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Summary
The identification of individual animals based on acoustic parameters is a non-invasive method of identifying individuals with considerable advantages over physical marking procedures. One requirement for an effective and practical method of acoustic individual identification is that it is call-independent, i.e. determining identity does not require a comparison of the same call or song type. This means that an individual’s identity over time can be determined regardless of any changes to its vocal repertoire, and different individuals can be compared regardless of whether they share calls. Although several methods of acoustic identification currently exist, for example discriminant function analysis or spectrographic cross-correlation, none are call-independent. Call-independent identification has been developed for human speaker recognition, and this thesis aimed to:

1) determine if call-independent identification was possible in birds, using similar methods to those used for human speaker recognition,

2) examine the impact of noise in a recording on the identification accuracy and determine methods of removing the noise and increasing accuracy,

3) provide a comparison of features and classifiers to determine the best method of call-independent identification in birds, and
4)  determine the practical limitations of call-independent identification in birds, with respect to increasing population size, changing vocal characteristics over time, using different call categories, and using the method in an open population.
Call-independent identification is most important for use in species with complex and changing repertoires. The most common group in which this occurs is the passerine, and in particular the oscine, birds. Hence, my thesis focuses on acoustic identification in this group.

Three passerine species were used in this thesis. Singing honeyeaters, Lichenostomus virescens, and willie wagtails, Rhipidura leucophrys, were recorded in the field and hence recordings contained background noise and were of varying quality. Canaries, Serinus canaria, were recorded in the laboratory, in an anechoic room, so the recordings contained little background noise and were of high quality. This enabled comparisons of low and high quality recordings to be made and the accuracy obtained under optimum conditions to be determined. In addition, experimental manipulation of the clean canary recordings was able to be carried out. In order to obtain sufficient recordings of song from each individual, between one and fourteen recordings were made of up to 40 canaries, between one and ten recordings of 54 willie wagtails, and a single recording of 15 singing honeyeaters. Each recording was made over a period of 15 to 180 minutes.
Call-independent individual identification, using the feature extraction and classification methods of mel-frequency cepstral analysis and multilayer perceptron neural networks (common methods in human speaker recognition tasks), was found to give identification accuracies of 54-76% for the three passerine species. These accuracies were obtained using the feature extraction methods and neural network architecture as used in human speaker recognition tasks. By modifying these methods to better suit bird vocalisations, accuracy was increased to 69-97%. 
The decrease in accuracy caused by the presence of background noise is one of the biggest problems in the application of human speaker recognition tasks. Using both the clean canary and noisy wagtail recordings, I was able to study the effects of background noise and determine methods of removing it. Background noise was found to be a significant detriment to the identification accuracy of field recordings, causing a decrease of approximately 30%. As found in human speaker recognition, mismatched noise (i.e. different noise in the training and testing recordings) had a much greater impact on accuracy than matched noise. Thus, when making recordings in the field, obtaining recordings with matched noise is just as important as obtaining clean recordings. Through the use of signal enhancement techniques borrowed from the field of speaker recognition (high-pass filtering, spectral subtraction, Wiener filtering, cepstral mean subtraction), noise was removed and accuracy was increased to a similar level as obtained for clean recordings. 
Several methods of both feature extraction and classification exist for human speaker recognition tasks. A comparison of different features found that mel-frequency cepstral coefficients, linear prediction cepstral coefficients, and perceptual linear prediction cepstral coefficients all performed comparably in the acoustic identification of two passerine species. For classification, Gaussian mixture models and probabilistic neural networks resulted in higher accuracy, and were simpler to use, than multilayer perceptrons. Using the best methods of feature extraction and classification resulted in 86-95.5% identification accuracy for two passerine species, with all individuals correctly identified.
A study of the limitations of the technique, in terms of population size, the category of call used, accuracy over time, and the effects of having an open population, found that acoustic identification using perceptual linear prediction and probabilistic neural networks can be used to successfully identify individuals in a population of at least 40 individuals, can be used successfully on call categories other than song, and can be used in open populations in which a new recording may belong to a previously unknown individual. However, identity was only able to be determined with accuracy for less than three months, limiting the current technique to short-term field studies.
This thesis demonstrates the application of speaker recognition technology to enable call-independent identification in birds. Call-independence is a pre-requisite for the successful application of acoustic individual identification in many species, especially passerines, but has so far received little attention in the scientific literature. This thesis demonstrates that call-independent identification is possible in birds, as well as testing and finding methods to overcome the practical limitations of the methods, enabling their future use in biological studies, particularly for the conservation of threatened species.
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Thesis Structure
This thesis has been written as a series of scientific papers, two of which have been accepted for publication and are currently in press, while the others will be submitted shortly. An additional publication was made, containing preliminary data, and has been added in Appendix 1 since it is referred to within the thesis:
Fox, Elizabeth J.S., Roberts, J. Dale & Bennamoun, Mohammed (2006). Text-independent speaker identification in birds. Proceedings of the International Conference on Spoken Language Processing (Interspeech), Pittsburgh, USA.
Chapter 1 has been published in Animal Behaviour: 

Fox, Elizabeth J.S. (2008). A new perspective on acoustic individual recognition in animals with limited call sharing or changing repertoires, Animal Behaviour, 75, 1187-1194.
As a result, although principally an introduction, this chapter also contains the results of some preliminary experiments.
Chapter 2 provides some background to the field of speaker recognition for those who are not familiar with the area, as well as explaining the particular features and classifiers used in this thesis. Much of the information given here is described briefly in the following data chapters, but this methodology chapter contains much greater detail that can be referred back to if necessary.
Chapter 3 is currently is press in Bioacoustics:
Fox, Elizabeth J.S., Roberts, J. Dale, Bennamoun, Mohammed (in press). Call-independent individual identification in birds. Bioacoustics.
The work was primarily conducted by EJSF (85%), with JDR and MB providing assistance with project design, neural network design and editing (15%).
Chapters 4 – 6 will be submitted for publication once the manuscripts have been prepared.

Chapter 7 is a brief overview of what has been achieved in this thesis.

Chapter 1. A new perspective on acoustic individual recognition in animals with limited call sharing or changing repertoires
The identification of individual animals based on acoustic parameters is a non-invasive method of recognizing individuals with considerable advantages over physical marking procedures which may be difficult to apply, time-consuming, expensive or detrimental to the animal’s welfare. In order to be an effective and practical method of individual identification, an acoustic identification technique must first extract features which show greater variation between rather than within individuals, and second use a classifier that can successfully distinguish between the individuals and classify new recordings. 
In addition, highly desirable features of an acoustic identification technique are:

1) The features exhibit little variation over time. This is necessary for studies requiring re-identification over time, with the required length that the features remain stable ranging from days to years, depending on the type of study.

2) The classifier is able to determine when a feature set does not belong to any of the known individuals. This is important since animal populations are rarely closed, with new individuals arriving from immigration and births, and hence a new recording may not belong to any of the known individuals and the classifier must be able to determine this.

3) The features enable identification regardless of the call type produced. This is important since identification techniques that can only compare a single call type within and between individuals significantly limit the range of species and situations in which they can be used (N.B. The vocalizations of different species, and different types of vocalizations from the same species, often have specific descriptors: song, howl, call etc. For simplicity, the term call will be used in this paper to include all vocalization types, except when a particular species is being described in which case the correct term will be used).  

Methods such as discriminant function analysis (DFA) using frequency and temporal measures, and spectrographic cross-correlation have demonstrated that individually distinctive calls are present in a wide range of species across many taxa and can be used to correctly identify individuals (Sparling & Williams 1978; Smith et al. 1982; McGregor et al. 2000; Osiejuk 2000). Individualistic calls most likely exist in all vocal animals as a result of genetic, developmental and environmental factors, although the level of individuality and whether it can be easily measured and classified will differ between species (Terry et al. 2005). Some studies have shown that vocal features can remain stable over days and even years (e.g. Lengagne 2001; Walcott et al. 2006), although there have been few extensive studies in this area. In addition, classification methods that are based on a similarity score, e.g. cross-correlation or adaptive kernel-based DFA, enable identification of new individuals that have not been previously encountered (Terry et al. 2005). However, all of the current methods of acoustic identification base the similarity of two vocalizations on a comparison of call type specific features (e.g. the frequency or length of a particular note or syllable). Hence comparisons both within and between individuals can only occur when the same call types are present: i.e. call-dependent identification. Call-dependent identification techniques therefore cannot be used, or can only be used with difficulty, under the following common conditions: 
1) Individuals temporarily change their calls. Temporary changes to a call involve short-term changes, usually in the frequency or temporal characteristics, of a particular call type and are a direct result of specific circumstances. Factors that have been shown to influence call characteristics include social context (Jones et al. 1993; Elowson & Snowdon 1994; Mitani & Brandt 1994), body condition (Galeotti et al. 1997; Martin-Vivaldi et al. 1998; Poulin & Lefebvre 2003), time of year (Gilbert et al. 1994), emotional state (Bayart et al. 1990), and temperature (Friedl & Klump 2002). Temporary changes to calls probably occur in most animals. When identifying individuals from their calls, knowledge of the specific circumstances and how they affect the calls is required so that the affected variables can be excluded from analysis. For example, water temperature affects the temporal properties of European treefrog, Hyla arborea, calls (Friedl & Klump 2002) and hence temporal characteristics cannot be used to identify individuals over time. If this information is not known it may result in the variation present in the calls of an individual being greater between than within recordings, and this will result in incorrect identification.

2) Individuals permanently change their calls. Permanent changes to a call usually involve the creation of new notes, syllables or entire calls, although they can also involve changes to the characteristics (e.g. frequency or temporal properties) of a particular call type. Permanent changes can be the result of a specific influencing factor or they can be a natural progression. An example of an influencing factor was found by Walcott et al. (2006) who showed that male loons, Gavia immer, have a yodel call that is stable from year to year, but alters (in frequency and temporal properties) when the bird moves territory. A natural progression, or continual change, of call types is most commonly found in the oscine birds that are open-ended song learners, or mimics. These birds incorporate new songs and calls into their repertoires throughout their lives. For example, noisy scrub-birds, Atrichornis clamosus, continually alter their song types over time, with significant changes in as little as one month and a complete repertoire change in six months (Berryman 2003). Other examples of species that change their repertoires over time include yellow-rumped caciques, Cacicus cela (Trainer 1989), boblinks, Dolichonyx oryzivorus (Avery & Oring 1977), pied flycatchers, Ficedula hypoleuca (Espmark & Lampe 1993), and superb lyrebirds, Menura novaehollandiae (Robinson & Curtis 1996). Permanent changes to call types are also found in young animals that must change from their immature begging calls to adult calls, often through a period of learning and experimentation (Kroodsma et al. 1982). Permanent changes to calls are likely to occur over longer time periods than temporary changes. The majority of studies examining acoustic identification have used calls recorded over a short time period, usually within a single breeding season (Otter 1996; Hill & Lill 1998; McCowan & Hooper 2002; Rogers & Paton 2005). Markedly fewer studies have been carried out on the stability of vocalizations between years (Lengagne 2001; Gilbert et al. 2002; Puglisi & Adamo 2004). 

3) Individuals in a species have limited call sharing. Animal populations can vary in the number of calls that are shared between individuals, from complete sharing of all call types to species which actively avoid call sharing (Catchpole & Slater 1995). The amount of call sharing also depends on the distance over which individuals are studied. Neighbouring birds may have extensive call sharing, but there is a decrease in sharing with an increase in spatial separation in many species (e.g. Farabaugh et al. 1988; Rogers 2002). Having limited call sharing between individuals creates two problems. Firstly, a separate classifier must be created for each call type that is shared between individuals. This can lead to a large number of classifiers being required if each call type is only shared between a small number of individuals. For example, out of 38 song types sung by six male rufous bristlebirds, Dasyornis broadbenti, the most common song types were only shared between four of the six individuals (Rogers & Paton 2005). In order to distinguish between all six birds it was therefore necessary to carry out classifications on a number of song types, with each classification only able to distinguish between two and four birds. This makes the method very time consuming since a classifier has to be created for each call type. In addition, each recording must be separated into its respective call types before analysis and classification can occur, which can be a particularly arduous task for species with large repertoires. Secondly, it is necessary to know the complete set of calls from each individual. Without knowledge of the complete repertoire from each individual, a novel call may be incorrectly attributed to a new bird in the population. Limited call sharing is found in many oscine species, e.g. Kentucky warblers, Oporornis formosus (Tsipoura & Morton 1988), rufous bristlebirds (Rogers 2004), dark-eyed juncos, Junco hyemalis (Williams & MacRoberts 1978), and song sparrows, Melospiza melodia (Borror 1965).

4) Individuals have extensive repertoires and/or use repeat mode calling. About 70% of songbirds produce multiple song types (Beecher & Brenowitz 2005). These repertoires range in size from less than five songs, e.g. great tits, to over 1000, e.g. brown thrashers, Toxostoma rufum (Beecher & Brenowitz 2005). When an individual has a large repertoire, long recordings may be needed before the particular song required to determine identity is obtained. The recording length required can be even longer if the species is a repeat mode caller (Wiley et al. 1994) in which only a single song type is repeated within a bout of singing (e.g. rufous bristlebirds, Rogers & Paton 2005). It may therefore be hours or days before the required song type is produced and recorded, making acoustic identification based on the comparison of a particular call type a long, arduous and manually intensive exercise.
It is clear that with only call-dependent identification, acoustic individual identification is limited to species with extensive call sharing and no change in an individual’s repertoire over time. The most common group of animals which do not obey these requirements are the passerine, and particularly the oscine, bird species. The inability of current methods to work successfully with these species is demonstrated by the fact that, although there are roughly twice as many passerines as non-passerines (Pimm et al. 2006), a recent literature search found that out of 53 published studies on acoustic individual identification in birds only 30% were carried out on passerine species. Other animals to which call-dependent identification is only applicable in a limited way include mammal groups with complex calling systems such as cetaceans and primates.
Current methods of acoustic identification are call-dependent because they require the comparison of features that are specific to a particular call type. In order to carry out acoustic identification regardless of call type, features must be found that are specific to the individual’s voice and remain stable regardless of the particular call produced. It is well known that humans can easily recognize other people from their voices and this has led to the development of speaker recognition technology. Initial approaches at identifying people from their voice characteristics used long-term averaged features (Markel et al. 1977). Similar techniques were tested on great tits by Weary et al. (1990) who used long-term averaged temporal and frequency features across different song types, resulting in an identification accuracy of 69.9% to 80.4%. Long-term averaging of features is an extreme condensation of the characteristics of the voice and discards a lot of individual information (Reynolds 1995). Hence speaker recognition technology currently uses short-term features that are extracted from 10-30 ms segments of the signal. These features are based on the characteristics of the vocal tract shape and are therefore specific to the individual, not to the particular words spoken. These short-term features have been used with great success, resulting in speaker recognition accuracies of typically 80-100% (e.g. Farrell et al. 1994; Matsui & Furui 1994; Reynolds & Rose 1995; Murthy et al. 1999). In recent years researchers have begun to apply these same methods to the problem of animal individual identification. In the African elephant, Loxodonta africana, 82.5% individual identification accuracy was achieved (Clemins et al. 2005), while in the Norwegian ortolan bunting, Emberiza hortulana, Trawicki et al. (2005) identified 80-95% of individuals correctly. These were both call-dependent identification tasks in which only a single call type was compared. One of the major advantages that speaker recognition techniques can bring to individual identification in animals is the ability for identification regardless of call type: i.e. call-independent identification. 
Speaker Recognition Methods

I will briefly discuss the methods of feature extraction and classification commonly used in speaker recognition and then present the results of some preliminary tests using these methods to demonstrate that they are a feasible method of call-independent individual identification in a passerine species. My major aim is to demonstrate a new approach to individual identification using acoustic cues that overcomes most of the limitations of current approaches. I present one example to show the methods have real potential. Its application more broadly can only be evaluated by rigorous application in a variety of animals using acoustic signals.
Speaker recognition is a topic within the field of speech processing, and refers to the ability to identify an individual based on aspects of their voice (Farrell 2000). When only a single set of text (i.e. words or sentences) are used for both training and testing a classifier recognition is termed text-dependent. When the text varies between training and testing recognition is termed text-independent (Furui 1997). The ability to carry out text-independent recognition lies in the selection of acoustic features that remain relatively stable regardless of the sounds produced. In humans, voiced sound is produced by the vibration of the vocal cords, which results in a quasi-periodic flow of air called the source sound (Masaki 2000). This source sound is characterised by its fundamental frequency and harmonic overtones, which are determined by the subglottal pressure, and the tension of the vocal cords. The source sound passes through the vocal tract, consisting of the nasal and oral cavities in association with the lips, tongue, jaw and teeth (Furui 2001), which alters the frequency content through a modulation of the amplitude of the harmonics. The modulation is a result of the resonances of the vocal tract, which are a consequence of the size and shape of the vocal tract. The resulting spectral shape, called formants (Figure 1.1), can be measured from a signal and from this the individual's vocal tract shape can be estimated. This idea of sound production is approximated by the source-filter model of speech production (Figure 1.2)
y(t) = s(t) * h(t)

where y(t) is the speech signal in the time domain and s(t) is the source sound that is convolved with h(t), the vocal tract filter. Although this model was developed for human speech, it can be applied to any sound that is produced at a source and then modified by a filter. For example, mammalian and avian vocal production (Lieberman 1969; Nowicki & Marler 1988), and musical instruments (Eronen 2001), can be modelled by the source-filter model. 
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Figure 1.1 Spectrogram of a speech segment
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Figure 1.2 Source-filter model of speech production
For human speech, features of the sound that result from the vocal tract resonances contain the most individually specific information. It is therefore necessary to separate the vocal tract and source sound information. These features are convolved with each other in the spectral domain and cannot be separated, but through the use of homomorphic analysis, the signal can be converted to the cepstral domain where the source and vocal tract features are no longer convolved and can be easily separated from each other (Furui 2001; Quatieri 2002)
Y(ω) = S(ω) + H(ω)

where Y(ω), S(ω), and H(ω) are the signal, source sound and vocal tract filter in the cepstral domain. The term cepstral is derived from the word spectral, since the cepstral domain is the inverse Fourier transform of the logarithmic amplitude spectrum of a signal (Furui 2001). 

In the cepstral domain the lower order coefficients represent the spectral envelope (the vocal tract information) while the source information is represented in the higher coefficients. Therefore, typically only the first 12-15 cepstral coefficients are used (Gish & Schmidt 1994). 
The most common features used for human speaker identification are the mel-frequency cepstral coefficients (Campbell 1997; Quatieri 2002), developed by Davis & Mermelstein (1980). These cepstral coefficients are calculated using a filterbank based on the mel-scale of frequencies. The mel-scale approximates the human perception of frequency, which follows a logarithmic rather than linear scale above 1 kHz (Mammone et al. 1996). The mel-frequency cepstral coefficients (MFCCs) are popular because they tend to be uncorrelated, are computationally efficient, incorporate human perceptual information, and they have been shown to have some resilience to noise (Quatieri 2002; Clemins 2005), all of which result in higher recognition accuracies. Recently there has been interest in using perceptual linear prediction (PLP) coefficients, particularly for non-human species, because PLP analysis can incorporate information about the auditory ability of the species under study (Clemins & Johnson 2006). The PLP model was developed by Hermansky (1990) and stresses perceptual accuracy over computational efficiency. The generalised PLP developed by Clemins & Johnson (2006) enables human perceptual information to be replaced with species specific information which may lead to improved identification accuracy in non-human species. 

Once individually specific features have been extracted, a classifier is required that can be trained to distinguish between the feature sets and then can test a new feature set by comparing it with the stored reference templates for each individual to make a decision about identity (Farrell 2000; Furui 2001; Ramachandran et al. 2002). Some common classifiers used for speaker recognition include dynamic time warping, hidden Markov models, Gaussian mixture models and artificial neural networks (Furui 1997; Ramachandran et al. 2002). The type of classifier used depends on the required task. Some classifiers, such as dynamic time warping and hidden Markov models, include temporal information and therefore are best suited to text-dependent recognition, while others, such as Gaussian mixture models and artificial neural networks, have shown good results for text-independent tasks (Ramachandran et al. 2002).
Below I demonstrate the potential for call-independent individual identification in willie wagtails, Rhipidura leucophrys, using mel-frequency cepstral coefficients and an artificial neural network.
Experimental Methods
The songs of 10 willie wagtails were recorded from locations around Perth, Western Australia using a Sony ECM672 directional microphone with a Marantz PMD670 solid state recorder at a sampling frequency of 48 kHz. Birds were recorded at night (2000 hours to 0400 hours) during spring, at which time wagtails frequently sit in a single location and sing for long periods. All recordings were initially analysed using Cool Edit Pro (v2.1 Syntrillium Software Corporation). The silent (non-song) parts of the recordings were removed through the use of an amplitude filter and each recording was high-pass filtered at 700 Hz to remove low frequency background noise. Each recording was then split into its respective song types through a visual inspection of the spectrograms. One song type was used for training the classifier, and a different song type was used to test the classifier (Figure 1.3). Training was carried out using 10 seconds of recording, plus 10 seconds were used as a validation set to enable early stopping which prevents the network from overtraining and losing the ability to generalise. Ten, one second tests were carried out for each individual on the trained network using the second song type. For both the training and testing data, the 12th order MFCCs were extracted from 30 ms frames and fed to the classifier. The classifier used was an artificial neural network, a multilayer perceptron (MLP), which was designed and implemented using the neural network toolbox in Matlab (v6.5.1, The MathWorks, Inc). The network had one hidden layer with 16 neurons.
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Figure 1.3 Example of the different song types used for training and testing for a single wagtail

Results And Discussion
Call-independent identification in willie wagtails using MFCCs and a MLP resulted in an identification accuracy of 89%. The confusion matrix of the results is shown in Table 1.1, with the identity and song type of each bird trained with running horizontally, and the identity and song type of each bird tested running vertically. The results of the 10 tests carried out for each bird are placed under the bird and song type that the MLP classified them as belonging to. Call-independent identification is typically more difficult than call-dependent identification, so the high result achieved in this call-independent task, which is comparable to the result for call-dependent identification in the Norwegian ortolan bunting (Trawicki et al. 2005), is particularly encouraging. 

