Verilog HDL Coding

Semiconductor Reuse Standard

IPMXDSRSHDL0O001
SRS V3.2

freescale

semiconductor

Revision History

Version Number Date Author Summary of Changes
1.0 29 JAN 1999 SoCDT Original
Revision based on SRS development process.
11 08 MAR 1999 SoCDT Detailed history contained in DWG records.
Revision based on SRS development process.
2.0 06 DEC 1999 SoCDT Detailed history contained in DWG records.
SoC-IP Change summary location:
3.0 30 APR 2001 Design Systems http://socdt.sps.mot.com/ddts/ddts_main
3.01 01 DEC 2001 SoC&lIP Edit
3.0.2 15 MAR 2002 SoC&IP Changed from MCP to MIUO;_Cha_nged
Motorola font batwing to batwing gif.
3.1 1 NOV 2002 SoC&IP Changed to reflect changes to SRS V3.1.
311 1 APR 2003 SoC&IP Changeq to reflect changes to SRS V3.1.1;
added eight new paragraph tags
3.2 01 FEB 2005 DEO Added updates for SRS V3.2.

Freescale reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Freescale does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
was negligent regarding the design or manufacture of the part. Freescale and and the stylized Freescale logo are registered
trademarks of Freescale Semiconductor, Inc. Freescale Semiconductor, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Freescale Semiconductor, Inc. 2005

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Table of Contents

Section 7 Verilog HDL Coding

7.1
7.1.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.4.3
7.5
7.6
7.7
7.8
7.9
7.10

INtrOdUCHION. 13
Deliverables 13
Reference Information 14
Referenced DOCUMENTSt e 14
Terminology 14
Naming CONVENLIONS e e e e e e e 15
File Namingo 15
Naming of HDL Code [temS e 15
COMMENES . . . 19
File Headers. 19
Additional Construct Headers 21
Other COMMENTS oo 22
Code Style . ..o 23
Module Partitioning and Reusability. 26
Modeling PracCtiCes 28
General Coding Techniques. 31
Standards for Structured Test Techniques. e 37
General Standards for Synthesis 38

Freescale Semiconductor SRS V3.2 01 FEB 2005 3

Semiconductor Reuse Standard

4 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

List of Figures

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7

Verilog File Header e 20
Verilog Functions, User-Defined Primitives and Tasks Header. 21
Verilog Coding Format (Page 1) e 25
Verilog Coding Format (Page 2)t e 26
Metastability Hazard Due to a Violation of thisrule. 29
Proper Use of Synchronization Register According to thisrule. 29
Scan Support for Mixed Latch/Flip-Flop Designs 38

Freescale Semiconductor SRS V3.2 01 FEB 2005 5

Semiconductor Reuse Standard

6 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

List of Tables

Freescale Semiconductor SRS V3.2 01 FEB 2005 7

Semiconductor Reuse Standard

8 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Rule and Guideline Reference

Introduction

Reference Information

Naming Conventions

R7.31
R7.32
R7.33
R7.3.4
R7.3.5
R 7.3.6
R7.3.7
R 7.3.8
R7.39
G 7.3.10
R 7.3.11

Comments

R7.41
R7.4.2
R7.43

Code Style

R751
G752
R7.5.3
R754
G755
R 7.5.6
G757

At most one module per file

File naming conventions

Separate analog, digital, and mixed-signal Verilog files
HDL Code items naming convention

Document abbreviations and additional naming conventions
Global text macros include module name

Instance naming conventions

Signal naming convention - suffixes

Signal naming convention - prefixes

Consistent signal names throughout hierarchy

Signal name length does not exceed 32 characters

Each file must contain a file header with required fields
Additional constructs in file use a header with required fields
Comment conventions

Write code in a tabular format

Use consistent code indentation with spaces
One Verilog statement per line

One port declaration per line

Preserve port order

Declare internal nets

Line length not to exceed 80 characters

Module Partitioning and Reusability

R7.6.1
G7.6.2
R7.6.3
R 7.6.4
G7.65
G7.6.6

No accesses to nets and variables outside the scope of a module
The use of *include compiler directives should be avoided
Mask plugs outside of top most module

Avoid potentially non-portable constructs

Partitioning conventions - general

Partitioning conventions - clocks

Modeling Practices

R7.7.1
R7.72
R7.73

No hard-coded global distribution nets
Synchronize asynchronous interface signals
Use technology independent code for noninferred blocks

Freescale Semiconductor SRS V3.2 01 FEB 2005 9

Semiconductor Reuse Standard

R7.7.4 Glitch-free gated clock enables and direct action signals
R7.75 Known state of powered down signals

R7.7.6 Initialize control storage elements

G7.7.7 Initialize datapath storage elements

G778 Use synchronous design practices

R7.79 No combinational feedback loops

General Coding Techniques

R7.8.1 Expression in condition must be a 1-bit value

R7.8.2 Use consistent ordering of bus bits

R 7.8.3 Do not assign x value to signals

R 7.8.4 No reg assign in two always constructs

G785 Use parameters instead of text macros for symbolic constants
R 7.8.6 Text macros must not be redefined

G 7.87 Preserve relationships between constants

R 7.8.8 Use parameters for state encodings

G789 ‘define usage includes ‘undef

R 7.8.10 Use programmable base addresses

R 7.8.11 Use text macros for base addresses

R 7.8.12 Use base + offset for address generation

G 7.8.13 Use symbolic constants for register field values

G 7.8.14 Limit ‘ifdef nesting to three levels

G 7.8.15 Use text macros for signal hierarchy paths

R 7.8.16 Macromodules are not allowed

R 7.8.17 Operand sizes must match

R 7.8.18 Connect ports by name in module instantiations

R 7.8.19 Ranges match for vector port and net/variable declarations

R 7.8.20 Port connection widths must match

G 7.8.21 Avoid ports of type inout

G 7.8.22 Use parentheses in complex equations

G 7.8.23 No disables on named blocks or tasks containing nonblocking assignments with delays
G 7824 Use task guards

G 7.8.25 Next-state encoding of state machines should be made through the use of case statements
R 7.8.26 No internal three-state logic

G 7.8.27 Avoid three-state outputs

R 7.8.28 Replication multiplier must be greater than zero

Standards for Structured Test Techniques

R7.9.1 Use additional logic for scanning high-impedance devices
R7.9.2 Allow PLL bypass

G 7.93 Allow clock divider bypass

R7.94 Scan support logic for gated clocks

R 7.9.5 Externally control asynchronous reset of storage elements
R 7.9.6 Latches transparent during scan

R7.9.7 No simultaneous master/slave latch clocking

G798 Segregate opposing phase clocks

10 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

General Standards for Synthesis

R 7.10.1
R 7.10.2
R 7.10.3
R 7.10.4
G 7.10.5
G 7.10.6
R 7.10.7
R 7.10.8
R 7.10.9
G 7.10.10
R 7.10.11
R 7.10.12
R 7.10.13
G 7.10.14
R 7.10.15
R 7.10.16
R 7.10.17
G 7.10.18
G 7.10.19
G 7.10.20

Complete always sensitivity list

One clock per always sensitivity list

Only use synthesizable constructs

Specify combinational logic completely

Assign default values to outputs before case statements

Avoid full_case synthesis directive

No disable in looping constructs

Avoid unbounded loops

Expressions are not allowed in port connections

Avoid top-level glue logic

Verilog primitives are prohibited

Use nonblocking assignments when inferring flip-flops and latches
Drive all unused module inputs

Connect unused module outputs

Do not infer latches in functions

Use of casex is not allowed

Embedded synthesis scripts are not allowed

Use a cycle-wide enable signal for signals with multicycle paths
Model high-impedance devices explicitly

Avoid direct instantiation of standard library cells

Freescale Semiconductor SRS V3.2 01 FEB 2005

11

Semiconductor Reuse Standard

12 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Section 7 Verilog HDL Coding

7.1 Introduction

The Verilog HDL coding standards pertain to virtual component (VC) generation and deal with naming
conventions, documentation of the code and the format, or style, of the code. Conformity to these standards
simplifies reuse by describing insight that is absent from the code, making the code more readable and as-
suring compatibility with most tools. Any exceptionsto the rules specified in this standard, except as not-
ed, must be justified and documented.

The standards promote reuse by ensuring a high adaptability among applications. The intent of this docu-
ment is to ensure that the gate level implementation is identical to the HDL code as it is understood by a
standard Verilog simulator. Partitioning can affect the ease that a model can be adapted to an application.
The modeling practices section deals with structures that are typically difficult to addresswell in asynthe-
sis environment and are needed to ensure pre- and post-synthesis consistency.

These standards apply to behavioral as well as synthesizable code. Additionally, these standards apply to
all other code written in Verilog, such as testbenches and monitors. Some of the standards explicitly state
the type of code to which they apply, and exceptions to the standards are noted.

The rules were determined to be items that enable rapid SoC design, integration, and production, as well
as enable maintainability by someone other than the original author. Note that in many cases, a guideline
may fit this definition, however, at this point it may have alarge number of exceptions, tool limitations, or
adeeply entrenched opposing usage which prohibited the rule designation.

Note: rulesand guidelines as described in V3.2 of the SRS are required for compliance only in new IP (i.e.
| P coded after the release date of V3.2). But it is possible to certify older IPwith V3.2 if thereisno issue
with the changes introduced by the new version of the standard.

