table is a graphical representation of the processor’s
memory space, showing the locations of devices in the table. Gaps indicate
unmapped address space.

1 This representation is not to scale.

Enable File Generation Tab
The Enable File Generation tab allows you to take ownership of specific BSP files that
are normally generated by the SBT. When you take ownership of a BSP file, you can
modify it, and prevent the SBT from overwriting your modifications. The Enable File
Generation tab shows a tree view of all target files to be generated or copied when the
BSP is generated. To disable generation of a specific file, expand the software
component containing the file, expand any internal directory folders, select the file,
and right-click. Each disabled file appears in a list at the bottom of the tab.

This functionality is equivalent to the set_ignore_file Tcl command.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

2–16 Chapter 2: Getting Started with the Graphical User Interface
Using the BSP Editor
1 If you take ownership of a BSP file, the SBT can no longer update it to reflect future
changes in the underlying hardware. If you change the hardware, be sure to update
the file manually.

f For information about set_ignore_file and other SBT Tcl commands, refer to “Tcl
Commands” in the Nios II Software Build Tools Reference chapter of the Nios II Software
Developer’s Handbook.

Target BSP Directory Tab
The Target BSP Directory tab is a read-only reference showing you what output to
expect when the BSP is generated. It does not depict the actual file system, but rather
the files and directories to be created or copied when the BSP is generated. Each
software component, including the operating system, drivers, and software packages,
specifies source code to be copied into the BSP target directory. The files are generated
in the directory specified on the Main tab.

1 When you generate the BSP, existing BSP files are overwritten, unless you disable
generation of the file in the Enable File Generation tab.

The Console Area
The console area shows results of settings and commands that you select in the
command area. The console area consists of the following tabs:

■ The Information tab

■ The Problems tab

■ The Processing tab

The following sections describe each tab.

The Information Tab
The Information tab shows a running list of high-level changes you make to your
BSP, such as adding a software package or changing a setting value.

The Problems Tab
The Problems tab shows warnings and errors that impact or prohibit BSP creation.
For example, if you inadvertently specify an invalid linker section mapping, a
message appears in the Problems tab.

The Processing Tab
When you generate your BSP, the Processing tab shows files and folders created and
copied in the BSP target directory.

Exporting a Tcl Script
When you have configured your BSP to your satisfaction, you can export the BSP
settings as a Tcl script. This feature allows you to perform the following tasks:

■ Regenerate the BSP from the command line

■ Recreate the BSP as a starting point for a new BSP
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–17
Using the BSP Editor
■ Recreate the BSP on a different hardware platform

■ Examine the Tcl script to improve your understanding of Tcl command usage

The exported Tcl script captures all nondefault settings in the BSP.

To export a Tcl script, in the Tools menu, click Export Tcl Script, and specify a
filename and destination path. The file extension is .tcl.

f To import a Tcl script during BSP creation, refer to “Using an Imported Tcl Script”. For
details about default BSP settings, refer to “Tcl Scripts for BSP Settings” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Creating a New BSP
To create a BSP in the Nios II BSP Editor, use the New BSP command in the File menu
to open the New BSP Setting File dialog box. This dialog box controls the creation of
a new BSP settings file. The BSP Editor loads this new BSP after the file is created.

In this dialog box, you specify the following parameters:

■ The name of the BSP settings file. It is created with file extension .bsp.

■ The operating system.

1 You can select the operating system only at the time you create the BSP. To
change operating systems, you must create a new BSP.

■ A Tcl script to import, for additional settings.

■ The .sopcinfo file defining the hardware platform.

1 Normally, you specify the path to your .sopcinfo file relative to the BSP directory. This
enables you to move, copy and archive the hardware and software files together. If
you browse to the .sopcinfo file, or specify an absolute path, the Nios II BSP Editor
offers to convert your path to the relative form.