Table 1.1 Confusion matrix of testing and training with different song types (e.g. 2C = bird 2, song type C)

	
	
	Training

	
	
	2C
	3S
	8E
	9G
	10E
	17G
	20A
	21E
	27E
	30E

	Testing
	2A
	10
	0
	0
	0
	0
	0
	0
	0
	0
	0

	
	3R
	0
	6
	0
	0
	0
	3
	1
	0
	0
	0

	
	8G
	0
	0
	10
	0
	0
	0
	0
	0
	0
	0

	
	9E
	0
	0
	0
	9
	1
	0
	0
	0
	0
	0

	
	10F
	0
	0
	0
	0
	10
	0
	0
	0
	0
	0

	
	17A
	0
	0
	2
	1
	0
	7
	0
	0
	0
	0

	
	20C
	0
	0
	0
	0
	0
	0
	10
	0
	0
	0

	
	21A
	0
	0
	0
	0
	0
	0
	0
	10
	0
	0

	
	27G
	0
	0
	0
	0
	0
	0
	0
	0
	7
	3

	
	30F
	0
	0
	0
	0
	0
	0
	0
	0
	0
	10


The fact that the cepstral coefficients are extracting features of the voice, rather than features specific to the song type, was demonstrated in the tests in which a single song type was used for both training and testing in different individuals (for example song type A was used for training in bird 20 and used for testing in bird 2). In 69 of the 70 tests in which the same song type was used for training and testing in different individuals, the song type was successfully classified to the correct individual, rather than to the same song type. 

This experiment used methods of feature extraction and classification taken directly from human speaker recognition tasks. It is likely that the results can be improved by modifying the methods to better suit bird song or by using methods specifically designed to incorporate species specific information (for example the generalised PLP model of Clemins & Johnson 2006). In addition, since the same methods give good results for both human speech and bird song, it is likely that these methods can be used across a wide range of species. 

All identification techniques contain limitations and potential biases which must be taken into account before choosing the correct method for each species or type of study. As with any method of acoustic individual identification, the study population is limited to those individuals that produce vocalisations, which may be affected by factors such as sex, age, or breeding status (Terry et al. 2005). Another potential limitation is that the extraction of features through speaker recognition methods, such as cepstral analysis, is based upon the source-filter model of sound production. Not all animal sounds are produced in this way, for example the clicks and noises produced by some cetaceans (Cranford et al. 1996), or the sounds produced by insects (Alexander 1957). However, these sounds are likely to contain individual characteristics and speaker recognition methods may still provide useful information. For example, cepstral analysis improved species identification in crickets, katydids and cicadas (Ganchev et al. 2007). Individual identification using speaker recognition techniques has currently only been studied in a small number of species, although the successful application of the same methods to species exhibiting a range of vocalisation frequencies and abilities, including elephants (Clemins et al. 2005), pigs (Schon et al. 2001), and a passerine species (Trawicki et al. 2005), implies that the methods are widely applicable. Studies on species with differing sound production methods and types of vocalisations, e.g. frogs, cetaceans or insects, will be necessary before the full extent of the application of speaker recognition methods can be determined.

Another potential problem with using speaker recognition techniques on field recordings of animals is that noise, and in particular the mismatched conditions that occur when a recording used for testing a classifier has different noise from what the classifier was trained with, is known to be a major challenge in human speaker recognition applications (Juang 1991). Noise can arise from a variety of sources such as ambient noise, reverberations, channel interference or microphone distortions. Whilst excellent recognition performance is achieved when the recording conditions are matched between training and testing, a dramatic drop in accuracy can occur under mismatched conditions. For example a 10 dB addition of Gaussian noise was seen to decrease accuracy by up to 80% when identifying human voices (Gong 1995). Many noise removal methods exist that can increase this accuracy to less than 20% below that obtained for matched recordings (Gong 1995). It is likely that background noise and signal degradation will be a significant problem for animal acoustic identification due to the variable nature of weather conditions, other background noise, and distance from the subject that are inherent in obtaining field recordings. The recordings used in this experiment had little background noise since they were obtained at night time and with the microphone usually within 5 m of the bird. Since birds are often recorded during the dawn chorus, there will typically be much greater levels of background noise and it may be harder to approach the birds closely. Effort may need to be spent researching the impact of noise and other distortions before the techniques outlined above become generally applicable to field situations.  
Conclusion
Acoustic individual identification has the potential to be an extremely useful tool for studying individual behaviours and in ecological contexts requiring individual identification. It has the advantage over physical marking techniques of being non-invasive, inexpensive, and relatively fast and simple to apply. Developing a method of call-independent identification will, for the first time, provide a method of individual identification that can be applied to all species regardless of the complexity of calls, amount of call sharing, or individual variation in calls over time. In addition, speaker recognition techniques solve several of the other problems associated with the current methods of acoustic individual identification, which has resulted in them rarely being used as methods of individual identification in practice, including:

1. The classifiers enable new calls to be classified as unknown individuals, 

2. The methods are not species-specific thereby preventing the need for extensive pilot studies, 

3. Call-independent identification prevents the need to separate recordings into their respective song types, thereby saving considerable amounts of time and effort,

4. Feature extraction and classification are both carried out automatically, again resulting in a saving of time and effort.
Conveniently human speaker recognition techniques appear to be just as applicable to animal vocalisations as to human speech and hopefully research in this area will result in substantial improvements in the ease and way in which animals are studied.

Chapter 2.  An overview of techniques used for speaker recognition tasks
This chapter outlines in detail the various options available for acoustic identification tasks. It gives sufficient technical detail to establish the value of the techniques for the required tasks and in some areas to establish why I chose particular options. Much of the information given here can also be found in the relevant following chapters, but this chapter contains greater detail, which can be referred to if necessary. The review is heavily focussed on human speech and speaker recognition as that is where the techniques were developed and refined. It is not an exhaustive review, but is aimed at readers who may not be familiar with the techniques adopted here, which to date have only had limited application to identification tasks in animals. Readers who are already conversant with the technology will find little new, but those who are not will find sufficient detail to appreciate the logic of the approaches used and sufficient literature to follow up the detail where required.

A speech signal conveys a multitude of information to the listener including meaning, language, accent, gender, emotion, and individual identity. The goal of an automatic speaker recognition system is to extract, model and recognise information from the signal that conveys the speaker’s identity (Reynolds 2002). This requires feature extraction of the signal, followed by classification (Figure 2.1), both described in greater detail below.
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Figure 2.1 Speaker recognition system

Feature Extraction

The first step in developing a speaker recognition system is to extract the distinctive features of a signal that characterise the individual, while at the same time transforming the initial data set into a low-dimensional feature space (Gish & Schmidt 1994; Campbell 1997). Obtaining a compact representation of the individual is important since having large amounts of data can impose severe requirements on both computation and storage in the classification stage (Campbell 1997). Much of the data present in a speech signal is not useful for individual identification and can be deleted, retaining only the relevant individualistic information. The particular features that are extracted are very important to the success of the subsequent classification procedure since features that are sensitive to noise, susceptible to bias, or which do not discriminate between individuals will confuse the classifier and decrease classification accuracy.

A person’s voice is based on both physical characteristics, resulting from the intrinsic size and shape of the vocal tract, and learned behavioural characteristics, based on the acquired manner of speaking. These include voice quality (physical characteristic) and loudness, speed, tempo, intonation, accent, and the use of vocabulary (behavioural characteristics; Furui 1996; Furui 2001). Since behavioural characteristics may change over time and can be mimicked, it is the physical characteristics that are most useful for individual identification.
Most speech analysis is based on the source-filter model of speech production, represented by 

y(t) = s(t) * h(t)
where y(t) is the speech signal, s(t) is the source sound (or excitation), h(t) is the vocal tract filter and * is the convolution operator (Furui 2001). Although the source-filter model was developed for human speech, it can be applied to any sound that is produced at a source and then modified by a filter. For example, mammalian and avian vocal production (Lieberman 1969; Nowicki & Marler 1988), and musical instruments (Eronen 2001), can be modelled by the source-filter model.
Human speech can be separated into two types of sound: voiced and unvoiced. The difference lies in the type of excitation signal produced at the glottis. Voiced sound is produced by the vibration of the vocal cords, which results in a quasi-periodic flow of air called the source sound (Masaki 2000). This source sound is characterised by its fundamental frequency and harmonic overtones, which are determined by the subglottal pressure and the tension of the vocal cords. The source sound passes through the vocal tract, consisting of the nasal and oral cavities in association with the lips, tongue, jaw and teeth (Furui 2001), which alters the frequency content through a modulation of the amplitude of the harmonics. The modulation is a result of the resonances of the vocal tract, which are a consequence of the size and shape of the vocal tract. Typically features are best extracted from voiced sounds since they contain more individually specific information. This is advantageous to individual identification in animals since the majority of animal calls are voiced sounds (Lieberman 1969; Laje & Mindlin 2005). Whilst both the source and vocal tract information contain speaker dependent information, it is principally information derived from the vocal tract resonances that is used for individual recognition. The resonances of the vocal tract create peaks in the spectral envelope, called formants, from which the shape and size of the vocal tract can be estimated and, since this shape is individually unique, it can be used to determine identity. Because these features are individually specific, and are not related to a particular word or phrase, recognition can be carried out both text-dependently (recognition using the same words or sounds) and text-independently (recognition using different words or sounds).

In order to extract the individually characteristic features of the vocal tract filter, we need to separate the source and filter information. Linear prediction and cepstral analysis are the two main methods used for extracting the vocal tract filter information for speech and speaker recognition. Cepstral analysis, in particular mel-frequency cepstral analysis, was chosen as the principal method of feature extraction in the thesis since it has had wide use in human speaker recognition tests, is computationally efficient, and has proven to give good results under a variety of conditions (Mashao & Skosan 2006). However, a comparison with linear prediction and perceptual linear prediction is made in Chapter 5. Each of these methods of feature extraction is discussed in greater detail below.

Mel-frequency Cepstral Coefficients
Cepstral analysis is a type of homomorphic analysis used to separate two convolutionally related factors by transforming the relationship into an additive one. Converting a signal to the cepstral domain therefore deconvolves the source sound and the vocal tract filter so that the source-filter model is represented by 
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where Y(ω) is the signal in the cepstral domain, S(ω) the source sound, and H(ω) the vocal tract filter (Furui 2001). The source and filter can now be easily separated, with the lower cepstral coefficients representing the vocal tract filter information and the higher coefficients representing the source information. The term cepstrum is coined from the term spectrum, as the cepstral domain is the inverse Fourier transform of the logarithm of the Fourier transform of a signal (Bogert et al. 1963; Furui 2001).

Cepstral analysis can be used by itself, but the excellent ability of the human auditory system to understand and recognise speech, even when noisy and corrupted, has led to the inclusion of human perceptual properties in speech processing to increase accuracy and improve robustness in noisy conditions. An important property of human perception is the nonlinear frequency response of the basilar membrane of the ear. The mel-frequency cepstral coefficients (MFCCs) incorporate this perceptual feature by simulating the frequency response of the basilar membrane using a mel-scale filter bank (Davis & Mermelstein 1980; Milner 2002).

The MFCCs, developed by Davis and Mermelstein (1980), have dominated feature extraction for speech and speaker recognition tasks in recent years. They are popular because of their computational efficiency, resilience to noise, ability to incorporate human perceptual information, and tendency to be uncorrelated. The feature extraction model for the MFCCs is outlined in Figure 2.2 and each step is described in detail below.

Pre-emphasis filter

Feature extraction begins by applying a pre-emphasis filter to the signal. There are two reasons for applying a pre-emphasis filter. The first is to cancel out the effects of the larynx and lips on the vocal tract filter. The second is to correct for spectral tilt, whereby the energy in a speech signal decreases as the frequency increases. Pre-emphasis increases the energy of the signal by an amount inversely proportional to its frequency, thereby decreasing the dynamic range of the spectrum and preventing the cepstral transform from 
ignoring the higher frequencies. The pre-emphasis filter is represented by

H(z) = 1 – αz-1
with α typically being about 0.95. If α is set to 0 it becomes an all-pass filter, while if it is set to 1 it is a high-pass filter (Furui 2001).

Windowing
After pre-emphasis the signal is broken into short segments, called frames, and multiplied by an analysis window. The signal is framed because an accurate set of features can only be determined over short intervals (typically 20 to 30 ms) since the speech signal varies over time. During each frame the signal is assumed to be approximately stationary (Mammone et al. 1996). The length of the frame is a trade-off between time and frequency resolution. If the frame is too long, the signal will not be stationary and the spectral estimate will lose accuracy. Each frame is overlapped with the previous frame, usually by 25-50%, as this creates finer temporal resolution and therefore captures the dynamics of the signal. Too much overlap can lead to duplication of data. The analysis window is used to minimise the signal discontinuities at the borders of each frame. A Hamming window is the most commonly used analysis window, and is represented by 
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where N is the length of the frame (Furui 2001). Since a single frame does not contain sufficient information to represent a speaker’s voice, 5 to 30 seconds of speech are usually used.

Spectral analysis

After the frames have been windowed, the magnitude spectrum is obtained, typically by applying a Fourier transform.
Filter bank analysis

Stevens, Volkmann & Newman (1937) demonstrated that the human perception of sound is not linear. Instead, it is logarithmic above approximately 1000 Hz , and the mel-scale is an 


[image: image6]
Figure 2.2 Comparison of LPCC, PLPCC and MFCC extraction. Dotted lines link equivalent processes (modified from Milner 2002)
approximation of this. Therefore, the magnitude spectrum is warped using a bank of symmetric, triangular filters spaced uniformly on a mel-scale. Filter bank analysis sums

together the multiplication of each filter by the spectrum and is used to both reduce the number of spectral coefficients and model the human perception of speech. The mel-scale is also popular because of its mathematically simple representation. There are several 
approximations of the mel-scale, but the most common is  
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Where Fmel is the frequency in mels and Fin is the input frequency in Hertz (Quatieri 2002). Although species vary in their perceptual scale, the avian auditory system shows a similar logarithmic frequency characteristic to humans (Trawicki et al. 2005), so a mel-frequency filter bank can be used as an approximation. More appropriate filters could be developed for each species under study through an examination of their psychoacoustics, for example the par-scale filter bank developed for parrots (Skripal 2006). 

A sequence of filter bank energies that give an adequate representation of the spectrum are produced as a result of filter bank analysis.

Logarithm

Logarithmic compression is applied to each mel-spectral vector to approximate the relationship between the intensity of sound and its perceived loudness in the human auditory system (Toh et al. 2005).
Discrete cosine transform

The filter bank energies give a good representation of the spectrum but since they are correlated with each other they are transformed into the cepstral domain using an inverse Fourier transform, the discrete cosine transform (DCT). There are several versions of the DCT, a common one is given by
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xt is the sequence of filter bank energies, and M is the number of filter bank energies (Furui 2001). In the cepstral domain the lower order coefficients represent the spectral envelope (vocal tract) information, while the higher order coefficients contain source information (Mashao & Skosan 2006). 

Linear Prediction Cepstral Coefficients

The term linear prediction (LP) was first used for speech analysis by Itakura and Saito (1968) and Atal and Schroeder (1968). The principle of LP is that a time series, e.g. speech, can be approximated as a weighted linear combination of past samples. Thus a speech sample, 
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where t is the time index, p is the prediction order, and ai are the predictor coefficients (Farrell et al. 1994; Quatieri 2002). In addition to predicting a systems output, LP can also be used to model the system itself (Parsons 1987). 

LP is based on the speech production model in which the characteristics of the vocal tract can be modelled by an all-pole filter (Ramachandran et al. 1995; Wong & Sridharan 2001). LP coefficients are the coefficients of the all-pole filter and are equivalent to the smoothed envelope of the log spectrum of speech (Wong & Sridharan 2001). When the order of the model is chosen correctly, the all-pole model approximates the high energy concentrations in the power spectrum of a speech signal and smoothes out the finer harmonic information and other spectral details that are less relevant (Hermansky 1990). It is the high energy spectral areas that correspond to the resonant frequencies (formants) of the vocal tract (Hermansky 1990), and hence in this way the source and vocal tract information can be separated. 

Once obtained, the LP coefficients can be used by themselves or converted into various feature vectors such as the reflection coefficients or cepstral coefficients. Comparisons of these features have found that the linear prediction cepstrum coefficients (LPCCs) give the best results for speaker recognition (Atal 1974; Zilovic et al. 1998; Ramachandran et al. 2002). The spectral envelope derived from the LPCC is much smoother than one from the LP coefficients and thus is more stable between utterances (Furui 1997; Figure 2.3).

The LPCCs, cn, are obtained from the predictor coefficients through the recursive relationship

     c1 = a1
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    1<n≤p
where cn and an are the nth-order cepstrum coefficient and linear prediction coefficient respectively and p is the prediction order (Furui 1981).
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Figure 2.3 Spectral envelopes (from Furui 2001)
The LPCCs have been used extensively as features for speech and speaker recognition because of their computational simplicity and improved performance over other features derived from the LP coefficients (Atal 1974). LPCCs also have the advantage of being less computationally expensive than Fourier transform cepstral analysis, since there is no need to carry out a Fourier transform to convert speech from the time to the frequency domain, and they follow the spectral peaks of a speech signal more closely than does a spectral envelope derived from the Fourier transform cepstrum (Furui 2001). As a result, they were the feature of choice for many years (Farrell et al. 1994), until the late 1990s when, with an increase in computing power, cepstrum coefficients derived from the frequency spectrum became popular (Mashao & Skosan 2006). LPCCs have the disadvantage of being highly sensitive to noise and channel effects and hence losing robustness under mismatched training and testing conditions (Mammone et al. 1996; Ramachandran et al. 2002). In addition, they approximate speech linearly at all frequencies, which is inconsistent with human perception, and they include high frequency information from the speech signal, which mostly contains noise (Wong & Sridharan 2001). The MFCCs have been found to give improved performance over the LPCC, particularly under noisy conditions (Davis & Mermelstein 1980; Gong 1995).
Perceptual Linear Prediction Cepstral Coefficients

Although MFCCs are the most popular feature for speech and speaker recognition, perceptual linear prediction (PLP) coefficients have also been shown to be highly effective (Hermansky 1990; Vuuren 1996). PLP incorporates human perceptual information, similar to the MFCCs, but also uses linear prediction. The perceptual information included in the PLP model differs from that in mel-frequency cepstral analysis in that it stresses perceptual accuracy over computational efficiency. PLP analysis has been shown to give improved performance over both LPCCs and MFCCs for speech and speaker recognition tasks, particularly in the presence of noise (Hermansky 1995; Indrebo et al. 2005), although some experiments on speech recognition have found MFCCs perform better than PLP (Cosi et al. 2000; Milner 2002). The ability to incorporate information about the auditory ability of the species being studied means that PLP, and in particular the generalised PLP put forward by Clemins (2006), may prove to be better suited for non-human species.

PLP was developed by Hermansky (1990), and incorporates three psychoacoustic concepts: critical band spectral analysis, the equal loudness curve, and the intensity power law. Once these modifications have been carried out in the frequency domain, the LP coefficients are calculated to form a new speech feature (Pool 2002) and a conversion to cepstral coefficients can then be applied as for LP. The feature extraction model for PLP is depicted in Figure 2.2, with a comparison to LPCC and MFCC extraction. Each step is discussed in further detail below.

Windowing
Framing and applying a window to each frame is carried out as for obtaining the MFCCs. Typically a Hamming window is used, with frames of 20-30 ms duration.

Spectral analysis
A short-term power spectrum is obtained by applying a power spectrum estimation technique, most commonly a fast Fourier transform, to each speech frame.

Critical band analysis
Critical band analysis consists of two phases. Firstly, warping the power spectrum along the Bark scale and secondly, convolving the result with a critical band masking curve.

Frequency warping is carried out as for MFCC analysis, whereby the frequency axis is warped along a scale based on human perception. PLP analysis differs in that the Bark scale, rather than the mel-scale, is used. The Bark frequency, Fbark, (Quatieri 2002) can be determined from the input frequency in Hertz, Fin, using
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After warping, the spectrum is multiplied by a series of filters. The filters of the critical band masking curve used in PLP differ from the triangular filters used in MFCC analysis because the filters are perceptually shaped to simulate human perception (Hermansky 1990; Milner 2002). The filters are asymmetrical and flat-topped, with wider skirts on the low frequency side, which models the knowledge from human perceptual studies that low frequencies mask higher ones (Hermansky 1995). The filters thus effectively compress the higher frequencies into a narrow band. Using these perceptually shaped filters is more computationally expensive, but they better approximate human perception.

Equal loudness normalisation
Humans have an unequal sensitivity across frequencies and so equal loudness normalisation is used to compensate for the different perceptual threshold at each frequency (Clemins 2005). A common approximation of the equal-loudness curve, E(ω), (Hermansky 1990) is 
given by 
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This is used as a preemphasis function to scale the critical band power spectrum. Preemphasis in PLP analysis differs from mel-frequency cepstral analysis because it is carried out in the frequency rather than the time domain (Milner 2002).

Intensity-loudness power law
This step models the non-linear relationship between the intensity of sound and its perceived loudness (Hermansky 1990). In MFCC analysis, logarithmic compression of the mel-scale filter bank energies is applied, while in PLP a cube root compression of the critical band energies is used (Milner 2002). Together with the equal-loudness normalisation, cube root compression reduces the spectral amplitude variation of the critical band spectrum (Pool 2002). As a result the spectrum can be accurately modelled by an all-pole autoregressive model of low order in the next step (Hermansky 1990).

Linear predictive analysis
Linear predictive analysis, using autoregressive modelling, and cepstral domain transformation are used to transform the perceptually modified filter bank energies into more mathematically robust features. While MFCC analysis computes the cepstral coefficients directly from the log mel-filter bank through a DCT, PLP converts the signal back to the time domain through the use of an inverse Fourier transform, and then calculates the predictor coefficients using linear prediction (Pool 2002). An all-pole autoregressive model is used to smooth the spectrum and reduce the number of coefficients (Clemins 2005).

Cepstral domain transform

As for LP, the PLP coefficients can be used by themselves or converted into more robust features, principally the cepstral coefficients. The autocorrelation coefficients from the all-pole modelling are converted to cepstral coefficients as for LP, using the recursive equation, and subsequently used as the feature vectors for classification (Milner 2002).

