
DESIGN DOCUMENTATION OF
SIMPLESCOPE: LOW COST INTEGRATED HARDWARE/SOFTWARE DATA

AQCUISITION SYSTEM FOR BIOLOGY

A Design Project Report

Presented to the Engineering Division of the Graduate School
Of Cornell University

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering (Electrical)

By
Howard J. Marron and Giles J. Peng

Project Advisor: Professor Bruce Land
Degree Date: May 2003

2

Abstract

Master of Electrical Engineering Program
Cornell University

Design Project Report

Project Title: SimpleScope: Low Cost Integrated Hardware/Software Data Acquisition System
for Biology

Author: Howard Marron and Giles Peng

Abstract:
 Biologists need tools to measure the responses of living systems. In some cases, the
desired responses must be stimulated out of the system by first sending some signal into the
system and then recording the output. Current data acquisition systems made for this type of
biological experiment are costly even for a low end product. To alleviate this need, Howard
Marron and Giles Peng have designed a low cost integrated hardware/software data acquisition
system. For capturing and measuring the responses, we created an oscilloscope, and for the
stimulation, we created a stimulator. We combined software, hardware, and a 16-bit sound card
to synthesize the end result which we have called “SimpleScope”.
 The oscilloscope side of the system required a high impedance amplifier to boost the
signal and a hardware component to calibrate the signal voltage as read by the software. The
stimulator required two control channels to enable output isolation: an amplitude channel and a
timing channel. The software GUI was modeled after Bruce Land’s StimScope interface. The
initial intended users were neurobiologists, specifically, a neurobiology laboratory class. But the
low cost of the system makes it also ideal for high school biology classes to utilize.

 Standalone oscilloscopes are expensive pieces of hardware costing at least $1000 for a
digital model and even $250 for an analog model. Even oscilloscope cards, which can be used in
a computer, are at least $100. An inexpensive oscilloscope can be made using a 16-bit sound
card, software, and a bit of calibration hardware. Today, most computers have a 16-bit sound
card, so that’s already part of an oscilloscope a computer user/owner already had. And the
oscilloscope software coded in this project is freely provided to the public. All that is left is the
small cost of the custom designed calibration hardware. With this low cost oscilloscope
available, more people will have access to this useful tool. Additionally, those currently using
standalone oscilloscopes or oscilloscope cards can save a great deal of money. Our project
SimpleScope (Stimulator/Oscilloscope) is only intended for those that need the basic functions of
an oscilloscope and less than .1 ms accuracy.

Report Approved by
Project Advisor: _____________________________________ Date: _____________
Project Advisor: _____________________________________ Date: _____________

3

I. Executive Summary
 In the biological field of study, many experiments involve measuring the responses of a
living system. This is especially true in neurobiology; experiments require that a desired signal
be measured from a neural system. And these desired signals usually need to be instigated by
means of a particular pulse or “stimulation signal”. Thus, by stimulating the neural system, the
desired response is fired by the system and can be measured and recorded. This exact
experimentation process is used in of the neurophysiological laboratory classes offered at
Cornell University.
 There are some basic requirements for such an oscilloscope/stimulator system. For the
oscilloscope, a high impedance amplifier needs to boost the signal going into the system, and a
calibrator needs to adjust the signal voltage to reflect the actual voltages being measured. The
stimulation part of the system needs to be electrically isolated from the input to minimize
coupling of the large stimulating pulse to the sensitive recording electrodes.
 Using publicly available software as skeletons for the oscilloscope and stimulator, a
software program, very similar in function to the MATLAB StimScope, was created. From
shareware found on the web, Giles used the Windows API support for waveform audio to
communicate and use the sound card for both input and output. For the oscilloscope, Giles
interfaced the GUI controls with many of the built-in API calls to manipulate the format of the
input signal. Using the event loop structure of the Deeth Stereo Oscilloscope program, Giles
added more detail and features to the drawing of the input waveform in the virtual oscilloscope
window. Additionally, the bytes received from the sound card input buffer had to be
manipulated in order to achieve the proper 16-bit stereo values needed. The stimulator aspect of
the program involved building a wave format file, creating the shape of the waveform manually,
playing the wave file from memory, and the GUI controls to manipulate the characteristics of the
waveform. With the exception of programming the GUI control events to function exactly as
specified, the stimulator development was very straightforward compared to the oscilloscope.
 For the hardware, Howard had to design and build several different circuits. The first set
was designed for the oscilloscope portion of the project and required an amplifier and a
calibration channel. The amplifier was designed to filter and boost biological measurements so
that a small differential signal can be converted into a voltage that an audio card can sample.
And the calibration channel creates a small oscillating signal that has a calibrated output voltage,
allowing the software to scale the input channel voltage based on a known reference. The other
set of circuits designed was for the stimulator. The stimulator hardware takes an AC coupled
signal from the computer’s sound card, converts it to a DC coupled signal, and creates an
isolated voltage. This is achieved by the use of 2 output signals from the sound card: an
amplitude control signal and a timing control signal.

