
An Infrared Activity Monitoring System

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

by

Derek Brader

Project Advisor: Dr. Bruce R. Land

Degree Date: August 2003

Abstract

Master of Electrical and Computer Engineering Program

Cornell University

Design Project Report

Project Title: An Infrared Activity Monitoring System

Author: Derek Brader

Abstract: An infraredmonitoringsystemwasdesignedfor usein thelab of Dr. Howard

Howland. Througha seriesof experimentson youngchickens,Dr. Howlandis studying

thedevelopmentandcontrolof eyesandvision. To conducttheseexperiments,a device

is requiredwhich is capableof measuringthe relative level of activity in a numberof

chicken cages. Infrared light beamsare shown through the cages,and the level of

activity canbeapproximatedby thenumberof timesthebeamsarebroken. At theheart

of this configurableandadaptablesystemis anAtmel 90S8515microcontroller. Datais

storedin the microcontroller'smemory,andcanbe downloadedto a personalcomputer

over an RS-232serial data link. The goals of this project include easeof use, cost

effectiveness, and the ability to configure and generalize the system.

Report Approved by

Project Advisor: ______________________________________ Date: ___________

ii

Executive Summary

Someexperimentsmustbemonitoredsocontinuouslythanis possiblefor a

humanobserver. While commercialautomatedmonitoringsystemscanbepurchased,a

perfectlysuitedonemay be very difficult to find, particularly if cost is a concern. Dr.

Howard Howland, in Neurobiologyand Behavior, is in needof such a system. Dr.

Howland is studyingthe impactof an animal'senvironmenton the developmentof its

eyesandvision. With youngchickensasexperimentalsubjects,hewishesto monitor the

level of activity in a numberof cagesat regulartime intervals. This report detailsthe

design of a system which meets this need.

Activity canbemeasuredwith reasonableaccuracyusinga seriesof infrared

beams.Thesebeamscanbe arrangedso thata few beamscrosseachcage. Theactivity

monitor includestwelve suchsensors,pairinga bright directionalinfraredlight emitting

diode with a photo-transistordetectionunit. More activity in the cagewill causethe

beamsto be brokenmorefrequently. By countingthenumberof beambreaksin a time

interval, the activity in that time interval can be accurately estimated.

This systemwas designedaroundan Atmel 90S8515microcontrollerwith

32kB of externalRAM. A user interfacewas designedwith four pushbuttonsand a

serial-controlledLCD with graphicalcapabilities,allowing the user to easily configure

andcalibratethesystem.Themonitorefficiently storesa largeamountof activity datain

its memoryuntil that datais downloadedto a personalcomputervia an RS-232serial

connection.

All planned features were implemented satisfactorily with no major

problems. The monitor's interfaceswere kept simple and standard,making it easyto

adaptthe monitor to alternateapplications. Preliminary testsyielded very promising

results, and the final product is just beginning to enter service as of this writing.

iii

Table of Contents
An Infrared Activity Monitoring System..1

Abstract...ii
Executive Summary..iii

I) Introduction..1
I.1) Motivation...1
I.2) Dr. Howland's Research...1
I.3) A General Design...1

II) Design Problem and System Of Requirements..2
II.1) Design Problem..2
II.2) Requirements...2

III) Range of Solutions..4
III.1) User Interface...4
III.2) Data Interface...4
III.3) Controller/Memory Options...5
III.4) Sensors...5

IV) Design and Implementation..7
IV.1) Reporting Method...7
IV.2) User Interface..7
IV.3) Data Interface..7
IV.4) Controller / Memory...7
IV.5) Sensors..8
IV.6) Packaging, Cabling, and Power...9
IV.7) Embedded Application...10
IV.8) Final Requirements...12

V) Results...13
V.1) Cost...13
V.2) Generalization..13

VI) Conclusions..15
VI.1) Manpower...15
VI.2) The Weakest Links...15

VII) Acknowledgments..17
Appendix A: Design Proposal...18
Appendix B: Instructions for Use of the Activity Monitor..............................24

Organization...24
Monitor configuration: Using the LCD Interface...................................24
Hardware: Setting Up the Sensors...26
Adjusting Receiver Sensitivity Threshold..27
Uploading Data...28

Appendix C: Code..29
Appendix D: A Linux Development Environment for AVR Microcontrollers
using the GNU Compiler Collection...60
Appendix E: Schematics..63

iv

I) Introduction

I.1) Motivation

It is frequently necessary for research scientists to take measurements over

long periods of time. This could be accomplished by a human observer, but that would

be a difficult and tedious task. People get tired, they make mistakes, and (perhaps most

importantly) they are expensive. An automated monitoring system can be an excellent

solution to this sort of problem, taking data on perfectly regular intervals for later

analysis by the researcher.

Many data acquisition products are available on the market, but they tend to

be quite expensive. Finding a suitable system may also prove to be difficult for certain

applications. If a researcher has the proper resources, or access to them, designing and

manufacturing a custom monitoring system could be an advantageous alternative. This is

the case for Dr. Howard Howland's research.

I.2) Dr. Howland's Research

Dr. Howland is studying the development and control of the eye and vision.

His research studies the effects of the environment on this development. Chickens are

good subjects for this study since they are cheap, readily available, and develop relatively

quickly. Dr. Howland wishes to measure the relative level of activity for his chicken

cages as he varies environmental conditions.

I.3) A General Design

While Dr. Howland's research provides motivation for a very interesting

design exercise, proper design could render the final product useful in other

circumstances as well. By keeping this in mind during design, the final product could

later be tailored for use in other applications. Doing this involves keeping the features

generic, and keeping the interfaces simple and standard.

1

II) Design Problem and System Of Requirements

II.1) Design Problem

The goal of this project is to design a monitoring system which is to

accurately measure the level of activity for four sets of chickens. Activity is to be

measured and recorded on regular intervals over a long period of time, and should be

accessible at a later date for analysis with any software of choice. Measurements are to

be taken from four cages occupying two rooms.

It is important to decide on a metric for activity, defined in such a way that it

can be easily measured and recorded by an electrical system. The need for a simple,

robust system with minimal impact on the experiment led to a design using infrared

beams. By arranging a series of beams that cross through the cages, we can define

activity as the number of beam interruptions per unit time.

The activity monitor, then, is a device which counts beam breaks over a

consecutive series of time intervals. Smaller time intervals will result in higher time-

resolution in activity measurement. Dr. Howland will be interested in measuring activity

at time intervals of about 10 minutes, so that activity can be accurately expressed for

different times of day.

II.2) Requirements

In defining the requirements for any system, the designer must look

primarily to the customer. He who will actually use the system will know best what

attributes are important. Some discussion of the problem with Dr. Howland and Dr. Land

led me to the following preliminary requirements:
� The system must perform its above described function (it must use infrared beams to

measure activity on regular intervals, record its measurements, and make the resulting

data available for spreadsheet analysis).
� A non-technical person must be able to effectively use the system.
� The system must not interfere with the experiment it is intended to measure.
� The system must comply with regulations for animal laboratories

2

This vague, preliminary set of requirements will be more explicitly specified

in the sections to come.

3

III) Range of Solutions

The vaguesetof preliminary requirementsoutlined in the previoussection

do not specify a solution. Beyond thoserequirements,there are a numberof design

decisionswhich must be madein order to definea certainimplementation. Severalof

thesedesigndecisionsarebestleft to the discretionof the “customer.” In appendixA,

you will find thedocumentI presentedto Dr. Howlandfor him to considerthe trade-offs

involved in some of these design decisions.

III.1) User Interface

 A well designed user interface is crucial if a system is to be used by anyone

otherthanthedesigner.A gooduserinterfacecouldbedesignedanynumberof ways;I

consideredtwo options. One methodwould be to interfacewith the systemusing a

computer. The computercould communicateserially with the monitoringsystemto set

up variousparametersandperformcalibration,usingeithera genericterminalprogramor

a custom application. The monitor itself would have a few lights to report its basic status.

The secondoption would be to havethe whole userinterfaceavailableon the monitor

itself. This would involve a liquid crystal display (LCD), a few push-buttons,and

possibly a keypad.

III.2) Data Interface

Sincethe the goal of this deviceis to transferdatato a computerfor later

analysis,we must specify the way the data is to be transferred. Becauseof its wide

availability andexistinghardware,I lookedno furtherthantheRS-232protocolfor serial

communication.Still remainingwasthedecisionof how andwhenthis communication

channel was to be used. I considered two options.

The first option I termed “constant reporting” and requiresa dedicated

computerwith a persistentserialconnectionto themonitor. This optiondoesnot require

that the monitor have any memory at all, exceptperhapsto store configurationand

working variables. It also reliesmore heavily on the stability of the computerthanon

that of the monitor: datacould be lost dueto a computermalfunction,but probablynot

4

due to a monitor malfunction.

The second option I termed “interval reporting” and requires data to be

downloaded to a computer periodically. This option requires the monitor to have enough

memory that downloading data is not required too frequently. Too small a memory in

this configuration would negate the point of using an automated system, since human

intervention might so frequently be required to download the data. A monitor

malfunction could result in data loss with this option, but it does not depend heavily on

the stability of the computer. Probably the greatest strength of this option is that it does

not require a dedicated computer, since computers are quite costly.

III.3) Controller/Memory Options

Which controller to use, and how much memory? More expensive

controllers have more internal memory, more input/output ports, and more computing

power. Along with their expense in dollars, the more complex controllers have a steeper

learning curve, which would likely increase development time. At the same time,

designing a complex system around a very simple controller could prove cumbersome.

Choosing an appropriate controller is a delicate balance. The amount of memory

required is an important issue, and is largely determined by the choice of reporting

method described in section III.2.

III.4) Sensors

From this projects conception, it was assumed that infrared sensors were to

be used. The use of such sensors was not questioned because they are fast, unobtrusive,

widely used, and readily available at low cost.

5

A good method of mounting the sensors is necessary for a number of

reasons. The system should be easy to use, so the mounting mechanism ought not be too

cumbersome to set up. Room lighting may interfere with the sensors, so in order to get

the needed range and sensitivity they must be mounted carefully. These sensors are to be

used in on and around chicken cages, and chickens are not particularly clean creatures.

The sensors must be protected from their environment. The sensors also must be small

and unobtrusive such that they do not interfere with the experiments or the results.

Each sensor is actually a transmitter/receiver pair. I again considered two

options for the way these two might communicate. One is for the receiver to be a simply

detect the level of infrared light (IR), switching at a certain threshold. A more

complicated, and more robust, solution would be to transmit some sort of carrier signal

and detect that signal at the receiver. While this would be more difficult to implement, it

would be far more immune to ambient light in the room.