Classification

Once individually distinct features have been extracted from a signal, a classifier is used to distinguish between the feature sets and obtain a model for each individual (training phase; Figure 2.1). It is then used to compare new input features with the stored reference templates to make a decision about identity (testing phase; Farrell 2000; Furui 2001). It requires a classifier containing the various signal models, plus a decision logic. Classification tasks can consist of either identification or verification (Campbell 1997). Identification occurs when an input signal is compared against a library of template signals from known speakers and the best match is selected as the identity of the speaker (Furui 1997). Verification is used solely to verify the claimed identity of a speaker based on samples of that individual’s voice. Verification compares the two signals and either accepts or rejects the claimed identity (Furui 1997). Identification is the most useful task in relation to animal identification since it can determine the identity of a recorded individual. Verification would generally have little use in animal recognition tasks since an animal cannot normally claim an identity. However, there are circumstances where verification could be used. For example, identity could be claimed in species that have high territory fidelity and used to confirm that the same individual occupies a particular territory each year. Verification has the advantage over identification of not being affected by an increase in the number of individuals requiring verification. However, unlike identification, if the territory-holder was replaced, the identity of the newcomer would not be known. Identification techniques are used throughout this thesis.
The setup of a classifier is further determined by whether a task is open or closed set and text (call)-dependent or text (call)-independent (Campbell 1997). A closed set problem is one in which the input signal is known to belong to one of the individuals in the library of known signals. Since animal populations are rarely closed (due to immigration and births) acoustic identification is likely to be an open set problem in which the input signal may not belong to any known individual and thus a ‘none of the above’ category is necessary as a possible outcome (Furui 1997; Ramachandran et al. 2002). A text-independent task occurs when the words or sounds used during training are different from those used during testing. Classifiers that incorporate text-specific information, for example temporal information, during training and testing are therefore not suitable for text-independent tasks.

The most common classifiers used for speaker recognition are dynamic time warping, vector quantization, hidden Markov models, Gaussian mixture models and artificial neural networks. Dynamic time warping and hidden Markov models include temporal information and therefore are best suited for text-dependent recognition. The most commonly used classifiers for text-independent identification are Gaussian mixture models and artificial neural networks. 

A multilayer perceptron neural network was chosen initially for this thesis because of a number of desirable properties they exhibit such as their ability to carry out text-independent identification, their good performance with noisy or incomplete input data, and their ability to generalise (Patterson 1996). However, comparisons with another artificial neural network, a probabilistic neural network, and a Gaussian mixture model are made in Chapter 5. Each of these is discussed in greater detail below
Multilayer Perceptrons

Artificial neural networks (ANNs) are simplified models of the biological central nervous system (Patterson 1996). They consist of highly interconnected networks of computing units, termed neurons, that conceptually correspond to the neurons in a biological neural system. ANNs have the same key features as the biological system, such as a distributed computation mechanism, adaptivity, nonlinearity, and simplicity in the unit computation (Katagiri 2000). The neurons in the network cooperate together to learn the complex mappings between inputs and outputs. The performance of ANNs is still nowhere near that of their biological counterparts, but they have been shown to be effective for a variety of tasks including pattern recognition, associative recall, classification, combinatorial problem solving, and modelling and forecasting (Patterson 1996). Since it is known that the human brain can easily recognise speech and individual voices, applying a classifier that is based on how the brain processes information may confer some benefits to this problem (Mak et al. 1994).

There are a large variety of neural networks, differing in a variety of features such as the interconnectivity of the neurons, the choice of basis and activation functions within the neurons, the choice of supervision, and the method of optimisation. The choice of network depends on the problem to be solved. Multilayer perceptrons (MLPs) are the most common ANN and are used in a variety of speech processing tasks, including speaker recognition (Katagiri 2000). The MLP is a feedforward network consisting of an input layer, one or more hidden layers, and an output layer (Figure 2.4). All the neurons of each layer (except the output layer) are fully interconnected with the neurons of the subsequent layer. The input layer receives the feature vectors and passes them on to the neurons in the hidden layer. It performs no processing itself. As in all neural networks, each neuron consists of two parts, one part for the computation of the basis function and the other for computation of the activation function. The connections between neurons are associated with a weight factor (Figure 2.5). The basis function unit receives the input signal, either from an input to the network or the output of another neuron, and computes the input signal to the activation function unit through a summation of the weights and input signals
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where wkj is the weight factor of the connection between neurons j and k, and xj is the output value of neuron j of the previous layer (Katagiri 2000). There are several activation functions, with the sigmoid function being the most common for MLPs. The final output of the neuron, yk, which is either the final output of the network or the input to another neuron (Katagiri 2000), is given by
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where φ is the activation function.

MLPs are supervised networks using the backpropagation training algorithm, which iteratively adjusts the hyperplanes in the feature space to best separate the classes. This is achieved by modifying the weights during the training phase in order to minimise the mean squared error between the observed and expected outputs of the network (Reby et al. 1997). Training continues for a set number of iterations or until the error reaches a predetermined minimal point. There is no set rule for determining network size (the number of layers and number of neurons per layer), which must be determined experimentally.

Once trained, the values of the weights are stored for use during the testing phase. In the testing phase feature vectors of unknown identity are fed into the network and the correct output should yield a response of one while the incorrect outputs should be zero. Identity is then determined based on the maximum accumulated output.
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Figure 2.4 Multilayer perceptron structure
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Figure 2.5 Model of a neuron

MLPs have been found to give comparable results to other methods such as vector quantization and hidden Markov models (Oglesby & Mason 1990; Farrell et al. 1994; Katagiri 2000). They also have the benefit over classifiers such as GMMs in that they learn to discriminate between the classes directly, rather than simply training an individual model for each speaker (Yue et al. 2002). This increases efficiency since only a small number of parameters are required. In addition, unlike linear classifiers, they are able to classify input regions that intersect each other or are disjoint (Figure 2.6; Oglesby & Mason 1990; Mak et al. 1994). Disadvantages of MLPs are that the computational cost of training and testing increases almost exponentially as the population size increases (Schwartz et al. 1982), making them unsuitable for large populations. In addition, during training the network can get trapped in a local error minimum rather than reaching the global optimum, resulting in a poorer performance (Farrell et al. 1994; Mak et al. 1994), and there are many variables (e.g. the number of hidden layers and neurons) that can only be determined through a time consuming trial-and-error process. Because they train by discriminating between the speakers, it also means that adding new speakers to the system requires complete retraining of the network (Bennani & Gallinari 1995), although these problems can be overcome to some extent through the use of modular architectures.
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Figure 2.6 Decision regions formed by single and multilayer perceptrons (from Lippmann 1987)
Probabilistic Neural Networks

Probabilistic neural networks (PNNs) were developed by Specht (1990). They are three layer, feed-forward networks used for the classification and mapping of data (Figure 2.7). Unlike the heuristic approach of MLPs, PNNs are based on well established statistical principles derived from Bayesian statistics. The PNN estimates the probability of class membership by learning to approximate the probability density functions (pdfs) of the training data (Picton 2000). As a result, PNNs are able to make classification decisions in accordance with the Bayes strategy for decision rules, and they provide probability and reliability measures for each classification (Zaknich 2003).

The pdf of a particular class in the pattern space is approximated from the sum of kernel functions, typically Gaussian in shape, based on Parzen window estimation (Patterson 1996). A kernel function is centred on each piece of data from a class in the training set, and so the resulting sum of kernel functions is a good approximation of the overall probability density of that class (Picton 2000). The pdf for a class is approximated using
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where Pk is the number of training vectors in class k, n is the number of inputs, xkj is the centre of a Gaussian function corresponding to training vector j in the data set belonging to class k (Picton 2000). In simple terms, this equation represents that the sum of the Gaussians is averaged and a weighting factor is applied. The weighting factor consists of constant terms plus the smoothing factor, or spread, σ. The spread determines the standard deviation of the Gaussian functions. Too small will lead to over-fitting and a reduction in generalisation, while too large will smooth out the details and result in over-generalisation (Picton 2000). An appropriate value is found through experimentation, although PNNs are not too sensitive to the precise choice of spread (Patterson 1996).

The neurons in the pattern layer of the PNN consist of one neuron per piece of training data. Each neuron in the pattern layer is connected to each neuron in the input layer. The summation layer consists of one neuron for each data class. Each neuron in the summation layer has a weight of 1, and a linear output function, so it adds together the outputs from the hidden layer that correspond to data from the same class. This output represents the 
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Figure 2.7 Probabilistic neural network structure (modified from Picton 2000)
probability that the input data belongs to that class, and the final classification decision is based on the neuron in the summation layer with the largest value (Picton 2000).

The greatest advantage of PNNs is the training speed. Training consists principally of copying the training data into the hidden neurons of the network and hence is close to instantaneous. This is particularly advantageous if the network must be retrained often. Other advantages are that the network is tolerant of outliers and can give good accuracy even with sparse data (Zaknich 2003). Disadvantages of PNNs are that they require large numbers of neurons, to contain the entire set of training data, which leads to increased complexity, higher computational and memory requirements, and slow classification of new data (Ganchev et al. 2002).

Gaussian Mixture Models

Unlike the previous classifiers, Gaussian mixture models (GMMs) are not ANNs, but they are similar to PNNs in that they are statistical classification systems that use parametric probability density functions. GMMs use multi-modal Gaussian distributions to represent a speaker’s voice and vocal tract configuration (Chen et al. 2004), making them capable of modelling arbitrary distributions. They are currently the dominant method of modelling and classifying speakers in speaker recognition tasks (Mashao & Skosan 2006). 

Speech that is produced, even by the same speaker, is never produced with exactly the same vocal tract shape and glottal flow. The variability in the feature vectors extracted from the speech can be represented probabilistically through a multi-dimensional Gaussian probability density function (Quatieri 2002). The Gaussian pdf is state-dependent, whereby a different pdf is assigned to each acoustic class, such as a specific sound type or a class of sounds, e.g. voiced sound (Quatieri 2002). The GMM attempts to model the distribution of feature vectors for a speaker through a linear combination of Gaussian pdfs, where the mixture density of feature vector x is defined as
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where M is the number of mixtures, wm is the mixture weight, and the mixture component bm(x) denotes a Gaussian density function parameterised with a mean vector
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, as illustrated in Figure 2.8 (Hong & Kwong 2005; Mashao & Skosan 2006). Given an adequate number of mixtures, a GMM can model any arbitrary distribution (Clemins 2005).
During training, the feature vectors from each speaker are used to estimate the parameters of the mixture density (i.e. the weights and the mean vectors and covariance matrices of the individual Gaussian densities) (Ramachandran et al. 2002). The parameters are most commonly estimated using maximum likelihood estimation (MLE) which is achieved using the expectation maximisation (EM) algorithm (Ramachandran et al. 2002). The EM algorithm improves on the GMM parameter estimates by increasing the probability that the model estimate matches the observed feature vectors (Quatieri 2002). Using the EM algorithm, initially the data are partitioned into clusters, either randomly or via a clustering algorithm. Then an initial model can be obtained by estimating the parameters from the clusters. The proportion of feature vectors in each cluster gives the prior weights, and the means and covariances are estimated from the vectors in each cluster (Gish & Schmidt 1994). The feature vectors are then reclustered by choosing the term with the maximum likelihood from the estimated mixture model. This process is repeated until the model parameters converge to a local maximum (Gish & Schmidt 1994). The MLE method is advantageous because of its simplicity, but this method models each speaker separately. As a result, when speakers are similar or there are little training data GMMs may give poor performance (Hong & Kwong 2005). 

During testing, a likelihood function is used to determine the match between the mean and covariance of the test and training data (Gish & Schmidt 1994). Most commonly the maximum a posteriori probability classification is used, in which the probability of each speaker model is determined and the speaker with the highest probability is determined to be the correct identity (Quatieri 2002).

Figure 2.8 A Gaussian mixture model, demonstrating how the probability density function (pdf) consists of the combination of mixtures in the feature space (modified from Quatieri 2002)
GMMs are unsupervised classifiers in which the model of each speaker is generated as a sum of the Gaussian mixtures for that speaker only (Farrell et al. 1994; Ramachandran et al. 2002). Unsupervised classifiers have the advantage of being computationally simpler than supervised classifiers, and they do not require retraining when a new speaker is added to the database (Ramachandran et al. 2002). GMMs are also of particular use when using cepstral coefficients because the cepstrum’s density is well modelled by the multivariate Gaussian densities (Gish & Schmidt 1994). GMMs are also computationally efficient and simple to implement, even in real-time tasks (Hong & Kwong 2005).

Conclusion

As noted at the start of this chapter, my goal was to outline the mechanics and logic of the various feature extraction and classification techniques used later in this thesis. This review gives relevant detail on the methods used in this thesis, as well as to explain why those particular methods were chosen, and establishes their relevance to individual identification using bird song. 
Chapter 3.  Call-independent individual identification in birds

Abstract
Methods normally used for acoustic individual identification can only compare a single song type, both within and between individuals, to determine identity, i.e. they are call-dependent. Call-independent identification does not involve direct comparison of a particular song type. It can therefore be carried out regardless of the amount of song sharing between individuals, or changes in an individual’s repertoire over time. This wide applicability radically expands the range of situations in which acoustic individual identification can be used. Text-independent recognition is routinely conducted on human speech and in this paper the same techniques, using mel-frequency cepstral coefficients and multilayer perceptrons, were applied to bird song. Call-independent identification accuracies ranged from 54.3-75.7% in three passerine species. To suit bird song better, I modified the feature extraction methods and neural network architecture, resulting in accuracies of 69.3-97.1%. A comparison of call-dependent and call-independent identification showed little difference in accuracy for two species, while the third species had a lower accuracy for the call-independent identification. Our results demonstrate that individual identification from bird song can occur even when direct comparison of a particular song type is not possible.

Introduction
Acoustic individual identification can be a very useful tool for the study and monitoring of animal species. It enables individual identification in species that cannot easily be marked using traditional methods, and it increases animal welfare by preventing the need to capture and mark each animal (Terry et al. 2005). Acoustic individual identification has been used in many taxa, including fish (Crawford et al. 1997), amphibians (Bee et al. 2001; Rogers 2002), birds (Galeotti & Sacchi 2001; Peake & McGregor 2001; Terry et al. 2005) and mammals (Campbell et al. 2002; Darden et al. 2003). It is particularly useful in birds since acoustic communication is the primary form of communication, and recordings of the loud territorial songs are often simple to obtain. Current methods of acoustic individual identification (e.g. discriminant function analysis, spectrographic cross-correlation) only work through the direct comparison of a particular song type, which restricts these methods to being used in species that have extensive song sharing between individuals and little individual variation in songs over time (Rogers & Paton 2005). In many bird species, particularly oscines, there is little song sharing between individuals and/or each individual changes its vocal repertoire over time (Williams & MacRoberts 1978; Berryman 2003; Rogers 2004; Walcott et al. 2006). This means that direct comparison of a particular song type is often not possible. 

Fox et al. (2006) suggested individual identification was possible in animals, regardless of changes to an individual’s calls or the amount of sharing between individuals, by using methods borrowed from human speaker recognition. The most common human speaker recognition methods consist of extracting cepstral coefficients from a speech signal. The source-filter model of speech production states that a speech signal consists of a source sound modified by the vocal tract which acts as a filter (Furui 2001). These features are convolved in the time domain, but by converting to the cepstral domain the features become additive and are therefore easily separated (Furui 2001). This is important since it is the vocal tract filter, rather than the source sound, that contains the majority of the individually specific features of a person’s voice (Quatieri 2002). The vocal tract filter information remains fairly stable across all the sounds produced, plus the cepstral coefficients are extracted from multiple short segments of a signal. Thus they reflect individual rather than word differences and can be used for text-independent recognition in which different words are used during the training and testing phases. Since cepstral analysis is based on the source-filter model of speech production, the same methods are applicable to other sounds that are produced at a source and modified by a filter. This includes animal vocalisations (Lieberman 1969; Nowicki & Marler 1988; Clemins et al. 2005; Trawicki et al. 2005) and even musical instruments (Eronen 2001).

Human speaker recognition techniques, using cepstral coefficients as the features and hidden Markov models as the classifier, have recently been applied to a few animal species for the purposes of call-dependent individual identification, i.e. the same call type used for both training and testing (e.g. Clemins et al. 2005; Trawicki et al. 2005). Fox et al. (2006) demonstrated that similar techniques can also successfully be used for call-independent identification in birds, resulting in 71-96% identification accuracy. However, the methods of feature extraction and classification used in that paper were those typically used for human speaker recognition. Variations in these methods to better suit bird song may result in improved identification rates. The aim of this paper is to determine the methods of feature extraction and classification which give the best identification accuracy for call-independent individual identification using bird song. There is expected to be little difference in the methods that give the best identification results across species, and as a preliminary test of this, the results from three passerine species were compared. The three species vary in song complexity and the amount of variation between different song types. Finally, the results for call-independent identification were compared to those obtained for call-dependent identification.

Methods
Data set

Songs from seven individuals from each of three passerine species were recorded: willie wagtails (Rhipidura leucophrys), singing honeyeaters (Lichenostomus virescens) and common canaries (Serinus canaria). A single recording of the songs of each individual was made on a single day over a period of between 15 minutes and three hours. Willie wagtails were recorded at Herdsman Lake Regional Park (31º 55' 44"S 115º 48' 02"E) near Perth, Western Australia between 0430 and 1130 hours. Singing honeyeaters were recorded before sunrise, between 0300 and 0500 hours, from street verges in the suburb of East Victoria Park, Western Australia. Canaries were recorded in the laboratory, in an anechoic room, with the microphone placed 10 to 30 cm from the cage in which the canary was housed. Recordings of the wagtails and honeyeaters were obtained by either placing the microphone near a known singing perch or holding the microphone whilst standing 2 to 10 m from a singing bird. All recordings were made with a Sony ECM-672 unidirectional microphone and a Marantz PMD 670 solid state recorder at a sampling frequency of 48 kHz. All recordings were high-pass filtered, using the filter tool in Cool Edit Pro v2.1 (Syntrillium Software Corporation), to remove low frequency background noise. The filter was set at 500 Hz for canaries and 700 Hz for wagtails and honeyeaters. Silent (non-song) portions of the recordings were removed with Cool Edit Pro’s silence deletion function. Some additional manual deletion was used to remove transient noise and songs with very poor recording quality.
Feature extraction and classification

Acoustic individual identification consists of three steps: feature extraction and then training and testing using a classifier. Mel-frequency cepstral coefficients (MFCCs) were extracted from each recording and fed into an artificial neural network classifier: a multilayer perceptron. MFCCs are the most commonly used spectral features in human speaker recognition. They are popular because they tend to be uncorrelated, are computationally efficient, incorporate human perceptual information, can be used for text-independent recognition, and they have been shown to have some resilience to background noise (Quatieri 2002; Clemins 2005). MFCCs are obtained by splitting the signal into short, overlapping frames (typically 20-30 ms) and multiplying each frame by an analysis window, typically a Hamming window (Figure 3.1). The window serves to minimise the signal discontinuities at the edge of each frame and the frames are overlapped to create finer temporal resolution. A Fourier transform is then applied to the windowed signal and the resulting spectrum is multiplied with a mel-scale filter bank which is an approximation of the human perception of sound. Although avian species have a different perceptual scale from humans, the mel-scale can still be used as a rough approximation (Trawicki et al. 2005). The logarithm is then taken and a discrete cosine transform is used to transform the filter bank energies to the cepstral domain (Clemins et al. 2005).
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Figure 3.1 MFCC block diagram

Multilayer perceptrons (MLPs) are non-linear classifiers which use supervised learning to learn the complex mappings between inputs and outputs (Farrell et al. 1994). They consist of an input layer, one or more hidden layers, and an output layer, all containing multiple neurons that are interconnected with the neurons of the subsequent layer (Reby et al. 1997). Operation of the classifier consists of two phases: training and testing. In the training phase, the feature sets are used to obtain a model for each individual, with the classifier learning to discriminate between the models. In the testing phase, the feature set from an unknown signal is compared with each model to obtain a score. These scores are then used to make a decision on the identity of the signal. The MLP is the most frequently used neural network for speaker recognition tasks and has the desirable properties of learning to discriminate between the classes directly and, unlike linear classifiers, can classify input regions that intersect each other or are disjoint (Oglesby & Mason 1990; Mak et al. 1994).

Feature extraction and classification were carried out in Matlab 6.5.1 (The Mathworks Inc.) using the Neural Networks Toolbox 4.0.1 and Voicebox (Brookes 2002). In all experiments, each recording used for training the neural network was split into training and validation segments. When training a neural network, the greater the amount of training the better the network fits to the training data, but at a certain point the network will begin to overfit the training data and lose its ability to generalise (Gurney 1997). To prevent this, early stopping was used in the training of all networks. Early stopping involves a validation set being tested against the network while it is training and once the error of the validation set begins to increase (indicating that the network is losing its ability to generalise) training is stopped. In all experiments classification was carried out as a closed set task, in which each test was assumed to belong to one of the known birds and assigned to the closest match.

Experiment 1: Call-independent identification using default values

All recordings were split into their constituent song types, with the classification of song types based on a visual inspection of spectrograms. The two most common song types from each individual were used for training and testing. The more song types present in the training set, the greater the accuracy should be since more of the individual variation is being modelled, and there is a greater chance of some of the sounds used in the training set being similar to those in the testing set. Only two song types were used in this study simply to demonstrate that even under the most extreme case of having only one song type for training and a different one for testing, the individual can still be identified.

From one song type the first 10 s was used for training and the second 10 s was used for validation of the MLP. From the second song type 10 s for wagtails and honeyeaters and 20 s for canaries was used for testing the trained MLP. More tests were carried out for the canaries as there were more data available for this species. Test lengths of 5 to 20 seconds are typical in human speaker recognition tasks (e.g. Rudasi & Zahorian 1991; Altincay & Demirekler 2003; Hong & Kwong 2005). The classifier returned a result for each frame of the test data, giving the likelihood that the test frame belonged to each of the individuals it was trained with. These results were then summed over one second lengths with identity being assigned to the class returning the highest score. This resulted in 10 tests being carried out for each wagtail and honeyeater and 20 tests for each canary. The resulting accuracy is the percentage of these tests that were correctly assigned out of the total number of tests. A separate MLP was trained and tested for each species.

A single song (with all the silence between notes removed) lasted from 0.3 to 7.1 seconds for the three species. The 10-20 s lengths of recording used for training and testing therefore consisted of the concatenation of several songs from each individual. Depending on the singing rate of the individual, a total of 30-40 s of song, after the silence was removed, equated to approximately 15-40 minutes of original recording time.

There are many variations in neural network architecture and feature extraction that can influence the results obtained. For Experiment 1 values were taken from the literature, as used in human speaker recognition (e.g. Farrell et al. 1994; Mak et al. 1994; Reynolds 1995; e.g. Altincay & Demirekler 2003). These were: one hidden layer in the MLP containing 15 neurons, log-sigmoid transfer functions, 0.1 learning rate, 0.9 momentum, 12 MFCCs extracted from 20 ms frame lengths with 50% overlap, 10 s training length, and preemphasis was not used.