Using an Imported Tcl Script
When you create a BSP, the New BSP Settings File dialog box allows you to specify
the path and filename of a Tcl script. The Nios II BSP Editor imports this script and
runs it to specify BSP settings. This feature allows you to perform the following tasks:

■ Recreate an existing BSP as a starting point for a new BSP

■ Recreate a BSP on a different hardware platform

■ Include custom settings common to a group of BSPs

The Tcl script can be created by hand, or exported from another BSP.

f “Exporting a Tcl Script” describes how to create a Tcl script from an existing BSP. Refer
to “Tcl Scripts for BSP Settings” in the Nios II Software Build Tools chapter of the Nios II
Software Developer’s Handbook for further information about creating Tcl scripts.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2–18 Chapter 2: Getting Started with the Graphical User Interface
Run Configurations
BSP Validation Errors
If you modify an SOPC Builder system after basing a BSP on it, some BSP settings
might no longer be valid. This is a very common cause of BSP validation errors.
Eliminating these errors usually requires correcting a large number of interrelated
settings.

If your modifications to the underlying hardware design result in BSP validation
errors, the best practice is to update or recreate the BSP. Updating and recreating BSPs
is very easy with the BSP Editor.

f For complete information about updating and recreating BSPs, refer to “Revising
Your BSP” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

If you recreate your BSP, you might find it helpful to capture your old BSP settings by
exporting them to a Tcl script. You can edit the Tcl script to remove any settings that
are incompatible with the new hardware design.

f For details about exporting and importing Tcl scripts, refer to “Exporting a Tcl Script”
and “Using an Imported Tcl Script”. For a detailed discussion of updating BSPs for
modified SOPC Builder systems, refer to “Revising Your BSP” in the Nios II Software
Build Tools chapter of the Nios II Software Developer’s Handbook.

Configuring Component Search Paths
By default, the SBT discovers system components using the same search algorithm as
SOPC Builder. You can define additional search paths to be used for locating
components.

You define additional search paths through the Edit Custom Search Paths dialog box.
In the Tools menu, click Options, select BSP Component Search Paths, and click
Custom Component Search Paths. You can specify multiple search paths. Each path
can be recursive.

Run Configurations
Eclipse uses run configurations to control how it runs and debugs programs. Run
configurations in the Nios II SBT for Eclipse have several features that help you debug
Nios II software running on FPGA platforms.

You can open the run configuration dialog box two ways:

■ You can right-click an application, point to Run As, and click Run Configurations.

■ You can right-click an application, point to Debug As, and click Debug
Configurations.

Depending on which way you opened the run configuration dialog box, the title is
either Run Configuration or Debug Configuration. However, both views show the
same run configurations.

Each run configuration is presented in several tabs. This section describes each tab.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–19
Optimizing Project Build Time
The Project Tab
On this tab, you specify the application project to run. The Advanced button opens
the Nios II ELF Section Properties dialog box. In this dialog box, you can control the
runtime parameters in the following ways:

■ Specify the processor on which to execute the program (if the hardware design
provides multiple processors)

■ Specify the device to use for standard I/O

■ Specify the expected location, timestamp and value of the system ID

■ Specify the path to the Quartus II JTAG Debugging Information File (.jdi)

■ Enable or disable profiling

1 The Nios II SBT for Eclipse sets these parameters to reasonable defaults. Do not
modify them unless you have a clear understanding of their effects.

The Target Connection Tab
This tab allows you to control the connection between the host machine and the target
hardware in the following ways:

■ Select the cable, if more than one cable is available

■ Allow software to run despite a system ID value or timestamp that differs from the
hardware

■ Reset the processor when the software is downloaded

The System ID Properties button allows you to examine the system ID and
timestamp in both the .elf file and the hardware. This can be helpful when you need
to analyze the cause of a system ID or timestamp mismatch.

The Debugger Tab
In this tab, you optionally enable the debugger to halt at a specified entry point.

Optimizing Project Build Time
When you build a Nios II project, the project makefile builds any components that are
unbuilt or out of date. For this reason, the first time you build a project is normally the
slowest. Subsequent builds are fast, only rebuilding sources that have changed.

To further optimize your project build time, disable generation of the objdump linker
map.