We must also consider the interface between the sensors and the monitor

itself. Keeping this interface standard would be vastly helpful if any improvements or

changes are later to be made to the sensors. Ideally, almost any type of sensor could be

used.

6

IV) Design and Implementation

Before much work at all could begin on the monitor, most of the design

decisions outlined in section III above needed to be finalized.

IV.1) Reporting Method

It was decided to use the interval reporting method described above, without

having a dedicated computer. This decision was heavily influenced by cost, and I believe

it is a good one.

IV.2) User Interface

Since a dedicated computer would not available, the interface would need to

be on the monitor itself. I decided to implement the user interface with four pushbuttons

and an liquid crystal display (LCD). Chosen primarily because of its availability was a

4x20 character alphanumeric LCD with graphical capabilities. It takes display

commands over a one-pin serial connection using a TTL-level RS-232 signal. The

electronic requirements for this interface package are very attractive. It involves four

input signals, one for each of the pushbutton switches, and one output signal to drive the

LCD.

IV.3) Data Interface

The data interface is over an RS-232 connection at 9600 BAUD. A data

transfer, initiated using the pushbuttons and LCD, will result in a dump of the monitor's

memory as a comma separated list (CSV). This format is convenient because it is easy to

generate, and can be easily imported into many popular analysis applications. Each line

of the output corresponds to one data point, and contains the count for each sensor and a

time/date stamp. For more information, see Appendix A, “Instructions For Use.”

IV.4) Controller / Memory

A balance of the requirements led to a decision to use the Atmel 90S8515

7

micro-controller. This 4 MHz controller features, among other things, four 8-bit

input/output ports, one bidirectional serial UART, 512 bytes of random access memory

(RAM), and 8kB of programmable Flash memory. If anything, the features of this

controller are a bit lean; but that makes for a more interesting exercise in design.

As for the memory required, 32kB of external RAM is readily available for

the selected controller; and this controller includes hardware support for the required

memory interface. This is sufficient if the implementation is careful. If we assume that

we will not generally see a count higher than 255 in any given interval, then we can store

each count as an 8-bit unsigned integer. With twelve sensors, we will use 12 bytes for

each data point, not including the required date stamp. If we “reconstruct” the date

stamps at the time of upload, based on the data point index and the current time and date,

then we relax the burden of storing them. 32kB / 12B = 2,730 data points. If we take a

point every ten minutes, then we have enough memory to last nearly 19 days without

losing data. We have enough for nearly two days if points are taken every minute, so this

is clearly sufficient for the monitor's purpose.

The chosen Atmel microcontroller includes support for a serial Universal

Asynchronous Transmit/Receive (UART) in hardware. When using a UART for

communication, the complexity of the embedded application can be drastically reduced

by relying on this hardware. Unfortunately, the chosen Atmel controller supports only

one UART in hardware. Since the LCD as well as the data interface both rely on UART

communication, I decided to implement the serial data transmitter for the LCD in

software. Other standard LCD interfaces require much more than a single control signal,

so the disadvantage of the added complexity to the embedded application was offset by

the reduced requirement of output port pins.

IV.5) Sensors

Because the sensors are to be used in a very controlled environment, it is

safe to choose the simpler implementation proposed above, to simply detect the intensity

of IR currently incident on the receiver.

The sensors are mounted on a custom printed circuit board so that the

8

accompanying detection circuitry can be very close to the receiver, and so that the unit

will be as compact as possible. The detection element is mounted in a blackened tube to

mitigate the effects of ambient light. This structure will be housed in a small polystyrene

box along with a connector for a cable to the monitor.

The detection element itself is a photo-transistor. An operational amplifier

with open-loop gain and threshold set by a trim potentiometer drives the output to the

monitor. A schematic for this circuit is included in Appendix E. The transmitter is a

highly directional IR light emitting diode (LED). Experiments with this setup ensured

that sufficient range can be achieved.

IV.6) Packaging, Cabling, and Power

Since only one unit is to be built, the circuitry for the monitor (apart from

the sensors) is wire-wrapped. This was a time-consuming option, but offered

considerable flexibility and cost savings over a custom printed circuit board. The

monitor's chassis is an aluminum box, purchased from the physics stock-room. This was

chosen for its cost, availability, and the ease with which it could be drilled and cut to

accommodate the required components.

The issue of cabling between the monitor and the sensors really amounts to

a price/quality trade-off. Since I, the designer, control neither the budget nor the use of

the final product, I left this decision to the customer. A discussion of the cabling options

considered can be found in my design proposal, included in Appendix A. It was decided

that strength and durability outweighed the importance of cost, so we chose shielded

cables with XLR connectors (which are commonly used for low-impedance stage and

studio microphones). This option offers the required three conductors, two for power and

one for the return signal. The shielding in these cables is probably unnecessary for the

slow digital signals they will carry, but both the cables and connectors are physically

robust and readily available at reasonable prices. One female XLR jack is mounted on

each sensor, and 12 male jacks are mounted on the monitor's chassis.

Power for the monitor ultimately comes from the public power grid: it plugs

into the wall. A small 9V DC power supply was purchased at what was probably a lower

9

costthanwould havebeenrequiredto makeit from discretecomponents.All circuitry in

the monitor runson 5V DC. A heat-sinkedregulatoranda largenumberof distributed

bypasscapacitorson the wire-wrapboardcontrol voltageto the microcontrollerandall

other circuitry housedwithin the monitor'schassis. 9 volts travelsacrossthe shielded

cablesto thesensors,whereit is locally regulatedto 5V. Thoughthis offersa very small

efficiencyadvantagebecauseof ohmic lossesin thecables,theprimary reasonfor doing

this is to distribute the heat dissipation load amongsta greaternumber of voltage

regulators. Each sensor'sLED is configured to draw nearly 100mA for maximum

brightness,so using a separateregulator for eachsensoreliminatesthe need for the

serious heat sinking that would be required if they were regulated together.

IV.7) Embedded Application

Developmentof the embeddedapplicationfor the activity monitor required

a moreserioustime investmentthanI hadinitially anticipated. This wasduein part to

my choice to do my developmentusing an unfamiliar developmentenvironment(see

AppendixD), in part to my limited experiencein programming,andalso in part to the

necessarycomplexityof theapplication. A listing of thesourcecodefor this application

can be found in Appendix C.

Source Code Organization

The sourcecode is a collection of routines and functions which work

together to meet the application'srequirements. Each function can be categorized

accordingto whatrequirementit aimsto achieve.Functionsareorganizedinto a number

of files basedon their categories,for a total of 9 sourcefiles. Communicationbetween

functionsis performedprimarily by meansof global variables. Thoughconsideredpoor

practiceby many programmersfar greaterthan I, global variablesare quite useful for

inter-function communicationin relatively simple embeddedapplications. While the

contentof all sourcefiles canbe found in AppendixC, I will includea shortdescription

of each here:
� button.c– Functionsusedfor debouncingthe four pushbuttonsinvolved in the user

interface.

10

� clock.c – Functions used for keeping track of time: the real-time clock.
� dataread.c – Functions used for reading the sensors and storing data.
� interface.c – Functions to manage the user interface.
� lcd.c – Functions to abstract writing to the LCD.
� monitor.c– The top level sourcefile. The main methodis containedin this file, and

other files are #included here.
� mystring.c – Some simple string utilities to help with the interface.

Organizingthecodethis way drasticallysimplified its navigation,andmadedevelopment

a much more efficient process.

Monitoring

Thetaskof monitoringinvolvesreadingdatafrom thesensorsandstoringit

into thecontroller'smemoryfor later retrieval. Thesensorswill be readby polling their

statusat a rateof about1kHz. A beambreakwill becountedif a sensortransitionsfrom

“blocked” to “unblocked.” In order to reducethe numberof input/output (I/O) pins

requiredto readthe12 sensors,digital multiplexersareusedat the inputsandsensorsare

readin groupsof three. Thoughthesensorsarenot readat thesametime,all of themare

read within 25µs. For this application, the sensors are effectively read simultaneously

The 1kHz samplingrate was chosento balancetwo potential problems.

This rateis sufficiently fastthat it will bepracticallyimpossiblefor themonitor to “miss”

a beambreak,yet it is sufficiently slow that the monitor will remain immuneto high

speedoscillationsaroundsensortransitions. Also helpingto combatthis latterproblem

are schmitt triggers at every input.

As beambreaksare counted,they are written to the appropriatememory

locationasa large2 dimensionalunsigned char array. After eachpolling interval,the

monitor will moveon to the next datapoint, and begincountinganew. For very long

polling intervals, it would be possible for there to be more beam breaks than the

maximumcharacter(255). The monitor thereforeusesa saturationcounter,so that if

more than 254 breaks are counted, then exactly 254 will be reported.

11

User Interface

Writing the user interface was the most challenging aspect of this system's

implementation, largely due to the difficulty of managing the liquid crystal display

(LCD). The microcontroller communicates with the LCD via a 9600 BAUD TTL-level

serial connection, which is driven by software. The hardware serial channel is needed for

uploading data, and so was not available for communication with the LCD.

To abstract the use of the LCD, I wrote several functions to handle low level

tasks. Since the serial link to the LCD is slow, I limited the amount of data that needed to

be sent to the LCD by keeping track of “dirty lines,” meaning those lines which need to

be redrawn.

The interface is implemented with a reasonably large state machine. The

four pushbuttons, which are polled every 20ms and debounced, determine the navigation

through this state machine. The LCD abstraction routines I wrote make it fairly easy to

draw menus, with the selected item in a “reverse video” font (inverted colors), as well as

to mange the LCD back-light with a timeout.

IV.8) Final Requirements
� The system must perform its above described function (it must use infrared beams to

measure activity on regular intervals, record its measurements, and make the

resulting data available for spreadsheet analysis).
� A non-technical person must be able to effectively use the system.
� The system must not interfere with the experiment it is intended to measure.
� The system must comply with regulations for animal laboratories.
� The monitor must be a stand-alone device: no dedicated computer may be used as

part of the system.
� A computer should not be required to make changes to settings
� Monitor status should be available at all times (without computer)
� The monitor should be able to store at least 3 days worth of data if a point is taken

every 10 minutes
� The monitor should support 12 sensors

12

V) Results

The activity monitor was fully implemented as described here, and should

be entering service soon. Unfortunately, since the monitor has not yet been used for its

intended application, there are no sample data to present at the time of this writing.

Initial testing indicates that the activity monitor meets all of the requirements which were

initially set, and that it should be fairly robust.

V.1) Cost

A cost-effective solution was a significant part of this project's initial

motivation, and I believe that this project achieved success in this regard. A brief

summary of the costs for this project is listed below.