Experiment 2: Modification of feature extraction methods and network architecture

The same data were used as for Experiment 1, but seven variables related to the feature extraction methods and neural network architecture were altered to determine the values that gave the best identification accuracy when using bird song. The altered variables are described below:

1) Number of hidden layers in the MLP: Increasing the number of layers in the MLP increases the complexity of the decision boundaries that can be made between classes. However, networks with more than two hidden layers are rarely used because the training time increases significantly as the number of layers increases, plus in theory a network with two hidden layers should be able to produce decision regions of any shape (Rahim 1994). The identification accuracies obtained when using one and two hidden layers were compared.

2) Number of neurons in the hidden layer of the MLP: Too few neurons creates a high generalisation error due to underfitting of the data (i.e. too loosely fitting the information), but too many neurons also creates a high generalisation error due to overfitting of the data (i.e. modelling the information too precisely). Underfitting is prevented by increasing the number of neurons while overfitting can be prevented by using early stopping. Typically 5-60 neurons are used for human speaker recognition (Rudasi & Zahorian 1991; Farrell et al. 1994; Yue et al. 2002) and this range was tested with bird song.

3) Number of MFCCs: Usually 12 to 15 MFCCs are used in human speaker recognition since it is these lower order MFCCs that contain the vocal tract information (Reynolds 1995; Altincay & Demirekler 2003; Hong & Kwong 2005). The higher order MFCCs contain information on source-related features that are less useful for human speaker recognition. Source information may be important in bird song because of the strong harmonic content, so a wider range of MFCCs, from 5 to 60, were extracted to compare the identification accuracies. 
4) Preemphasis: The energy in a speech signal decreases as the frequency increases, so preemphasis is typically applied to normalise the spectral tilt by increasing the energy of the higher frequencies. This is necessary to prevent the cepstral transform from ignoring the higher frequencies. Preemphasis was performed using the high-pass filter
H(z) = 1 – αz-1
with α set at the typical value of 0.95 (Furui 2001).

5) Adding log energy and delta coefficients to the feature set: MFCCs can be used as features either by themselves or in combination with other features which may further improve the identification accuracy by increasing the amount of individual information that the classifier can use for identification. Features that are commonly added to the MFCCs are log energy and the delta coefficients. Log energy gives information on the spectral energy and the delta coefficients incorporate dynamic (velocity) components.
6) Frame length: The length of the frame over which features are extracted is based on a trade-off between time and frequency resolution. The frame needs to be short enough to capture transient phenomena, but long enough to give good spectral resolution and gather information on stationary segments such as individual harmonics and resonances (Furui 2001). Frames of 20-30 ms are typically chosen for human speaker recognition (Gish & Schmidt 1994; Ramachandran et al. 2002; Altincay & Demirekler 2003), while frames of 300 ms were used for elephant calls because of their low frequency (Clemins et al. 2005). Frame lengths for bird song are expected to be similar to those used for human speech, but lengths of 5-60 ms were tested to confirm this.
7) Training length: The greater the amount of data used to train a classifier, the more accurately it will be able to create models and discriminate between the classes. However, the amount of data available for training is limited by how easily it can be obtained, plus as the amount of training data increases the amount of time it takes to train the classifier will also increase. Up to several minutes of signal have been used for training in human speaker recognition, but usually less than 20 s are used. This test was limited for the three bird species by the amount of available data, which meant that 5 -10 s training data was available for the honeyeaters, 5 - 20 s for the wagtails, and 5 - 30 s for the canaries.
The values were set at the default values (as for Experiment 1) and were tested one at a time in the order listed above. The value that gave the best identification accuracy was retained and the next variable in the list was then tested. This may create a bias in the results, based on the order in which the values were tested, but it was simply not possible to carry out the hundreds of tests required in order to test all possible combinations. 

Experiment 3: Comparison of call-independent and call-dependent identification

Using the variables that gave the best identification accuracies in all three species as determined in Experiment 2, a MLP for each species was trained with one song type from each individual. This network was then tested with a different song type to give the call-independent identification accuracy and tested with the same song type (from a different part of the recording than used for training) to obtain the call-dependent identification accuracy. For the call-independent identification, 10 tests were carried out for each wagtail and honeyeater and 20 tests for each canary. The same was carried out for the call-dependent tests, except for the honeyeaters in which only between four and ten tests were available for each individual

Results
Vocalisations

All three species produce loud and distinct songs. The frequency range is approximately 700-7000 Hz for canaries, 900-3000 Hz for honeyeaters, and 900-6000 Hz for wagtails (Figure 3.2). Willie wagtails and singing honeyeaters each produce several distinct song types with strong harmonics, with some song sharing between neighbouring birds. Canaries differ in that their songs consist of strings of individual syllables sung in varying order. Since whole songs rarely consist of the same syllables, a song type was taken as being a frequently produced string of 1-8 (usually 4) syllables. Different syllables in canary song can vary dramatically in frequency range and strength of the harmonics (Figure 3.2).

Experiment 1: Call-independent identification using default values

When using methods and values for feature extraction and network architecture taken from the literature that are typical of human speaker recognition, accuracies of 72.9% were obtained for willie wagtails, 54.3% for canaries, and 75.7% for singing honeyeaters (Figure 3.3a). 
Experiment 2: Modification of feature extraction methods and network architecture

1) Number of hidden layers in the MLP: Using two hidden layers showed no improvement in identification accuracy over a single layer for any of the three species.

2) Number of neurons in the hidden layers of the MLP: An asymptote was reached at 20 neurons for wagtails and canaries and 30 neurons for honeyeaters (Figure 3.3b). Twenty neurons was chosen as the best result for all three species.

3) Number of MFCCs: In all three bird species an asymptote was reached at 30 MFCCs (Figure 3.3c).

4) Preemphasis: A decrease in accuracy of 1.4% to 21.4% was found in the three study species when preemphasis was applied. 
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Figure 3.2 Example of the spectrograms of different song types used for call-independent training and testing for a) willie wagtail, b) canary, c) singing honeyeater

5) Adding log energy and delta coefficients to the feature set: When these features were combined with the MFCCs, the results varied between the three species (Figure 3.3d). Both added features decreased accuracy in the wagtails and honeyeaters, while log energy increased accuracy slightly and delta coefficients had no effect in the canaries. Since the greatest increase in accuracy was 1.4%, for adding log energy to the extracted features for the canaries, combining these features gives little, if any, improvement in accuracy.

[image: image24.jpg]100 A o 9
CySr—

) e o
s Getautvales) | | 3 20 ¥
5o e —— auFce g
£ ouetraan) | £ e
& cabsspancent | | § owce + deta

= = Costitants

o L o

wagal ooy oneyester [ —

w1 . Dl | r— B]
g = U s g = . 2
Teletie oL i R .. 3| [rvem
g0 1 canary = canary
ER 4 honeyeater g |4 honeye ater
& 5 <

o o
o = @ o = @
#nautons fometengh(ns)

[ — o 100 f)
= L =
;o1 £, i i " : = ] ]

Y] Sua o [ S w] . - Vwal
£, = canary H a caray
3. 4 honeyeater g % & honeyeater
& <
o o
o = @ o o om w @
urcc

aiing ength 25)





Figure 3.3 a) Call-independent and call-dependent identification accuracies b) number of neurons, c) number of MFCCs, d) additional features, e) frame length, f) training length

6) Frame length: A frame length of 20 ms gave the best identification accuracy in all three species (Figure 3.3e).

7) Training length: Although the greater the amount of training data the greater the identification accuracy, 10 s appears adequate in these species to give a satisfactory result (Figure 3.3f).
The best feature and network architecture variables were: one hidden layer with 20 neurons, 30 MFCCs, no preemphasis, MFCCs only as the features, 20 ms frame length, and 10 s training length. 

Experiment 3: Comparison of call-independent and call-dependent identification

A MLP trained with the features and network architecture as determined above gave an increase of 15.0% to 21.4% over the results obtained using default values, resulting in call-independent identification accuracies of 94.3% for willie wagtails, 69.3% for canaries, and 97.1% for singing honeyeaters (Figure 3.3a & Table 3.1). These data clearly demonstrate individual identification is based on voice characteristics, not song type characteristics, since several song types were used for both training and testing in different individuals for the willie wagtails. For example, song type B was extracted from the recordings of wagtails 2 and 7 and used during the training of the neural network. Song type B was also extracted from the recording of wagtail 6 and used during the testing phase, during which the network accurately assigned this song type to the correct individual rather than to the same song type (Table 3.1a).

When call-dependent identification was carried out using the same trained network, the accuracy was 97.1% for willie wagtails, 98.6% for canaries, and 96.5% for singing honeyeaters (Figure 3.3a). Call-dependent and call-independent identification accuracies varied little for the wagtails and honeyeaters (0.6% to 2.8%), while the call-dependent accuracy was 29.3% higher for the canaries.

Discussion
This study has demonstrated that call-independent acoustic identification is possible in one species from three different passerine families and can result in very high levels of identification accuracy, particularly when the feature extraction methods and neural network architecture are modified to better suit bird song. The ability to carry out call-independent identification with high accuracy solves two major problems associated with the current methods, that can only carry out call-dependent individual identification:

1. it is possible to identify an individual even if it changes its song repertoire

2. it is possible to directly compare different individuals even if they do not produce (or are not recorded while producing) the same song types. This means that a single classifier can be used to identify all individuals in a population regardless of the amount of song sharing.

Table 3.1 Confusion matrices of call-independent identification results for a) willie wagtails: 94.3% b) canaries: 69.3% and c) singing honeyeaters: 97.1% (e.g. 1G = bird 1, song type G).

	a)
	1 G
	2 B
	3 D
	4 E
	5 E
	6 D
	7 B

	1 E
	9
	1
	0
	0
	0
	0
	0

	2 C
	1
	9
	0
	0
	0
	0
	0

	3 C
	0
	1
	9
	0
	0
	0
	0

	4 G
	0
	0
	0
	9
	1
	0
	0

	5 F
	0
	0
	0
	0
	10
	0
	0

	6 B
	0
	0
	0
	0
	0
	10
	0

	7 C
	0
	0
	0
	0
	0
	0
	10

	
	
	
	
	
	
	
	

	b)
	1 A
	2 C
	3 E
	4 G
	5 J
	6 K
	7 O

	1 B
	8
	4
	0
	1
	0
	2
	5

	2 D
	0
	16
	0
	0
	4
	0
	0

	3 F
	0
	0
	16
	0
	0
	0
	4

	4 H
	0
	0
	0
	20
	0
	0
	0

	5 I
	3
	0
	0
	0
	16
	1
	0

	6 L
	1
	0
	7
	0
	0
	11
	1

	7 P
	2
	0
	6
	2
	0
	0
	10

	
	
	
	
	
	
	
	

	c)
	1 A
	2 C
	3 D
	4 G
	5 I   
	6 I
	7 J

	1 B
	10
	0
	0
	0
	0
	0
	0

	2 K
	1
	9
	0
	0
	0
	0
	0

	3 L
	0
	0
	10
	0
	0
	0
	0

	4 M
	0
	0
	0
	10
	0
	0
	0

	5 M
	0
	0
	0
	0
	10
	0
	0

	6 M
	0
	0
	0
	0
	0
	10
	0

	7 G
	0
	1
	0
	0
	0
	0
	9


Although in this study only a change in song types within a repertoire was examined, it demonstrated that call-independent identification can occur and implies that the same result would be achieved when a change in song types between repertoires was tested. Further research is required to confirm this.
An additional advantage that call-independent identification has over call-dependent identification is that it does not require any manual input to separate the recordings into their different song types prior to analysis. Whole recordings can be fed into the classifier regardless of the song types they contain. This will save considerable amounts of time and effort, something that has made previous studies using acoustic identification impractical (Berryman 2003).

The result of the call-independent identification task on willie wagtails using default values was considerably lower than that reported by Fox et al. (2006) for the same number of willie wagtails. This can be explained by the fact that Fox et al. (2006) used recordings of willie wagtails that were obtained at night and therefore contained considerably less background noise than the recordings of willie wagtails used in the current study, which were obtained during the day. Background noise is known to significantly affect speaker recognition accuracy (Juang 1991).
 Modifying the methods of feature extraction and the neural network architecture was seen to increase the identification accuracy in all three species. Although the specific values of the variables are likely to depend on the dataset used, the fact that very similar results were found in all three species, which differed significantly in song features, recording quality etc., implies that some broad generalisations can be made. These values should therefore be used as the default values in future studies on acoustic identification in passerines, rather than taking values from human speaker recognition research. Most of the variables that were altered remained within the range that is commonly used for human speaker recognition. However, two variables did considerably affect the identification accuracy: increasing the number of MFCCs and not using preemphasis. Typically 12 to 15 MFCCs are used in human speaker recognition because it is these lower coefficients that contain the vocal tract information. Higher coefficients include information on the source sound, so the improved identification using 30 coefficients implies that the source information has important inter-individual content in bird song. This is most likely because of the strong harmonic content of bird song (which is source-dependent information) and the weaker spectral envelope information (the vocal tract information). A similar result was found for singing human voices, with the higher order coefficients (15-32) found to contain at least as much information as the lower order ones (<15). Hence 32 MFCCs were found to give improved results for a singing rather than speaking voice due to the source sound being more invariant than the vocal tract filter (Mesaros & Astola 2005). 

Preemphasis had a detrimental effect on identification rates in all three study species. The α value was set at 0.95, a value typical for human speaker recognition, and changing this value may alter the results. Preemphasis was used for call-dependent individual identification in the Norwegian ortolan bunting (Trawicki et al. 2005) which resulted in 80-95% accuracy, although the alpha value, and whether they compared the results to those obtained without using preemphasis, was not stated.
The lowest call-independent identification accuracy, after modification of the variables, was 69.3% for canaries, although an examination of the confusion matrix shows that for each individual the majority of tests were correctly assigned, so the identity of each individual could still be correctly determined. The lower accuracy in the canaries is most likely due to the large variation between different song types sung by the same individual in this species. This idea is supported by the call-dependent results in which the canaries showed a similar accuracy to the other two species. Individuality of the voice therefore exists in canaries, but is being masked during call-independent identification by the large differences in song type. Other species that have similarly widely varying song types may also show a low identification accuracy for call-independent identification, but in most species different song types are composed of similar notes and syllables and therefore the identification accuracy will remain high, as found for the willie wagtails and singing honeyeaters. In addition, training and testing will often be carried out using a number of different song types, rather than just a single one as tested in this study, allowing more of the individual variation to be modelled and increasing the chance that some of the sounds used in the training set are similar to those in the testing set. This will likely increase accuracy further. However, even a lower accuracy, as obtained for the canaries, can still provide useful information, particularly since identification will often be able to be improved by including information about the location of the singing bird and recording and identifying neighbouring birds that are singing at the same time. 

In human speaker recognition, text-dependent recognition typically gives better results than text-independent since there is much less variation between the speech used for training and testing. It is also possible to incorporate temporal information in text-dependent recognition through the use of temporal features and classifiers such as dynamic time warping and hidden Markov models, thereby increasing how well the extracted features model the individual’s voice. Even though no temporal information was added for the call-dependent experiments in this study, the identification accuracies were very high in all three species. The slight decrease in accuracy for call-dependent identification in the singing honeyeaters is most likely an artifact of the smaller amount of test data available for this species. Call-dependent identification using mel-frequency cepstral coefficients has also been carried out in other animal species with comparable results. In the Norwegian ortolan bunting, Trawicki et al. (2005) obtained an identification accuracy of 84-95% for seven birds, using a hidden Markov model as the classifier. A slightly lower accuracy of 82.5% was obtained for six elephants (Clemins et al. 2005), again using mel-frequency cepstral coefficients and a hidden Markov model as the classifier.

The similarity in the effect of altering the feature extraction and network architecture variables between the three bird species studied indicates that standardised techniques can be used across bird species. This results in little time having to be spent optimising the methods for each new species to which they are applied. The similarity in the optimum methods used for both human speech and bird song also suggests that the methods are likely to be applicable across most animal species, and that other methods and advances made in the field of human speaker recognition might be readily applied to animal acoustic identification problems.

Conclusion
This paper presents methods for improved call-independent individual identification in birds. Accuracies of 69.3% to 97.1% were achieved in species from different passerine families, indicating the excellent potential of cepstral coefficients and artificial neural networks as a method of acoustic identification. Call-independent identification, although resulting in slightly lower accuracy than call-dependent identification, has the huge advantage of being applicable to all species regardless of the amount of song sharing or changes to an individual’s vocal repertoire over time. An additional benefit is that it eliminates the need for the time-consuming process of separating recordings into their different song types prior to analysis. Future work will focus on how these methods can be applied to field studies, including the effect of background noise and mismatched recording conditions, improved methods of feature extraction and classification, and sample size limits.

Chapter 4.  Signal enhancement techniques for the removal of noise from recordings of passerine song
Abstract
Acoustic individual identification, using human speaker recognition techniques such as mel-frequency cepstral coefficients and artificial neural networks, can give high levels of identification accuracy in both humans and animal species. However, the presence of ambient noise or distortions in recordings, and particularly a mismatch in the noise between recordings, is known to significantly reduce accuracy in human recognition. This study examined how matched and mismatched noise affected the identification accuracy of recordings from two passerine species, and tested various methods of signal enhancement to remove the noise and increase accuracy. A mismatch in both the type of noise and the signal to noise ratio was found to affect accuracy, but signal enhancement techniques could improve accuracy in both situations. The accuracy of recordings containing real and artificial field noise was able to be increased by up to 29.5% through the use of high-pass filtering, spectral subtraction, Wiener filtering and cepstral mean subtraction, resulting in identification accuracies of 79% and 87.5% for canaries and willie wagtails respectively. The resulting classification accuracy for both species was 100%, with all individuals able to be correctly identified. Acoustic individual identification of birds using methods of feature extraction, signal enhancement and classification using techniques from human speaker recognition is therefore a highly feasible and practical method of identifying individual birds, even from noisy field recordings.

Introduction
By providing a non-invasive method of identification, acoustic individual identification has many advantages over traditional methods of identifying individuals, such as leg bands, radio tracking, or toe clipping. Acoustic identification is particularly beneficial for species that are prone to disturbance, are nocturnal, exhibit behavioural modification as a result of the added marks, or are otherwise difficult or dangerous to capture and mark. Acoustic individual identification has been demonstrated in many species, particularly birds (Gilbert et al. 1994; Delport et al. 2002; Rogers & Paton 2005; Sharp & Hatchwell 2005) and mammals (Jones et al. 1993; Campbell et al. 2002; Darden et al. 2003; Hartwig 2005). Typically identification is carried out by measuring temporal or frequency features from spectrograms and comparing them between individuals using discriminant function analysis (Sparling & Williams 1978; McGregor et al. 2000; Frommolt et al. 2003), or spectrographic cross-correlation (Clark et al. 1987; Osiejuk 2000; Sharp & Hatchwell 2005). More recently, it has been found that human speaker recognition methods, using features and classifiers such as mel-frequency cepstral coefficients and artificial neural networks or hidden Markov models, can be successfully used for acoustic individual identification in animals (Clemins et al. 2005; Trawicki et al. 2005; Fox et al. 2006; Reby et al. 2006). These methods have significant advantages over traditional methods of acoustic individual identification in animals as they allow automatic feature extraction and classification, call-independent identification, and the identification of new recordings that do not belong to one of the known individuals. There is also no need to separate and classify recordings into their respective call or song types and the same, or similar, methods can be used across species. 

Tests for individual identification from animal vocalisations, using mel-frequency cepstral coefficients and hidden Markov models or artificial neural networks, have been very promising with identification accuracies of 68% to 100% reported for African elephants, Loxodonta africana (Clemins et al. 2005), red deer, Cervus elaphus (Reby et al. 2006), and several passerine species (Trawicki et al. 2005; Fox et al. 2006). However, little of this work has been carried out under realistic field conditions. For example, African elephants were recorded through microphones placed on radio collars around their necks (Clemins et al. 2005) and canaries were recorded in a quiet, anechoic room (Chapter 3), thus generating very high quality recordings. In field situations animals will usually be recorded from much greater distances and under varying weather and habitat conditions. Repeat recordings of a single individual will be subject to large amounts of variation in ambient noise, signal to noise ratio and signal reverberation and degradation. Research into human speech and speaker recognition has shown that results are typically very high when experiments are carried out under good recording conditions (Juang 1991; Gong 1995), but performance of many of the best systems remains operationally unacceptable for real applications because they perform poorly in the presence of ambient noise or distortion, particularly when the noise present in the training and testing recordings of the same individual is mismatched (Juang 1991; Indrebo et al. 2005). Mismatched noise conditions between recordings creates variability in the speech signal that exceeds the normal variability present in the voice and leads to a decrease in identification accuracy (Gish & Schmidt 1994). For example, noise was found to decrease human speech recognition by 85% when a classifier trained with clean speech was tested with noisy speech at a signal to noise ratio of 0dB (Juang 1991).

The problem of noisy recording conditions is one of the major obstacles in the application of human speech and speaker recognition technologies and much research has been done to try and reduce its effect (Mammone et al. 1996; Ramachandran et al. 2002). There are two types of noise that may be present in a signal: additive and convolutional. Additive noise consists of the surrounding ambient noise that is layered on top of the vocalisation signal. Additive noise comes from sources such as other vocalisations, wind, car or factory noise. It can alter the features that are extracted to represent the vocalisation and can make the acoustic model for each individual broader, when noise is highly variable, or narrower, when the noise masks several sounds (Droppo 2006). Convolutional noise, or filtering, is a type of distortion that occurs when a signal interacts with its environment and is filtered by it. A mismatch of convolutional noise can occur when different transmission lines (e.g. telephone channels) or audio equipment (e.g. microphones) are used for subsequent recordings, or through effects such as degradation and attenuation of the signal (Palomaki et al. 2004). Convolutional noise changes the spectrum of a signal and thus features such as the cepstral coefficients, which represent information on the shape of the signal spectrum, are directly affected by the presence of this type of noise (Murthy et al. 1999). Like additive noise, convolutional noise can make the acoustic model either narrower or broader, resulting in a decrease in identification accuracy.