1 Nios II software build performance is generally better on Linux platforms than on
Windows platforms.

Importing a Command-Line Project
If you have software projects that were created with the Nios II SBT command line,
you can import the projects into the Nios II SBT for Eclipse for debugging and further
development. This section discusses the import process.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–20 Chapter 2: Getting Started with the Graphical User Interface
Importing a Command-Line Project
Your command-line C/C++ application, and its associated BSP, might be created on
the command line, or converted from a Nios II IDE project. Regardless of its origin,
any Nios II SBT command-line project is ready to import into the Nios II SBT for
Eclipse. No additional preparation is necessary.

The Nios II SBT for Eclipse imports several kinds of Nios II command-line projects:

■ Command-line C/C++ application project

■ Command-line BSP project

■ Command-line user library project

You can edit, build, debug, and manage the settings of an imported project exactly the
same way you edit, build, debug, and manage the settings of a project created in
Nios II SBT for Eclipse.

The Nios II SBT for Eclipse imports each type of project through the Import wizard.
The Import wizard determines the kind of project you are importing, and configures
it appropriately.

You can continue to develop project code in your SBT project after importing the
project into Eclipse. You can edit source files and rebuild the project, using the SBT
either in Eclipse or on the command line.

1 Nios II Integrated Development Environment (IDE) projects cannot be directly
imported to the SBT for Eclipse. You must first convert the project for use with the
SBT, by following to the procedures in Appendix A. Using the Nios II Integrated
Development Environment in the Nios II Software Developer’s Handbook.

f For information about creating projects with the command line, refer to the Getting
Started from the Command Line chapter of the Nios II Software Developer’s Handbook.

Road Map
Importing and debugging a project typically involves several of the following tasks.
You do not need to perform these tasks in this order, and you can repeat or omit some
tasks, depending on your needs.

■ Import a command-line C/C++ application

■ Import a supporting project

■ Debug a command-line C/C++ application

■ Edit command-line C/C++ application code

When importing a project, the SBT for Eclipse might make some minor changes to
your makefile. If the makefile refers to a source file located outside the project
directory tree, the SBT for Eclipse treats that file as a linked resource. However, it does
not add or remove any source files to or from your makefile.

1 When you import an application or user library project, the Nios II SBT for Eclipse
allows you to choose Eclipse source management or user source management. Unless
your project has an unusual directory structure, choose Eclipse source management,
to allow the SBT for Eclipse to automatically maintain your list of source files.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52019.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52019.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–21
Importing a Command-Line Project
You debug and edit an imported project exactly the same way you debug and edit a
project created in Eclipse.

Import a Command-Line C/C++ Application
To import a command-line C/C++ application, perform the following steps:

1. Start the Nios II SBT for Eclipse.

2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Nios II Software Build Tools Project folder, and select Import Nios II
Software Build Tools Project.

4. Click Next. The File Import wizard appears.

5. Click Browse and locate the directory containing the C/C++ application project to
import.

6. Click OK. The wizard fills in the project path.

7. Specify the project name in the Project name box.

1 You might see a warning saying “There is already a .project file at: <path>”.
This warning indicates that the directory already contains an Eclipse
project. Either it is an Eclipse project, or it is a command-line project that is
already imported into Eclipse.

If the project is already in your workspace, do not re-import it.

8. Click Finish. The wizard imports the application project.

At this point, the Nios II SBT for Eclipse can build, debug, and run the complete
program, including the BSP and any libraries, by using the SBT makefiles in your
imported C/C++ application project. Eclipse displays and steps through application
source code exactly as if the project were created in the Nios II SBT for Eclipse.
However, Eclipse does not have direct information about where BSP or user library
code resides. If you need to view, debug or step through BSP or user library source
code, you need to import the BSP or user library. The process of importing supporting
projects, such as BSPs and libraries, is described in “Import a Supporting Project”.

Importing a Project with Absolute Source Paths
If your project uses an absolute path to refer to a source file, the SBT for Eclipse
imports that source file as a linked resource. In this case, the import wizard provides a
page where you can manage how Eclipse refers to the source: as a file, or through a
parent directory.

f For information about managing linked resources, refer to “Absolute Source Paths
and Linked Resources” on page 2–9.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–22 Chapter 2: Getting Started with the Graphical User Interface
Programming Flash
Import a Supporting Project
While debugging a C/C++ application, you might need to view, debug or step
through source code in a supporting project, such as a BSP or user library. To make
supporting project source code visible in the Eclipse debug perspective, you need to
import the supporting project.