 Description Price

Aluminum enclosure $10.00

Wire-wrap board $4.00

Wire-wrap wire $5.00

Wire-wrap IC Sockets $30.00

Integrated Circuits (including microcontroller) $30.00

Serial LCD Display $100.00

Pushbuttons $4.00

DB-9 Connector $2.00

Power Supply $10.00

Sensor PCBs (incl. Components) $130.00

Sensor boxes, mounting hardware (Depends on cost of labor) $200.00

XLR Microphone Cable $66.00

XLR Connectors $40.00

Total $631.00

V.2) Generalization

While the activity monitor was designed for use in one specific application,

it could easily be adapted for use elsewhere. The sensors simply detect beam breaks, and

could be mounted almost anywhere to detect any opaque object. The activity on each

13

sensor is counted independently, and it is not necessary to use all 12 sensors. The

monitor is configurable via the user interface, and so can be adapted to a wide range of

applications. If an application requires more in-depth configuration than is possible

through the user interface, the microcontroller is in-system programmable and all source

code is available.

One of the monitor's features that makes it highly generalizable is the

standard interface between the monitor and the sensors. Power is supplied to the sensors,

and return a 5 volt logic signal representing whether they are currently “blocked” or

“unblocked.” Any sensor which conforms to this interface can be used with the monitor,

so long as it will switch slower than the 1kHz rate at which the sensors are checked.

14

VI) Conclusions

VI.1) Manpower

This project has been an interesting design exercise, particularly because I

did all of the work myself. This eliminated any confusion about authority, responsibility,

communication, and other problems frequently plaguing group projects, but I believe that

the project would have been completed more quickly, more intelligently, and more

thoroughly if more people were involved. More minds would have brought more ideas,

and more manpower would have brought the ability to work and research in parallel. The

implementation was simplified to limit the scope of this project in ways that would not

have been necessary if even just one more mind were involved.

VI.2) The Weakest Links

Though the activity monitor does work well, there are some areas of the

technical design that I feel are weak. Were I to design a “version 2,” these are the areas I

would look to improve.

The Atmel 90S8515 microcontroller was chosen as much for its availability

and familiarity as it was for its suitability. As I have mentioned, the capabilities of the

8515 are somewhat lean for this application. While this has little impact on the

functionality of the final product, it results in a cost in development time and in

complexity (i.e. maintainability) of the embedded application. A few specific features of

the controller which would be useful in this application are listed below.
� Hardware support for an additional Universal Serial Receive/Transmit (UART)

to avoid the need to write a software UART
� Large internal memory, perhaps non-volatile memory

To avoid the additional hardware required for external memory, and possibly render

the system immune to power loss
� More I/O port pins

To avoid the need to conserve them by using multiplexers and the serial LCD display

15

Another weak area of the activity monitor's design is the sensors. They are

acceptable for well controlled environments, but they are also highly susceptible to

ambient lighting conditions. As designed, the detector portion of the sensors simply

detects the intensity of IR incident on it and the emitter provides a bright IR source. This

solution was chosen largely because I did not have the time to implement the solution

mentioned in section III.4 above. This alternative which I considered would involve

transmitting some carrier on the emitter and selectively sensing that signal at the detector.

In retrospect, the sensors may be the very weakest link of the whole system.

This weakness, however, serves to illustrate one of the strengths of the design.

Fortunately, the system is designed such that the current sensors could easily be replaced

by an entirely different implementation. Since the interface between the sensors and the

monitor is simply a 5 volt digital logic signal, virtually any sensor could be made to work

with the activity monitor. If, at some later time, it is decided that the original sensors are

inadequate, a drop-in replacement could be designed.

16

VII) Acknowledgments

This project would not have been conceived without the research of Dr.

Howland. His input was crucial in the design of this system, as was his patience with its

unexpectedly drawn-out completion. Dr. Land provided excellent support and guidance

throughout the development effort. Much needed help with the mechanical aspects of

this system was provided by Gary Oltz.

17

Appendix A: Design Proposal

The pages that follow are the design proposal originally drafted for Dr.

Howland at the early conceptual stages of this project's design. This document represents

many of the design decisions as they were viewed at the onset of the project.

18

Activity Monitor
Design Options

Derek Brader

19

Interface

 Reporting Method: constant vs. interval

I would call a constant reporting configuration one in which there is a

persistent serial (RS-232) connection between the monitor and the computer to which it is

reporting. Trade-offs for this method:
� [pro] constant/immediate availability of data
� [pro] generally immune to microcontroller malfunction
� [pro] (effectively) indefinite reporting without user intervention
� [con] requires dedicated computer near the monitor
� [con] relies on integrity of the RS232 cable
� [con] relies on the stability of the dedicated computer's operating system

An interval reporting configuration is one in which data must be periodically retrieved

from the monitor, perhaps via a notebook computer. Trade-offs for this method are

essentially the inverse of those listed above:
� [pro] no dedicated computer required
� [pro] computer must only remain stable for a short time
� [con] the periodicity of the data downloads is constrained by the rate at which data

accumulates and the size of the microcontroller's memory (-> no long vacations).
� [con] microcontroller malfunction will cause data loss

 Software Options: HyperTerm vs. custom application

It would be possible to download data using the Windows program

HyperTerm, or a similar readily-available product. Another option is to develop a

custom application to interface with the microcontroller. Trade-offs for using

HyperTerm:
� [pro] well tested bug free (hopefully) software
� [pro] familiar interface (maybe)
� [pro] less development time

20

� [con] HyperTerm may lack necessary features
� [con] HyperTerm's interface may not ideally suit this application

 Direct user interface: LCD and Keypad – how much is required?

Rather than interface with the monitor using only a command-line interface

on a PC, it may be useful to have an LCD display and small keypad on the monitor to

perform basic commands and functions. How much functionality is desired from such an

interface must be decided. Clearly, cost will be affected size and features of the display

and keypad. There are many things the display and keypad might be used for, but here

are some ideas:
� show time/memory remaining
� show current activity
� browse brief activity history
� display or set time/date
� display or set polling interval
� test/calibration modes

Structure
There are many possibilities for sensor mounting structures. I will suggest a

couple I have in mind.

Frame mount structure

A frame mount structure could rest on the ground with “arms” coming up to

hold the sensors, or it could rest on top of the cage with “arms” reaching down to hold the

sensors. This type of structure would be somewhat large, but it would not have to be

calibrated frequently because the structure could be easily moved without changing the

relative positions of the sensors. The sensor height could also be easily adjusted with this

structure.

21

Modular structure

The idea of this structure is that the sensors would sit on a pedestal (like a

cement block) beside the cage. This offers great flexibility in sensor placement and

orientation, and also in portability and re-configuration. Since the sensors would be

easily moved, however, re-calibration might frequently be necessary.

Some sketches of what I have in mind are on the following page.

[These sketches were hand-drawn on the original document, and will not appear here.

The original sketches were not followed.]

Cabling
Wires must connect the sensors to the monitor's main circuitry. Possible

solutions vary in robustness, ease of use, and price.

Terminal strip: (very low cost)

Probably the least expensive option, wires in twisted pairs could connect

terminal strips at the monitor circuitry to those at the sensors. This solution is cost

effective and fairly robust, but is by far the most difficult to use or move since each wire

must be connected individually to two screw terminals.

MOLEX connectors: (≈$20 w/o cables)

Inexpensive MOLEX connectors (such as those used in automobile

electrical systems and computer power supplies) could be used to simplify wiring. Since

many wires can share the same plug, the user is required to make few connections and the

risk of making wrong (or poor) connections is minimized. Connectors such as these

would also open the possibility of panel mounting receptacles for cleaner wiring.

22

XLR connectors: (≈$140 w/cables)

For robust noise immunity, triaxial cables may be desired to carry signals

to/from the sensors. While other connectors could be used for this type of cable, the best

connectors are probably the XLR connectors frequently used with low-impedance

microphones. While somewhat expensive, these latching connectors are sufficiently

indestructible to survive abuse on stage by rock musicians, yet of high enough quality to

be used in fine recording studios. They will also be easy to use, since we will probably

require one connector per IR emitter/detector pair. It is also possible to panel-mount

these connectors.

Costs
Costs should be fairly low, depending on which connectors are chosen. The

parts required for the circuitry and mounting hardware should not exceed $500 unless a
large LCD display is desired.

23

Appendix B: Instructions for Use of the Activity Monitor

The activity monitor uses 880 nanometer (infrared) light beams to detect

“activity,” which is to be quantified by the number of beam breaks over a given time

interval. A single control module with 32kB of memory accumulates data from 12

independent sensors, and is capable of uploading that data over an industry-standard RS-

232 serial data link.

Organization
� Monitor Configuration: Using the LCD Interface (Menus and setup)
� Hardware: Setting Up the Sensors (Parts list, hardware setup, system calibration)
� Adjusting Receiver Sensitivity Threshold (Receiver calibration)
� Uploading Data (Interfacing with a computer)

Monitor configuration: Using the LCD Interface

When the control module is plugged in, its LCD will briefly display

“Clearing Memory” followed quickly by the main status screen. The main status screen

will show the monitor's real-time clock, and it will display “RESET!” at the bottom of the

screen to show that the monitor has been reset and is not configured. NOTE: The

monitor will lose all configuration and currently held data if it loses power! Before use,

the monitor should be configured using the LCD and the 4 pushbuttons on the control

module. In order for the monitor to behave as expected, the time, date, and polling

interval must be set. The hardware also must be properly set up and calibrated.

The four pushbuttons are arranged like arrows on a computer keyboard, and

you should think of them as having the following functions:

right: select, forward, yes

left: un-select, backward, no

up: increment

down: decrement

From the status screen, push left, up, or down to momentarily activate the back-light

of the LCD. Push right to activate the main menu (the back-light will remain on while

24

navigating the menus and configuration). In the main menu, push right to select a

menu item, up or down to change the selection, or back to exit to the main status

screen. Options available in the main menu are “View Current Status,” “Upload Data,”

and “Clear Memory.” Selecting “More Options...” from the main menu will display the

secondary menu, including the options “Set Time/Date,” “Set Polling Interval,” and

“Calibration.” The explanation of these functions, found below, should describe most of

the control module's functionality.

View Current Status: This will display the current memory usage as both a percentage of

available memory, and as a number of points taken out of the total number of

points that can be taken. Push left or right to return to the main status

screen.

Upload Data: Selecting this option will cause the monitor to dump the data it contains to

the serial port. See the section on uploading data below.

Clear Memory: Selecting this option will display a screen requesting confirmation to

clear the memory. Press right to clear the memory, and left to cancel. Either

choice will bring you back to the main status screen. Clearing the memory will

cause all currently stored data to be lost, and previously used memory will be

recovered for more logging. Clearing the memory will not affect monitor settings

such as the time, date, and polling interval.