Many methods have been developed to try and overcome the problems of noise (both additive and convolutional) and noise mismatch, and thus bring the identification accuracy as close as possible to that obtained for clean and matched conditions. These methods are typically split into three categories: finding noise-resistant features, signal enhancement techniques, and model-based noise compensation (Gong 1995; Ramachandran et al. 2002). Using noise-resistant features improves accuracy since only features that are not affected by the presence of noise are extracted from the signal. Signal enhancement aims to reduce the mismatch between recordings by removing an estimate of the noise in the signal from the noisy signal (Kermorvant 1999). Model-based noise compensation aims to sample the noise in the testing environment and add this noise to the training data. A new acoustic model is then trained with the noisy training data and the test signal is compared with this new acoustic model (Gales & Young 1995). Model-based compensation approaches have been found to give the best results in human speech recognition tasks (Kermorvant 1999), but they require that the data used for training are not affected by noise. This requirement is often met in human recognition tasks because the initial recordings obtained for each person enrolled in the system can be acquired under optimal conditions. When working with wild animal populations it is not usually possible to get initial recordings under optimal recording conditions. Model-based compensation approaches are therefore not practical for animal identification studies and noise-resistant features or signal enhancement are likely to be more useful approaches. Signal enhancement is tested in this study as it is a common method of reducing the effects of noise and the methods are generally simple to apply.

Signal enhancement techniques can be split into three groups depending on whether they remove noise from around the signal, remove noise that overlaps with the signal (additive noise) or remove noise that filters the signal (convolutional noise) (Quatieri 2002). Temporal and frequency filtering is used to remove parts of the signal that contain no voice information. Additive noise removal consists of taking a sample of the noise signal and subtracting this from the combined noise and vocal signal. To remove convolutional noise, the signal is converted to the cepstral domain, which converts the convolutional relationship between the noise and signal into an additive one, and the noise can then be removed through subtraction or filtering.

Recordings of animal calls made in the field are typically noisy and mismatched due to the presence of ambient noise and distortion of the signal. Additive noise is likely to be a major problem when recording animals in the field as the recording conditions can rarely be controlled and field recordings typically contain high levels of ambient noise. In addition, this ambient noise can vary significantly between recordings as it is determined by weather conditions, location, other nearby calling animals etc. Convolutional noise will most likely arise from degradation of the signal over distance and through filtering effects of the vegetation. This may become critical if animals are recorded from different distances or in different locations. 

This study examined the effect on individual identification accuracy of having noise in the recordings of two passerine species. The study consisted of two parts:
Experiment 1: the types of additive noise and mismatched conditions that cause a drop in accuracy were examined by experimentally adding noise to clean recordings of canary song. How well signal enhancement techniques could cope with these different noise conditions was also examined.
Experiment 2: the effect of field noise, consisting of either additive or additive and convolutional noise, on the individual identification accuracy was determined. How well signal enhancement could improve the accuracy to attain the levels obtained for clean and matched recordings was also examined.

Methods
Data set

Two recordings were made of the songs of 10 male common canaries, Serinus canaria, and 10 willie wagtails, Rhipidura leucophrys. Canaries were recorded in the laboratory, in an anechoic room, with the microphone placed 10 to 30 cm from the cage in which the canary was housed, resulting in high-quality recordings with signal to noise ratios (SNRs) of 55-75 dB. Canaries were individually housed so their identity over time could be confirmed. Wagtails were recorded at Herdsman Lake Regional Park (31º 55' 44"S 115º 48' 02"E) near Perth, Western Australia. Recordings of the wagtails were obtained either by placing the microphone near a known singing perch, or holding the microphone whilst standing 2 to 10 m from a singing bird. The recordings had SNRs of 20-35 dB. A single recording for each individual was obtained over a period of up to three hours, between 0500 and 1200 hours. Six of the willie wagtails were colour banded, so their identity could be confirmed for both recordings, while the other four were the mates of colour banded birds. Willie wagtails are known to be monogamous (Goodey & Lill 1993) so it is unlikely that the identity of the unbanded birds changed within the period of 12 days over which recordings of these four birds were obtained. The time between subsequent recordings of the same individual varied from 1 to 26 days, with an average of 8 days for both species. All recordings were made with a Marantz PMD 670 solid state recorder and a Sony ECM-672 unidirectional microphone at a sampling frequency of 48 kHz. 

Feature extraction and classification

In all experiments, mel-frequency cepstral coefficients (MFCCs) were extracted from each recording and used for training a multilayer perceptron neural network (MLP). MFCCs have been shown to give excellent results for both call-dependent (same call type used for training and testing) and call-independent (different call types used for training and testing) individual identification in several animal species (Clemins et al. 2005; Trawicki et al. 2005; Fox et al. 2006; Reby et al. 2006). In this chapter the song types used for training and testing were not controlled for, with the sections of song bouts used for training and testing containing multiple song types. This resulted in call-independent identification since the song types used for training and testing were not necessarily the same, or present in the same proportions. This represents a simple and realistic method of individual identification since time and effort is not spent classifying and separating each recording into its respective song types. It also presents the possibility for real-time individual identification in the field. 

In all experiments, 40 seconds from the first recording bout of each individual were used during training of the MLP. The first 10 seconds were used for training the MLP while the second 10 seconds were used as the validation data to carry out early stopping of the neural network, to prevent it from overfitting the training data. The remaining 20 seconds were tested against the trained network to ensure that it had trained correctly and was able to generalise to unseen data. The trained network was then tested with 20 seconds from the second recording bout of each individual. The classifier returned a result for each frame of the test data, giving the likelihood that the test frame belonged to each of the individuals it was trained with. These results were then summed over one second lengths with identity being assigned to the class returning the highest score. This resulted in 20 tests being carried out for each bird.

The features used for training and testing the neural network consisted of 30 MFCCs, that were extracted using 20 ms frames with 50% overlap. The multilayer perceptron had one hidden layer with 20 neurons, log-sigmoid transfer functions, 0.1 learning rate and 0.9 momentum. Feature extraction and classification were carried out in Matlab 6.5.1 (The Mathworks Inc.) using the Neural Networks Toolbox 4.0.1 and Voicebox (Brookes 2002).

Results for experiments on speaker recognition are typically given in terms of the percentage of tests that were assigned to the correct individual. This identification accuracy is useful for determining how well a classifier can identify individuals based on recordings with known identity and is presented for all experiments. However, when the identity of a recorded bird is unknown, its identity would be based on the class that returns the highest result. As such, each individual would either be identified correctly, incorrectly or be unable to be identified (depending on the criteria for determining identity). Hence, this classification accuracy was also determined for the experiments on the impact of signal enhancement on the accuracy of noisy field recordings (with both artificial and real noise). Classification accuracy gives the percentage of individuals that were correctly identified (unidentifiable individuals were ignored), and hence the accuracy that would be obtained for field recordings of unknown individuals. In this chapter an individual was deemed identifiable if at least half of the tests done for that bird (i.e. 10 of 20 tests) were classified as belonging to the same individual.

Signal enhancement

Signal enhancement was carried out using temporal filtering, high-pass filtering, spectral subtraction, Wiener filtering, cepstral mean subtraction (CMS), and relative spectral (RASTA) filtering. Additive noise removal methods (spectral subtraction and Wiener filtering) were also combined with convolutional noise removal methods (CMS and RASTA filtering) to determine if accuracy could be increased further. 

Temporal filtering and high-pass frequency filtering were carried out in all tests using signal enhancement since both of these methods remove parts of the recording that contain no voice information. Removing these portions improves computational efficiency and classification accuracy because it prevents the classifier from modelling data that contains no individual information. Temporal filtering was used to delete the ‘silence’ between songs. This was performed using the silence deletion function in Cool Edit Pro (v2.1 Syntrillium Software Corporation). For the willie wagtails, some additional manual removal was also conducted by visual inspection of spectrograms to remove transient noises and songs with very poor recording quality. Canary song ranged from approximately 600-9,400 Hz, so the high-pass filter was set at 500 Hz. Willie wagtail song ranged from approximately 900-6,000 Hz, so the high-pass filter was set at 700 Hz, using the filter tool in Cool Edit Pro. 

Spectral subtraction involves subtracting an estimate of the noise spectrum from the spectrum of the combined noise and vocal signal to leave a clean vocal signal (Milner & Vaseghi 1994). The noise estimates were obtained from 25 ms sections of recording that contained no bird song. Several variations on the initial spectral subtraction technique put forward by Boll (1979) have been proposed. Two variations were used in this study, one by Berouti et al. (1979) and the other by Kamath & Loizou (2002). Berouti’s method incorporates a power exponent and an over-subtraction factor which is a function of the signal to noise ratio. Berouti’s method assumes that noise affects the speech spectrum uniformly, but since this is not the case, Kamath’s method incorporates a multiband approach that takes this into account. 

Wiener filtering is an alternative to spectral subtraction for the removal of additive noise. Wiener filtering tries to estimate a linear filter that minimises the mean square error between the expected and desired signal (Kamath 2001; Quatieri 2002). The main difference between Wiener filtering and spectral subtraction is that Wiener filtering uses the average signal and noise spectrums whereas spectral subtraction uses an instantaneous signal spectrum and a time-averaged noise spectrum. Since vocalisations are highly non-stationary, only a limited amount of time averaging is beneficial (Milner & Vaseghi 1994). In this study, a Wiener filter based on tracking the a priori signal to noise ratio as proposed by Scalart & Filho (1996) was implemented. 

For the experiment on the effects of matched and mismatched noise in the canaries (Experiment 1), a single noise estimate was used for the entire signal for spectral subtraction and Wiener filtering since the noise added to the recordings was fairly uniform over time. In contrast, the noise added to the canary recordings to test the effect of realistic field noise and the noise in the field recordings of the willie wagtails (Experiment 2) had greater variation over time. Spectral subtraction and Wiener filtering are sensitive to the noise estimate and a distortion may be introduced as a result of variation in the noise over time (Milner & Vaseghi 1994). Consequently, in Experiment 2 spectral subtraction and Wiener filtering were conducted in two ways: 1) a single noise estimate was used for an entire recording, and 2) each recording was split into one to ten sections that had similar noise characteristics, based on a visual inspection of the spectrogram, and a corresponding noise estimate was used for each section.

Cepstral mean subtraction is similar to spectral subtraction, but it works in the cepstral domain and hence can be used to remove convolutional noise. Features that are convolved in the time domain are additive in the cepstral domain, making them simple to separate. CMS assumes that the mean of the cepstrum of the clean signal is zero and that convolutional noise is stationary or slowly time-varying (Milner 2002). Therefore the convolutional noise creates a near constant offset to the cepstral coefficients over time and by computing the long term cepstral mean and subtracting this from the cepstral coefficients, the noise estimate can be removed (Mammone et al. 1996; Kermorvant 1999). Like CMS, the relative spectral (RASTA) technique is most useful for convolutional noise (Hermansky & Morgan 1994). RASTA filtering involves applying a high-pass filter to the cepstral coefficients to suppress the spectral components that change at a different rate from the typical rate of change of speech (Hermansky & Morgan 1994; Milner 2002). RASTA filtering is beneficial if the aim is to carry out real-time signal enhancement, since there is a delay whilst computing the cepstral mean during CMS (Hermansky & Morgan 1994; Milner 2002), but this is not important for individual identification tasks.

Experiment 1: Effect of noise, noise mismatch and signal enhancement, using canary recordings

Noise can be a function of either the SNR or the noise spectrum and the noise present can be either matched or mismatched. The effects of both of these variations were examined and I tested how well signal enhancement techniques could cope with them. Although there was not expected to be any convolutional noise present in the noise-added canary recordings, since noise was added artificially, convolutional noise removal methods were employed as they have also been found to give some improvement for additive noise (Kermorvant 1999; Droppo 2006). How signal enhancement affected the accuracy of clean recordings was also examined. 

Signal to noise ratio

To look at the effect of noise that is matched, but is present at decreasing SNRs, the same ambient noise (recorded in a local nature reserve and consisting mainly of wind noise) was added to the training and testing recordings of the 10 canaries at decreasing SNRs, from 30 dB to 0 dB. To look at the effect of mismatched SNRs, a MLP was trained with recordings at 30 dB SNR, and tested with recordings at decreasing SNRs, from clean to 0 dB. In order to have the same SNR for all recordings, the canary songs were first modulated to the same average amplitude. Signal enhancement techniques were then applied to both the matched and mismatched recordings to determine how well these methods could increase the accuracy.

Noise spectrum

Different types of noise vary in the way they overlap and influence the spectrum of the vocal signal. Noise such as from the ocean or wind typically has its highest amplitude below the frequency of bird song, and it tends to be more constant over time. This type of noise may therefore have less influence and be easier to remove from recordings than noise such as other animal vocalisations, which may overlap significantly with the required vocal signal. Three different types of noise (wind noise, bird noise, and traffic noise) were added to the training and testing recordings, but kept at the same average SNR to prevent this from influencing the results. The noise type added to the pair of recordings for each individual was initially matched, and then a different noise type was used during testing to examine the effect of having mismatched noise types. All combinations of different noise types were used for training and testing and the average accuracy was determined. Signal enhancement techniques were then applied to both the matched and mismatched recordings to determine how much the accuracy could be increased.
Clean recordings

Signal enhancement techniques are used to remove an estimate of the noise from noisy signals. In the absence of noise, signal enhancement can cause an oversubtraction of the vocal signal and hence important individual information can be lost, leading to a decrease in accuracy (Kermorvant 1999). I tested this by applying signal enhancement techniques to the clean canary recordings.

Experiment 2: Effect of signal enhancement on real noisy recordings

While the previous experiment examined the effects of either a mismatch in SNR or noise type, field recordings are likely to contain a mismatch in both of these. Hence, analysis was carried out on recordings containing real field noise. This was carried out in two ways. First, field noise was added to the canary recordings in order to compare the accuracy of clean recordings with the accuracy of noisy recordings before and after signal enhancement. However, since the noise was added artificially to the canary recordings, it consisted solely of additive noise. In contrast, authentic field recordings will contain both additive and convolutional noise, and this is likely to alter the impact of signal enhancement. In order to test this, signal enhancement was carried out on field recordings of willie wagtails.

For the canaries, training and testing was initially carried out on the clean recordings to give a baseline accuracy. Next, field noise was added to each recording. The added noise was recorded in a local nature reserve and consisted of wind, other birds calling, distant traffic noise etc. The noise added to the pair of recordings from each individual was recorded on different days, to simulate the recordings being made on different days and therefore with a greater mismatch in the noise between subsequent recordings of each bird. Once the noise was added, the MLP was trained and tested with these recordings. Signal enhancement techniques were then applied to the recordings to determine how much the accuracy could be increased. The clean recordings had SNRs of 55 – 75 dB, while the noise-added recordings had SNRs of 30 – 40 dB. The SNR was determined by measuring the average power of the song and the noise. 

The accuracy of the noisy field recordings of the willie wagtails was determined by training and testing an MLP with pairs of recordings that were obtained in the field on different days, from each of 10 willie wagtails. Signal enhancement was then carried out to determine if the accuracy could be increased.
Results
Experiment 1: Effect of noise, noise mismatch and signal enhancement, using canary recordings

Signal to noise ratio

Adding noise with a matched SNR to the training and testing recordings resulted in only a small decrease in identification accuracy as the SNR decreased (Figure 4.1). Even recordings with a matched SNR of 0 dB gave 65% accuracy. When the MLP was trained with 30 dB SNR recordings and tested with recordings at differing SNRs, the accuracy dropped much more significantly. Testing with recordings at 0 dB SNR resulted in only 30% identification accuracy (Figure 4.1). The accuracy also decreased when the recording used for testing was mismatched, but with a higher SNR (Figure 4.1). When applying signal enhancement techniques to the recordings with matched SNRs, both high-pass filtering and CMS increased accuracy at all SNRs. Kamath spectral subtraction and combined Wiener filtering and CMS also increased accuracy when the test SNRs were below 30 dB. CMS gave the highest average increase of 8.6% across all SNRs (Figure 4.1). When applying signal enhancement techniques to the mismatched recordings, CMS was the only method which increased accuracy at all SNRs of the test data, with an average increase of 8% (Figure 4.1).

Noise spectrum

Training and testing recordings with different types of noise resulted in an average identification accuracy of 77% when the noise type was matched. This result dropped to an average of 62.1% for mismatched noise (Figure 4.2). For the matched noise, high-pass filtering gave the greatest increase in accuracy, resulting in an average identification accuracy of 79%. This is only 1% lower than the result obtained for the clean, matched recordings (80%). Wiener filtering combined with CMS was found to give the greatest increase in identification accuracy when training and testing with mismatched noise types, resulting in an average of 72.5%; an increase of 10.4% (Figure 4.2). It was also observed that the type of noise used for training and testing had different effects on the identification accuracy. For example, an MLP trained with recordings with added bird noise gave much poorer identification accuracies when tested with wind or traffic noise than in the reverse situation (Figure 4.3a). After signal enhancement there was little difference in identification accuracy regardless of the noise type used for training or testing (Figure 4.3b).
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Figure 4.1 Identification accuracy of canary recordings with noise at matched and mismatched SNRs. The mismatched result was trained with 30 dB SNR and tested with the SNR marked on the x-axis. Results from the best method of signal enhancement (SE) are also presented (CMS for both matched and mismatched SNRs)
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Figure 4.2 Average identification accuracy of canary recordings that are matched or mismatched for noise type, and with or without signal enhancement (high-pass filter for matched noise type and Wiener filter and CMS for mismatched noise type)

Clean recordings

When applying signal enhancement techniques to clean recordings, high-pass filtering increased accuracy by 3% while all other methods resulted in a further decrease in identification accuracy of 0.5% to 25.5%.

Experiment 2: Effect of signal enhancement on real noisy recordings

An MLP, trained and tested with clean recordings of canary song, gave an identification accuracy of 80.5% and a classification accuracy of 100%. When training and testing were carried out on the same recordings with added noise, the identification and classification accuracies dropped to 62% and 77.8% (with one individual unidentifiable) respectively (Figure 4.4). 
An MLP trained and tested with noisy willie wagtail song, prior to signal enhancement, gave an identification accuracy of 58% and an classification accuracy of 66.7% (with one individual unable to be identified; Figure 4.5). 
High-pass filtering resulted in a 1.5% decrease in identification accuracy for the canaries and a 1% increase in accuracy for the wagtails. Identification accuracy was 1-15.5% higher in both species for spectral subtraction and Wiener filtering when using multiple noise estimates, rather than just a single estimate. The only exception was for Berouti spectral subtraction of the canaries. Both Berouti and Kamath spectral subtraction gave similar accuracies to each other, while Wiener filtering gave a lower accuracy for the canaries and a significantly higher accuracy for the wagtails (Figures 4.4 & 4.5).

For the convolutional noise removal methods of CMS and RASTA filtering, only CMS resulted in an increase in accuracy for the canaries. When additive and convolutional noise removal methods were combined, the resulting identification accuracies were equal or lower than for either method by itself (Figure 4.4). In contrast, for the willie wagtails, both methods of convolutional noise removal increased accuracy and when additive and convolutional methods were combined it resulted in an identification accuracy equal or higher than for either method by itself (Figure 4.5).
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Figure 4.3 Identification accuracy of canary recordings with different noise types, a) without signal enhancement, and b) with signal enhancement (Wiener filter and CMS)
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Figure 4.4 Identification (ID) and classification (C) accuracy of noise-added canary recordings, both before and after signal enhancement (SE = signal enhancement, SS = spectral subtraction). Asterisks indicate number of unidentifiable individuals
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Figure 4.5 Identification (ID) and classification (C) accuracy of wagtail recordings before and after signal enhancement (SE = signal enhancement, SS = spectral subtraction). Asterisks indicate number of unidentifiable individuals

For the canaries, the signal enhancement method that gave the highest result for both identification and classification accuracy was multiple Kamath spectral subtraction, resulting in 79% identification accuracy and 100% classification accuracy. Using signal enhancement techniques on recordings containing additive field noise therefore gave a 17% increase in identification accuracy and a 22.2% increase in classification accuracy from that obtained using no signal enhancement. The resulting accuracies for the signal enhanced noise-added canary recordings were almost identical to those obtained for the clean recordings.

For the willie wagtails, the best method of signal enhancement was multiple Wiener filtering combined with CMS. This resulted in an identification accuracy of 87.5% and a classification accuracy of 100%. Using signal enhancement techniques on noisy field recordings therefore gave a 29.5% increase in identification accuracy, and a 33.3% increase in classification accuracy, from that obtained using no signal enhancement.

Discussion
Having noise in a recording resulted in a significant decrease in accuracy. The identification accuracy of noisy recordings, at approximately 60% (depending on the type and amount of noise and mismatch), is too low to be of use in most studies requiring the identification of individuals. Therefore, methods of reducing the noise and increasing the accuracy, such as signal enhancement, are necessary before acoustic individual identification, using methods such as MFCCs and artificial neural networks, can be successfully applied to field recordings.

Accuracy of the noise-added canary recordings that were matched, for both SNR and noise type, was typically higher, both before and after signal enhancement, than the accuracy of the mismatched recordings. The best method of signal enhancement for these recordings varied, depending on the type of noise and the amount of mismatch, although high-pass filtering and CMS gave the best or second best result in all tests. Although primarily used to remove convolutional noise, CMS has also been found to give improvements in accuracy for additive noise (Kermorvant 1999; Droppo 2006). Spectral subtraction and Wiener filtering also gave some additional improvement in accuracy, particularly when there was a mismatch in the type of noise. The best signal enhancement techniques were able to increase accuracy of both matched and mismatched recordings by approximately 10%. The resulting accuracies of the matched recordings were very similar to those obtained for the clean recordings, while the accuracies of the mismatched recordings remained approximately 15% below those of the clean recordings. Higher accuracies for matched, rather than mismatched, noise have also been found in human speech and speaker recognition (Juang 1991; Vaseghi et al. 1994). The most important aspect of obtaining recordings therefore is to record them under as similar noise conditions as possible (e.g. weather, habitat, distance to animal) to reduce the potential mismatch in noise. 

High-pass filtering had varying effects on accuracy, decreasing accuracy for the mismatched canary recordings and increasing accuracy for the matched and clean canary recordings. The decrease in accuracy for mismatched recordings is surprising given that most noise occurs at low frequencies and hence removing them was expected to improve the quality of the features given to the classifier and hence increase accuracy. The canary and willie wagtail recordings that contained real or realistic field noise were not significantly affected by high-pass filtering, implying that these recordings had less extreme amounts of match or mismatch in the noise present. Since these low frequencies do not contain any vocal information, it is prudent to remove them in order to prevent this noise information from influencing the feature extraction or classification stages. 

The principal difference between the canary and willie wagtail recordings that contained field noise was that the canary recordings only contained additive noise, while the wagtail recordings contained both additive and convolutional noise. This difference was reflected in the best methods of signal enhancement, with additive noise removal methods resulting in the highest accuracy for the canaries, and a combination of additive and convolutional noise removal methods giving the best result for the wagtails. Since combining additive and convolutional noise removal methods increased accuracy in the wagtails, it implies that both methods are focussing on different aspects of the noise in the signal (i.e. both additive and convolutional) and are complementary. Kermorvant (1999) obtained a similar result on human speech containing both additive and convolutional noise, with the combination of spectral subtraction and CMS leading to a greater increase in the speech recognition accuracy than using either method alone and a 28.5% increase in accuracy over what was obtained with no signal enhancement. In both species CMS was found to give higher accuracies than RASTA filtering, a result also commonly found in human speech and speaker recognition (de Veth & Boves 1996; Cosi et al. 2000), although this is not always the case (Milner 2002).