7.1.1 Deliverables

The deliverablesto the IPrepository are defined in Section 2 V C Deliverables. These deliverablesinclude:
» Synthesizable RTL Source Code (L1)
* Testbench (V1)
* Drivers(V2)
* Monitors (V3)
» Detailed Behavioral Model (V4)
* HDL Interface Model (V5)
e Stub Model (V6)
e Emulation (V13)

Freescale Semiconductor SRS V3.2 01 FEB 2005 13

Semiconductor Reuse Standard

7.2 Reference Information

7.2.1 Referenced Documents

[1] [|EEE Verilog Hardware Description Language, | EEE Standard 1364-1995.
[2] IEEE Verilog Hardware Description Language, |EEE Standard 1364-2001, Version C.

[3] Verilog-AMS Language Reference Manual, Version 2.2. November 2004, Accellera
http://www.eda.org/verilog-ams/html pages/public-docs/Irm/2.2/AM S-LRM-2-2.pdf

[4] SystemVerilog 3.1a Language Reference Manual, Accellera’ s Extensionsto Verilog, Accellera,
May 2004. http://www.eda.org/sv/SystemVerilog_3.1a.pdf

7.2.2 Terminology

Base address - An address in the allocated address space of the SoC to which offsets are added to enable
access registers.

Deliverables - VC deliverables are a set of files that make up a design. They are provided by the virtual
component creator. Deliverables are assigned a unique identifier that consists of a letter followed by a
number. A complete description of the SRS deliverables can be found in document
IPMXDSRSDEL 00001, Semiconductor Reuse Standard: VC Block Deliverables.

Guideline - A guideline is a “recommended” practice that enhances rapid SoC design, integration, and
production, reduces the need to modify | P deliverables, and increases maintainability.

HDL - Hardware Description Language

Mask plug - Physically amask plug isjust awire either connected to VDD or VSS, or a choice of two
inputs (hardwired switch) used to configure a module without changing anything internal to that module.
This avoids resynthesis when changing the configuration.

PLL - Phase-Locked Loop

Properties- Properties are variablesthat are assigned avalue. Values are unique to each V C but the prop-
erty names are commonto all VC blocks. Propertiesare also referred to as“Metadata.” Propertiesare also
used in equations to determine if arule is applicable to a deliverable. If the equation holds true, the rule
appliesto the deliverables.

RTL - Register Transfer Level

Rule- A ruleisa“required” practicethat enablesrapid SoC design, integration, and production, eliminates
the need to modify IP deliverables, and supports maintainability.

Text macro - ‘define

Top-level module - Module at the highest level of the VC design hierarchy.

UDP - User-Defined Primitive

VC - Virtual Component. A block in the virtual socket design environment. A pre-implemented, reusable
module of intellectual property that can be quickly inserted and verified to create asingle-chip system. The
usage of the term VC is not an indication of compliance to the VSIA standards.

14 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard
7.3 Naming Conventions

7.3.1 File Naming

R7.31 At most one module per file
A filemust contain at most one module.
Reason: Simplifiesdesign modifications.
Deliverables: L1,V1V2V3V4V5V6V7V13
R7.32 File naming conventions
Thefile name must be composed in the following way:
<top level name>[_<sublevel name>][_<filetype>].<ext>
where:
<top level name> isthe name of thetop level module (e.g., duart.v)
<sub level name> isthe module name extension for amodul e under thetop level module (e.g., fifo for module duart_fifo.v)
<filetype> indicatesthefiletype:
task fileconsistsof tasks
func fileconsists of functions
defines fileconsistsof text macros(seeG 7.8.9)
For regular synthesizable RTL source code, _<filetype>isomitted.
<ext> signifiesthatitisaVerilogfile:
v Verilogfile
.va Verilog-A file
.vams Verilog-AMSfile
Reason: Simplifies understanding the design structure, and file contents.

Examples spooler.v: Filecontaining Verilog code for module spooler
spooler task.v: Filecontaining Verilog codefor tasks used by module spooler

Deliverables: L1,V1V2V3V4V5V6\V7V13

R 7.3.3 Separate analog, digital, and mixed-signal Verilog files

A filemust contain either: (1) digital-only Verilog code (fileswith . v extension); (2) analog-only Verilog code (fileswith
.va or .vams extension); or (3) mixed-signal Verilog code (fileswith . vams extension).

Reason: Digital compilersmay not handle anal og constructs or mixed-signal constructs; analog compilers may not
handledigital or mixed-signal constructs.

Deliverables: L1,V1V2V3V4\V5V6V7\V13
7.3.2 Naming of HDL Code Items

A meaningful name very often helps more than several lines of comment. Therefore, names should be
meaningful (i.e., the nature and purpose of the object it refers to should be obvious and unambiguous).
The following naming conventions do not apply to third-party PLI tasks.

R7.3.4 HDL Code items naming convention

Theseitemsinclude: nets, variables, parameters, modul &/ primitive instances, and constructs such as functions, modul es,
and tasks.

Freescale Semiconductor SRS V3.2 01 FEB 2005 15

Semiconductor Reuse Standard

16

a. Names must describe the purpose of the item. Items must be hamed according to what they do rather than how
they do it. Use meaningful names.

English must be used for all names.

Names must start with a letter, be composed of alphanumeric characters or underscores [A-Z, a-z, 0-9,_].
Consecutive underscores and escaped names are not allowed.

For names composed of several words, underscore separated words must be used.

Consistent usage in the spelling and naming style of nets and variables must be used throughout the design.
All signals and modulesin the RTL that are referenced in the documentation must maintain the same name.

Names representing constants must be upper case (parametersand text macros), al other namesNOT representing
constants must be lower case. Case must not be used to differentiate construct, net, or variable names.

i. SystemVerilog, Verilog-AMS, VHDL and VHDL-AMS keywords must not be used for signals or any other user
code item.

Deliverables: L1,V1V2V3V4V5V6V7V13

@ "o aoo00C

R 7.3.5 Document abbreviations and additional naming conventions

Abbreviations used in amodul e must be documented and uncommon abbreviations should be avoided. Any naming
conventions used in the module which arein addition to the conventions required or recommended in the SRS should be
documented. The keyword section of the header should be used to document the abbreviations and additional naming
conventions used. Alternately, the keyword section may contain the name of thefile that containstheseitems. Document
abbreviations and naming conventionsin the Creation Guide aswell.

Reason: What may be an obvious abbreviation to the original designer coul d be obscure when the moduleisreused.

Exception: Generally known abbreviations or acronyms, like RAM, and |oop counters. Loop counters may be named
with asingleletter likei or n, becausethey represent anindex.

Deliverables: L1,V1V2V3V4V5V6\V7V13

R 7.3.6 Global text macros include module name

Global text macros specified by the‘ define directive must be preceded with thetop-level module name, asin:
<top level module name>_<text macro name> (see G 7.8.5).

Reason: Avoidsinadvertent redefinition of macrosat the SoC level.

Example: ‘define SPOOLER_ADDR_BUS WIDTH 32 //address buswidth for modul e spooler
Exception: If thetext macro isundefined within the samemodule (see G 7.8.9).

Deliverables: L1,V1V2V3V4V5V6V7V13

R7.37 Instance naming conventions

M oduleinstance name must be the same asthe module name (with or without the top-level module name prefix, seeR
7.3.2), optionally with an appropriate suffix.

For singly instantiated modul es, it isrecommended that the instance name be the same as the modul e name (with or without
thetop-level prefix). For example, module‘ duart_fifo' may beinstantiated as‘ duart_fifo’ or as‘fifo’.

Thetop-level block name can also be shortened with an acronym. For example, if the block isamagenta-to-magenta gasket
named mag2mag, m2m_isapossible acronym to be used as prefix for asubmodul € sinstance name.

For multiply instanti ated modul es, instance names shoul d have anumbered suffix (an underscore followed by an integer) or
afunctionally meaningful suffix.

Reason: Clear association between modul e name and i nstance name, improves readability, removes confusion.

Example:
mag2mag fifo mag2mag fifo (...);

mag2mag fifo m2m fifo (...);

mag2mag_fifo fifo (...);

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

mag2mag fifo mag2mag fifo 0 (...);
mag2mag fifo mag2mag fifo 1 (...);

mag2mag fifo m2m fifo 0 (...);
mag2mag fifo m2m fifo 1 (...);

mag2mag fifo fifo tx (...);
mag2mag fifo fifo rx (...);

Exception: Only appliesat the Verilog sourcelevel, and does not include the wrappers.
Exception: Generic building blocks
Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.3.8 Signal naming convention - suffixes
The signal name must be composed in thefollowing way:
<signal_prefix>_<signal name>[_pn][_async|_sync][_ns|[_ff][_I]1[_cIK][_Z][_b][_nc][_test][_se]

The prefix component must be used according to the specifications of rule R 7.3.9. The suffix component may only be used
asdescribed below and, in the case of multiple suffixes being used in the same signal name, must only be used in the order
specified in the signal name descriptions above.

a. _pn- Pipeline stage where signal originates from. nindicates the level of the pipeline stage, where O indicates the
first stage. Optional usage, but reserved suffix for denoting pipeline stage for pipelined designs.

_async - Asynchronous signal, or first stage of synchronizing latch when used as_async_ff.

_sync - Synchronous signal, which identifies a version of an asynchronous signal that has been synchronized with
the destination clock domain.