Set Time/Date: This option allows you to set the monitor's real-time clock. The time and

date will be displayed with a cursor (^^) under one of the fields. Use the left

and right buttons to move the cursor, and the up and down buttons to adjust

the value of the field above the cursor. Moving the cursor off the screen will exit

“Set Time/Date” mode and the monitor will ask for confirmation of a memory

clear. Press right to clear the memory, and left to set the clock without

clearing the memory. Either selection will bring you back to the main status

screen. NOTE: If the clock is set without clearing the memory, then data points

taken prior to setting the clock will have erroneous time stamps when uploaded.

Clearing the memory is therefore recommended whenever the clock is set.

Set Polling Interval: The polling interval is the period at which data points are recorded.

The period is expressed in minutes, and the default is 10. A short polling interval

25

will yield more precise data, but will cause the memory to fill up faster. A long

polling interval conserves memory at the expense of time-precision of the data.

The amount of time the monitor can log data for without running out of memory

can be determined as follows:

T � 43.33 � P

Where P is the polling interval in minutes and T is the time, in hours, before the

memory will run out. Change the value of the polling interval with the up and

down buttons. Press left to discard changes to the polling interval and return to

the main status screen. Press right to accept changes to the polling interval.

Accepting changes will cause the monitor to ask for confirmation of a memory

clear. Press right to clear the memory, and left to change the polling interval

without clearing the memory. Either selection will bring you back to the main

status screen. NOTE: If the polling interval is set without clearing the memory,

then data points taken prior to changing the polling interval will have erroneous

time stamps when uploaded. Clearing the memory is therefore recommended

whenever the polling interval is changed.

Calibration: It will be important to ensure proper operation of the sensors by calibrating

them. The calibration screen will show a sensor number, and an X or an O

corresponding to the sensor's current status. X is displayed when the beam is

blocked and O is displayed when it is not. A buzzer will also sound when the

beam is blocked. Press up or down to change which sensor is being calibrated.

Press left or right to exit calibration mode and return to the main status screen.

Also see the section below on setting up the sensors.

Hardware: Setting Up the Sensors

Parts
� 1 x Control Module (Aluminum box including LCD, pushbuttons, DB-9 connector for

serial communications, and XLR connectors for communication with sensors)
� 12 x 2-conductor shielded cable with XLR connectors

26

� 12 x SensorUnit (polystyrenebox with XLR connector, tube-mountedinfrared

detector, and tube-mounted infrared diode attached to 4' cable)

Eachof the 12 sensorsincludesa tube-loadedIR detectorin a rectangular

polystyrenebox and an IR light emitting diode attachedwith an approximately4 foot

lengthof cable. An XLR connectoris providedon therectangularbox for connectionto

the control module. Any of the 12 sensorsmay be connectedto any of the 12 sensor

inputs on the control module.

Propersetupof the sensorsshouldbe fairly straightforward. The IR light

emitting diode(LED) mustbe carefullyaimedat the detectorbox. The beam-spreadof

the LED is only a few degrees,so it mustbe aimedvery carefully. The detectoris far

lessdirectionally sensitivethanthe LED, as the directionalityof the detectoris limited

only by its tube-loading. The LED shouldbe aimedby rotating its PVC housingand

adjusting its height. The detectoris to be affixed with VELCRO® fastenersin the

necessary location on the panel opposite the LED.

The calibrationmodediscussedabovewill most likely be necessarywhen

aiming the sensors.A video cameramay alsoproveuseful(the imagingunits on many

video camerasaresensitiveto infraredwavelengths).If you haveproblemsaiming the

sensors,try startingat a very shortdistance. If the detectorseemsunresponsiveto the

LED, if you cannotachievesufficient range,or if thedetectoris too heavily affectedby

ambientlight, it maybenecessaryto adjustthesensitivitythresholdof thedetector. See

below for help with doing this.

Adjusting Receiver Sensitivity Threshold

It maybecomenecessaryto adjustthedetectorsensitivitythreshold.This is

the most challengingaspectof configuring the activity monitor. To do this, you must

removethe four screwson the detector'spolystyrenebox andopenit. Thereis a blue

rectangulartrim potentiometermounted on the printed circuit board with a white

adjustmentknobon oneside. Theadjustmentknobcanbe rotatedwith a screwdriverto

alter the sensitivity threshold, clockwise to decreasesensitivity. While adjusting

27

sensitivity, you should hold the blackened PVC shielding tube in front of the detector

element as it would be held when the detector box is fully assembled. This may be

cumbersome, but is necessary for good results. Sensitivity adjustment should always be

done in the same lighting conditions under which the sensor will be used. If the sensor is

to be used in multiple lighting conditions, set sensitivity under the brightest condition.

Plug the sensor into the control module, enter calibration mode, and use the

up and down buttons to select the appropriate sensor. The control module should report

that the sensor is not blocked. At this point, the detector is receiving ambient light from

the room. Without the LED pointing at the detector (and while holding the PVC

shielding tube in place), turn the sensitivity down to the point where the control module

just barely shows that the sensor is blocked. The sensor should now be properly

calibrated.

Uploading Data

The first step in uploading data is to set up the computer. Connect your

computer's serial port to the DB-9 connector on the side of the activity monitor. Open a

serial communications program and configure it for 9600 baud with no flow control, no

parity, 8 data bits, and one stop bit. You will probably also wish to configure it to

capture to file.

Once this computer setup is complete, activate the main menu and select

“Upload Data.” The upload will start immediately. During the upload, a status bar will

show progress. Note that if the memory is full, uploading may take a moment to

complete. Once the upload is complete, the monitor will confirm a memory clear. Push

right to clear the memory, left to cancel. Either choice will bring you back to the

main status screen.

Note that, on the monitor's LCD, the transfer will appear to happen properly

regardless of whether or not the computer is properly configured. Do not confirm the

memory clear until you confirm that the data has been properly transferred to the

computer. If the transfer was not successful, cancel the memory clear, check your

connections and software settings, and try again.

28

Appendix C: Code
/*
 *
 * monitor.c
 * this is the highest level file, which includes what others are
 * necessary. main() is declared here, as well are the ISRs and
 * initialize().
 *
*/

// automagically includes ioXXX.h
#include <io-avr.h>
// interrupt handling stuff
#include <interrupt.h>
// more interrupt stuff
#include <sig-avr.h>
// timer stuff
#include <timer.h>
#include <stdlib.h>

 // lots o' global vars... declare early.
unsigned char reload; // reload val for timer 0
char *line1, *line2, *line3, *line4;
unsigned char dirty_lines; // lines which need to be refreshed
unsigned char rv_lines; // lines to be printed in reverse video
char sclock[21];
unsigned char polling_interval; // time (min) between writing data to mem
unsigned char buzz; // set to one to make the buzzer ring

// things i split off...
#include "dataread.h"
#include "lcd.c"
#include "mystring.c"
#include "clock.c"
#include "button.c"
#include "interface.c"
#include "dataread.c"

void blink(void);
void initialize(void);

INTERRUPT(SIG_OUTPUT_COMPARE1A);
INTERRUPT(SIG_OVERFLOW0); // to manage tasks
INTERRUPT(SIG_INTERRUPT0); // for clock (use 32768 osc)
//void delay_ms(unsigned short ms);

// TIMER 0 INTERRUPT FOR TASK MANAGEMENT
// should run about every ms.
INTERRUPT(SIG_OVERFLOW0)
{
 // since the button routine is slow (and since the timer 1 isr
 // is far more time critical), we enable interrupts here.
 sei();
 outp(reload,TCNT0);

 // debounce the buttons

29

 // if this isn't IN the isr, then the buttons are fairly
 // non-responsive due to all the slow code in main()
 button_check();

 // handle the buzzing...
 // and YES, i do mean inp(PORTB). we're just looking at the
 // currentvalue of the port, not trying to read the value of
 // the PIN.
 if (buzz && (inp(PORTB) & 0x10))
 cbi(PORTB,PB4);
 else
 sbi(PORTB,PB4);

 if (t_dr_sencheck > 0) t_dr_sencheck--; // every 1ms
 if (t_backlight > 0) t_backlight--; // every 1000ms
 if (t_interface > 0) t_interface--; // every 100ms
}

// LONG isr... hopefully it'll work
INTERRUPT(SIG_OUTPUT_COMPARE1A)
{
 // SOFTWARE UA_T for LCD
 lcd_isr();
}

INTERRUPT(SIG_INTERRUPT0)
{
 sei();
// clock_isr();
// this function contains only one line, and we want the isr to return
// quickly so it's much faster to run it "inline".
 subsecond++;
}

int main(void)
{
 initialize();

 // clear the data arrays.
 // this uses the lcd, so it must happen *after* initialize()
 dr_clearmem();

 while(1)
 {

 if (t_interface == 0) interface();
 lcd_refresh(line1, line2, line3, line4, dirty_lines,
rv_lines);
 dirty_lines = 0;

 if (t_backlight == 0) backlight();
 if (t_dr_sencheck == 0) dr_sencheck(); // every

 clock_checkdate();
 dr_poll();

30

 }

}

void initialize(void)
{

 // first and foremost, we want LOTS of memory
 // turn on external memory in the mcucr
 // but we need to turn these on REALLY early for anything to
 // work... so that's taken care of with linker options.
 // check out the Makefile and the linker script, avr85xx.x
 //sbi(MCUCR,SRE);
 //sbi(MCUCR,SRW);

 // for the clock, we enable external interrupt pin 0
 sbi(GIMSK,INT0);
 cbi(DDRD,PD2); // input, no pullup
 cbi(PORTD,PD2);
 sbi(MCUCR,ISC01); // interrupt on rising edge
 sbi(MCUCR,ISC00);

 // set up timer1
 outp(0x00,OCR1AH); // set up OCR1A
 outp(0x34,OCR1AL); // for 9600 BAUD
 //outp(0xd0,OCR1AL); // for 2400 BAUD
 outp(CK8, TCCR1B); // start timer1 prescale=8
 sbi(TCCR1B, CTC1); // enable clear on compare a match
 sbi(TIMSK, OCIE1A);

 // unfortunately, we still need timer0
 // should run about once per ms
 reload = 256-62;
 outp(reload,TCNT0);
 sbi(TIMSK,TOIE0); // timer0 overflow isr on
 timer0_source(CK64); // prescale=64

 lcd_init();
 button_init();
 dr_init();