Having noise, particularly mismatched noise, results in low identification and classification accuracies, but signal enhancement is able to increase the accuracy considerably. For the canaries, signal enhancement increased accuracy to a level almost identical to that obtained using clean and matched recordings. Although I do not have an accuracy for training and testing with clean willie wagtail recordings, the accuracy after signal enhancement was even higher than that obtained for the canaries, and thus it was able to very successfully increase accuracy. Accuracy from acoustic individual identification studies using discriminant function analysis (DFA) and cross-correlation is typically described in terms of classification accuracy. Accuracies generally range between 80% and 100% (e.g. Gilbert et al. 1994; Osiejuk 2000; Galeotti & Sacchi 2001; Rogers & Paton 2005), and thus the 100% classification accuracy obtained for both species in this study, after signal enhancement, compares favourably with these studies. DFA is generally only affected by noise at very low SNRs, although cross-correlation has been found to be highly susceptible to noise in the recordings, for example Osiejuk (2000) found that accuracy decreased by 43.5% when noisy recordings were included in the analysis.

Acoustic individual identification has the potential to be a convenient and simple method of individual identification in animals, solving many animal welfare issues associated with catching and marking individuals. Although speaker recognition methods have been presented as being a new and improved method of individual identification in animals, they have rarely been tested under real conditions. This study demonstrates the feasibility of using mel-frequency cepstral coefficients, combined with signal enhancement techniques, for accurate individual identification of birds, even from noisy field recordings. In addition, these methods have significant advantages over traditional methods of acoustic individual identification (i.e. DFA and cross-correlation) in that they can be fully automated, enable call-independent identification, and are directly transferable between species. They therefore have the potential to enable fast, accurate, real-time and in-field identification of individuals, making this technique a highly feasible and practical method of individual identification. Although in its infancy, animal individual identification using speaker recognition methods has the potential to revolutionise studies requiring the individual identification of animals.

Chapter 5.  A comparison of features and classifiers for individual identification from bird song

Abstract
When carrying out acoustic individual identification, some features may be better than others at encoding individual information from a vocalisation and may be less affected by the presence of noise in a recording. Some classifiers may be able to model those particular features better and hence result in increased accuracy. The individual identification accuracy of two passerine species was compared using three features (linear predictive cepstral coefficients, mel-frequency cepstral coefficients, and perceptual linear prediction cepstral coefficients) and three classifiers (Gaussian mixture models, multilayer perceptrons, and probabilistic neural networks). Operation of the classifiers was also compared in terms of simplicity of use, training and testing speed and storage requirements. Another method of improving identification accuracy, particularly for recordings containing variability in noise or vocal characteristics, is to increase the variability in the training data. Increasing the amount of data used for training was found to increase accuracy, although even short recordings were able to give high accuracy. This is important since long recordings of singing birds may be difficult to obtain in field situations. All three features resulted in similar accuracies, while probabilistic neural networks were found to give the highest accuracy across species. Training with 20 seconds of recording per individual resulted in 86% to 95.5% identification accuracy, with all individuals correctly identified.

Introduction
Acoustic analysis is a relatively cheap and simple method of individual identification that can be used in a variety of animal species. It is a non-invasive method that, unlike traditional methods of marking and radio-tracking, does not require the capture of each individual to be studied, and it can be used even in species that are cryptic, difficult to capture and/or negatively impacted by the capture and marking process (Terry et al. 2005). Once the vocalisations of the individuals under study have been recorded, the development of an individual identification method involves two phases: feature extraction and classification. In animals, feature extraction and classification of acoustic signals has traditionally been carried out using spectrographic cross-correlation or discriminant function analysis (DFA) of frequency and temporal measurements, e.g. note or syllable length, average frequency, and change in frequency over time (e.g. Gilbert et al. 2002; Rogers & Paton 2005; Sharp & Hatchwell 2005). Recently there has been interest in using the features and classifiers that are used for human speaker recognition. These features and classifiers have proven to give high accuracies for individual recognition from human speech (Gish & Schmidt 1994; Reynolds 1995; Ramachandran et al. 2002; Reynolds 2002) and recent evidence suggests the same is true for animal vocalisations (Chapter 3, Chapter 4, Clemins et al. 2005; Trawicki et al. 2005; Fox et al. 2006; Reby et al. 2006). 

Features differ in their ability to encode individual information and by how much they are affected by the presence of noise or vocal variability. Classifiers differ in how they model the data and carry out classification. Many features have been tested for human speaker recognition, with the most effective found to be those that represent the pitch or the speech spectrum (Chen et al. 1997), based on short-term spectral measurements. There are many methods of parameterisation of the speech spectrum, the most common of which are based on either linear predictive coding or cepstral analysis (Chen et al. 1997). Vocal signals consist of a source sound, produced by vibration of the vocal cords, which is then filtered by the vocal tract. The vocal tract filter is known to contain individually specific information, and hence linear predictive coding and cepstral analysis are used to separate the filter and source information (Furui 2001). Linear predictive coefficients (LPCs) were initially a common feature used for human speaker recognition and have been found to give good results (Atal 1974), but they are not robust to noise and thus not useful in most practical applications. More recent research has focussed on finding robust features, typically by incorporating human perceptual information into the feature extraction process. The most common features that are currently used for human speaker recognition are the mel-frequency cepstral coefficients (MFCCs). Many different classifiers have been used in human speaker recognition tasks. The classifiers differ in the way they learn to model the feature sets presented to them and how they classify the test data. The most commonly used classifiers are hidden Markov models (HMMs), Gaussian mixture models (GMMs), dynamic time warping (DTW), and various artificial neural networks (ANNs), including multilayer perceptrons (MLPs) and radial basis function networks. HMMs and DTW both incorporate temporal features and are thus most suited to text-dependent recognition, in which the same sounds are used for both training and testing the classifier. GMMs and ANNs have both shown good results for text-independent tasks (Rudasi & Zahorian 1991; Gish & Schmidt 1994; Reynolds & Rose 1995; Mak 1996). Based on results from comparisons of different classifiers (e.g. Mak et al. 1994; Gong 1995; Reynolds & Rose 1995), there is no globally superior method, with the most suitable classifier dependent on the required task (e.g. text-independent or text-dependent), preferred behaviour (e.g. length of time required for training), type of data, and the amount of noise present in the data.

Several features and classifiers have now been borrowed from human speaker recognition and applied to identification tasks in animals. To date the most common short-term spectral features that have been applied to animal vocalisations are the MFCCs (Clemins et al. 2005; Trawicki et al. 2005; Fox et al. 2006; Reby et al. 2006), although LPCs (Schon et al. 2001) and generalised perceptual linear prediction coefficients (gPLPs; Clemins et al. 2006) have also been used. For classification, HMMs (Clemins et al. 2005; Trawicki et al. 2005; Reby et al. 2006) and ANNs (Reby et al. 1997; Campbell et al. 2002; Fox et al. 2006) have been used. Few comparisons have been made of features or classifiers for acoustic individual or species identification in animals (Table 5.1). Certain features or classifiers may be better suited to the task of individual identification in animals. Animal recordings also typically contain high levels of noise and hence features and classifiers that can improve the accuracy of noisy recordings will be highly beneficial. This study compared three features (linear prediction cepstral coefficients, mel-frequency cepstral coefficients, perceptual linear prediction cepstral coefficients) and three classifiers (Gaussian mixture models, multilayer perceptrons, probabilistic neural networks) for the individual identification of two passerine species: canaries, Serinus canaria, and willie wagtails, Rhipidura leucophrys. Canaries were recorded under laboratory conditions, resulting in clean recordings, whereas wagtails were recorded in the field, resulting in noisy recordings. Signal enhancement using high-pass filtering, Wiener filtering and cepstral mean subtraction was found to significantly increase the accuracy of noisy field recordings (Chapter 4), so the accuracy of willie wagtail recordings both pre and post signal enhancement was compared.

Table 5.1 Comparison of features and classifiers used for animal individual identification (II) and species identification (SI) tasks. Features and classifiers listed in order of highest to lowest accuracy.

	Author
	Task & Species
	Feature 1
	Feature 2
	Feature 3

	Clemins (2005)
	II: African elephant
	gPLP
	MFCC
	

	Chen & Maher (2006)
	SI: Birds 
	SPT
	MFCC
	LPCC

	Mitrovic et al. (2006)
	SI: Bird, cat, cow, dog
	BFCC
	MFCC
	LPC

	
	
	Classifier 1
	Classifier 2
	Classifier 3

	Parsons & Jones (2000)
	SI: Bats
	MLP
	DFA
	

	Terry & McGregor (2002)
	II: Corncrake
	PNN
	MLP
	DFA

	Kwan et al. (2004)
	SI: Birds
	GMM
	HMM
	

	Clemins (2005)
	II: African elephant
	HMM
	DTW
	

	Chen & Maher (2006)
	SI: Birds
	HMM
	DTW
	

	Mitrovic et al. (2006)
	SI: Bird, cat, cow, dog
	SVM
	NN
	LVQ

	Ganchev et al. (2007)
	SI: Singing insects
	GMM
	PNN
	HMM


BFCC: Bark-frequency Cepstral Coefficients
PNN: Probabilistic Neural Network


LPCC: Linear Predictive Cepstral Coefficients
SPT: Spectral Peak Tracks

LVQ: Linear Vector Quantization


SVM: Support Vector Machine
NN: Nearest Neighbour






Another method of increasing accuracy when recordings contain noise or vocal variability is to incorporate this variation into the training data. This is typically carried out using multi-style training, in which vocalisations recorded under a variety of conditions are used for training the classifier in the hopes that the conditions from at least one of the recordings used for training will be close to those of the test recording (Gish & Schmidt 1994). Multi-style training requires multiple recordings from each individual. This is impractical in most field recording situations since the identity of an individual would need to be known over time, therefore requiring that each individual is marked, at least for a short period of time. Since acoustic identification will generally be used to prevent the need for individual marking, obtaining multiple recordings from each individual will rarely be possible. However, although typically multiple recordings are used, multi-style training can simply involve increasing the amount of training from a single recording, if there is variability within that recording. This was investigated by increasing the amount of training data for each individual and comparing the resulting accuracy. The amount of data required for testing to give an adequate accuracy was also studied.
Methods
Data set

Two recordings were made of the songs of 10 male common canaries and 10 willie wagtails. Canaries were recorded in the laboratory, in an anechoic room, with the microphone placed 10 to 30 cm from the bird. Wagtails were recorded in the field, at Herdsman Lake Regional Park (31º 55' 44"S 115º 48' 02"E) near Perth, Western Australia, with the microphone 0.5 to 10 m from the bird. A single recording for each individual was obtained over a period of between 20 minutes and three hours. The time between subsequent recordings of the same individual was from 1 to 26 days, with an average of eight days for both species. Six of the willie wagtails were colour banded, so their identity could be confirmed for both recordings, while the other four were the mates of colour banded birds. Willie wagtails are known to be strongly socially monogamous (Goodey & Lill 1993) so it is unlikely that the identity of the unbanded birds changed within the period of 12 days over which recordings of these four birds were obtained. All canaries were individually marked. Recordings were made with a Marantz PMD 670 solid state recorder and a Sony ECM-672 unidirectional microphone at a sampling frequency of 48 kHz. 

The canary and wagtail recordings were tested first with only high-pass filtering. The wagtail recordings then had additional signal enhancement applied to them (Wiener filtering and cepstral mean subtraction; see Chapter 4 for a description of the methods). Additional signal enhancement was not applied to the canary recordings since it is known to decrease the accuracy of recordings that do not contain noise (Chapter 4). All recordings had the silent portions between songs removed using amplitude filtering, plus some additional manual deletion was carried out to remove transient noise and very poor quality signals. The high-pass filter was set at 500 Hz for canaries and 700 Hz for wagtails, to remove noise below the frequency range of the bird song.

Recordings were not split into their respective song types, and hence the sections of recording used for training and testing contained multiple song types, and the song types present in the training and testing recordings were not necessarily the same or present in the same proportions. This resulted in a call-independent identification task. 

Feature extraction

The individual identification accuracy of the two passerine species was compared using linear prediction cepstral coefficients (LPCCs), mel-frequency cepstral coefficients (MFCCs), and perceptual linear prediction cepstral coefficients (PLPCCs). 

Linear predictive coefficients were initially a popular feature used in human speaker recognition. Using linear prediction, a speech signal, 
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where t is the time index, p is the prediction order, and ai are the predictor coefficients (Farrell et al. 1994, Yue et al. 2002). The predictor coefficients represent the spectral characteristics of the speech and they are determined through the use of an inverse filter. These predictor coefficients can then be converted into a variety of feature vectors, the best of which has been found to be the cepstral coefficients (Atal 1974). Although LPCCs have given good results for clean speech, they lose accuracy when applied to noisy recordings (Ramachandran et al. 2002). To solve this problem, noise-resistant features that incorporate information about the human auditory system have been investigated. The human auditory system is extremely good at extracting speech and speaker information even in the presence of high noise levels and thus by incorporating some of the same processes, an increase in robustness is hoped to be achieved. MFCCs are currently the most common features used in human speaker recognition (Mashao & Skosan 2006). They incorporate information on the human perception of sound and the relationship between the intensity of sound and its perceived loudness. MFCCs are obtained through cepstral analysis, which involves taking the inverse Fourier transform of the logarithm of the Fourier transform of a signal. MFCCs differ from standard cepstral coefficients in that the Fourier transform is first warped along a mel-scale filterbank. The mel-scale is an approximation of the human perception of sound and the logarithm approximates the relationship between the intensity of sound and its perceived loudness. More recently, perceptual linear prediction coefficients, which incorporate elements from both cepstral analysis and linear predictive analysis, have been shown to give improved results (Hermansky 1990; Vuuren 1996). Perceptual linear prediction focuses on perceptual accuracy rather than computational efficiency. Perceptual linear prediction analysis is initially similar to MFCC analysis, except that critical band analysis is used instead of the mel-scale filterbank, equal loudness normalisation is used instead of preemphasis, and the intensity power law is used instead of taking the logarithm. Once these modifications have been carried out in the frequency domain, the linear predictive coefficients are calculated and converted to the cepstral domain as for the LPCCs (Pool 2002). A comparison of the feature extraction process of each method is depicted in Figure 5.1. For more information, refer to Chapter 2.
Classification

For classification, a Gaussian mixture model (GMM) and two artificial neural networks, a multilayer perceptron (MLP) and a probabilistic neural network (PNN), were compared. GMMs are currently a common classifier used in text-independent speaker recognition tasks (Hong & Kwong 2005). Gaussian probability density functions are used to represent the feature vectors produced by each speaker. During training, parameters of the Gaussian densities are estimated for each individual (Ramachandran et al. 2002). During testing, a likelihood function is used to determine the match between the mean and covariance of the testing and training data (Gish & Schmidt 1994) and the speaker with the highest match is determined to be the correct identity. 

Artificial neural networks are based on the processing of the human neural system. Since the human brain is known to have excellent classification abilities for speaker recognition, using a neural network may confer some benefits. Neural networks consist of highly interconnected networks of computing units, termed neurons, that cooperate together to learn the complex mappings between inputs and expected outputs. MLPs and PNNs are both useful for classification tasks and have been used in human speaker recognition tasks (Rudasi & Zahorian 1991; Ganchev et al. 2002). Both MLPs and PNNs are feedforward, supervised networks with an input layer, one or more hidden layers and an output layer, which can learn the complex mappings between inputs and outputs. Both networks train with data of  known identity in order to learn to distinguish between the classes and therefore be able to generalise and classify unknown data, although how they go about this differs between the two networks (Chapter 2; Specht 1990; Gurney 1997). 
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Figure 5.1 Comparison of the feature extraction process for LPCCs, PLPCCs, and MFCCs. Dashed lines indicate corresponding processes (modified from Milner 2002)
Experiments

Comparison of features and classifiers

Each feature set (LPCCs, MFCCs, PLPCCs) was tested against each classifier (GMM, MLP, PNN) in both species. Twenty seconds of signal from the first recording bout were used for training the classifier. Twenty tests were then carried out on the trained classifier in each species using the second recording bout. The classifier returned a result for each frame of the test data, giving the likelihood that the test frame belonged to each of the individuals it was trained with. These results were then summed over one second lengths with identity being assigned to the class returning the highest score.

Two types of accuracy were measured. Identification accuracy was the percentage of tests that were assigned to the correct individual out of all tests carried out for the ten individuals. Classification accuracy was the percentage of individuals that were correctly identified, with the identity of a test set deemed as being the class that contained at least half of the tests carried out. If no class contained at least half of the tests, then that individual was deemed unidentifiable and ignored when calculating the accuracy. Classification accuracy is important for determining how well a method of identifying individuals will work in a realistic application.

All features were extracted from 20 ms frames with 50% overlap. A comparison was made of the optimal order of the LPC analysis, from 10 to 30, and an order of 20 was found to give the best result. Thus, an order of 20 was used during both LPCC and PLPCC extraction. Thirty MFCCs were extracted from each frame of the signal (Chapter 3). Preemphasis was not carried out as it has been found to decrease accuracy (Chapter 3). For the GMM, the Figueiredo-Jain algorithm was used to enable automatic estimation of the number of components and the initial conditions of the GMM (Figueiredo & Jain 2002). One hidden layer with 20 neurons was used in the MLP (Chapter 3). The MLP was trained with a 10 second validation data set in order to stop training at the point at which the error of the validation set increased. This prevents the network from overtraining and losing the ability to generalise. For the PNN, the spread was set to 0.1. All feature extraction and classification was carried out in Matlab 6.5.1 (The Mathworks Inc.) using the Neural Networks Toolbox 4.0.1, Signal Processing Toolbox 6.1, Voicebox (Brookes 2002), and the GMMBayes Toolbox (Paalanen et al. 2004). The computer used in all tests was a Toshiba Satellite A10 Mobile Intel Pentium 4-M Processor 2.4GHz with 1GB RAM.
For each classifier, trained and tested with 20 seconds of data, three operational parameters were recorded: the training length for all 10 birds, the testing length per bird, and the storage requirement of the trained classifier. 

Training and testing length

The amount of training data for each bird was increased from 5 to 40 seconds, for both the canary and the signal enhanced willie wagtail recordings. Based on the results from the previous experiment, all three features were used, combined with a PNN. The training length, testing length and storage requirements of the classifier were recorded.

The amount of testing data per individual was also increased to determine the best length. A network trained with 20 seconds of data for both the canary and signal enhanced willie wagtail recordings was tested with bouts of 1 to 30 seconds for each canary and 1 to 20 seconds for each willie wagtail (based on the amount of available data). 

Results
Comparison of features and classifiers
The feature and classifier that gave the highest accuracy varied between species (Table 5.2). Based on both the identification and classification accuracies, PLPCCs gave the highest accuracy for the noisy wagtail recordings, LPCCs and MFCCs were best for the signal enhanced wagtail recordings, and PLPCCs and MFCCs gave the best results for the canaries. PNNs were consistently the best classifier for both identification and classification accuracy in all but one test, while MLPs were the worst. For the canaries and signal enhanced wagtails, both GMMs and PNNs resulted in all individuals being classified correctly, regardless of the feature used (Table 5.2). 

When the identification accuracies from the canaries and signal enhanced willie wagtails were averaged, MFCCs were the feature that gave the highest identification accuracy, although only by 0.7% to 3.8%. PNNs were the best classifier, resulting in an identification accuracy 5.3% to 15.6% higher than for the other two classifiers.  The training time, testing time, and storage requirements of the three classifiers is given in Table 5.3.

Table 5.2 Identification (ID) and classification (C) accuracies of a) noisy willie wagtail, b) signal enhanced willie wagtail, c) canary recordings. Asterisks indicate number of unidentifiable individuals. Bold indicates best feature per classifier, shading indicates best classifier per feature.

	
	GMM
	MLP
	PNN

	a)
	ID
	C
	ID
	C
	ID
	C

	LPCC
	63.5
	70.0
	59.0
	75.0**
	66.5
	70.0

	MFCC
	66.0
	 77.8*
	47.5
	  66.7****
	63.0
	 66.7*

	PLPCC
	66.0
	   100.0***
	55.5
	87.5**
	67.0
	  75.0**

	b)
	
	
	
	
	
	

	LPCC
	88.5
	100.0
	75.5
	88.9*
	95.5
	100.0

	MFCC
	85.0
	100.0
	80.0
	  100.0*
	88.5
	100.0

	PLPCC
	84.0
	100.0
	58.0
	    77.8*
	90.5
	100.0

	c)
	
	
	
	
	
	

	LPCC
	81.5
	100.0
	76.0
	100.0*
	86.0
	100.0

	MFCC
	84.0
	100.0
	80.0
	100.0*
	89.5
	100.0

	PLPCC
	85.0
	100.0
	77.0
	100.0*
	90.0
	100.0


Table 5.3 Comparison of classifier operation when training and testing with PLPCCs extracted from 10 canary recordings
	
	GMM
	MLP
	PNN

	Training time (sec)
	2196.7
	131.5
	3.7

	Testing time (sec/individual)
	0.4
	7.1
	56.4

	Storage requirement (MB)
	0.6
	0.03
	5.8


Training and testing length

The greater the amount of data used for training, the higher the resulting identification and classification accuracies, although only a small increase in identification accuracy was seen after a training length of 20 seconds in both species (Tables 5.4 & 5.5). The classification accuracy was 100% for all training lengths in the canaries regardless of the feature (although one or two individuals were unable to be identified with 5 seconds of training data). Up to 20 seconds of training data were required for the willie wagtails before classification accuracy reached 100% for all features. There was no significant difference in the rate of change in accuracy between features as the amount of training data increased.

The amount of time taken to train and test the PNN, as well as the storage requirement for the trained classifier, as the amount of training data increased was similar regardless of the feature or species used. Hence, only the results of using PLPCCs for the canaries are given. The training time for the PNN remained low regardless of the training length, increasing linearly with a slope of 0.2 (Figure 5.2). The amount of time taken to test the network with a single bird also increased linearly, but at a greater rate (slope of 2.7; Figure 5.2). The amount of storage required for the trained network increased linearly as the training length increased, with a slope of 0.3 (Figure 5.3).