If you do not need BSP or user library source code visible in the debugger, you can
skip this task, and proceed to debug your project exactly as if you had created it in
Eclipse.

1 If you have several C/C++ applications based on one BSP or user library, import the
BSP or user library once, and then import each application that is based on the BSP or
user library. Each application’s makefile contains the information needed to find and
build any associated BSP or libraries.

The steps for importing a supporting project are exactly the same as those shown in
“Import a Command-Line C/C++ Application”.

User-Managed Source Files
When you import a Nios II application or user library project, the Nios II SBT for
Eclipse offers the option of user source management. User source management is
helpful if you prefer to update your makefile manually to reflect source files added to
or removed from the project.

With user source management, Eclipse never makes any changes to the list of source
files in your makefile. However, the SBT for Eclipse manages all other project
parameters and settings, just as with any other Nios II software project.

If your makefile refers to a source file with an absolute path, when you import with
user source management, the absolute path is untouched, like any other source path.
You might use an absolute path to refer to common source files in a fixed location. In
this situation, you can move the project to a different directory without disturbing the
common source file references.

1 User source management is not available with BSP projects. BSP makefiles are based
on the operating system, BSP settings, selected software packages, and selected
drivers. You do not specify BSP source files directly.

f For details about how the SBT for Eclipse handles makefiles with user-managed
sources, refer to “User Source Management” on page 2–10.

Programming Flash
Many Nios II processor systems use external flash memory to store one or more of the
following items:

■ Program code

■ Program data

■ FPGA configuration data

■ File systems
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 2: Getting Started with the Graphical User Interface 2–23
Programming Flash
The Nios II SBT for Eclipse provides flash programmer utilities to help you manage
and program the contents of flash memory. The flash programmer allows you to
program any combination of software, hardware, and binary data into flash memory
in one operation.

Starting the Flash Programmer
You start the flash programmer by clicking Flash Programmer in the Nios II menu.

When you first open the flash programmer, no controls are available until you open or
create a Flash Programmer Settings File (.flash-settings).

Creating a Flash Programmer Settings File
The .flash-settings file describes how you set up the flash programmer GUI to
program flash. This information includes the files to be programmed to flash, an
SOPC Builder system describing the hardware configuration, and the file
programming locations. You must create or open a flash programmer settings file
before you can program flash.

You create a flash programmer settings file through the File menu. When you click
New, the New Flash Programmer Settings File dialog box appears.

Specifying the Hardware Configuration
You specify the hardware configuration by opening a .sopcinfo file. You can locate
the .sopcinfo file in either of two ways:

■ Browse to a BSP settings file. The flash programmer finds the .sopcinfo file
associated with the BSP.

■ Browse directly to a .sopcinfo file.

Once you have identified a hardware configuration, details about the target hardware
appear at the top of the Nios II flash programmer screen.

Also at the top of the Nios II flash programmer screen is the Hardware Connections
button, which opens the Hardware Connections dialog box. This dialog box allows
you to select a download cable, and control system ID behavior, as described in “The
Target Connection Tab” on page 2–19.

The Flash Programmer Screen Layout
The flash programmer screen is divided into two areas. The top area is the command
area, and the bottom is the console area. The details of the flash programmer screen
areas are described in this section.

Below the console area is the Start button. This button is enabled when the flash
programmer parameters are valid. It starts the process of programming flash.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–24 Chapter 2: Getting Started with the Graphical User Interface
Programming Flash
The Command Area
In the command area, you specify settings and other parameters defining the flash
programmer settings file. The command area contains one or more tabs. Each tab
represents a flash memory component available in the target hardware. Each tab
allows you to view the parameters of the memory component, and view and edit the
list of files to be programmed in the component.

The Add and Remove buttons allow you to create and edit the list of files to be
programmed in the flash memory component.

The File generation command box shows the commands used to generate the
Motorola S-record Files (.flash) used to program flash memory.

The File programming command box shows the commands used to program
the .flash files to flash memory.