 // PORTB4 is the buzzer
 sbi(DDRB,PB4);

 day = 1;
 month = 1;
 polling_interval = 10;

 interface_state = interface_start;

 unsigned long int i;
 // kill time for the lcd to start up
 for(i=0; i<0x000fffff; i++);

 sei();
}

31

// the port (and pins) which control the data mux and read data
// check in dr_init() when changing these...
#define dr_muxddr DDRD
#define dr_muxport PORTD
#define dr_muxpin1 PD3
#define dr_muxpin2 PD4
#define dr_dataddr DDRB
#define dr_dataport PORTB
#define dr_datapin PINB
#define dr_dmask1 0x20
#define dr_dmask2 0x40
#define dr_dmask3 0x80

// making this too big made some weird memory things happen...
// like dirty_lines stuck at 0x1f or something. very strange.
// perhaps my calculations for available memory were not so great.
// oh well. there is still plenty.
#define dr_size 2600 // amount of space to allocate for each sensor
unsigned char sensor[12][dr_size];
unsigned int dr_index; // used to index the sensorXX arrays
unsigned int dr_senstat; // current status of sensors (little endian bitwise)
unsigned char dr_mincount; // count minutes for polling
char dr_pflag; // flag for dr_poll()
#define t_dr_sencheck_reload 1
unsigned char t_dr_sencheck; // task counter for dr_sencheck()
unsigned char dr_month, dr_day, dr_hour, dr_minute; // when polling started

void dr_sencheck (void); // check sensors... does most of the work
void dr_init (void); // init routine
void dr_clearmem (void); // writes zeros to the data arrays
void dr_poll (void); // take care of incrementing dr_index (polling)
unsigned char dr_memused (void); // create a string w/ % mem used
void dr_upload (void); // upload data to serial port
void ser_putchar (char); // write character to serial port (wait for ready)
void ser_puts (char * c); // write string to serial port (wait for ready)

/*
 *
 * lcd.c
 *
 * this is a bunch of routines i wrote to run the serial lcd, assuming a
 * certain set of global communication variables is not wrecked up by
 * whatever code this is used with.
 *
*/

 // DO NOT USE the following variables in other code...

char lcd_putchar_bit; // for counting bit for soft ua_t
char lcd_putchar_char; // char to send for soft ua_t

// functions in this file:

void lcd_putchar(char); // puts a single character to serial ua_t tx
void lcd_puts(char c[]); // puts a char array to serial ua_t (using putchar())

32

 // sets up some shit. run this before expecting anything to work.
void lcd_init(void);
 // MUST be run in the timer 1 isr at PRECISELY the baud rate.
void lcd_isr(void);
 // routine to refresh the display. dirty_lines uses only the first
 // 4 bits, bits 0-3 representing lines 1-4. when a bit is one in
 // dirty_lines, it means that line is to be refreshed. rv works like
 // dirty, but ones in this var tell us to print corresponding line in
 // reverse-video.
void lcd_refresh(char *l1, char *l2, char *l3, char *l4,
 unsigned char dirty, unsigned char rv);
void lcd_backlight_on (void);
void lcd_backlight_off (void);

void lcd_puts(char *c)
{
 int i=0;
 while(c[i] != 0)
 {
 lcd_putchar(c[i]);
 i++;
 }
}

void lcd_putchar(char c)
{
 lcd_putchar_char = c;
 lcd_putchar_bit = 10;

 // wait until the timer 0 isr finishes sending...
 // somehow calling delay_ms here takes FOREVER
 // kind of ghetto, but polling a flag was not working
 // for some reason or another.
 int i;
 for (i = 1; i<0x0fff; i++);

}

void lcd_isr(void)
{
 if (lcd_putchar_bit > 0)
 {
 lcd_putchar_bit--;

 switch(lcd_putchar_bit)
 {
 case 9: // start bit
 sbi(PORTD,PD5);
 break;
 case 0: // stop bit
 cbi(PORTD,PD5);
 break;
 default:
 if ((lcd_putchar_char & 0x01) == 0x01)
 cbi(PORTD,PD5);
 else
 sbi(PORTD,PD5);

33

 lcd_putchar_char = lcd_putchar_char >> 1;
 }
 }
}

void lcd_refresh(char *l1, char *l2, char *l3, char *l4,
 unsigned char dirty, unsigned char rv)
{
 // if all lines are dirty, clear the screen
 // (as a sanity check or something)
 if(dirty > 0x0f)
 lcd_putchar('\f');

 if(dirty & 0x01)
 {
 if (rv & 0x01)
 lcd_putchar(2);
 lcd_putchar(1); // home
 lcd_puts(l1);
 if (rv & 0x01)
 lcd_putchar(3);
 }

 if(dirty & 0x02)
 {
 if (rv & 0x02)
 lcd_putchar(2);
 lcd_putchar(1); // home
 lcd_putchar('\r');
 lcd_puts(l2);
 if (rv & 0x02)
 lcd_putchar(3);
 }

 if(dirty & 0x04)
 {
 if (rv & 0x04)
 lcd_putchar(2);
 lcd_putchar(1); // home
 lcd_puts("\r\r"); // to line 3
 lcd_puts(l3);
 if (rv & 0x04)
 lcd_putchar(3);
 }

 if(dirty & 0x08)
 {
 if (rv & 0x08)
 lcd_putchar(2);
 lcd_putchar(1); // home
 lcd_puts("\r\r\r"); // to line 4
 lcd_puts(l4);
 if (rv & 0x08)
 lcd_putchar(3);
 }
}

34

void lcd_backlight_on (void)
{
 lcd_putchar(14);
}

void lcd_backlight_off (void)
{
 lcd_putchar(15);
}

void lcd_init(void)
{
 sbi(DDRD,PD5);
 cbi(PORTD,PD5);
 lcd_putchar_bit = 0;
}

/*
 *
 * mystring.c
 *
 * this file contains a bunch of string functions that i wrote.
 * most of them seem redundant and stupid, but they didn't take
 * very long to do.
 *
*/

const char * nlookup = "0123456789";

void inttostring_1(int n, char string_buffer[2])
{
 string_buffer[0] = nlookup[n];
 string_buffer[1] = 0;
}

void inttostring_2(int n, char string_buffer[3])
{
 string_buffer[0] = nlookup[n/10];
 string_buffer[1] = nlookup[n%10];
 string_buffer[2] = 0;
}

void inttostring_3(int n, char string_buffer[4])
{
 string_buffer[0] = nlookup[n/100];
 string_buffer[1] = nlookup[(n%100)/10];
 string_buffer[2] = nlookup[n%10];
 string_buffer[3] = 0;
}

void inttostring_5(int n, char string_buffer[6])
{
 string_buffer[0] = nlookup[n/10000];
 string_buffer[1] = nlookup[(n%10000)/1000];

35

 string_buffer[2] = nlookup[(n%1000)/100];
 string_buffer[3] = nlookup[(n%100)/10];
 string_buffer[4] = nlookup[n%10];
 string_buffer[5] = 0;
}

/*
 *
 * clock.c
 *
 * here are a bunch of functions and variables to handle the time
 * and date.
 *
 *
*/

// timer 1 cycles per second: this is the number of times that the
// clock_isr() routine will be run per second. (muy importante
// pour accuracyo)
//#define isr_cps 9615.38461538
#define isr_cps 1

char day, month;
char hour;
char minute;
char second;
unsigned char subsecond;
//double subsecond;

// this handles day/month roll-over (different months -> different
// # of days). this must run periodically for the days and months
// to work out right. (i.e. at least once per day)
void clock_checkdate(void);
void clock_isr(void); // goes in the timer 1 isr

// at this point, all the clock isr does is increment subseconds.
// this is necessary since it needs to run FAST for the soft ua_t
// to still run at 9600 BAUD. the rest of the malarchy is taken
// care of in clock_checkdate()
void clock_isr(void)
{
 subsecond++;
}

// this not only handles dates now, but also seconds minutes and whatever
// else. this is because the external interrupt isr we're using needs
// to run REALLY quickly because it runs so frequently (32768Hz) that we
// start having problems with the software ua_t.
// At this point, of course, we are no longer running the external interrupt
// at that high speed. this implementation remains nonetheless.
void clock_checkdate(void)

36

{

 if(subsecond >= isr_cps)
 {
 subsecond = subsecond - isr_cps;
 second++;
 if(second == 60)
 {
 second = 0;
 minute++;
 if(minute == 60)
 {
 minute = 0;
 hour++;
 if(hour == 24)
 {
 hour = 0;
 day++;
 } // end if hour
 } // end if minute
 } // end if second
 } // end if subsecond

 switch(month)
 {
 case 9:
 case 4:
 case 6:
 case 11:
 // 30 day hath september...
 if(day > 30)
 {
 day = 1;
 month++;
 }
 break;
 case 2:
 // except for february...
 if(day > 28)
 {
 day = 1;
 month++;
 }
 break;
 case 12:
 if(day > 31)
 {
 day = 1;
 month = 1;
 }
 default:
 // all the rest have 31...
 if(day > 31)
 {
 day = 1;
 month++;
 }
 }
}

37

// this routine generates a pretty string representing the clock.
// the string is exactly 20 characters (plus termination) so that
// it takes up exactly one line of the lcd.
void clock_mkclock(char sclock[21])
{
 char ssec[3], smin[3], shour[3], sday[3], smonth[3];

 inttostring_2(second, ssec);
 inttostring_2(minute, smin);
 inttostring_2(hour, shour);
 inttostring_2(day, sday);
 inttostring_2(month, smonth);

 sclock[0] = shour[0];
 sclock[1] = shour[1];
 sclock[2] = ':';
 sclock[3] = smin[0];
 sclock[4] = smin[1];
 sclock[5] = ':';
 sclock[6] = ssec[0];
 sclock[7] = ssec[1];
 sclock[8] = ' ';
 sclock[9] = ' ';
 sclock[10] = ' ';
 sclock[11] = ' ';
 sclock[12] = ' ';
 sclock[13] = ' ';
 sclock[14] = ' ';
 sclock[15] = smonth[0];
 sclock[16] = smonth[1];
 sclock[17] = '/';
 sclock[18] = sday[0];
 sclock[19] = sday[1];
 sclock[20] = 0;
}

/*
 *
 * button.c
 *
 * set of functions for debouncing 4 pushbuttons. interface with this code
 * using the global variables defined here. each is incremented when it is
 * pressed, or when key repeat occurs.
 *
*/

// states for debouncing
#define nopush 0
#define maybepush 1
#define push 2
#define maybenopush 3

// number of times button_check runs before actually doing anything.
// use this to control the debounce time base.
#define button_treload 20

38

#define button_repeatdly 500
#define button_repeatpd 180
// checkout button_init if you want to change the pins used...
#define button_port PORTB
#define button_pin PINB
#define button_ddr DDRB