The greater the amount of data used for testing a network, the higher the resulting identification and classification accuracies. For the canaries, 100% classification accuracy was reached for all three features when testing with three seconds of data, and all individuals were identifiable at ten seconds. For the willie wagtails, five seconds was required to achieve 100% classification accuracy, and 20 seconds for all individuals to be identifiable (Tables 5.6 & 5.7).

Table 5.4 Identification (ID) and classification (C) accuracy of canary recordings with increasing amounts of training data per bird. Asterisks indicate number of unidentifiable individuals

	Training length
	LPCC
	MFCC
	PLPCC

	(sec)
	ID
	C
	ID
	C
	ID
	C

	5
	69.0
	   100**
	71.0
	 100*
	68.5
	   100**

	10
	80.5
	100
	84.0
	100
	86.0
	100

	20
	86.0
	100
	89.5
	100
	90.0
	100

	30
	88.0
	100
	91.5
	100
	92.0
	100

	40
	90.0
	100
	93.5
	100
	92.5
	100


Table 5.5 Identification (ID) and classification (C) accuracy of signal enhanced willie wagtail recordings with increasing amounts of training data per bird. Asterisks indicate number of unidentifiable individuals

	Training length
	LPCC
	MFCC
	PLPCC

	(sec)
	ID
	C
	ID
	C
	ID
	C

	5
	86.5
	100
	73.5
	    80.0
	78.5
	100*

	10
	89.0
	100
	83.0
	    90.0
	78.0
	    90.0

	20
	95.5
	100
	88.5
	100
	90.5
	100

	30
	95.5
	100
	93.0
	100
	90.0
	100

	40
	96.0
	100
	92.5
	100
	92.5
	100
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Figure 5.2 Training and testing time of a PNN, with increasing amounts of training data per bird
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Figure 5.3 Storage requirement for a trained PNN, with increasing amounts of training data per bird

Table 5.6 Identification (ID) and classification (C) accuracy of canary recordings with increasing test lengths. Asterisks indicate number of unidentifiable individuals

	Testing length
	LPCC
	MFCC
	PLPCC

	(sec)
	ID
	C
	ID
	C
	ID
	C

	1
	64.0
	      77.8*
	80.0
	   100**
	74.0
	      87.5*

	2
	68.0
	      87.5*
	90.0
	100
	86.0
	100

	3
	80.0
	100
	90.0
	100
	88.0
	  100*

	5
	82.0
	  100*
	94.0
	100
	96.0
	100

	10
	85.0
	100
	96.0
	100
	94.0
	100

	20
	90.0
	100
	93.0
	100
	95.0
	100

	30
	96.0
	100
	98.0
	100
	99.0
	100


Table 5.7 Identification (ID) and classification (C) accuracy of signal enhanced willie wagtail recordings with increasing test lengths. Asterisks indicate number of unidentifiable individuals

	Testing length
	LPCC
	MFCC
	PLPCC

	(sec)
	ID
	C
	ID
	C
	ID
	C

	1
	52.0
	    71.4***
	64.0
	 77.8*
	48.0
	   71.4***

	2
	62.0
	70.0
	54.0
	   75.0**
	58.0
	87.5*

	3
	76.0
	90.0
	74.0
	90.0
	68.0
	 100***

	5
	82.0
	  100*
	90.0
	  100
	74.0
	 100***

	10
	95.0
	  100
	94.0
	  100
	87.0
	 100*

	20
	99.0
	  100
	97.0
	  100
	96.0
	 100


Discussion

Different features and classifiers have the potential to increase individual identification accuracy by being more resilient to noise and variations in the data, by extracting information that is more individually specific, or by being better able to model and classify the extracted features. Surprisingly, there were few consistent differences in the results obtained using different features. PLPCCs and MFCCs have been found to increase the accuracy of noisy recordings over that obtained for LPCCs in human speech and speaker recognition (Hermansky 1990; Reynolds 1994). The higher accuracy of the PLPCCs for the noisy wagtail recordings may reflect this increased robustness in the presence of noise, even though they incorporate human, rather than avian, perceptual information. Since the

MFCCs and PLPCCs were developed using human perceptual information, their accuracy may be increased in animals through the use of features that incorporate perceptual information on the species under study. Clemins et al. (2006) demonstrated this through the use of generalised PLPCCs and Greenwood function cepstral coefficients, which

incorporate species specific information. Using these features, speaker recognition accuracy was increased by 1.4% and 4.9%, in an avian and mammal species respectively, over that obtained using MFCCs (Clemins et al. 2006). The generalised perceptual linear prediction model deserves further investigation in a wider range of species. The clean canary recordings and the signal enhanced wagtail recordings differed in the features that gave the highest accuracy. Whether this is a result of recording quality, signal enhancement or a difference in vocal production between the two species is not possible to determine without extensive further study. Overall, the similarity in the accuracy between the three features implies that they are all able to successfully extract individual information from bird song.

The classifier that consistently gave the highest accuracies was the PNN, a result also found by Terry & McGregor (2002) in their study on acoustic individual identification in corncrakes, Crex crex. In addition to providing the highest accuracy, PNNs have the advantages of having fast training, enabling decision boundaries that are as simple or complex as necessary, and having a simple procedure for retraining with new or additional data. However, PNNs have a larger memory requirement for storing all the training vectors, which may become restrictive for very large population sizes. Testing is also significantly slower than for MLPs or GMMs since it is proportional to the size of the training set (Zaknich 2003). In applications of acoustic individual identification, instantaneous identification will not always be required, and a delay of a few minutes would be acceptable in many situations.

In contrast to the PNNs, MLPs and GMMs take a longer time to train, and the training time increases significantly as the amount of training data increases, but testing is much faster. MLPs are generally thought of as being unsuitable for large populations because the training time increases exponentially as the population size increases (Rudasi & Zahorian 1991). MLPs are also much more difficult to train than PNNs or GMMs as they can get stuck in local minima and must be trained several times to ensure that they have trained correctly. This can further increase the amount of time required to successfully train an MLP. Another aspect of the MLP that can increase the time taken to train the network is that there are many variables in the MLP, for example the number of hidden neurons and the learning rate, the best of which can only be determined through trial and error (Zaknich 2003). 

GMMs have been used in many human speaker recognition tasks and were found in this study to be able to accurately identify all individuals. They consistently gave higher accuracies than the MLPs, and gave a similar classification accuracy, but a slightly lower identification accuracy, than the PNNs. Ganchev et al. (2007) also found that GMMs and PNNs performed similarly when applied to the task of species identification in singing insects. Overall, PNNs and GMMs were the simplest classifiers to train and test, and gave the highest accuracies. 

Increasing the amount of data used for training meant that more of the variability in the data could be incorporated and this lead to an increase in accuracy. Continuing to increase the amount of training data beyond 40 seconds is likely to have increased accuracy further, although in both species 10 to 20 seconds of training data were enough to give very acceptable results. The wagtail recordings were made in the field and thus had much higher levels of variation in noise and other effects, e.g. distance between the bird and the microphone, than the canaries which were recorded in the laboratory under optimal conditions. This increased level of variability in the wagtail recordings (even after signal enhancement) was demonstrated by the fact that the classifier required more data for training and testing in order to achieve a similar level of classification accuracy to the canaries.

In field studies, the amount of data available for training is highly dependent on the species under study and the length of recording that can be obtained for each individual. Twenty seconds of recording for the willie wagtails equates to approximately 32 songs. At an approximate average singing rate of one song every 13 seconds (E. Fox, pers. obs.), this will require a 6.9 minute singing bout from each individual. This may be difficult to obtain for some individuals, as wagtails will often sing for less than this before moving perches or leaving to defend the territory. However, even just 5 seconds of training (i.e. 8 wagtail songs or 1.7 minutes recording time) resulted in over 80% classification accuracy. Considerably less data are required for testing the classifier to achieve acceptable levels. Thus, once a classifier has been trained with a single long recording from each individual, only three to ten seconds of recording are required for testing to give 100% classification accuracy. Even with just one second of testing data, classification accuracy was above 70% in both species. As discussed by Terry & McGregor (2002), even these lower accuracies can still be useful if additional data are collected on the location of the caller, neighbouring animals and time of calling since these data can be used to reduce the number of potential identities.

In conclusion, based on accuracy, ease of use and speed of training, I would recommend the use of any of the three features, combined with a PNN or GMM, in future studies on acoustic individual identification in birds.

Chapter 6.  Application of acoustic individual identification to conservation research
Abstract
Conservation research frequently requires the identification of individuals in order to gather information on behaviour, dispersal or habitat use but also requires minimal impact from the identification technique. Acoustic individual identification of animals using speaker recognition methods, such as cepstral coefficients and artificial neural networks, has proven to be fast, accurate, applicable to a range of species and has minimal impact. Nevertheless, before these techniques can be used operationally in a field context for wildlife management, there are a number of practical limitations to be investigated. This study examined the effect on accuracy of 1) increasing the number of individuals to be identified, 2) using different call categories for training and testing (e.g. alarm calls versus territorial song) and 3) testing with songs produced up to one year after those used for training the classifier. I also tested the accuracy of the technique in an open population situation in which birds that have not previously been encountered need to be identified as new birds. Using recordings from canaries, Serinus canaria, obtained in the laboratory, I determined that at least 40 individuals could be identified with 100% classification accuracy, identity can be determined from any call category although the same category type is required for training and testing, individuals were correctly identified for up to 3 months, and previously unrecorded individuals could be correctly classified as being new birds. The results demonstrate that acoustic individual identification using speaker recognition methods have huge potential to be used as an alternative method of individual identification. What is required now is for research to be undertaken in real world situations to demonstrate the applicability of these methods, enabling them to become widely adopted, and hence improving animal welfare and increasing the range of species that can be studied.

Introduction
Threatened species often require study in order to determine the best methods for conserving the species and for monitoring the impacts of management actions (Clarke et al. 2003). Obtaining much of this information, for example territory size, breeding behaviour or habitat use, requires the identification of individuals over time (McGregor et al. 2000). Individual identification can occur either through natural variation or artificial marking. Natural variations in visual information, for example fur or skin colouration, scarring and tail markings have been used successfully in some species (Brown & Lewis 1977; Bretagnolle et al. 1994; Swanepoel 1996; Karanth & Nichols 1998; Van Tienhoven et al. 2007). Most animals do not have any obvious visible differences and the most common form of individual identification therefore involves adding artificial marks. Marking techniques include leg bands, wing tags, radio transmitters, dye marks and toe clipping. All of these methods involve the capture, at least once, of each animal and the addition of the mark. Either or both of the capture and marking procedure, as well as the mark itself, can cause welfare issues and potentially bias the results obtained. For example, capture can influence stress, mortality and reproduction (Carney & Sydeman 1999), leg bands can cause leg injuries (Sedgwick & Klus 1997; Berggren & Low 2004), radio transmitters and wing tags can decrease survival (Marks & Marks 1987; Rowley 1990; Paton et al. 1991), and colour leg bands can affect social behaviour (Burley et al. 1982; Metz & Weatherhead 1991; Fiske & Amundsen 1997; Waas & Wordsworth 1999). In addition, the individuals that are initially caught and marked may reflect a biased proportion of the population if the capture methods are more likely to catch particular individuals. For example, catching birds through the use of playback may increase the proportion of dominant males in the sample population and hence the results obtained will only reflect this section of the population. As a result, McGregor et al. (2000) have gone so far as to suggest that all results obtained from marked individuals should be considered inherently biased. The impacts on the individuals and the resulting biases when using artificial marks are particularly influential when working with threatened species in which any impacts on animal welfare need to be avoided and accurate results are essential. 

The guidelines put forward by scientific societies and ethics committees now frequently encourage the use of non-invasive methods of research that do not impact on the welfare of the animals under study (e.g. Rogers 2003; ASAB 2006). Acoustic identification offers an alternative to physical marking methods with the benefit that it uses naturally occurring individual variation and is largely non-invasive. It does not involve the capture, handling, or marking of individuals and calls can be recorded with minimal disruption of the animals involved. It is particularly likely to be useful for species that are visually cryptic and hard to capture (Gilbert et al. 1994; Peake et al. 1998). There is also the potential for remote and automatic recording to further decrease any disruption to the animals and increase the ease of data collection. Numerous studies have been carried out to determine whether individual variation occurs in the songs and calls of many animal groups (Lessells et al. 1995; Otter 1996; Crawford et al. 1997; Bee et al. 2001; Charrier et al. 2001; McCowan & Hooper 2002; Rogers & Cato 2002; Russ & Racey 2007). Discriminant function analysis (DFA) and cross-correlation analysis (CCA) have demonstrated that individual differences in calls can be used for individual identification, typically resulting in accuracies of 80-100% (e.g. McGregor et al. 2000; Galeotti & Sacchi 2001; Rogers & Paton 2005). However, despite the purported usefulness of these methods for individual identification, they have rarely been used as methods of individual identification in field or any other situations. There are several reasons for this, including: 1) they involve extensive manual input, 2) an individual can not be identified if it alters its repertoire over time, and 3) DFA is not able to recognise new individuals entering a population. In addition, few studies have been done on the effects of population size or temporal variation in acoustic signals on identification accuracy. 

Recently, studies using speaker recognition methods for acoustic individual identification in animals have generated considerable interest due to their potential to overcome many of the problems associated with the DFA and CCA approaches (Clemins et al. 2005; Trawicki et al. 2005; Reby et al. 2006). Research on acoustic individual identification in animals, using methods such as cepstral analysis and artificial neural networks, has established that these methods can be used to identify individuals (Chapters 3-6; Clemins et al. 2005; Trawicki et al. 2005; Fox et al. 2006; Reby et al. 2006), can be carried out call-dependently or call-independently (chapter 3), and can be used on recordings containing both additive and convolutional noise (chapter 4). Few studies have yet dealt with the real-world application of these methods. Questions that need to be answered to determine the practical limitations of the technique include: how is accuracy affected by an increase in the size of the population to be identified, how does temporal variation in song within an individual affect accuracy, does the call category used for identification (e.g. alarm calls versus territorial song) affect accuracy, and can these techniques be used in an open population situation, in which a new recording may belong to a previously unknown individual? Each of these questions was examined in this chapter using the recordings of canaries made in the laboratory. 

Methods
Data set

Recordings were made of the calls and songs of male common canaries, Serinus canaria. Canaries were recorded in the laboratory, in an anechoic room, with the microphone placed 10 to 30 cm from the bird. A single recording for each individual was obtained over a period of between 20 minutes and three hours. All canaries were individually marked so their identity could be confirmed over time. Recordings were made with a Sony ECM-672 unidirectional microphone and a Marantz PMD 670 solid state recorder at a sampling frequency of 48 kHz. All recordings had the silent portions between songs removed using automatic amplitude filtering. Some additional manual deletion was carried out to remove transient noises and poor quality signals. A high-pass filter, set at 500 Hz, was used to remove noise below the frequency range of the bird song. Cool Edit Pro (v2.1, Syntrillium Software Company) was used for both amplitude and frequency filtering.

The songs and calls in each recording were split into three call categories: song, agitation calls, and anxiety calls (categories based on Mulligan & Olsen 1969; Figure 6.1). The different song and call types within each category were not further segregated, with all categories, particularly song and agitation calls, containing multiple call or song types for each individual. This resulted in a call-independent task, since the song or call types used for training and testing within each category were not necessarily the same or present in the same proportions. 

Feature extraction and classification

In all experiments, perceptual linear prediction cepstral coefficients (PLPCCs) were extracted from each recording. PLPCCs have been found to give the highest accuracy when identifying canaries from their song (Chapter 5). Each recording was segmented into 20 ms frames, with 50% overlap and the PLPCCs were extracted from each frame. A linear prediction order of 20 was used. These coefficients were then used to train either a probabilistic neural network (PNN) for the tests on population size, call category and temporal effects, or a Gaussian mixture model (GMM) for the open population task. Feature extraction and classification were carried out in Matlab 6.5.1 (The Mathworks Inc.) using the Neural Networks Toolbox 4.0.1, Signal Processing Toolbox, and Voicebox (Brookes 2002). In all experiments, 20 seconds of recording were used for training the classifier and a further 20 seconds were used for testing. Classification was carried out on each 20 ms frame and the resulting probabilities were summed across one second lengths of recording, to give 20 results for each individual.
Two types of accuracy were measured. Identification accuracy was the percentage of tests that were assigned to the correct individual out of all tests carried out. Classification accuracy was the percentage of individuals that were correctly identified, with the identity of a test set deemed as being the class that contained at least half of the tests carried out for that individual. If no class contained at least half of the tests, then that individual was deemed unidentifiable and ignored.

Population size

Increasing the population size can increase the amount of overlap between each individual in the feature space, leading to a decrease in accuracy. Studies requiring individual identification are typically carried out on small sample sizes, either as a result of having a small number of individuals in the study population, or the time consuming nature of collecting data from large numbers of individuals. In this study, a PNN was trained and tested with the song from 2 to 40 canaries and the resulting identification and classification accuracies were recorded. Training and testing was carried out on different sections of a single recording from each bird.

Call category

Calls made in different contexts can differ significantly in how the sounds are produced, with different call categories often differing radically in their frequency range, harmonics, modulation and function. Examples of call categories are alarm calls, territorial song, contact calls, and threat calls (Catchpole & Slater 1995). The category a call belongs to can only be determined through analysis of the associated behaviours. The calling systems of some species can be complex, making it difficult to assign calls to categories. However, broad categories can usually be determined. The calls and songs of the canaries were split into three categories: song, agitation calls and anxiety calls (Mulligan & Olsen 1969). Each of these categories, taken from a single recording from ten canaries, was used to train and test a PNN. All combinations of calls and song were used for training and testing and the resulting identification accuracy was recorded. 
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Figure 6.1 Spectrograms of examples of a) song, b) agitation call, c) anxiety call

Temporal variation

Studies on animals can require individual identification from days to years, depending on the information being gathered. This requires temporal stability in the extracted features. In order to test the temporal stability of canary song, a PNN was first trained with song taken from a single recording from ten canaries. The network was then tested with a different section of the same recording and a recording made 2 to 12 days later for all ten canaries. Tests were also carried out on the recordings of up to four birds that were made at approximately 3 month intervals, up to 370 days later. 

Open population

In an open population situation, before the identity of an individual can be ascertained, it must first be determined whether the individual is amongst the known population. This is carried out by using a threshold value to decide if there is an adequate match between the individual and the best model in the classifier (Ramachandran et al. 2002). In this study, a GMM was trained with the song from ten canaries and then tested with song from the same canaries (in set), as well as from ten additional canaries (out of set). For each test carried out, the GMM returns the probability that the recording belongs to each of the individuals it was trained with. The classifier should be less certain in its assignation of a recording that does not belong to any of the known individuals and thus the maximum probability should be lower than for recordings that belong to a known individual. The maximum probabilities for each test recording were averaged for each individual, both those that were in the training set and out of the training set. A threshold value was then determined by plotting the false accept and false reject rates. The false accept rate is when individuals that are not part of the training set are classed as being in the training set, while the false reject rate is when individuals that are part of the training set are classed as being unknown individuals. The false reject rate will increase as the false accept rate decreases and vice versa. The point at which they intersect is termed the equal error rate and is the point at which both errors are lowest.

Results
Population size

Identification accuracy decreased as the population size increased, from 100% with 2 birds to 71.5% with 40 birds (Figure 6.2). The classification accuracy remained at 100% 
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Figure 6.2 Identification (ID) and classification (C) accuracy at increasing population size. Training and testing carried out with a 20 second section taken from a different part of the recording used for training each bird
regardless of the population size, although a population size of 22 birds resulted in one individual being unidentifiable and by a population size of 40, six individuals were unidentifiable.
Call category
Training and testing with the same call category resulted in 96-99% identification accuracy, regardless of the call category (Figure 6.3). Training and testing with different call categories resulted in only 18-43% identification accuracy. 

Temporal variation 

A PNN trained with recordings taken on day 0 and tested with the same recording or a recording made an average of 6 days later resulted in identification accuracies of 93-94% and a classification accuracy of 100% (Table 6.1). Recordings made from 3 to 12 months later had lower accuracies and some individuals were unidentifiable, with only 22% identification accuracy and 50% classification accuracy after 12 months.

Open population

The average maximum probability of testing canaries that were out of set was lower than for canaries that were in the training set. The intersection of the false accept and false reject lines occurred at a threshold value of 0.87, with an equal error rate of 10% (Figure 6.4).

[image: image40.emf]0

20

40

60

80

100

train song train agitation train anxiety

Accuracy (%)

test song

test agitation

test anxiety


Figure 6.3 Identification accuracy when training and testing with different call types, for 10 canaries with 20 tests carried out for each bird
Table 6.1 Average identification (ID) and classification (C) accuracy over time for 10 canaries with 20 tests carried out for each bird. Asterisks indicate number of unidentifiable individuals
	Day
	n
	ID (%)
	C(%)

	0
	10
	93
	 100

	6
	10
	94
	 100

	105
	1
	65
	 100

	198
	3
	58
	  67

	274
	4
	40
	    50**

	370
	3
	22
	    50*
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Figure 6.4 False accept and false reject rates for 10 canaries
Discussion

The general ability to use methods of human speaker recognition on animal vocalisations has already been established for both call-dependent and call-independent tasks in a variety 

of species (Chapters 3-6; Clemins et al. 2005; Trawicki et al. 2005; Fox et al. 2006; Reby et al. 2006) and in noisy situations (Chapter 4). This chapter continues to explore the practical limits to the real-world application of these methods to individual identification from bird song.