The Properties button opens the Properties dialog box, which allows you to view and
modify information about an individual file. In the case of a .elf, the Properties button
provides access to the project reset address, the flash base and end addresses, and the
boot loader file (if any).

1 The flash programmer determines whether a boot loader is required based on the load
and run locations of the .text section. You can use the Properties dialog box to
override the default boot loader configuration.

The Console Area
The console area shows results of settings and commands that you select in the
command area. The console area consists of the following tabs:

■ The Information tab

■ The Problems tab

■ The Processing tab

This section describes each tab.

The Information Tab
The Information tab shows the high-level changes you make to your flash
programmer settings file.

The Problems Tab
The Problems tab shows warnings and error messages about the process of flash
programmer settings file creation.

The Processing Tab
When you program flash, the Processing tab shows the individual programming
actions as they take place.
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

Chapter 2: Getting Started with the Graphical User Interface 2–25
Creating an Internal Boot Memory Initialization File
Saving a Flash Programmer Settings File
When you have finished configuring the input files, locations, and other settings for
programming your project to flash, you can save the settings in a .flash-settings file.
With a .flash-settings file, you can program the project again without reconfiguring
the settings. You save a .flash-settings file through the File menu.

Flash Programmer Options
Through the Options menu, you can control several global aspects of flash
programmer behavior, as described in this section.

f For details about these features, refer to the Nios II Flash Programmer User’s Guide.

Staging Directories
Through the Staging Directories dialog box, you control where the flash programmer
creates its script and .flash-settings files.

Generate Files
If you disable this option, the flash programmer does not generate programming files,
but programs files already present in the directory. You might use this feature to
reprogram a set of files that you have previously created.

Program Files
If you disable this option, the flash programmer generates the programming files and
the script, but does not program flash. You can use the files later to program flash by
turning off the Generate Files option.

Erase Flash Before Programming
When enabled, this option erases flash memory before programming.

Run From Reset After Programming
When enabled, this option resets and starts the Nios II processor after programming
flash.

Creating an Internal Boot Memory Initialization File
The Nios II SBT for Eclipse can create a Hexadecimal (Intel-Format) File (.hex),
required to boot the Nios II directly from internal memory without downloading. To
create a .hex file for your project, right-click the application project, point to Make
Targets, and click Build to open the Make Targets dialog box. Select and build the
mem_init_install target.

The mem_init_install target creates a file called <memory component name>.hex,
and places it in your Quartus project directory. After creating the .hex file, recompile
your Quartus project.

f For more information about creating memory initialization files, refer to “Common
BSP Tasks” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

2–26 Chapter 2: Getting Started with the Graphical User Interface
Managing Toolchains in Eclipse
Managing Toolchains in Eclipse
The Nios II EDS includes two versions of the GNU Compiler Collection (GCC)
toolchain: GCC 3.4.6 and GCC 4.1.2. Starting with v. 10.0, the EDS uses GCC 4 for all
new SBT projects. The EDS uses GCC 3 as the default for any project created prior to
v. 10.0, and for any project converted to the SBT from the Nios II IDE.

In the great majority of cases, you can seamlessly upgrade projects from GCC 3 to
GCC 4. To change the GCC toolchain version in Eclipse, right-click the project and
click Properties. In the Properties dialog box, expand the C/C++ Build tab and select
Tool Chain Editor. Select the appropriate Nios II GCC toolchain, depending on your
host operating system. For example, to use GCC 4, select one of the following
toolchains:

■ In the Windows operating system, select MinGW Nios II GCC 4

■ In the Linux operating system, select Linux Nios II GCC 4

After you select the toolchain, the SBT for Eclipse continues to use that toolchain for
your project unless you change it again.

1 If you move the project to a different host platform, you must manually change to the
appropriate toolchain for the new host platform. For example, if you move a GCC 4
project from a Windows host to a Linux host, use the Properties dialog box to select
Linux Nios II GCC 4.

f For general information about the GCC toolchains, refer to “Altera-Provided
Development Tools” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook. For information about selecting the toolchain on the command
line, refer to the Getting Started from the Command Line chapter of the Nios II Software
Developer’s Handbook.