_ns- State machine next state.
_ff - Register or flip-flop output. Optional.

f. _I - latch output. Optional for signals leaving top-level module or sub-module, required for signalsinternal to a
module.

g. _clk-Clock signal. Exception: Signals whose names obviously indicate clocks (e.g. system clock or
clk32m).

h. _z- Highimpedance signal.
i. _b-Activelow signal.
j. _nc- Not connected. This suffix can be used at the instantiation of a module, but may not be used in the output
section of amodule.
k. _test- Testsignal.
[. _se- Scanenable. Exception: Signals whose names obvioudly indicate scan enable functionality (e.0. scan_en,
se).
Reason: Consistent naming conventions aid in understanding the design.
Example: Useof _nc suffix

blockx blockx (.result ({result[15:3], result nc[2:0]}), ...);
or
blockx blockx (.result (result[15:01), ...);
wire result nc[2:0] = result[2:0];
Exception: Signalswhich are defined in astandard or specification (e.g., Pl or AMBA) do not haveto follow the above
requirements.

Deliverables: L1,V1V2V3V4V5V6V7V13

Freescale Semiconductor SRS V3.2 01 FEB 2005 17

Semiconductor Reuse Standard

18

R 7.3.9 Signal naming convention - prefixes

For signalsinternal to amoduleor intheport list of the module, the signal name must be composed in the following way,
where:

<top level name> isthe name of thetop level module
<sub level name> isthe name of amodul e under the top level module name
<signal name> isameaningful signal name

a. <toplevel name>_<signa name>_<signa_suffix> for signals leaving the top level module

b. <sublevel name>_<signal name>_<signal_suffix> for signals leaving a sub-module, but not leaving top level
module. The <sub level name> may optionally be prefixed by <top level name> aswell.

c. <signal name>_<signal_suffix> for internal signals. The <signal name> may optionally be prefixed by <top level
name> and/or <sub level name>.

The suffix component must be composed accordingtoruleR 7.3.8.
Whenever used in asignal name, the top-level module name can be shortened with an acronym, asindicated inR 7.3.7.

At themoduleinstantiation level, the prefix for signals connected to modul e outputs should be the modul e instance name
instead of the module name. (Notethat for singly instantiated modul es, the instance name should normally be the same as
themodule name.) However, thetop-level block name prefix may be omitted or shortened to an acronym, asinR 7.3.7.

Reason: Consistent naming conventions aid in understanding the design.
Example: Signalsleaving thetop-level module:

gsm_crypto gsm crypto (.gsm cr dout(gsm cr dout[31:0]), ...);

Exception: Signalswhich are defined in astandard or specification (e.g., Pl or AMBA) do not haveto follow the above
requirements. However, it is permitted for the outputsto be prefixed by thetop level name.

Deliverables: L1,V1V2V3V4V5V6V7V13

G 7.3.10 Consistent signal names throughout hierarchy

Signal names should remain the same throughout the design hierarchy.

Reason: Improves readability, removes confusion, avoids buffer insertion during synthesis.
Exception: Multiply-instantiated modul es and generic building blocks.

Exception: Vector part selects. Selected vector bit(s) can have anamedifferent from the vector name, asin thefollowing
case:
reg[7:0] status reg ff;
wire int pend;
int pend = status reg ff[1];

or

module modx (modx gq) ;

output [1:0] modx gq;
wire [3:0] qql;
assign modx_gq = ggl[1:0];
Example: Theexception above appliesal soto vector part selects connected to output ports, asin thefollowing example:
modulex modulex (.modulex out2 (modulex internal_bus[2],

.modulex outl (modulex internal bus([1],
.modulex out0 (modulex internal bus[0]),...

Deliverables: L1,V1V2V3V4V5V6\V7V13

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

R 7.3.11 Signal name length does not exceed 32 characters

Signal namelength should not exceed 32 characters. The 32 characters do not include the hierarchy.
Reason: Shorter namesincrease readability.

Deliverables: L1,V1V2V3V4V5V6\V7V13

7.4 Comments

Comments are required to describe the functionality of HDL code. In particular, comments must supply
context information that is not seen locally.

7.4.1 File Headers

Every RTL and behavioral Verilog file will be documented with the header shown in Figure 7-1. Thefor-
mat of the header must match the figure to ensure the ability to parse the header with a software tool. The
capitalized field identifiers in the header may be used as search points for types of information. This tem-
plate format assures consistency. The header shown is the minimum required, and additions may be made
after the REUSE ISSUES section. Additionally, a copyright and company confidential header should be
included at the top.

Freescale Semiconductor SRS V3.2 01 FEB 2005 19

Semiconductor Reuse Standard

20

Copyright (c) 2004 Freescale Semiconductor, Inc. All rights reserved
Freescale Confidential Proprietary

FILE NAME

DEPARTMENT

AUTHOR :

AUTHOR’S EMAIL :

RELEASE HISTORY

VERSION DATE AUTHOR DESCRIPTION
1.0 YYYY-MM-DD name
KEYWORDS : General file searching keywords, leave blank if none.
PURPOSE Short description of functionality
PARAMETERS
PARAM NAME RANGE : DESCRIPTION : DEFAULT : UNITS
e.g.DATA WIDTH [32,16] : width of the data : 32 :
REUSE ISSUES

Reset Strategy
Clock Domains
Critical Timing
Test Features
Asynchronous I/F
Scan Methodology
Instantiations
Synthesizable (y/n)
Other

Figure 7-1 Verilog File Header

R7.41 Each file must contain a file header with required fields

Every file must contain aheader asshowninFigure 7-1. Thefollowing fields must beincluded, evenif the dataisN/A.

a

b.

C.

The +FHDR/-FHDR tags must be used to define the boundary of the header information.
The header must include the name of thefile.

The file header must include the originating department, including group, division, and physical location, author,
and author’s email address.

The header must include arelease history only for the V C changes checked into the VC Repository, with the most
recent release listed last. The date format YYYY-MM-DD must be used. This information is useful to the
integrator. A local release history should not be included in the header.

The header must contain asection of the searching field identifiers. Thisstring may contain abrief synopsisof the
construct’ sfunctionality, or list systems and buses with which the construct was designed to work. Abbreviations
and additional naming conventions may also be listed.

The header must contain a purpose section describing the construct’s functionality. The purpose must describe
what the construct provides and not how.

Headers must contain information describing the parameters being used in the construct. The default value must
be listed. The valid parameter values must also be indicated in the range field.

SRS V3.2 01 FEB 2005 Freescale Semiconductor

—

5 3 - K

T 0

Semiconductor Reuse Standard

The reset strategy must be documented, including whether the reset is synchronous or asynchronous, internal or
external power-on reset, hard versus soft reset, and whether the module isindividually resettable for debug
purposes.

All clock domains and clocking strategies must be documented.

Critical timing including external timing relationships must be documented. The header location may contain the
name of the file that contains the critical timing information (e.g., creation guide).

Any specific test features that are added to the code to speed up testing must be documented.

The asynchronous interfaces must be described including the timing relationships and frequency.

Notation must be used to indicate what scan styleis used, if any.

Headers must contain information detailing what cells, modules, function calls, and task enables are instantiated
within.

The ability to synthesize the construct must be indicated by specifying yes or no.

The header should include additional pertinent information which is useful to the integrator or which makes code
more understandable. Thisfield isto be used at the designers discretion, and maintains consistency in the location
of additional information

Reason: Providesastandard means of supplying pertinent design information.
Deliverables: L1V1V2V3V4V5V6V7V13

7.4.2 Additional Construct Headers

Each additional construct (function, task, user-defined primitive) within fileswill also be documented with
the following header. Figure 7-2 contains the header for Verilog functions, user-defined primitives, and
tasks. The format of the header must match the figure to ensure the ability to parse the header with a soft-

ware tool

. The capitalized field identifiers in the headers may be used as search points for types of infor-

mation. This template format assures consistency.

+HDR - - - - - - - - —m - - o e o e m e e - -
NAME
TYPE : TYPE can be func, task, primitive
PURPOSE Short description of functionality
PARAMETERS
PARAM NAME RANGE : DESCRIPTION : DEFAULT : UNITS
e.g. DATA WIDTH PP [32,16] : width of the data : 32
Other Leave blank if none.
-HDR - - --- - - m e ettt -

Figure 7-2 Verilog Functions, User-Defined Primitives and Tasks Header

R7.42 Additional constructs in file use a header with required fields

All of theadditional constructsused in afile must be documented with aheader asillustrated (seeFigure 7-2). The
following fields must beincluded, evenif thedataisN/A.

a
b.
C.

Freescale

The +HDR/-HDR tags must be used to define the boundary of the header information.
Construct headers must include the name of the additional construct.
Construct headers must include the construct type.

Semiconductor SRS V3.2 01 FEB 2005 21

Semiconductor Reuse Standard

Reason:

Construct headers must contain a purpose section describing the construct functionality. The purpose must
describe what the unit provides and not how.

Construct headers must contain information describing the parameters being used in the construct. The default
value must be listed.

The construct header should include additional pertinent information which is useful to the integrator or makes
the code more understandable.

Providesastandard means of supplying pertinent design information.

Deliverables: L1,V1V2V3V4V5V6\V7V13

7.4.3 Other Comments

Comments are required to describe the functionality and flow of HDL code. They must be sufficient for
another designer to understand and maintain the code. Comments should be used liberally throughout the
code to describe the code intent, functionality, design process, and special handling. Avoid obvious com-
ments(e.g.,a <= b; // save b into a). Comments must be in English, and be up-to-date with the release
of the code.