// INTERFACE GLOBALS
// these guys get incremented as buttons are pushed, and should be
// decremented by accompanying code as actions are taken.
unsigned char button_select;
unsigned char button_back;
unsigned char button_plus;
unsigned char button_minus;

// other button vars...
unsigned char button_state; // used in button_check() to keep state
unsigned char button_t; // timebase in button_check()
unsigned char button_repeat; // counter for key repeat

void button_check(void);
void button_init(void);

void button_check(void)
{
 // do nothing unless we have counted to button_treload
 if(button_t-- != 0)
 return;

 unsigned char button_bread; // used to read input port
 button_t = button_treload;

 button_bread = ~inp(button_pin) & 0x0f;
 // unfortunately a couple of our pushbuttons are normally
 // closed. just invert those so we don't have to think
 // about it.
 button_bread = button_bread ^ 0x0c;

 switch (button_state)
 {
 case nopush:
 if (button_bread != 0)
 button_state = maybepush;
 break;

 case maybepush:
 if (button_bread != 0)
 {
 button_state = push;
 button_repeat = button_repeatdly /
button_treload;
 if (button_bread == 1)
 button_minus++;
 if (button_bread == 2)
 button_plus++;
 if (button_bread == 4)
 button_back++;

39

 if (button_bread == 8)
 button_select++;
 }
 else
 button_state = nopush;
 break;

 case push:
 if (button_bread == 0)
 button_state = maybenopush;
 else if (button_repeat-- == 0)
 {
 button_repeat = button_repeatpd /
button_treload;
 if (button_bread == 1)
 button_minus++;
 if (button_bread == 2)
 button_plus++;
 if (button_bread == 4)
 button_back++;
 if (button_bread == 8)
 button_select++;
 }

 break;

 case maybenopush:
 if (button_bread == 0)
 button_state = nopush;
 else
 button_state = push;
 }
}

void button_init(void)
{
 sbi(button_ddr,0);
 sbi(button_ddr,1);
 sbi(button_ddr,2);
 sbi(button_ddr,3);
 sbi(button_port,0);
 sbi(button_port,1);
 sbi(button_port,2);
 sbi(button_port,3);
 button_t = button_treload;
 button_state = nopush;
}

/*
 *
 * tasks.c
 *
 * functions here are tasks to be run and managed by code elsewhere.
 * this is mostly just for the sake of organization, and to keep the
 * files a litte smaller.
 *

40

*/

 // task counter for backlight() (should run about every sec)
#define t_backlight_reload 1000
#define backlight_timeout 5 // how long before we kill the b-light
unsigned short t_backlight;
 // number of seconds (depends on t_backlight_reload) till b-light killed
char backlight_count;
char smemused[21];

 // the interface state machine. this will handle the button/lcd user
 // interface.
#define t_interface_reload 100
#define interface_start 0
#define interface_status 1
#define interface_mainmenu 2
#define interface_settime 3
#define interface_setpi 4
#define interface_menu2 5
#define interface_clearconfirm 6
#define interface_stat1 7
#define interface_stat2 8
#define interface_calibrate 9
unsigned char t_interface;
unsigned char interface_state;
unsigned char interface_sel;

void interface (void); // state machine for user interface
void mainmenu (char sel); // displays the main menu
void menu2 (char sel); // displays the second menu
void tostate_status (void); // takes machine to status state
void tostate_clearconfirm (void); // takes machine to clearconfirm state
void backlight(void); // run as task. kills backlight after timeout

char spolling_interval[4];
unsigned char newpolling_interval;
unsigned char interface_sensor = 0; // for sensor selection during calibration

// handle the backlight timeout.
// this should be scheduled as a task in main.
void backlight(void)
{
 t_backlight = t_backlight_reload;
 if (backlight_count == 0)
 lcd_backlight_off();
 else
 backlight_count--;
}

// The interface state machine. this is the bulk of this file,
// and is also the bulk of the user interface. i feel like i
// should have more to say about it here at the top, but it's
// about as straightforward as a case statement this size can be.
void interface (void)
{

41

 t_interface = t_interface_reload;
 unsigned short i;

 switch(interface_state)
 {
 case interface_start:
 interface_sel = 0;
 tostate_status();
 line3 = "RESET!!!";

 break;

 case interface_status:
 if(button_back || button_plus || button_minus)
 {
 lcd_backlight_on();
 backlight_count = backlight_timeout;
 button_back = 0;
 button_plus = 0;
 button_minus = 0;
 }

 if(button_select)
 {
 lcd_backlight_on();
 backlight_count = backlight_timeout;
 button_select--;
 interface_sel = 0;
 mainmenu(interface_sel);
 dirty_lines = 0x1f;
 interface_state = interface_mainmenu;
 }
 else
 {
 clock_mkclock(sclock);
 line2 = sclock;
 dirty_lines = dirty_lines | 0x02;
 }

 break;

 case interface_mainmenu:
 backlight_count = backlight_timeout;

 if (button_plus)
 {
 interface_sel = (interface_sel + 3) % 4;
 mainmenu(interface_sel);
 button_plus--;
 }
 if (button_minus)
 {
 interface_sel = (interface_sel + 1) % 4;
 mainmenu(interface_sel);
 button_minus--;
 }

 if(button_back)
 {

42

 button_back--;
 tostate_status();
 }
 if (button_select)
 {
 button_select = 0;
 if (interface_sel == 0) // "more options"
selected
 {
 menu2(interface_sel);
 dirty_lines = 0x1f;
 interface_state = interface_menu2;
 }
 if (interface_sel == 1) // "view status"
selected
 {
 line1 = "";
 line2 = "";
 line3 = "";
 line4 = "";
 dirty_lines = 0x1f;
 rv_lines = 0x00;
 interface_state = interface_stat1;
 }
 if (interface_sel == 2) // "upload" selected
 {
 dr_upload();
 button_back = 0;
 button_select = 0;
 button_plus = 0;
 button_minus = 0;
 tostate_clearconfirm();
 }
 if (interface_sel == 3) // "clear memory"
selected
 {
 tostate_clearconfirm();
 }

 }

 break;

 case interface_menu2:
 backlight_count = backlight_timeout;

 if (button_plus)
 {
 interface_sel = (interface_sel + 2) % 3;
 menu2(interface_sel);
 button_plus--;
 }
 if (button_minus)
 {
 interface_sel = (interface_sel + 1) % 3;
 menu2(interface_sel);
 button_minus--;
 }

 if(button_back)

43

 {
 button_back--;
 tostate_status();
 }
 if (button_select)
 {
 button_select = 0;
 if (interface_sel == 0) // "set time/date"
selected
 {
 clock_mkclock(sclock);
 line1 = " Set Time/Date";
 line2 = "";
 line3 = sclock;
 line4 = "^^";
 dirty_lines = 0x1f;
 rv_lines = 0;
 interface_state = interface_settime;
 interface_sel = 0;
 }
 if (interface_sel == 1) // "set polling
interval" selected
 {
 newpolling_interval =
polling_interval;
 inttostring_3(newpolling_interval,
spolling_interval);
 line1 = "Set Polling Interval";
 line2 = " (minutes)";
 line3 = spolling_interval;
 line4 = "^^^";
 dirty_lines = 0x1f;
 rv_lines = 0;
 interface_state = interface_setpi;
 interface_sel = 0;
 }
 if (interface_sel == 2) // "Calibrate"
selected
 {
 line1 = "\tCalibrating";
 // no, we don't set interface_sensor
to zero.
 // this is a bug i've not yet found...
regardless
 // of what we put here, the previous
sensor # will
 // appear on the screen...
 line2 = "\t Sensor 01";
 line3 = "";
 line4 = "";
 rv_lines = 0x00;
 dirty_lines = 0x1f;
 interface_state = interface_calibrate;
 }
 }

 break;

 case interface_settime:
 clock_mkclock(sclock);

44

 line3 = sclock;
 dirty_lines = dirty_lines | 0x04;
 backlight_count = backlight_timeout;
 switch(interface_sel)
 {
 case 0: // adjusting hours
 if (button_plus)
 {
 hour++;
 if (hour > 23)
 hour = 0;
 button_plus--;
 }
 if (button_minus)
 {
 hour--;
 if (hour < 0)
 hour = 23;
 button_minus--;
 }
 if (button_select)
 {
 line4 = " ^^";
 dirty_lines = dirty_lines |
0x08;
 interface_sel++;
 button_select--;
 }
 if (button_back)
 {
 tostate_clearconfirm();
 button_back--;
 }
 break;

 case 1: // adjusting minutes
 if (button_plus)
 {
 minute++;
 if (minute > 59)
 minute = 0;
 button_plus--;
 }
 if (button_minus)
 {
 minute--;
 if (minute < 0)
 minute = 59;
 button_minus--;
 }
 if (button_select)
 {
 line4 = " ^^";
 dirty_lines = dirty_lines |
0x08;
 interface_sel++;
 button_select--;
 }
 if (button_back)
 {

45

 line4 = "^^ ";
 dirty_lines = dirty_lines |
0x08;
 interface_sel--;
 button_back--;
 }
 break;

 case 2: // adjusting seconds (clear only)
 if (button_plus | button_minus)
 {
 second = 0;
 subsecond = 0;
 button_plus = 0;
 button_minus = 0;
 }
 if (button_select)
 {
 line4 = " ^^";
 dirty_lines = dirty_lines |
0x08;
 interface_sel++;
 button_select--;
 }
 if (button_back)
 {
 line4 = " ^^ ";
 dirty_lines = dirty_lines |
0x08;
 interface_sel--;
 button_back--;
 }
 break;

 case 3: // adjusting months
 if (button_plus)
 {
 month++;
 if (month > 12)
 month = 1;
 button_plus--;
 }
 if (button_minus)
 {
 month--;
 if (month < 1)
 month = 12;
 button_minus--;
 }
 if (button_select)
 { // on to days
 line4 = " ^^";
 dirty_lines = dirty_lines |
0x08;
 interface_sel++;
 button_select--;
 }
 if (button_back)
 { // back to seconds
 line4 = " ^^ ";

46

 dirty_lines = dirty_lines |
0x08;
 interface_sel--;
 button_back--;
 }
 break;

 case 4: // adjusting days
 if (button_plus)
 {
 day++;
 button_plus--;
 }
 if (button_minus)
 {
 day--;
 if (day < 1)
 day = 28; // this is
dumb
 button_minus--;
 }
 if (button_select)
 { // back to status
 button_select--;
 tostate_clearconfirm();
 }
 if (button_back)
 { // back to months
 line4 = " ^^ ";
 dirty_lines = dirty_lines |
0x08;
 interface_sel--;
 button_back--;
 }
 break;
 } // end switch (interface_sel)
 break; // end of case interface_settime:

 case interface_setpi:
 backlight_count = backlight_timeout;
 inttostring_3(newpolling_interval, spolling_interval);
 line3 = spolling_interval;
 dirty_lines = 0x04;

 if (button_plus)
 {
 newpolling_interval++;
 button_plus--;
 }
 if (button_minus)
 {
 newpolling_interval--;
 button_minus--;
 }
 if (button_back)
 {
 button_back = 0;
 tostate_status();
 }
 if (button_select)