Eclipse Usage Notes
The behavior of certain Eclipse and CDT features is modified by the Nios II SBT for
Eclipse. If you attempt to use these features the same way you would with a non-
Nios II project, you might have problems configuring or building your project. This
section discusses such features.

Configuring Application and Library Properties
To configure project properties specific to Nios II SBT application and library projects,
use the Nios II Application Properties and Nios II Library Properties tabs of the
Properties dialog box. To open the appropriate properties tab, right-click the
application or library project and click Properties. Depending on the project type,
Nios II Application Properties or Nios II Library Properties tab appears in the list of
tabs. Click the appropriate Properties tab to open it.

The Nios II Application Properties and Nios II Library Properties tabs are nearly
identical. These tabs allow you to control the following project properties:

■ The name of the target .elf file (application project only)

■ The library name (library project only)

■ A list of symbols to be defined in the makefile
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–27
Eclipse Usage Notes
■ A list of symbols to be undefined in the makefile

■ A list of assembler flags

■ Warning level flags

■ A list of user flags

■ Generation of debug symbols

■ Compiler optimization level

■ Generation of object dump file (application project only)

■ Source file management

■ Path to associated BSP (required for application, optional for library)

Configuring BSP Properties
To configure BSP settings and properties, use the Nios II BSP Editor.

For detailed information about the BSP Editor, refer to “Using the BSP Editor” on
page 2–11.

Exclude from Build Not Supported
The Exclude from Build command is not supported. You must use the Remove from
Nios II Build and Add to Nios II Build commands instead.

1 This behavior differs from the behavior of the Nios II SBT for Eclipse in v. 9.1.

Selecting the Correct Launch Configuration Type
If you try to debug a Nios II software project as a CDT Local C/C++ Application
launch configuration type, you see an error message, and the Nios II Debug
perspective fails to open. This is expected CDT behavior in the Eclipse platform. Local
C/C++ Application is the launch configuration type for a standard CDT project. To
invoke the Nios II plugins, you must use a Nios II launch configuration type.

Renaming Nios II Projects
To rename a project in the Nios II SBT for Eclipse, perform the following steps:

1. Right-click the project and click Rename.

2. Type the new project name.

3. Right-click the project and click Refresh.

1 If you neglect to refresh the project, you might see the following error message when
you attempt to build it:

Resource <original_project_name> is out of sync with the system
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

2–28 Chapter 2: Getting Started with the Graphical User Interface
Referenced Documents
Running Shell Scripts from the SBT for Eclipse
Many SBT utilities are implemented as shell scripts. You can use Eclipse external tools
configurations to run shell scripts. However, you must ensure that the shell
environment is set up correctly.

To run shell scripts from the SBT for Eclipse, execute the following steps:

1. Start the Nios II Command Shell, as described in the Getting Started from the
Command Line chapter of the Nios II Software Developer’s Handbook.

2. Start the Nios II SBT for Eclipse by typing the following command:

eclipse-nios2r

1 You must start the SBT for Eclipse from the command line in both the Linux
and Windows operating systems, to set up the correct shell environment.

3. From the Eclipse Run menu, point to External Tools, and click External Tools
Configurations.

4. Create a new tools configuration, or open an existing tools configuration.

5. On the Main tab, set Location and Argument as shown in Table 2–3.

For example, to run the command elf2hex --help, set Location and Argument
as shown in Table 2–4.

6. On the Build tab, ensure that Build before launch and its related options are set
appropriately.

1 By default, a new tools configuration builds all projects in your workspace
before executing the command. This might not be the desired behavior.

7. Click Run. The command executes in the Nios II Command Shell, and the
command output appears in the Eclipse Console tab.