R7.4.3

Comment conventions

Commentsusageisasfollows:

a. Each functional section of the code must be preceded by comments describing the code’ sintent and function.
b. Unusua or non obvious implementations must be explained and their limitations documented with a comment.
C. Oneline comments (/) must be used. Do not use multiline (/*...*/) comments.

d. Detailed documentation must be provided for casesin which a designer decides to group unrelated signals
together.

e. Old code, or unused code must be deleted as opposed to commented out.

f. A comment must be used to explain the functionality of any instantiated cells and why the cell isinstantiated and
not inferred. These cells can be from alibrary, not modeled in an HDL language like Verilog, cells with hidden
functionality, or custom implemented cells.

g. Each port declaration must have a descriptive comment, preferably on the sameline. If the comment is not on the
same ling, it should be on the preceding line.

h. For other declarations, such as nets and variables, it is recommended to have a descriptive comment, preferably
on the same line. If the comment is not on the same line, it should be on the preceding line. Optional for
auto-generated code.

i. Document SR latch usage (Recommended).

j. Gated clock usage that is not inferred by tools must be documented in the code.

k. Multicycle paths must be documented in the code.

[. All synthesis-specific directives must be documented where used, identifying the reason they are used, the tool
and the directive used.

m. Compiler directivessuchas ‘ifdef, ‘else and ‘endif must have a comment where used, describing the
usage of the directive.

n. Comment end and endcase statements with an annotation of the construct ended. Recommended for sections of
code with more than 10 lines of code, but not required.

Example:
always @(p or q)
begin
end // always @(p or q)
or
case (...) // <case functions>

22

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

endcase // <case functions>
Reason: Aidsunderstanding of the code.
Deliverables: L1,V1V2V3,V4V5V6,V7V13

7.5 Code Style

R75.1 Write code in a tabular format

Codemust bewritten in atabular manner (i.e., codeitemsof the samekind are aligned).

Reason: Improves readability. Whenwriting acode block (begin, case, if statements, etc.), it isuseful to completethe
framefirst, in particular to align the end of the code block with the begin.

Deliverables: L1,V1V2V3V4V5V6\V7V13

G752 Use consistent code indentation with spaces
Consistent indentati on should be used for code alignment. Spaces should be used instead of tab stops.

Reason: Improvesreadability. Tab stops should not be used because they may beinterpreted differently in different
systems.
Note: Excessiveindentation may actually hinder readability (see G 7.5.7).

Deliverables: L1,V1V2V3V4V5V6\V7V13

R7.5.3 One Verilog statement per line

Oneline must not contain morethan one statement. Do not concatenate multiple semicolon separated V erilog statementson
the sameline. Commentsarealowed onthe samelineasaVerilog statement.

Reason: Improvesreadability. Easier to parse code with adesign tool.
Example: Use

upper_en = (p5type && xadrl([0]);
lower en = (p5type && !xadrl[0]);
Do not use:
upper_en = (p5type && xadrl[0]); lower en = (p5type && !xadrl[0]);

Deliverables: L1,V1V2V3V4V5V6V7V13

R7.5.4 One port declaration per line

Port types must beindicated individually; that is, one port per line must be declared, using the direction indication with each
net.

Reason: Improvesreadability and understanding of the code, aswell as parsing the code with scripts.
Example Use
input a; // port a description
input b; // port b description
Do not use:
input a, b;
or:
input a,

Freescale Semiconductor SRS V3.2 01 FEB 2005 23

Semiconductor Reuse Standard

b;
Deliverables: L1,V1,V2V3V4\V5V6\V7V13

G755 Preserve port order

Itisrecommended that the port declarations be listed in the same order asthe port list of the modul e declaration.
Reason: Improves readability.

Deliverables: L1,V1V2V3V4V5V6V7V13

R7.5.6 Declare internal nets

a. Interna nets must be declared explicitly, not implicitly. Port nets need not be redeclared in wire declarationsin
addition to the input/output/inout declarations.

b. Itisrecommended that all wire declarations be grouped together in one section following the input/output/inout
declarations at the top of the module.

Reason: Although Verilog can handleimplied wires, all internal netsmust be declared to avoid confusion.
Exception: Auto-generated code.
Deliverables: L1,V1V2V3V4V5V6\V7V13

G757 Line length not to exceed 80 characters
Itisrecommended that line length not exceed 80 characters.
Reason: Improvesreadability, and avoidsinadvertent line wraps.
Deliverables: L1,V1V2V3V4V5V6V7V13

Figure 7-4 isan example of good Verilog code format.

24 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

// Copyright (c) 2004 Freescale Semiconductor, Inc. All rights reserved
// Freescale Confidential Proprietary

/oo
// FILE NAME : prescaler.v

// DEPARTMENT : SPS SoCDT, Austin TX

// AUTHOR : Mike Kentley

// AUTHOR’S EMAIL : ré6476ce@efreescale.com

e e
// RELEASE HISTORY

// VERSION DATE AUTHOR DESCRIPTION

// 1.0 1998-09-12 tommyk initial version

// 2.0 1998-11-11 mkentley Updated for SRS compatibility

// 2.1 1999-10-25 mark lancaster Cleaned up prescaler bypass.
R e et
// KEYWORDS : clock divider, divide by 16

J]
// PURPOSE divide input clock by 16.
e e R
// PARAMETERS

// PARAM NAME RANGE : DESCRIPTION : DEFAULT : UNITS

// N/A

f]
// REUSE ISSUES

// Reset Strategy : Asynchronous, active low system level reset

// Clock Domains : core_32m clk, system clk

// Critical Timing : N/A

// Test Features : Prescaler is bypassed when scan mode is asserted

// Asynchronous I/F : reset b
// Scan Methodology : Mux-D

// Instantiations : N/A

// Synthesizable Y

// Other : uses synthesis directive to infer a mux to

// avoid glitching clock out and clock out b

/) mFHDR- = - - - m oo oo m oo o e oo

module prescaler (
core 32m_clk,
system clock,
scan_mode_test,
reset b,
divlie clk,
divlie clk b

)i

input core_32m_clk; // 32 MHz clock

input system_clk; // system clock

input scan _mode_test; // scan mode clock

input reset _b; // active low hard reset, synch w/ system clock
output divie_clk; // input clock divided by 16

output divile clk _b; // input clock divided by 16 and inverted

Figure 7-3 Verilog Coding Format (Page 1)

Freescale Semiconductor SRS V3.2 01 FEB 2005

25

Semiconductor Reuse Standard

reg[3:0] count ff; // counter to make clock divider

reg divie clk; // input clock divided by 16

reg divle clk _b; // input clock divided by 16 and inverted
wire[3:0] count ns; // clock divider next state input

// 4-bit counter; count ff[3] is the divide by 16
assign count ns = count ff + 4'b0001; // increment counter

always @(posedge core 32m clk or negedge reset b)
if (!reset_b)
count ff <= 4'b0000; // reset counter
else
count ff <= count_ns; // update counter

// Bypass the prescaler during scan testing. It guarantees that the mux will
// not be optimized away which could result in a glitchy test clock.

// Also make sure that the clock _out and clock _out b are active high clocks
// during scan testing. This ensures that flops connected to clock out and
// clock out b are on the rising edge of the system clock for test purposes.

// synopsys infer mux "clk mux"
// ensure that mux is not optimized away during synthesis

always @(scan mode test or system clk or count ff)
begin: clk mux

if (!scan_mode_ test) // normal operation clock assign
begin
divlié_clk = count ff([3];
divlié _clk b = ~count ff[3];
end
else
begin // scan mode clock assign
divle_clk = system_clk;
divlié_clk b = system clk;
end
end // clk mux
endmodule // prescaler

Figure 7-4 Verilog Coding Format (Page 2)

7.6 Module Partitioning and Reusability

R7.6.1 No accesses to nets and variables outside the scope of a module

Modules, tasks, and functions must not modify nets or variables not passed as portsinto the module. Verilog users must not
useahierarchical referenceto read or modify anet or variable.

Reason: Increases readability, and eases debugging. Improves adaptability and reuse of sub-blocks of the design.
Exception: Non-synthesizable blocks, e.g. behavioral model s and testbenches.

26 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Deliverables: L1,V13

G76.2 The use of *include compiler directives should be avoided

Theuseof ‘include compiler directivesshould beavoided. Where necessary, only the name of thefile being
referenced (no relative nor absol ute pathnames) should be specified.

Reason: The *include compiler directive affects reusability by introducing an additional file dependency.
Exception: ‘definefiles.

Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.6.3 Mask plugs outside of top most module
Mask plugs must be placed outside of the top most module.

Exception: Internal mask plugs may be used when ageneric building block isinstantiated or asingle sub-block has
multipleinstantiations within ablock, and the mask plugs configure the instances for specific function that
does not change with block reuse. The synthesisflow will removethe unused logic.

Reason: Resynthesiswill not be required for base changes.

Deliverables: L1

R7.6.4 Avoid potentially non-portable constructs

The constructs used in the code must be compliant to the latest version of the | EEE 1364 standard, and not dependent on
simulator specific extensions or behavior.

Reason: May compromise reusability across vendorsand tools.

Deliverables: L1,V1V2V3V4V5V6V7V13

G765 Partitioning conventions - general
Good partitioning improves adaptability to different applications and hel psto emphasize special logic, which aidsin
testing, debug and integration. The following partitioning guidelines should befollowed:

a. Thedesign should be partitioned such that the module boundaries match the physical boundaries.

b. Theapplication-specific (e.g, businterface) parts of the code should be partitioned from the more general portion
of the code.

c. Speed critical logic that may require specific timing constraints for synthesis should be partitioned into its own
module.

d. Data-path logic should be partitioned from nondata path logic.