47

 {
 button_select = 0;
 polling_interval = newpolling_interval;
 tostate_clearconfirm();
 }
 break; // end case interface_setpi:

 case interface_clearconfirm:
 backlight_count = backlight_timeout;

 if (button_plus)
 button_plus = 0;
 if (button_minus)
 button_minus = 0;
 if (button_back)
 {
 button_back = 0;
 tostate_status();
 }
 if (button_select)
 {
 button_select = 0;
 dr_clearmem();
 tostate_status();
 }
 break;

 case interface_stat1:
 backlight_count = backlight_timeout;
 unsigned char memused;
 char smemused[6];
 memused = dr_memused();
 inttostring_3(memused,smemused);
 line1 = "Mem Used: %";
 for (i=0; i<3; i++)
 line1[i+10] = smemused[i];

 // another attempted hash function (hopefully works)
 // use graphics to draw a nice thick line where lines
3&4 would be
 for(i=0; i<10; i++)
 {
 //lcd_putchar(27); // escape
 //lcd_putchar('L'); // draw line
 //lcd_putchar(64 + 0); // x1
 lcd_puts("\033L\100");
 lcd_putchar(64 + 19 + i); // y1
 lcd_putchar(64 + ((long)dr_index*120)/dr_size);
// x2
 lcd_putchar(64 + 19 + i); // y2
 }

 line2 = " / points";
 inttostring_5(dr_index,smemused);
 for(i=0; i<5; i++)
 line2[i] = smemused[i];

 inttostring_5(dr_size,smemused);

48

 for(i=0; i<5; i++)
 line2[i+6] = smemused[i];

 dirty_lines = 0x07;

 if (button_plus)
 button_plus = 0;
 if (button_minus)
 button_minus = 0;
 if (button_back | button_select)
 {
 button_back = 0;
 button_select = 0;
 tostate_status();
 }
 //if (button_select) // on to stat2
 //{
 // button_select = 0;
 // dirty_lines = 0x1f;
 // interface_state = interface_stat2;
 //}
 break;
 // this doesn't work.
 // so we'll forget about it
 /*
 case interface_stat2:
 backlight_count = backlight_timeout;
 char tmp[12][4];

 line1 = "Current count:";
 line2 = " ";
 line3 = " ";
 line4 = " ";

 for(i=0; i<12; i++)
 inttostring_3(sensor[i][dr_index],tmp[i]);

 for (i=0; i<3; i++)
 {
 line2[i+1] = tmp[0][i];
 line2[i+6] = tmp[1][i];
 line2[i+11] = tmp[2][i];
 line2[i+16] = tmp[3][i];
 }
 for (i=0; i<3; i++)
 {
 line3[i+1] = tmp[4][i];
 line3[i+6] = tmp[5][i];
 line3[i+11] = tmp[6][i];
 line3[i+16] = tmp[7][i];
 }
 for (i=0; i<3; i++)
 {
 line4[i+1] = tmp[8][i];
 line4[i+6] = tmp[9][i];
 line4[i+11] = tmp[10][i];
 line4[i+16] = tmp[11][i];
 }

49

 dirty_lines = 0x0f;

 if (button_plus)
 button_plus = 0;
 if (button_minus)
 button_minus = 0;
 if (button_back) // back to stat 1
 {
 button_back = 0;
 line1 = "";
 line2 = "";
 line3 = "";
 line4 = "";
 dirty_lines = 0x1f;
 interface_state = interface_stat1;
 }
 if (button_select)
 {
 button_select = 0;
 tostate_status();
 }

 break;
 */

 case interface_calibrate:
 backlight_count = backlight_timeout;

 if (button_plus)
 {
 button_plus--;
 interface_sensor = (interface_sensor + 1) % 12;
 dirty_lines = dirty_lines | 0x02;
 }
 if (button_minus)
 {
 button_minus--;
 interface_sensor = (interface_sensor + 11) %
12;
 dirty_lines = dirty_lines | 0x02;
 }

 unsigned int mask = 0x0001 << interface_sensor;
 char interface_ssensor[3];
 inttostring_2(interface_sensor+1,interface_ssensor);
 for(i=0; i<2; i++)
 line2[i+9] = interface_ssensor[i];

 if (dr_senstat & mask)
 {
 line3 = "\t\t X";
 buzz = 1;
 }
 else
 {
 line3 = "\t\t O";
 buzz = 0;
 }
 dirty_lines = dirty_lines | 0x04;

50

 if (button_select | button_back)
 {
 button_select = 0;
 button_back = 0;
 buzz = 0;
 tostate_status();
 }

 break;

 default: // we should never get here.
 line1 = "ERROR";
 dirty_lines = 0x01;
 } // end switch (interface_state)
}

void mainmenu (char sel)
{
 line1 = "More Options... ";
 line2 = "View Current Status ";
 line3 = "Upload Data ";
 line4 = "Clear Memory ";
 rv_lines = 1 << sel;
 dirty_lines = dirty_lines | 0x0f;
}

void menu2 (char sel)
{
 line1 = "Set Time/Date ";
 line2 = "Set Polling Interval";
 line3 = "Calibration";
 line4 = "";
 rv_lines = 1 << sel;
 dirty_lines = dirty_lines | 0x0f;
}

void tostate_status (void)
{
 clock_mkclock(sclock);
 line1 = " ACTIVITY MONITOR";
 line2 = sclock;
 line3 = "";
 line4 = "";
 dirty_lines = 0x1f;
 rv_lines = 0;
 interface_state = interface_status;
}

void tostate_clearconfirm (void)
{
 line1 = " Clear memory";
 line2 = "";
 line3 = " Proceed?";
 line4 = "";
 dirty_lines = 0x1f;

51

 rv_lines = 0x00;
 interface_state = interface_clearconfirm;
}

/*
 *
 * dataread.c
 *
 * this file houses the routines that handle the gathering of data. This
 * includes setting outputs to drive the necessary multiplexer, as well as
 * storing the data in large arrays (external ram required).
 *
*/

// ALL DECLARATIONS ARE IN dataread.h

// This routine will drive the muxes, read the sensors, write to memory,
// and take care of dr_senstat. few functions beyond this should be
// required in this file. (famous last words...)
// unfortunately, due to the number of ports available, we must read the
// sensors in four sets of three (and use multiplexers).
void dr_sencheck (void)
{
 t_dr_sencheck = t_dr_sencheck_reload;
 unsigned char tmp_read;
 unsigned short int i;

 // *******************
 // PASS 1: SENSORS 1-3
 tmp_read = inp(dr_datapin);
 // set mux for next read "early"
 sbi(dr_muxport, dr_muxpin1);

 if (tmp_read & dr_dmask1)
 {
 // only increment if sensor was previously 0
 if ((dr_senstat & 0x0001) == 0)
 ++sensor[0][dr_index];

 dr_senstat = (dr_senstat | 0x0001);
 }
 else
 {
 // clear dr_senstat entry
 dr_senstat = dr_senstat & 0xfffe;
 }

 if (tmp_read & dr_dmask2)
 {
 if ((dr_senstat & 0x0002) == 0)
 ++sensor[1][dr_index];
 dr_senstat = dr_senstat | 0x0002;
 }
 else
 {
 dr_senstat = dr_senstat & 0xfffd;

52

 }

 if (tmp_read & dr_dmask3)
 {
 if ((dr_senstat & 0x0004) == 0)
 ++sensor[2][dr_index];
 dr_senstat = dr_senstat | 0x0004;
 }
 else
 {
 dr_senstat = dr_senstat & 0xfffb;
 }

 // *******************
 // PASS 2: SENSORS 4-6

 tmp_read = inp(dr_datapin);
 // set mux for next read
 cbi(dr_muxport, dr_muxpin1);
 sbi(dr_muxport, dr_muxpin2);
 if (tmp_read & dr_dmask1)
 {
 if ((dr_senstat & 0x0008) == 0)
 ++sensor[3][dr_index];

 dr_senstat = dr_senstat | 0x0008;
 }
 else
 {
 dr_senstat = dr_senstat & 0xfff7;
 }

 if (tmp_read & dr_dmask2)
 {
 if ((dr_senstat & 0x0010) == 0)
 ++sensor[4][dr_index];
 dr_senstat = dr_senstat | 0x0010;
 }
 else
 {
 dr_senstat = dr_senstat & 0xffef;
 }

 if (tmp_read & dr_dmask3)
 {
 if ((dr_senstat & 0x0020) == 0)
 ++sensor[5][dr_index];
 dr_senstat = dr_senstat | 0x0020;
 }
 else
 {
 dr_senstat = dr_senstat & 0xffdf;
 }

 // *******************
 // PASS 3: SENSORS 7-9

 tmp_read = inp(dr_datapin);
 // set mux for next read

53

 sbi(dr_muxport, dr_muxpin1);
 if (tmp_read & dr_dmask1)
 {
 if ((dr_senstat & 0x0040) == 0)
 ++sensor[6][dr_index];

 dr_senstat = dr_senstat | 0x0040;
 }
 else
 {
 dr_senstat = dr_senstat & 0xffbf;
 }

 if (tmp_read & dr_dmask2)
 {
 if ((dr_senstat & 0x0080) == 0)
 ++sensor[7][dr_index];
 dr_senstat = dr_senstat | 0x0080;
 }
 else
 {
 dr_senstat = dr_senstat & 0xff7f;
 }

 if (tmp_read & dr_dmask3)
 {
 if ((dr_senstat & 0x0100) == 0)
 ++sensor[8][dr_index];
 dr_senstat = dr_senstat | 0x0100;
 }
 else
 {
 dr_senstat = dr_senstat & 0xfeff;
 }

 // *********************
 // PASS 4: SENSORS 10-12

 tmp_read = inp(dr_datapin);
 // set mux for next (first) read
 cbi(dr_muxport, dr_muxpin1);
 cbi(dr_muxport, dr_muxpin2);
 if (tmp_read & dr_dmask1)
 {
 if ((dr_senstat & 0x0200) == 0)
 ++sensor[9][dr_index];

 dr_senstat = dr_senstat | 0x0200;
 }
 else
 {
 dr_senstat = dr_senstat & 0xfdff;
 }

 if (tmp_read & dr_dmask2)
 {
 if ((dr_senstat & 0x0400) == 0)
 ++sensor[10][dr_index];
 dr_senstat = dr_senstat | 0x0400;