The tests in this study were all done (except for the temporal task) on a single recording from each individual, from one bird species that was recorded in the laboratory. There is therefore little, if any, of the variation in both noise and vocal characteristics, that would be present in recordings made in the field. This study therefore presents data on the best results possible, under optimum conditions for this particular species. Using field recordings may result in lower accuracies, but this study demonstrates the potential of the technique if high quality recordings, or noise removal methods (Chapter 4), are employed. Further study is required to ensure that the results are applicable for other species and animal groups. However, previous studies have obtained similar accuracies when using similar methods of feature extraction and classification, regardless of the species or recording conditions (elephants: Clemins et al. 2005; passerine species: Trawicki et al. 2005; Fox et al. 2006; deer: Reby et al. 2006). This implies that the results obtained here are likely to be broadly applicable across species and situations.  
Population size

This study found that identification accuracy decreased as the population size increased, but classification accuracy was still 100% with a population size of 40. The rate of decrease in the identification accuracy also slowed as the population size increased. Although some individuals were unable to be identified at population sizes over 22, no individual was incorrectly identified. In field studies using acoustic individual identification, being unable to identify an individual will usually be much less harmful to the results obtained than incorrectly identifying an individual. A similar result to this study was found by Trawicki et al. (2005). Using call-dependent identification, they found that the identification accuracy of Norwegian ortolan buntings, Emberiza hortulana, using cepstral coefficients and hidden Markov models, decreased to approximately 77% at a population size of 38. 
Although 40 individuals is not a large population size, many studies, particularly those on threatened species, are only able to be carried out on small populations. For example, only 51 calling male great bitterns, Botaurus stellaris, (a species on the red list of conservation concern in Britain) were present in the United Kingdom during the 2007 breeding season (Wotton et al. 2007) and a survey of 108 animal re-introduction studies (Fischer & Lindenmayer 2000) found that 50% used between 1 and 40 individuals. In addition, animals that live in groups often have small group sizes; for example, lekking birds typically form leks of less than 100 individuals (Jenni & Hartzler 1978; Kolzsch et al. 2007), and usually less than 30 individuals (Hoglund et al. 1993; Haukos & Smith 1999; Loiselle et al. 2007). As a result, all animals within a particular lek or breeding group could be identified. Traditional methods of marking individuals (e.g. colour leg bands, radio-tracking) can theoretically allow the accurate identification of an almost unlimited number of individuals. However, studies using these methods, especially radio-tracking, are generally carried out on small populations. This is due to the cost of radio-transmitters, the difficulty in capturing and marking animals, and the time consuming nature of recording behavioural observations from individual animals. A brief survey of the literature (E. Fox, pers. obs.) found that approximately 70% of studies on the movement and survival of animals using radio tracking consisted of less than 40 individuals (e.g. Crampton & Barclay 1998; Luccarini et al. 2006; Eliassen & Wegge 2007; White et al. 2007). Hence population size will rarely be a limiting factor in the application of acoustic individual identification.

Call category

Animals may try to convey more information on their identity in some call types or categories over others (e.g. Falls 1982; Schibler & Manser 2007), or may try to hide their identity in some call types (Krebs 1977). If the features that are extracted are the same as those used for individual identification by the animals themselves, then certain call types may be better to use for individual identification than others. Features such as the cepstral coefficients extract information based on physical differences in vocal tract shape, and therefore individual identity is expected to be encoded in all call types and categories produced. This was supported by the results obtained here, which demonstrated that, providing that the same category is used for training and testing, the same level of accuracy can be achieved regardless of the particular call category used. The fact that identification can occur regardless of call category, as long as the same category is used for training and testing, increases the applicability of acoustic identification. In many species only a small proportion of the population (e.g. territory holding males) produce long-distance territorial calls or songs and these may only be produced during the breeding season (Catchpole & Slater 1995). However, often all individuals in the population produce contact or alarm calls throughout the year, and therefore these call categories could be used to identify all individuals, regardless of sex or social status (Catchpole & Slater 1995).

Although the cepstral coefficients can be used to extract call-independent information, based on an individual’s vocal tract shape, different sounds use different vocal tract configurations and, as a result, when the sounds used for training and testing differ considerably the classifier is no longer able to recognise the cepstral coefficients as originating from the same individual. This is the reason why call-dependent identification produces higher accuracies than call-independent identification (Chapter 3). Training and testing with different call categories is an extreme form of call-independent identification, and not surprisingly results in lower identification accuracies. Previous studies have demonstrated that call-independent identification, i.e. training and testing with different sounds within the same call category, can result in high accuracies (Chapter 3). As a result of this study, it is clear that differences between call categories can be too great for the classifier to cope with, and hence only the same call category should be used for training and testing. This means that care must be taken when recording an individual to ensure only a single call category is recorded and used for training and testing. Alternatively, a recording must be split into its respective category types. The separation of recordings into categories normally requires extensive manual input, but this might be automated based on word spotting methods from human speech recognition (Anderson et al. 1996). A further solution may be to train with multiple call categories, so that testing can then be carried out with any category. This was found to successfully increase the identification accuracy of six red deer, Cervus elaphus, from 63.4% when training and testing with different barks and roars, to 91.5% when all barks and roars were present in the training data.

Temporal variation

Individuals can be identified with high accuracies over one week, and the accuracy is known to remain high for at least one month (Chapter 4, Chapter 5), but by six months the classifier was incorrectly identifying individuals. Whether this decrease in accuracy is due to changes in the sounds produced or a change in vocal structure, and whether it occurs in all species, requires further research. More information is also needed on the persistence of identification from one to six months. In red deer, accuracy was found to decrease as the time between recordings increased, with up to 25 days difference resulting in 58.1% identification accuracy and 80% classification accuracy (Reby et al. 2006). Speaker recognition in humans is typically carried out on recordings made weeks to months apart (e.g. Hong & Kwong 2005), although a few studies using time intervals of up to five years have found that people can be still be identified over this time period (Furui 1978; Furui 1981). A method of increasing accuracy over time, which has been used successfully in human speaker recognition (Furui 1981), is to retrain the classifier at regular intervals and incorporate subsequent recordings into the training data. This can overcome the problem of gradual changes in vocal production over time and may be applicable to some animal identification situations.

A method that enables individual identification over years is highly desirable, and is required for studies looking at long term behaviours. However, field studies carried out during the breeding season typically require identification for less than four months, and hence short-term acoustic individual identification may still be a useful tool for these studies. The ability to identify individuals acoustically from one to three months also compares favourably to some radio-tracking studies. The size of transmitters required for small animals typically limits their battery life to less than one month, but this has not prevented them from being used in many studies (e.g. Goth & Vogel 2003; Rathbun & Rathbun 2007; Rink & Sinsch 2007). 

Open population

DFA has rarely been applied to field studies requiring individual identification and this may be because DFA is not able to recognise new individuals entering the population. It can therefore only be used in closed populations in which all individuals are known. This is a rare situation in wild populations, in which recordings of unknown individuals are likely to be a common occurrence as a result of births and immigrations. Open set identification using speaker recognition methods is known to be successful in humans (Deng & Hu 2003), and this study confirmed it is also possible in a passerine species, with only 10% misclassification. The impact of this misclassification on the results that are obtained can be further minimised by altering the threshold value, based on the study being undertaken. For example, if the cost of misidentifying a known individual as an unknown one is higher or lower than the reverse situation (e.g. in studies involving recruitment into a population), then the threshold value can be increased or decreased accordingly. The threshold value for each species and recording situation is likely to vary, but the value can be determined simply, using only a single recording from each individual, so extensive pilot studies with marked individuals are not required.

Conclusion
Individual identification using cepstral coefficients and probabilistic neural networks or Gaussian mixture models is a successful and advantageous method of individual identification that could be applied to field research situations. Acoustic identification may never fully replace the more traditional methods of physically marking individuals, but in some species, particularly those that are threatened, cryptic, difficult to capture or observe, or have their welfare adversely affected by capture and marking, it presents an extremely useful alternative. Any study requiring the identification of individuals needs careful consideration of the method that is most suitable for the particular species and study being undertaken, but many scientific societies and ethics committees now encourage non-invasive research methods in their recommendations to researchers (ASAB 2006). As stated previously, this study was only carried out on a single passerine species, and therefore more extensive testing is required before the results can be confirmed to be applicable to a range of species. However, they do indicate that speaker recognition methods have the potential to be a useful alternative to other individual identification methods.

As suggested by McGregor et al. (2000), there is often a large gap between research that states the potential application of a new conservation method, and demonstrable applications of it. Wildlife biologists and conservationists require methods with extensive application examples before they can justify their implementation. Studies using captive animals and close-range microphones have demonstrated the potential for speaker recognition methods in real-world, complex situations. What is required now is for acoustic researchers to collaborate with front-line conservation biologists in order to demonstrate the use of speaker recognition techniques in real world situations. 

Chapter 7.  General discussion
The objective of this thesis was to investigate methods of call-independent acoustic identification for the individual identification of passerine birds, and to focus on the practical application of these methods. For many years biologists have investigated the possibility of using acoustic individual identification, but due to the constraints of the current methods it has rarely been used in field studies. Some of the major constraints of the current methods are that they are manually intensive and time-consuming, plus they require that all individuals share call types and an individual does not change its call types over time. All of these constraints can be overcome using call-independent identification based on automated human speaker recognition methods. 
This thesis began by initially determining if call-independent identification is possible in birds, using the methods commonly used for human speaker recognition and with slight modifications for bird song (Chapter 3). I discovered that call-independent identification is possible in passerine birds, and gives remarkably good results, even with little alteration from the methods used for human speech.

The biggest problem facing the application of human speaker recognition techniques comes from the decrease in accuracy caused by poor quality recordings. Even a small increase in noise, and particularly a mismatch in the noise present during training and testing, can cause large reductions in accuracy. Since most applications of acoustic identification in animals involve field recordings, often of poor quality, it was important to determine if this problem could be overcome, and to determine the limitations of the system in terms of the amount of noise it can cope with. As expected, having noise in a recording of bird song, and particularly a mismatch in the noise, caused a significant decrease in accuracy (Chapter 4). However, accuracy was increased through the use of signal enhancement techniques, resulting in 100% classification accuracy.

There are several different methods of feature extraction and classification used in human speaker recognition, each with their own advantages and disadvantages. Three methods of feature extraction and three methods of classification were compared to determine which resulted in the highest accuracy for acoustic individual identification using passerine song (Chapter 5). Interestingly, all features performed similarly, possibly because none of them was designed to be suited to song production or perception in birds. Future research should focus on finding features that can better incorporate this information. Despite multilayer perceptrons being the most common neural network used in human speaker recognition tasks, I found that Gaussian mixture models and probabilistic neural networks were much simpler to use and resulted in much higher, and more reliable, accuracies. Using noise removal techniques and the best method of feature extraction and classification consistently resulted in 100% classification accuracy.
Since it was clear from the previous chapters that call-independent identification gave high accuracies from passerine song, even using poor quality field recordings, it was then necessary to determine some of the limitations of the technique in terms of the practical application of the method to field studies. After examining the effects of population size, call category, temporal variation, and having an open population (Chapter 6), it was clear that call-independent acoustic identification did not have any significant shortcomings when compared to other methods of individual identification. The main problem discovered was that identification can only be carried out over short periods of time (less than three months). This limits the technique to short-term studies or studies in which the classifier can be continually updated over time with new recordings. Hence future research needs to focus on finding features that show greater temporal stability, enabling long-term studies to be carried out using acoustic identification.
This thesis focussed principally on two species and hence considerably more research is required on a variety of species, with a variety of song production and perceptual abilities, to confirm that the same methods are applicable, and that the same results are obtained, in all species. Greater study of animal vocal production systems and perceptual abilities will enable the development of more suitable feature extraction methods that can incorporate the differences that occur between humans and animals. In addition, while this thesis has focussed on passerine birds, the same methods should be equally applicable to other species, from mammals to amphibians, and deserves to be tested in these species. Work is continually being carried out in the field of human speech processing on new methods of noise removal, and new and improved methods of feature extraction and classification. Since I have demonstrated that methods designed for human speech require little variation in order to give high accuracies for bird vocalisations, the majority of the work carried out on human speech should be equally applicable to animal acoustic identification and deserves to be tested. 
One only has to look at the increase in publications over the past three to four years on applying speech processing methods to animal vocalisations to see that this is a rapidly growing field of research. Since much of the work requires specialist computer programming knowledge, little is carried out by biologists, and hence little work has been done on the practical application side of using these techniques. A method that works in the laboratory, from high quality recordings, can be almost useless when applied to field situations. Thus, in addition to determining methods of feature extraction and classification, I have tried to focus on the practical application side of the research in this thesis. I have demonstrated the potential of call-independent individual identification to significantly contribute to the study of wild bird populations. In doing so I have helped to bring the field of acoustic individual identification closer to the ultimate goal of being a popular, easy to use, and widespread method of individual identification in order to significantly improve the ease with which animals are studied, and the welfare of those animals.
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Abstract: Speaker recognition is used to identify individual humans, but has rarely been applied to other species. To be applicable to the wide variety of bird species, text-independent speaker identification would be the most effective method. This is the first paper to report results of this technique in a species other than humans. Mel-frequency cepstral coefficients were extracted from recordings of three bird species and a multilayer perceptron was used as the classifier in each species. First, the song types used in training and testing were not controlled for, and these conditions gave an accuracy of 68-100%. Next the recordings of the wagtails and scrub-birds were split into their respective song types, a network was trained with one song type from each individual and tested with a different song type. With these purely text-independent conditions the accuracy was 71-96%.  
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1.  Introduction
Many animal species are currently under threat and in decline. In order to know how to best conserve these species it is necessary to fully understand their biology, many aspects of which can only be determined through the study of known individuals over time. Most commonly these individuals are identified through the addition of external marks (for example radio transmitters, or leg bands on birds). However, this requires that animals are caught at least once and has the potential to influence survival and behaviour through stress, increased predation rates and other effects [1,2]. These methods are also of little use in species which are nocturnal, cryptic, difficult to catch or particularly prone to disturbance.

Individual identification based on aspects of natural variation, e.g. marks, colours, patterns or sounds, eliminates most of the problems associated with artificial marking. Many bird species produce songs which can be recorded at a distance, with minimal impact on the individual. This provides the opportunity to use speaker identification techniques to identify the individual being recorded.

To date much work has been carried out in the area of individual recognition of birds from their songs, but this has focused on using the gross morphology and time varying characteristics of the song obtained from the spectrogram, such as the song or syllable length, maximum and minimum frequency, or change in frequency over time [3,4]. The classifiers used are similarly simple, including visual comparison of spectrograms, discriminant function analysis, and cross-correlation. These methods are often highly time intensive and subjective. A further problem is that each of these methods can only compare the same song type (i.e. it is text-dependent). However, in some bird species individuals produce a variety of songs which may not be shared amongst the entire population, while in other species individuals will regularly change their song types. These species therefore require a method of text-independent speaker identification.

Speaker identification in humans has received interest for use as a biometric to assist with secure access control [5]. Most speaker identification systems use short-time spectral analysis, and assume that speech is stationary over these periods. This short-term spectrum is then transformed into a set of feature vectors that represent the individual characteristics present in the speech signal. Speech analysis is based on the source-filter model, represented by 
 y[n] = s[n] * h[n]



(1)
where y[n] is the speech signal, s[n] is the excitation, and h[n] is the vocal tract filter. In humans the excitation signal is produced by the vocal folds, and this signal is then filtered by the vocal tract and articulators. In order to extract the individually characteristic features of the vocal tract filter, it is necessary to deconvolve s[n] and h[n]. The two main deconvolution methods are cepstral analysis and linear predictive coding.

The most commonly used features for human speaker identification are the mel-frequency cepstral coefficients (MFCCs) [5,6]. The MFCCs include information on the human auditory ability, and have also shown resilience to noise. They capture the vocal tract resonances, while excluding the excitation patterns.

While work using speech recognition and species identification from sound has had some research in animals, only recently has the area of speaker identification in animals received interest. Recent studies have shown speaker identification accuracies of 82.5% in African elephants [7], and 76%-99% for a bird species, the Norwegian Ortolan bunting [8]. However, these were all text-dependent tests. 

This paper gives the first results for text-independent speaker identification in birds.

2.  Approach
Speaker recognition follows the general method for any pattern recognition task, consisting of data collection, pre-processing, feature extraction and classification (Figure 1). Each of these steps is explained in greater detail below.


Figure 1   General model for speaker recognition.
2.1  Data collection
Eight willie wagtails (Rhipidura leucophrys) were recorded between November 2004 and January 2005 at a variety of locations around Perth, Western Australia. Birds were recorded at night (2000h to 0400h) during which time each bird would sit in a single location and sing. 

The songs of eight noisy scrub-birds (Atrichornis clamosus) were recorded in December 2001 at Two People’s Bay Nature Reserve (34˚59'22"S, 118˚11'4"E) on the south coast of Western Australia. Singing males were recorded between 0530h and 1830h. 

The final data set was of eight singing honeyeaters (Lichenostomus virescens). Each bird was recorded before sunrise, between 0300h and 0500h, when they would sit and sing in a single location. Honeyeaters were recorded between November 2004 and January 2005 from street verges in the suburb of East Victoria Park, Western Australia.

Recordings of the scrub-birds were made using a Sony Walkman WMD6C with either a Sennheiser ME67 shotgun microphone or a Beyer Dynamic M88N(C) directional microphone. All other recordings were made using a Marantz PMD670 Solid State Recorder with a Sony ECM672 unidirectional microphone. The analogue recordings of the scrub-birds were digitized at 44.1kHz, while the other species were all recorded digitally at 48kHz.

2.2  Pre-processing
A recording from each individual had all periods of silence removed using the silence removal feature in Cool Edit Pro [9] plus some additional manual deletion, based on viewing the spectrogram and listening to the recording, to leave a signal of continuous bird song. The silent frames contain no speech information and discarding them improves computational efficiency. Each bird produced several different song types within a single recording. Some song types were specific to the individual, while others were shared between a few birds. 

Since all recordings were made in the field they had background noise, particularly from wind, passing cars and other animals. To remove some of this noise a bandpass filter was applied to the signal to remove frequencies outside the range 1,000 Hz – 14,500 Hz for willie wagtails and noisy scrub-birds and 800 Hz – 14,500 Hz for the singing honeyeaters. The songs for all three species were within these ranges. Spectral subtraction using Goldwave’s [10] Noise Subtraction function was also used, in which a sample of noise is analysed and this noise is then subtracted from the entire signal. Tests showed that this method of noise removal increased accuracy.

2.3  Feature extraction and classification
After noise removal, a 30 ms Hamming window was applied to the recording every 15 ms and the 12th order MFCCs were calculated for each frame. A window length of 30 ms is similar to that used in human speaker recognition, where windows are usually 10-30 ms in length. MFCCs are the most commonly used features for speaker recognition, having shown good results for both text-dependent and -independent recognition. They are based on the mel-frequency scale of human perception, and show a good ability for capturing the vocal tract resonances while excluding the excitation patterns. The first 12 MFCCs formed the feature vectors for the classifier. 

Each recording was split into three sections. The first 10 seconds was used to train the classifier, the second 10 seconds was used for validation to improve generalisation and to prevent the classifier from overtraining, and the rest of the recording was used as the testing data. The data was tested in 2 second segments.

Text-independent recognition requires a classifier that is not temporally based. Of the classifiers commonly used for text-independent speaker identification, a back-propagation neural network, the multilayer perceptron (MLP), was chosen for this task. MLPs are able to classify input regions that either intersect each other or are disjoint as they are able to generalize from the information presented in the training data. MLPs have shown comparable results to another commonly used speaker recognition tool, vector quantization [11]. For further information on MLPs see [11]. The neural network toolbox in Matlab was used to design and implement the neural networks. The network had one hidden layer with 16 neurons, log sigmoid transfer functions and a Levenberg-Marquadt training function. Training continued until the error of the validation data started to increase.

3.  Results

Speaker identification was carried out separately for the three species. In each species seven or eight of the eight individuals were correctly identified (i.e. had more than half the tests assigned to the correct bird), with an overall accuracy of 100% for willie wagtails, 68% for noisy scrub-birds, and 95% for singing honeyeaters. The confusion matrices are shown in Figure 2. For these tests the recordings were not split into their different song types, so the song types used for training and testing were a random assortment based on the order sung by the bird. Therefore, the song types present in the testing data may or may not have been present in the training data. In order to confirm that the technique is text-independent, further tests were carried out on the wagtail and scrub-bird recordings (seven wagtail and five scrub-bird recordings were able to be used).

The recording from each individual was separated into its different song types, with each song type assigned a letter. This was done via a visual inspection of the spectrograms. Each song type is highly stereotyped, even between individuals, making them simple to distinguish. Each willie wagtail had between two and four song types, with two being made frequently and any others only made occasionally. Each noisy scrub-bird had between two and six song types sung in roughly equal proportions. 

A network, one for each species, was trained with one song type from each bird and tested with a second song type. The same procedure as described above was used to extract the MFCCs and train the neural network. The network correctly identified all wagtails and four out of the five scrub-birds, with an overall accuracy of 96% and 71% respectively. The confusion matrices are shown in Figure 3.

4. Discussion and conclusions

This paper gives the first results for text-independent speaker identification in birds. The high results from the speaker identification tests (68-100%) are comparable to what is achieved in humans. They are also comparable to the results achieved for text-dependent identification in the Ortolan Bunting [8] which showed 85-95% accuracy for eight birds, depending on the song type, and in the African Elephant which showed an accuracy of 82.5% for six animals [7].

Text-independent recognition is typically more difficult than text-dependent recognition, so the high results achieved are particularly encouraging. There are many bird species in which individuals have a variety of song types, and in some species these song types can change over time. Therefore, a method of text-independent recognition is required for the application of this technique in the identification of individual birds in the field. 

The lower result observed for the noisy scrub-birds is likely to be due to the higher amount of background noise present in these recordings. The willie wagtail and singing honeyeater recordings were made at night, or just before sunrise, when there is typically less wind and traffic and fewer birds and animals calling in the background. Therefore, they had much lower levels of background noise compared to the noisy scrub-birds which were recorded during the day. 

Training and testing with different song types from each individual clearly showed that the MFCCs and the neural networks are capable of purely text-independent recognition. This was particularly highlighted in the results from the willie wagtails. In this test two song types (B and K) were used for both training and testing in different individuals (for example song type B was used for training in bird 5, and used for testing in bird 6). In both cases when these song types where tested they were successfully classified to the correct individual, rather than to the same song type.

The results given here do need to be treated with some caution since they are taken from a single recording for each bird. It is possible that recordings of the same bird taken at a different time may show lower accuracy due to the mismatched conditions between the recordings. In addition, only eight individuals were used and, as shown in [9], the accuracy can drop significantly as the number of individuals to be identified increases. However, the results are highly promising, particularly given that the methods used were those that have been developed for humans. Few alterations were made to either the features or the classifier to better suit the higher frequency and complex songs of the birds. The MFCCs are based on the human auditory ability which, while similar to that in birds, could be altered further to better suit the avian auditory ability. This will be the focus of future research.

The results given here show that text-independent speaker identification is possible is birds and, even using standard speaker recognition techniques, yields high accuracies. The next phase in this work will involve identifying an individual from recordings taken over time. This will be done by recording birds both in the laboratory (resulting in good quality recordings) and in the field (resulting in poorer quality recordings). From this the robustness of the technique can be determined, and hence its plausibility as a field tool.
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Figure 2. Speaker identification results for (A) willie wagtails, (B) noisy scrub-birds, and (C) singing honeyeaters.
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Figure 3. Speaker identification when text-independent for (A) willie wagtails and (B) noisy scrub-birds.
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