Any BIST logic should be coded into its own modul e or with the modul e that instanti ates the array associated with
the BIST logic. Thismakesit easier to port BIST to a different memory.

f. Memory control logic and the memory array functions should be partitioned into separate modules.
Reason: Easestest strategy generation, and limits exceptionsto the coding standardsto asmall module. It aso
improvesthe portability of the codeto adifferent end use clocking scheme.
Exception: Non-synthesizable code.
Deliverables: L1,V13

G 7.6.6 Partitioning conventions - clocks

Proper partition of clock signalsaidsin the automatic generation of the clock distribution network, aswell asintheoverall
synthesisof the module. The guidelines below should be foll owed when distributing the clock signal through the design:

a. Ifitisnecessary touseagated clock, internally generated clocks, or use both edges of aclock, the clock generation
circuitry should be kept in a separate module at the top level of the VC module or at the same logical level inthe
hierarchy as the module to which the clocks apply.

b. Partition separate clock domainsinto separate modules. The synchronization logic should be part of thereceiving
clock domain.

Freescale Semiconductor SRS V3.2 01 FEB 2005 27

Semiconductor Reuse Standard

c. Asynchronouslogic should be partitioned from synchronous logic. Asynchronous logic isthat which isnot timed
by aclock signal. Synchronous logic with an asynchronous set or reset pin is considered synchronous.

Reason: Eases clock network synthesis. Easestest strategy generation, and limits exceptionsto the coding standardsto
asmall module. It a soimprovesthe portability of the codeto adifferent end use clocking scheme.

Exception: Non-synthesizable code.
Deliverables: L1,V13

7.7 Modeling Practices

28

R7.71 No hard-coded global distribution nets

Buffering all global distribution netson the chip (e.g., clock or scan_enable) must be based on net load and placement. Do
not hard code buffer treesinthe RTL.

Reason: Buffering global netswithout considering net load and placement (i.e., based solely on connectivity informa-
tion) may result in serioustiming problems.

Exception: Not applicableto typically nonsynthesizable modules(e.g., Bus Functional Models, BusMonitorsor Analog
Behavioral Models) unlessthey areintended to be synthesized for emulation. Not applicableto logic that has
timing and/or sizing specification constraints that cannot be met with synthesis.

Deliverables: L1,V13

R7.7.2 Synchronize asynchronous interface signals

If clocksare avail able, asynchronousinterface signals must be synchronized as near to the interface boundary as possible.
Synchronization must be performed to avoid metastability (e.g., use doubleregistering). The connection of register inputs
asynchronousto theregister clock, other than for synchronization purposes as previously mentioned, must be avoided. See
G 7.6.6.

Reason: Limit asynchronous signal sto aminimum (asynchronous design practiceisnot yet adequately supported by
designtools). Register inputs asynchronousto the register clock are the source of metastability problems,
which can show up both during static timing analysis and gate-level simulation.

Note: Pay particular attention to theinterfacein which thereisafrequency difference. For example, alower
frequency clock domain cannot guarantee reception of asignal of single-period width from ahigher
frequency clock domain. The higher frequency domain must supply signalswith the following minimum
activeperiod:
tactive = tslow * tsetup * thold, Where:
toctive 1S theminimum active period of an interfacing signal
tyow iStheclock period of the receiving clock domain that hasthelow frequency
tsetup ISthe setup time of thereceiving D-typeflip-flop
thoig i1stheholdtime of thereceiving D-typeflip-flop
toctive Must take into account the different propagation delay pathsfor theinterfacing signal. In addition, skew
must al so be taken into consideration.

Exception: Not applicableto typically nonsynthesizable modules(e.g., Bus Functional Models, BusMonitorsor Analog
Behavioral Models) unlessthey areintended to be synthesized for emulation.

Exception: Bussignalsarenot guaranteed to changetogether on the same clock cycle at the receiving clock domain. For
example, amulti-bit value may haveintermediate values. In such acase, one must use other techniques such
asgray-code val ue or strobing signal which ensures coherent usage of synchronized signal groups. Further-
more, in the casein which an asynchonous signal is synchronized in more than one receiver, each synchro-
nized signal must be considered independent in the receiving clock domain, in order to avoid problemsdueto
race conditions between the different synchronizers.

Exception: Registers specifically instantiated to synchronize an asynchronous source of data (al so known as synchro-
nizing registers).
Deliverables: L1,V13

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Figure7-5 showsthe problem that thisrule addresses. Register rlisclocked by d1_clk, and it sourcesdatato register r2,
whichisclocked by d2_clk. Asan example, the combinational |ogic betweenrl and r2 canexistinamoduleinwhichr2is
part of astate machine, such that the logic implementsthe ‘ next state’ transition. In this casethere can be no guarantee that
thedataat theinput of r2 will meet setup and hold requirementswith respect to d2_clk. Note also that, in another situation,
theregister clocked by d1_clk and the combinationanl logic can belocated in adifferent modul e than the register clocked
by d2_clk, inwhich casetheinput to the latter would be an asynchronous signal that would have to be synchronized closeto
theinterface.

Figur e 7-6 showsthe proper implementation of the exception to therule. Inthiscase, register rlisclocked by d1_clk, and
registersr2sand r2 are clocked by d2_clk. Dataat the output of r2 can be considered stable, and synchronousto clock
d2_clk.

Combinational logic

D Q D QF—> Metastable signal

r> r1 ’—>> r2

d1_clk d2_clk

Figure 7-5 Metastability Hazard Due to a Violation of this rule

D . b Q==
D Q Q Metastable signal Stable signal

|—>> " D 26 D o

d1_clk

d2_clk

Figure 7-6 Proper Use of Synchronization Register According to this rule

R7.7.3 Use technology independent code for noninferred blocks

A model of an instantiated noninferred block (i.e., custom, not intended to be synthesized) must bewrittenin atech-
nol ogy-independent coding style (see R 7.4.1(n), R 7.4.3(f) and G 7.10.20).

Reason: Allowseasy retargetability to anew processtechnol ogy or hardware emulation box.
Example: Instantiationsin aseparate function.
Deliverables: L1,V13

R7.7.4 Glitch-free gated clock enables and direct action signals
a. If gated clocks are used, there must not be any glitches during the clocking time.
b. Internally generated direct action signals (e.g., reset, set, chip_select) should be glitch free.

Freescale Semiconductor SRS V3.2 01 FEB 2005 29

Semiconductor Reuse Standard

Reason: Although gated clocks reduce power consumption, glitching can occur on the clocks dueto the clock-enable
signal setup/hold to the active edge of the clock, which can cause faulty operation. Glitcheson direct action
signalsmay causefaulty operation.

Exception: Asynchronousinterfaces, but thetiming must be strictly defined.
Deliverables: L1V1V2V3V4V5V6V7V13

R7.75 Known state of powered down signals

Aninput pinthat isdriven from asource whose power supply can be powered down must either belogically gated toits
inactivelevel, using anand gate or anor gate, or handled by thelibrary. Theinput must be controlled so that when the
source signal’ s power supply ispowered down theinput isin aknown state.

Reason: Avoid propagating unknownsinto the V C block when the signal sourceispowered down.
Deliverables: L1,V13

R7.7.6 Initialize control storage elements

All latchesand registersin acontrol path must beinitialized to apredetermined val ue, as appropriate.

Reason: For storage elementsthat are not reset, simulation results may be simulator dependent. Different simulators
assumedifferentinitial values(i.e., “0” or “X"). Also, the propagation of X’smakesverification more
difficult.

Exception: AnFSM that does something during reset (such asareset time counter) or that must complete/continuean
action during reset - such as SDRAM refresh cycle or compl ete amemory access without damage. Each
illegal statein such FSM must transition to awell known legal state.

Deliverables: L1,V1V2V3V4V5V6\V7V13

G777 Initialize datapath storage elements

All latchesand registersin adata path should be set or reset, asappropriate. Initialization of storage elements can be
achieved in anumber of ways, such asthe use of set/reset components or the flushing of scan chains.

Reason: Aidsin performing latch divergence tests while performing speed tests and hunting for timing paths.

Exception: Wheretherewill beamajor cost in areaand route, aslong astheimplementation and proper block activation
takes care of blocking non-initialized valuesfrom propagating out.

Deliverables: L1,V13

G778 Use synchronous design practices

Synchronous design practices should be followed whenever possible. Asynchronous design circuitry should be used only
when unavoidable.

Reason: Design tools do not adequately support the devel opment of asynchronous designs. Reliabletiming verifica-
tion, including the detection of glitchesand hazards, will in general require extensive simulation with SPICE,
whichisexpensive and time consuming.

Exception: Not applicableto typically nonsynthesi zable modules(e.g., Bus Functional Models, Bus Monitors or Analog
Behaviora Models) unlessthey areintended to be synthesized for emulation.

Deliverables: L1,V13

R7.7.9 No combinational feedback loops

Combinational feedback |oops must not be used.

Reason: Combinational feedback loops do not work with cycle-based simulators or formal verification tools.
Exception: Highly specialized VC blockssuch asdigital phase-locked loops.