Referenced Documents
This chapter references the following documents:

■ Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

Table 2–3. Location and Argument to Run Shell Script from Eclipse

Platform Location Argument

Windows ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\bin\sh.exe -c "<script name> <script args>"

Linux ${env_var:SOPC_KIT_NIOS2}/bin/<script name> <script args>

Table 2–4. Location and Argument to Run elf2hex --help from Eclipse

Platform Location Argument

Windows ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\bin\sh.exe -c "elf2hex --help"

Linux ${env_var:SOPC_KIT_NIOS2}/bin/elf2hex --help
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 2: Getting Started with the Graphical User Interface 2–29
Document Revision History
■ Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition chapter of the Nios II
Software Developer’s Handbook

■ Read-Only Zip File System chapter of the Nios II Software Developer’s Handbook

■ Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook

■ Appendix A. Using the Nios II Integrated Development Environment in the Nios II
Software Developer’s Handbook

■ Quartus II Programmer chapter in Volume 3: Verification of the Quartus II Handbook

■ Embedded Peripherals IP User Guide

■ Nios II Flash Programmer User’s Guide

Document Revision History
The following table displays the revision history for this document.

Date & Document
Version Changes Made Summary of Changes

July 2010

v10.0.0

■ Document how to import and use projects with user-managed
source files

■ Document how to import and use projects with linked resources

■ Document Remove from Nios II Build command

■ Update BSP Editor documentation

■ Document Add Memory Device command

■ Document Enable File Generation tab

■ Makefiles with user-
managed sources

■ External C files handled
as linked resources

■ Remove from Nios II
Build command

■ BSP Editor

■ Add Memory Device
command

■ Enable File
Generation tab

■ Cosmetic changes

November 2009

v9.1.0

Initial release —
© July 2010 Altera Corporation Nios II Software Developer’s Handbook
Preliminary

http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52019.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

2–30 Chapter 2: Getting Started with the Graphical User Interface
Document Revision History
Nios II Software Developer’s Handbook © July 2010 Altera Corporation
Preliminary

	2. Getting Started with the Graphical User Interface
	Getting Started
	The Nios II SBT for Eclipse Workbench
	Perspectives, Editors, and Views

	Creating a Project
	Specifying the Application
	Specifying the Hardware Platform
	Specifying the Project Name
	Specifying the Project Template
	Specifying the Project Location
	Specifying the Processor

	Specifying the BSP
	Specifying the BSP Project Name
	Specifying the BSP Project Location
	Selecting an Existing BSP

	Creating the Projects

	Navigating the Project
	Building the Project
	Configuring the FPGA
	Running the Project
	Debugging the Project
	Creating a Simple BSP

	Makefiles and the Nios II SBT for Eclipse
	Eclipse Source Management
	Absolute Source Paths and Linked Resources

	User Source Management
	BSP Source Management

	Using the BSP Editor
	Tcl Scripting and the Nios II BSP Editor
	Starting the Nios II BSP Editor
	The Nios II BSP Editor Screen Layout
	The Command Area
	The Main Tab
	The Software Packages Tab
	The Drivers Tab
	The Linker Script Tab
	Linker Section Mappings
	Linker Regions

	Enable File Generation Tab
	Target BSP Directory Tab

	The Console Area
	The Information Tab
	The Problems Tab
	The Processing Tab

	Exporting a Tcl Script
	Creating a New BSP
	Using an Imported Tcl Script

	BSP Validation Errors
	Configuring Component Search Paths

	Run Configurations
	The Project Tab
	The Target Connection Tab
	The Debugger Tab

	Optimizing Project Build Time
	Importing a Command-Line Project
	Road Map
	Import a Command-Line C/C++ Application
	Importing a Project with Absolute Source Paths

	Import a Supporting Project
	User-Managed Source Files

	Programming Flash
	Starting the Flash Programmer
	Creating a Flash Programmer Settings File
	Specifying the Hardware Configuration

	The Flash Programmer Screen Layout
	The Command Area
	The Console Area
	The Information Tab
	The Problems Tab
	The Processing Tab

	Saving a Flash Programmer Settings File
	Flash Programmer Options
	Staging Directories
	Generate Files
	Program Files
	Erase Flash Before Programming
	Run From Reset After Programming

	Creating an Internal Boot Memory Initialization File
	Managing Toolchains in Eclipse
	Eclipse Usage Notes
	Configuring Application and Library Properties
	Configuring BSP Properties
	Exclude from Build Not Supported
	Selecting the Correct Launch Configuration Type
	Renaming Nios II Projects
	Running Shell Scripts from the SBT for Eclipse

	Referenced Documents
	Document Revision History