54

 }
 else
 {
 dr_senstat = dr_senstat & 0xfbff;
 }

 if (tmp_read & dr_dmask3)
 {
 if ((dr_senstat & 0x0800) == 0)
 ++sensor[11][dr_index];
 dr_senstat = dr_senstat | 0x0800;
 }
 else
 {
 dr_senstat = dr_senstat & 0xf7ff;
 }

 // *****************************
 // ensure saturation of counters
 for(i=0; i<12; i++)
 {
 if (sensor[i][dr_index] == 255)
 sensor[i][dr_index] = 254;
 }

}

// this routine will increment dr_index every polling_interval. when
// the memory is full, dr_index will no longer be incremented.
// this routine will also print messages to the status screen when
// the memory is low or empty.
void dr_poll (void)
{
 if (second == 0)
 {
 if (dr_pflag == 0)
 {
 dr_mincount++;
 dr_pflag = 1;
 if (dr_mincount == polling_interval)
 {
 dr_mincount = 0;
 if (dr_index < dr_size-1)
 dr_index++;
 }
 }
 } else {
 dr_pflag = 0;
 }

 // print warning messages to the status screen...
 if (interface_state == interface_status)
 {
 if (dr_index == dr_size - 1)
 {
 line3 = "MEMORY FULL!!! ";
 dirty_lines = dirty_lines | 0x04;

55

 } else if (dr_index >= ((dr_size*9) / 10))
 {
 line3 = "LOW MEM: <10% rem";
 dirty_lines = dirty_lines | 0x04;
 }
 }
}

// routine to clear the memory arrays (write zeros everywhere)
// This routine uses the lcd, and will take a while to
// complete. hopefully it won't be toooooo slow.
void dr_clearmem (void)
{
 lcd_putchar('\f');
 lcd_puts("\n Clearing Memory");
 lcd_putchar('\r');
 unsigned int i;
 unsigned short int j;
 for (i=0; i<dr_size; i++)
 {
 if ((i % (dr_size/20)) == 0)
 lcd_putchar('#');

 for(j=0; j<12; j++)
 sensor[j][i] = 0;
 }

 dr_index = 0; // reset index
 dr_mincount = 0; // start a new poll interval now.
 // remember when we start polling.
 // NOTE: if this happens at 11:59pm, we'll remember a day off.
 // but this is sufficiently unlikely that i won't bother
 // checking for it.
 dr_month = month;
 dr_day = day;
 dr_hour = hour;
 dr_minute = minute+1;
 if (dr_minute == 60)
 {
 dr_minute = 0;
 dr_hour++;
 }
}

// returns the amount of memory used, in percent.
unsigned char dr_memused (void)
{
 return ((long)dr_index * 100) / (dr_size-1);
}

// This routine uploads data using the hardware UART. It will
// use the LCD, and will return after data is uploaded.
void dr_upload (void)
{
 unsigned char u_month = dr_month;
 unsigned char u_day = dr_day;
 unsigned char u_hour = dr_hour;

56

 unsigned char u_minute = dr_minute;
 char u_smonth[3], u_sday[3], u_shour[3], u_sminute[3];
 unsigned int i,j;
 char u_string[4];

 lcd_putchar('\f');
 lcd_puts("Uploading...");
 lcd_putchar('\r');

 unsigned char prog = 1; // for progress

 for (i=0; i<=dr_index; i++)
 {
 // show progress
 if (i >= (prog*dr_index/20))
 {
 lcd_putchar('#');
 prog++;
 }

 // exit if cancelled
 if (button_back)
 return;

 inttostring_2(u_month,u_smonth);
 inttostring_2(u_day,u_sday);
 inttostring_2(u_hour,u_shour);
 inttostring_2(u_minute,u_sminute);

 ser_puts(u_smonth);
 ser_putchar(':');
 ser_puts(u_sday);
 ser_putchar(':');
 ser_puts(u_shour);
 ser_putchar(':');
 ser_puts(u_sminute);

 for(j=0; j<12; j++)
 {
 ser_putchar(',');
 inttostring_3(sensor[j][i], u_string);
 ser_puts(u_string);
 }

 ser_puts("\n\r");

 // add the polling interval to the current date/time
 // (this sucks)
 u_minute = u_minute + polling_interval;
 if(u_minute >= 60)
 {
 u_minute = u_minute - 60;
 u_hour++;
 if(u_hour == 24)
 {
 u_hour = 0;
 u_day++;
 } // end if hour
 } // end if minute
 switch(u_month)

57

 {
 case 9:
 case 4:
 case 6:
 case 11:
 // 30 day hath september...
 if(u_day > 30)
 {
 u_day = 1;
 u_month++;
 }
 break;
 case 2:
 // except for february...
 if(u_day > 28)
 {
 u_day = 1;
 u_month++;
 }
 break;
 case 12:
 if(u_day > 31)
 {
 u_day = 1;
 u_month = 1;
 }
 default:
 // all the rest have 31...
 if(u_day > 31)
 {
 u_day = 1;
 u_month++;
 }
 }
 }
}

// this function will write a string to the serial port. it will
// not return until is has completed, and note that it requires a
// zero-terminated string.
// this is its own function mostly just for the sake of convenience.
void ser_puts(char * c)
{
 unsigned short int i = 0;

 while (c[i] != 0)
 {
 // wait until the UART is ready to transmit
 while ((inp(USR) & (0x01 << UDRE)) == 0) ;

 outp(c[i],UDR);
 i++;
 }
}

void ser_putchar(char c)
{
 // wait until the UART is ready to transmit

58

 while ((inp(USR) & (0x01 << UDRE)) == 0) ;

 outp(c,UDR);
}

// init routine for the dataread functions.
// sets up the ports and a couple varialbles
void dr_init (void)
{
 sbi(dr_muxddr, dr_muxpin1);
 sbi(dr_muxddr, dr_muxpin2);
 cbi(dr_dataddr, PB5);
 cbi(dr_dataddr, PB6);
 cbi(dr_dataddr, PB7);
 dr_index = 0;
 dr_mincount = 0;
 dr_senstat = 0;
 outp(0x0c,UBRR); // transmit@19200 BAUD
 outp(0x19,UBRR); // transmit@19200 BAUD
 sbi(UCR,TXEN);
}

59

Appendix D: A Linux Development Environment for AVR Microcontrollers
using the GNU Compiler Collection

While I had worked with AVR microcontrollers prior to beginning this

project, I had only used the Codevision AVR C compiler. I chose to develop the activity

monitor on a machine running the Linux operating system. Getting a functional

development environment up and running was not incredibly complicated, but I had

difficulty finding any consolidated documentation on what was required. I will therefore

include here a brief discussion of what I did on my system running Mandrake Linux.

This may serve as a useful starting point for future development efforts. Four different

packages are required for a functional development environment.

The GNU Compiler Collection (GCC) can compile C source to an AVR

target, but GCC itself must be compiled to support this. The source for GCC (a package

called gcc-core) can be downloaded from http://gcc.gnu.org. To compile GCC for an

AVR target, I ran the configure script as follows:
./configure --target=avr -–prefix=/usr/local/avr -–enable-languages=c –disable-nls

Other options should be detected properly by default.

The C libraries will almost surely be necessary for any program you wish to

write. A group has developed an AVR C runtime library. This package can be

downloaded at http://savannah.nongnu.org/projects/avr-libc/. Scripts are included with

this package which make it quite easy to install.

Binutils is a collection of programs for manipulating binaries, including a

linker, assembler, and some other tools. These tools are required to generate the hex file

which can be programmed onto the target AVR chip. They can be downloaded from

http://sources.redhat.com/binutils/. On my system, I configured binutils as follows:
./configure --target=avr --prefix=/usr/local/avr

The final tool required is the programmer. This application reads the hex

file and programs it onto the target AVR using the specified port and programming

method. The programmer I used is called uisp (micro in-system programmer) which is

available at http://savannah.nongnu.org/projects/uisp/. No configuration was necessary

for this program apart from setting the install directory in the Makefile.

In order to program the chip, a programming dongle will be required.

Dongles for some programming methods and specific development boards are available

60

commercially. If one of these is not available, a programming dongle can be made at

minimal cost. For the Direct AVR Parallel Access programming method used by UISP,

the following connections must be made from the serial port to the target AVR:

Parallel Port Target AVR

Init (pin 16) Reset

D0 (pin 2) MOSI (Port B3 for 8515)

Busy (pin 11) MISO (Port B4 for 8515)

Strobe (pin 1) SCK (Port B5 for 8515)

Ground (pin 18) Ground

I made a dongle according to these connections and, though I had some problems with

reliability, it did work.

After compiling and installing the four programs discussed above and

making the dongle, I was able to program the controller with some simple programs. The

final battle with my development environment was getting the external memory to work

properly. Two things are required to get external RAM to work. First, the MCU general

control register (MCUCR) must be set properly (0x80 for the 8515). Second, the linker

must know how much memory is available and where it is.

Both of these tasks must be accomplished by the linker. It is not sufficient

to set the MCUCR in user-written initialization code, because once execution jumps to

main() it is too late. Setting the MCUCR can be achieved by passing the arguments

--defsym __init_mcucr__=0x80

This will ensure that the linker takes care of the MCUCR.

To give the linker information about the external memory, I used a custom

linker script. The linker can be instructed to use the script with the arguments

--script avr85xx.x

where avr85xx.x is the custom linker script (relative to the working directory). A

custom script can be made by copying the default script from

~avr/avr/lib/ldscripts/avr85xx.x

where ~avr is the base directory for your AVR binutils, and modifying this script

appropriately. The MEMORY section must be modified. The LENGTH parameter for the data

memory section must be set to the total size of data memory (512b + 32K in this case),

61

and the ORIGIN parameter must be increased by the size of internal memory (512b or

0x200). Setting the origin after internal memory ensures that all data memory will reside

in external memory.

Note that the origin cannot be set to the start of internal memory. This

would cause then the variable data to overlap the stack, which starts at the end of internal

memory and grows downward. The controller will not function if the stack is moved out

of internal memory, so the best thing to do is to have variable data begin right after the

stack in external memory.

As of this writing, the website http://www.openavr.net is attempting to build

a central repository of information for open-source AVR development tools. When I was

setting up my Linux AVR development environment, it was difficult to find helpful

information. This site may well develop into a useful resource.

62

Appendix E: Schematics

63

Sensor Circuitry

64

The following schematics were adapted from the data-sheet for the STK-200

development board.

Memory Connections

RS-232 Connection

65

The following schematic was adapted from the 90S8515 data-sheet from Atmel.

Controller Pinout

66