Deliverables: L1,V13

30 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

7.8 General Coding Techniques

R7.8.1 Expression in condition must be a 1-bit value

The conditionsin thefollowing constructs must be an expression that resultsin a 1-bit value:
» if(condition)

» while(condition)

» for(initial_assignment; condition; step_assignment)

* @(posedge condition or ...)

* @(negedge condition or ...)

* (condition)? expl : exp2

Reason: Avoid nonstandard simul ator behavior.

Example:
// A signal called bus_is_active is set to 1 whenever bus, a multi-bit value,
// has a value other than 0.

if (bus) bus_is active = 1; // bus is a multi-bit value,
// which violates the rule

if (bus > 0) bus_is_active = 1;// the resulting control condition is a 1-bit
// expression, as suggested by the rule,
// which is intuitively easier to read

Deliverables: L1,V1V2V3V4V5V6\V7V13

R 7.8.2 Use consistent ordering of bus bits
When describing multibit buses, aconsistent ordering of the bits must be maintai ned.

Reason: Eases readability and reducesinadvertent order swapping between buses.
Exception: VC blockswhichinternally use one convention, but interface to the other convention at the V C block
boundary.

Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.8.3 Do not assign x value to signals

Thevalue of x must not be assighed to signals. Known legal signal valuesmust be assignedto all signals.
Reason: Avoidsx propagation through the circuitry.

Exception: Testbenches.

Deliverables: L1,V13

R7.8.4 No reg assign in two always constructs

regs Must not be assigned in two separate always constructs.

Reason: Avoid internal buses, and execution order simulator dependence.
Exception: Behavioral code.

Deliverables: L1,V13

G785 Use parameters instead of text macros for symbolic constants
Itisrecommended that parameters be used instead of text macros (‘ define) to specify symbolic constants.

(See G 7.8.9)

Freescale Semiconductor SRS V3.2 01 FEB 2005 31

Semiconductor Reuse Standard

32

Reason:

Exception:
Deliverables:

R 7.8.6

The scope of ‘ definetext macrosisglobal unlessthey are explicitly undefined. Thismay cause compilation
order dependencies and conflictsat the SoC level. Also, parameter val ues may be customized for each
instance of amodule.

Global constants.
L1,Vv1iVv2Vv3Vv4Vv5VeNV7V13

Text macros must not be redefined

Text macros must not be redefined to adifferent value. Thisappliesto both locally and globally-defined macros.

Reason:
Deliverables:

G787

Avoidsinadvertent redefinition of macros.
L1,Vv1iVv2Vv3Vv4aVvs5VeVv7Vvi13

Preserve relationships between constants

If aconstant is dependent on the value of another constant, the dependency should be shownin the definition. Where atext
macro defines an arithmetic or logical expression, it should be enclosed in parentheses.

Reason:
Example:

Increased adaptability, as code changes required for adaptation are reduced.
Preferred:

‘define DATA WORD 8
‘define DATA LONG (4 * ‘DATA WORD)

instead of :

‘define DATA WORD 8
‘define DATA_LONG 32

Deliverables:
R 7.8.8

L1,V1V2V3V4V5V6V7V13

Use parameters for state encodings

Enumerated parameters must be used to encode the different states of an explicitly coded state machine.

Reason: This easesretargeting to different state machineimplementations, for exampl e changing from an encoded
1-hot styleto gray code. Using symbolic names enhances readability, and providesasingle point for state
changes.

Example:

parameter [1:0] RESET_STATE; // synthesis enum state_ info
parameter [1:0] TX_STATE; // synthesis enum state_ info
parameter [1:0] RX STATE; // synthesis enum state_info
parameter [1:0] ILLEGAL_STATE; // synthesis enum state_info

Deliverables: L1,V1V2V3V4V5V6V7\V13

G 7.8.9 ‘define usage includes ‘undef

If a‘ define statement i s used within the design code, the macro name should be undefined using ‘ undef in the same module

(seeR 7.3.6).

Reason: Sincethe ‘ defines have no scope, they must remain associated with theintended code. Mai ntai ning the name

Exception:
Deliverables:

R 7.8.10

association and defining the macro in the source code eases reuse. Otherwise, compilation-order dependen-
ciesmay unintentionally beintroduced in the code.

Testbenches
L1,V13

Use programmable base addresses

The base address of amodule must be programmable.

Reason:

Eases changing the memory map of amodule.

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Exception: IPblockswhose registers are accessed through SkyBlue need not contain abase address; it isenough to define
aregion with alarge enough offset to cover the registers defined for the modul e, including reserve space. For
example, amodule may allocate a4K B address space for theregistersdefined in the I P (including reserve
spacefor expansion). Thispermitstheintegrator of the | Pto rel ocate the base addressfor agiven |Pto any
desired location within the device s address space.

Deliverables: L1,V1V2V3V4V5V6\V7V13

R 7.8.11 Use text macros for base addresses

If the base address of amodul e appearsinthe Verilog code, it must be assigned with atext macro.
Reason: Eases changing the memory map of amodule.

Exception: Thebase addressisdefinedin software.

Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.8.12 Use base + offset for address generation

All accessesto aregister/memory |ocation within amodule must be formed by using a base address and the offset from the
base.

Reason: Easesretargeting to different system configurations.
Deliverables: L1,V1V2V3V4V5V6V7\V13

G 7.8.13 Use symbolic constants for register field values

Symbolic constants should be used for register field values rather than fixed numerical constants. Thefields may be oneor
more bitsor the entireregister.

Reason: Improves readability and maintai nability. Reducesthe chance of using thewrong value.
Example:
parameter CNT ADDR = 2'Db00; // count address matches
if (cnt _ctrl reg[6:5] == CNT ADDR)
if (addr in[31:0] == cnt ref[31:0])

counter <= counter + 1;

Deliverables: L1,V1V2V3V4V5V6\V7V13

G 7.8.14 Limit *ifdef nesting to three levels
Nesting of ‘ifdef directives should not exceed threelevels.
Reason: Easesunderstanding of the code.
Deliverables: L1,V1V2V3V4V5V6V7\V13

G 7.8.15 Use text macros for signal hierarchy paths

Commonly used signal hierarchy paths should be specified using atext macro. Hierarchical signal pathsare not allowedin
codethat isintended to be synthesized.

Reason: Simplifies remapping to anew environment

Example:
‘define XXX TESTBENCH si
‘define XXX TOP_ SCOPE ‘'TESTBENCH.xxx // xxx 1s the top-level module
‘define XXX _YYY SCOPE ‘XXX TOP SCOPE.yyy // yyy is a submodule of xxx

Deliverables: V1,V2,V3,V4,V5,V6
R 7.8.16 Macromodules are not allowed

The macromodul e construct must not be used.
Reason: Simulation results may be simulator dependent. Different simulatorstreat macromodulesdifferently.

Freescale Semiconductor SRS V3.2 01 FEB 2005 33

Semiconductor Reuse Standard

Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.8.17 Operand sizes must match

No expression may haveitssizeimplicitly extended or reduced. In acase statement, all the caseitem expressionsand the

case expression must have the samesize.

Reason: With different operand sizes, the operand is not explicitly defined, but depends on how Verilog resolvesthe
sizedifferences. Verilog allowsthissinceit isnot ahighly typed language.

Example: Thefollowing should al be avoided:

wire [63:0] wireé4bit;

wire [7:0] wire8bit;

assign wire8bit = 1; // assigns integer (32-bit) to 8-bit net

assign wire64bit = 1; // assigns integer (32-bit) to 64-bit net

assign wire64bit = ‘bil; // assigns unsized number to 64-bit net

assign wireé64bit = wire8bit; // assigns 8-bit expression to 64-bit net

assign wire64bit = wire64bit & wire8bit; // bit-wise AND of 8-bit and 64-bit nets

Exception: If theright-hand side of an assignment is of the form a+h, then the left-hand side may be wider than the
right-hand side.

Exception: Doesnot apply to variables of typeinteger sincethey have no direct hardwareintent.
Exception: Expressionsof thetype+1 or -1 do not haveto follow thisrule.
Exception: Assignmentsof either constant O or 1.

Example:
always @(posedge clk or negedge rst b)
if (rst b == 1'b0) my wide reg <= 0;

Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.8.18 Connect ports by name in module instantiations

In moduleinstantiations, ports must be connected by nameinstead of by position. For multi-bit ports, it isrecommended to
include explicit widthsin the connection.

Reason: Moduleinstantiation explicitly shows port connections, which improves readability and adaptability. For
multi-bit ports, including bit widths highlights the nature of the port.

Exception: Auto-generated code.

Example:
block block 1 (.signal a(signal a),
.signal b(signal b)) ;

Example:
block block 1 (.vector(vector([7:0]));

Deliverables: L1,V1V2V3V4V5V6V7V13

R 7.8.19 Ranges match for vector port and net/variable declarations
Therangesin both the vector port declaration and the net/variabl e declaration must be equal.

Reason: Nonmatching ranges areforbidden by the | EEE Verilog standard. Simulators may treat the situation differ-
ently. Matching ranges ease understanding of the code, help avoid inadvertent unconnected nets, and ease
portability of the code betweentools.

Example: Improper usage:

input [23:0] a;
output [23:0] b;
input [23:0] c;
wire [31:0] a;

34 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

reg [15:0] b;
wire [31:8] c;

Deliverables: L1,V1V2V3V4V5V6\V7V13

R 7.8.20 Port connection widths must match
In modul e instantiations, nets connected to ports must have the same width asthe respective port declaration.

Reason: In caseswherethe net and port widths differ in amoduleinstantiation, different tools may treat the connection
differently. Where sourceis shorter than sink, sometools may either zero- or sign-extend, in order to match
the sink width, whereas other tools may leave the extrasink bits unconnected.

Example: A port declaration asin the following example:

module bus_bridge (input bus,

input [31:0] input bus;
should have a corresponding net connection in the modul einstantiation asfollows:

bus bridge bus bridge (.input bus(internal bus([31:0]),

Deliverables: L1,V1V2V3V4V5V6V7V13

G 7.8.21 Avoid ports of type inout

Ports of typeinput or output should be used. Ports of typeinout (bidirectional) should be avoided. If the block isconnected
toabidirectional bus, the port should be split into separate input and output ports which will be connected to each other
outsidetheblock. (SeeR 7.9.1 for treatment of three-state outputs; seealso G 7.8.27.)

Reason: Bidirectional implementations may cause contention problems. Avoiding bidirectional s also eases synthesis
and test insertion.

Deliverables: L1,V13

G 7.8.22 Use parentheses in complex equations
Parentheses should be used to force the order of operations.

Reason: L arge equations without parentheses depend on the order preference of the language to determinethe func-
tionality of the equations. Parentheses explicitly order the operations of the equations, and clearly convey the
functionality.

Deliverables: L1,V1V2V3V4V5V6V7V13

G 7.8.23 No disables on named blocks or tasks containing nonblocking assignments with delays

In order to ensure consistent simulation results, anamed block or atask contai ning nonblocking assignmentswith delays
should not be disabled.

Reason: Toolshandle pending scheduled values differently.

Deliverables: L1,V1V2V3V4V5V6\V7V13

G 7.8.24 Use task guards

Error guards should be used in tasks containing delays.
Reason: Avoidsre-entrant task data corruption.
Example:

task <name>;

reg in use;

begin
if (in_use == 1'bl) S$stop;
in use = 1'bl;

Freescale Semiconductor SRS V3.2 01 FEB 2005 35

Semiconductor Reuse Standard

36

#10

in use = 1'b0;
end
endtask

Deliverables: V1,V2,V3V4,V5V6

G 7.8.25 Next-state encoding of state machines should be made through the use of case statements

The preferred construct to encode the next-state logic in state machinesisthe case statement.

Reason: Case statements provide areadable way to specify statetransitionsin astate machine. They areaso easier to
maintain, particularly in situationsin which astate hasto be either added or del eted.

Example: Thefollowingisatypical exampleof astate machinewritten with case statements:

always @ (posedge clock)
begin // sequential part of state machine
if (!reset_b)
state <= RESET STATE;
else
state <= state_ns;
end

always @(state or done)
begin // combinational part of state machine
state ns = INIT STATE;
case (state)
RESET STATE:
state_ns = INIT_STATE;
INIT_STATE:
state ns = DATA WAIT STATE;
DATA WAIT STATE:
state ns = DATA PROCESS STATE;
DATA PROCESS STATE:
if (done)
state_ns = INIT_STATE;
else
state ns = DATA PROCESS STATE;
endcase // end case (state)
end // end combinational part of state machine

Note: When using case statementsto encode the next-state logic in a state machine, consideration should be given to
R 7.10.4,G 7.10.18 and G 7.10.19, asthey address other aspects of the specification of combinational
logic.

Deliverables: L1,V1,V2,V3,V4,V5V6V7V13

R 7.8.26 No internal three-state logic

Do not use three-state | ogic within the block. Use multiplexersinstead.

Reason: Three-state logic complicatestestability, equivalence checking and requires specia verification.
Deliverables: L1,V13

G 7.8.27 Avoid three-state outputs
Avoid three-state outputs of the block. Use external multiplexersinstead.

Reason: Three-state logic complicatestestability, equivalence checking and requires specia verification. In addition,
they typically are slow and complicate chip-level synthesis methodol ogies.

Deliverables: L1,V13

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

R 7.8.28 Replication multiplier must be greater than zero
Inareplication operation (e.g. {4 {1'b0} }) thereplication multiplier must be greater than zero.
Reason: Theuse of areplication multiplier that is either negative or zero isforbidden by the | EEE standard.

Example:
x = {P-1{1’b0},1'b1}; // P must be greater than 1

Deliverables: L1,V1V2V3V4V5V6V7V13
7.9 Standards for Structured Test Techniques

These coding standards are intended to obtain the maximum amount of test coverage. More complete
guidelines on implementing scan and *“scan friendly” circuitry are detailed in document
IPMXDSRSDFT00001, Semiconductor Reuse Standard: VC Design-for-Test .

R7.9.1 Use additional logic for scanning high-impedance devices

Additional logic must be used to prevent signal contention. All multisourced signals and buses must be driven one-hot
mutually-exclusive during thelaunch and capture test sequence (seeR 7.8.26, G 7.8.27, G 7.10.19and G 10.4.10).

Reason: To prevent propagation of x and scan vector mismatches.
Example: 1-hot driver high-impedance device enables during scan shift.
Deliverables: L1

R7.9.2 Allow PLL bypass

ATPG tools must have clock control from aninput pin. If aPLL isused for on-chip clock generation, then the means of
bypassing or disabling the PLL must be documented (seeG 10.10.11 and R 10.4.25).

Reason: The PLL bypass makestesting and debug easier, and facilitates the use of hardware modelers.
Deliverables: L1

G793 Allow clock divider bypass

There should be amethod to bypass clock dividers (seeR 10.4.25).
Reason: Decreases simulation and tester time.

Deliverables: L1

R7.94 Scan support logic for gated clocks

Gated clocks usage must be accompanied by scan support logic (seeR 10.4.25).
Reason: Toavoid ATPG lossof fault coverage.

Deliverables: L1

R7.95 Externally control asynchronous reset of storage elements

Asynchronousresetsfor initialization or power-up may only be used when they are controlled viaaprimary input in test
mode. The asynchronous resets must be synchronously rel eased after an internal clock edge or the reset must be reclocked
inthe moduleto avoid reset recovery problems (see R 10.7.3; seea so document |PM XD SRSIPI00001, Semiconductor
Reuse Standard: IP Interface).

Reason: Scan chains can be generated for storage elementsonly if thereset is synchronous or if an asynchronous reset
iscontrolled viaaprimary input.
Deliverables: L1

R 7.9.6 Latches transparent during scan
If latches are connected to the clock, they must be transparent during scan or otherwise scannable (seeR 10.4.17).
Refer to Figur e 7-7 for atwo-phaseimplementation.

Freescale Semiconductor SRS V3.2 01 FEB 2005 37

Semiconductor Reuse Standard

Reason: To avoid fault coverageloss dueto the latches blocking upstream and downstream logic.
Deliverables: L1

scan_mode —) > EN Q
clk

Figure 7-7 Scan Support for Mixed Latch/Flip-Flop Designs

R7.9.7 No simultaneous master/slave latch clocking

If master/dave latchesareinferred in the code, clocks of agiven phase must drivethe corresponding stage of thelatch. No
phase of the clock can update both master and slave latches during test mode.

Reason: Test tools do not understand timing and loss of coveragewill occur.
Deliverables: L1

G798 Segregate opposing phase clocks

L ogic which uses both the positive and the negative edges of the clock should have segregated clocks(i.e., each clock isa
separateinput to the VC/block (seeR 10.7.2).

Reason: Eases scan insertion.
Deliverables: L1

7.10 General Standards for Synthesis

This section describes the synthesis standards which are applicable to Verilog. There has been a specia
effort to make as many of the standards as language and tool independent as possible. The synthesis
tool-specific coding guidelines should also be referenced in addition to the standards specified in this and
other sections. It should be noted that the following standards are not applicable to modules that are not
intended for synthesis (e.g., Bus Functional Models, Bus Monitors, data path modules, Analog Behavioral
Models, testbenches, or behavioral modules) unless they are intended to be synthesized for emulation.

R 7.10.1 Complete always sensitivity list

All always constructsinferring combinational logic or alatch must have asensitivity list. The sensitivity list must contain

al input signals.

Reason: Synthesis creates astructurethat dependson all valuesread regardless of the sensitivity list, which canlead to
mismatches between RTL simulation and gate-level simulation or real-world behavior.

Deliverables: L1,V13

R 7.10.2 One clock per always sensitivity list

Only oneclock per Verilog always construct sensitivity list must be used in a synchronous process.
Reason: Thisisrequired to restrict each processto asingletype of memory-element inference.
Deliverables: L1,V13

38 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

R 7.10.3 Only use synthesizable constructs

Only synthesizable V erilog constructs must be used. Verilog code that is not to be synthesized must be separated from the
codeto be synthesized. No waves, checkers, or other tasksand/or statements not supported by synthesis (e.g., $display,
force, release) areallowed inthe HDL. Examplesof thingsthat must not befound in synthesizablelogic are:

e # delay control

e initial statement.

Reason: May compromise reusability acrossvendorsand tools.

Exception: Print statementsmay beembeddedinan *if£def usedfor simulation purposesonly.
Deliverables: L1,V13

R 7.10.4 Specify combinational logic completely

Combinational logic must be specified completely (i.e., avalue must be assigned to the logic outputs for all input combi-
nations). In a construct derived from either acase or an i f statement, the outputs may be assigned default values before
the case or if statement, and then the logic is completely specified (see G 7.10.5).

Reason: Synthesistoolsinfer memory elementsif combinational logicisnot completely specified.
Example: Inthefollowing section of code, memory elementswill not be erroneously inferred, asthelogic iscompletely
specified:

always @(signal name)
begin
output = 4'b0000;
case (signal name)
3'b001: output = 4'b0000;
3’b010: output = 4'bl010;
3’b101: output = 4’'b0101;
3’b111l: output = 4’'b0001;
endcase
end // always @(signal name)

Example: Inthefollowing section of code, the 1 £ statement isinferred into amemory element, becausethereisno
correspondingelse clause:

always @(signal_ name)
if (signal name) output = 4'b0;

Deliverables: L1,V13

G 7.10.5 Assign default values to outputs before case statements

Itisrecommended to precede combinational logic case statementswith adefault value assignment to thelogic outputs. This
isthe safest way to ensure that the outputs are assigned the intended value under all conditions. Thisisthe preferred practice
over theuseof adefault clauseorthe full case synthesisdirectivein the case statement.

Reason: It may be possibleto decode unexpected combinations of the case selects, resulting in pre- and post-synthesis
simulation mismatches.

Example:

always @(state_cur or frame or irdy or hit or
terminate or stop or trdy)
begin
state ns = state cur ;
case (state cur)
IDLE : if (frame) state ns = BUSY;
BUSY : begin
if (!frame & !irdy) state ns = IDLE;

Freescale Semiconductor SRS V3.2 01 FEB 2005 39

Semiconductor Reuse Standard

40

if (frame & hit & !terminate) state ns = XDATA;

end
XDATA : if (frame & stop & !trdy) state ns = BACKOFF;
BACKOFF : if (!frame) state_ns = TURNA;
TURNA : if (!frame) state_ns = IDLE;
endcase // state_cur
end // always @(state ns or ...)

Deliverables: L1,V13

G 7.10.6 Avoid full_case synthesis directive

Itisrecommendedthatthe full case synthesisdirectivebeavoided, unlessitisessential in order to meet areaor timing

targets.

Reason: Thefull case directiveinformsthesynthesistool that the assignments of the unused casesaredon’t
cares. Thismay result in pre- and post-synthesis simul ation mismatches. It may also causeincorrect logicto
beformed. Inaddition, theuseof thefull case directivecan makeit moredifficult to runaformal verifi-
cationtool.

Example: Thefollowing exampleillustratestheincorrect usageof the full case directive. The enableinput may be
optimized away becausethe full case directiveoverridestheinitial default assignment:

always @(a or en)

begin
y = 4'b0;
case {(en, a)} // synthesis full case directive
3’b1_00: ylal = 1'bl;
3'b1 01: ylal = 1'bl;
3'b1_10: ylal = 1'bl;
3/'b1 11: ylal = 1'bl;
endcase // case {(en, a)}
end // always @(a or en)

Deliverables: L1,V13

R 7.10.7 No disable in looping constructs
Theuseof thedisable commandinlooping constructsis prohibited.

Reason: Itisgood programming styleto have defined endsfor |loops and to prohibit jumpsto the next loop iteration.
Also, such astatement inside aloop is not supported by sometools.

Deliverables: L1,V13

R 7.10.8 Avoid unbounded loops

L ooping constructs must have astatic range.

Reason: Unbounded constructs may not be synthesizable or portable.
Deliverables: L1,V13

R 7.10.9 Expressions are not allowed in port connections
Expressions must not be used in port connections.

Reason: An expressioninside aport connection may result in gluelogic between modules and affect synthesis. It may
also make the code more difficult to understand.

Exception: Busconcatenations and constantsare allowed.
Deliverables: L1,V13

G 7.10.10 Avoid top-level glue logic

Gates should not beinstantiated or inferred at thetop level of thedesign hierarchy.
Reason: Synthesisresultsarelimited because thetop level 1ogic cannot be combined for optimization.

SRS V3.2 01 FEB 2005 Freescale Semiconductor

Semiconductor Reuse Standard

Exception: If thetop level isablock flattened by synthesis.
Deliverables: L1,V13

R 7.10.11 Verilog primitives are prohibited

Verilog primitivessuch asand, or, or UDPsmust not be used.
Reason: Easesunderstanding of theHDL.

Deliverables: L1,V13

R 7.10.12 Use nonblocking assignments when inferring flip-flops and latches
a. Nonblocking assignments (<=) must be used in edge-sensitive sequential code blocks. Blocking assignments (=)
are not allowed.
b. Latches must be written with nonblocking assignments.
c. Useblocking assignments for combinational always blocks.
Reason: Use of blocking assignmentsin edge-sensitive sequential code can result in mismatches between pre- and
post-synthesissimulations.

Exception: Do not generate aclock signal from another clock signal using anon-blocking assignment. For example:
always @ (posedge clka)
clkb <= ~clkb;

Example: Edge-sensitive code written with nonbl ocking assignments:

always @ (posedge clk)
regb <= rega;

always @ (posedge clk)
rega <= data;

Example: Codethat may result in pre- and post-synthesis simulation mismatches:

always @ (posedge clk)
regb = rega;

always @ (posedge clk)
rega = data;

In pre-synthesis simulation, the second always block may execute beforethe first awaysblock. Inthat case,
data will runthrough to regb on the same posedge of the clock. However, thiswill synthesizeto ashift
register, where data will not run through to regb on the same posedge of the clock.

Deliverables: L1,V13

R 7.10.13 Drive all unused module inputs

All unused module instanceinputs must be actively driven by some other signal or by afixed logic zero or one.
Reason: All portsappear in themodul e instantiation. None are hidden or forgotten. Avoidsfloating nodes.
Deliverables: L1,V13

G 7.10.14 Connect unused module outputs

All unused modul e instance outputs should be connected to a"dummy™ wire declaration that indi cates no connect.
Reason: Indicatesthat the unconnected portsareintentional.

Example: Thefollowingisan example of unused outputs:

wire bit 3;

wire bit 2 nc;

wire bit 1 nc;
wire bit 0_nc;

counter counter (.bit 3(bit 3), .bit 2(bit 2 nc), .bit 1(bit 1 nc), .bit 0(bit 0 nc));

Freescale Semiconductor SRS V3.2 01 FEB 2005 41

Semiconductor Reuse Standard

Deliverables: L1,V13

R 7.10.15 Do not infer latches in functions
Latchesmust not beinferred in any function call.

Reason: Functions always synthesize to combinational logic.
Deliverables: L1,V13

R 7.10.16 Use of casex is not allowed
case Or casez must beused for all case statements.

Reason: casex treatsthe X and Z statesasdon’t caresin synthesis, which can result in different simulation behavior
pre- and post-synthesis. The X state must be generated and handled in such away to determine whether the
true don'’t care conditionswill affect the operation of the design, rather than cover up aproblem.

Deliverables: L1,V13

R 7.10.17 Embedded synthesis scripts are not allowed

Embedded synthesi s scripts must not be used. If embedded scriptsare used, they must be documented asto purpose and
functionality.

Reason: L ater reuse of the VV C blocks may have different synthesis goals and embedded scripts may cause future
synthesisrunsto return poor results. In addition, further releases of the synthesistool may obsoletethe
embedded commands.

Exception: Judicioususe of synthesisdirectives(e.g., async_set_reset). These must be documented in the reuse issues
section of the header.

Deliverables: L1,V13

G 7.10.18 Use acycle-wide enable signal for signals with multicycle paths

A signal propagated through amulticycle path should be qualified by aone clock cycle-wide enable signal at thereceiving
register.

Reason: Failureto do sowill result in potential metastability problemsat the output of thereceiving register.
Note: Using multicycle paths has severe implications on testing and their usage must be carefully evaluated and
completely documented.

Deliverables: L1,V13

G 7.10.19 Model high-impedance devices explicitly

High-impedance devices should be model ed explicitly with zassignments and multiple concurrent assignments. All select
combinationsfor high-impedance devices should be defined with mutually exclusivelogic.

Reason: Multiple concurrent assignmentsand assignment of value zresultsin theinference of three-state buffers. Lack
of bus contention must be ensured. Three-state devicesmay causetest problems(seeR 7.9.1).

Deliverables: L1,V13

G 7.10.20 Avoid direct instantiation of standard library cells

Avoid thedirect instantiation of standard library cellsin HDL code (seeR 7.4.3(f) and R 7.7.3).
Reason: Easesreuse and portability acrosslibraries.

Deliverables: L1,V13

42 SRS V3.2 01 FEB 2005 Freescale Semiconductor

Standard End Sheet

Freescale Semiconductor

SRS V3.2 01 FEB 2005

Semiconductor Reuse Standard

43

FINAL PAGE OF
44
PAGES

Semiconductor Reuse Standard

Freescale Semiconductor

SRS V3.2 01 FEB 2005

44

	Verilog HDL Coding
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Rule and Guideline Reference
	Section 7 Verilog HDL Coding
	7.1 Introduction
	7.1.1 Deliverables

	7.2 Reference Information
	7.2.1 Referenced Documents
	7.2.2 Terminology

	7.3 Naming Conventions
	7.3.1 File Naming
	7.3.2 Naming of HDL Code Items

	7.4 Comments
	7.4.1 File Headers
	7.4.2 Additional Construct Headers
	7.4.3 Other Comments

	7.5 Code Style
	7.6 Module Partitioning and Reusability
	7.7 Modeling Practices
	7.8 General Coding Techniques
	7.9 Standards for Structured Test Techniques
	7.10 General Standards for Synthesis

	Standard End Sheet