The system worked well. The input calibration and amplification created a good signal in
the software interface’s virtual oscilloscope window. During testing, the calibration signal had a
peak-to-peak voltage of .08V. The stimulator’s output voltage was well isolated from the input
and performed according to the expected timing and amplitude inputs received from the sound
card. The output voltage swings from .8V to 7.8V and is linear except for the lower power
region where it’s a low order exponential.

4

II. Design Problem and System of Requirements
 In the biological field of study, many experiments involve measuring the responses of a

living system. This is especially true in neurobiology; experiments require that a desired signal

be measured from a neural system. And these desired signals usually need to be instigated by

means of a particular pulse or “stimulation signal”. Thus, by stimulating the neural system, the

desired response is fired and can be measured and recorded. This exact experimentation process

is used in one of the neurophysiological laboratory classes offered at Cornell University.

 There are some basic requirements for such an oscilloscope/stimulator system. For the

oscilloscope, a high impedance amplifier needs to boost the signal going into the system, and a

calibrator needs to adjust the signal voltage to reflect the actual voltages being measured. For

the stimulation part of the system, it needs to be electrically isolated from the input to minimize

coupling of the large stimulating pulse to the sensitive recording electrodes.

 Our design goal was to create an inexpensive oscilloscope and stimulator through the

combination of software, a typical sound card, and calibration hardware. This inexpensive

stimulator and oscilloscope, named SimpleScope, needed to be predominantly software and

needed to be able to use the typical sound card located in an IBM-compatible computer running

some version of Microsoft Windows. Part of the design task was to make use of the sound card

already available in most Windows systems today. Senior Research Associate Bruce Land had

already created a MATLAB StimScope for use with a winsound card, a sound card in a

Windows system, or a NIDAQ card. However, this MATLAB version could not fulfill the need

for an inexpensive oscilloscope and stimulator due to the need for a costly MATLAB license and

a NIDAQ card.

5

 Having identified the overall design task, we split it into the two primary sub-tasks at

hand: writing the software and creating the calibration hardware. Giles Peng took up the coding

challenge, and Howard Marron took up the hardware challenge.

 The MATLAB StimScope program consisted primarily of GUI controls and method calls

to MATLAB’s toolbox for winsound and data acquisition. As such, the actual code was not

useful as a framework for our project. However, the GUI layout did provide the impetus for our

SimpleScope’s GUI.

 The software in this project was modeled after the MATLAB StimScope project authored

by Bruce Land. A new completely revamped version of the MATLAB program was needed

because without a very expensive MATLAB license and a NIDAQ card, Professor Land’s

StimScope could not be used. StimScope was originally intended as an instrument for a

Neurobiology Laboratory class in which nerves are stimulated and then reactions are measured

using the oscilloscope. As such, the StimScope includes a stimulator, which requires the

NIDAQ card to function properly. Included with our design objective of making a low cost

oscilloscope was creating an accompanying stimulator for the purpose of use in the

aforementioned class. This stimulator makes use of the line out port of the sound card, custom

software, and calibration hardware.

 So from the project description, the problem was to make a very inexpensive

oscilloscope/stimulator using the sound card in a computer. This required software manipulation

close to if not at the driver level of the sound card. Since both the oscilloscope and stimulator

would be software driven, it was critical to select which language would be used for coding the

software.

6

Software

 The primary software design problems were to create a GUI, which resembled the

controls for a standalone oscilloscope as well as a stimulator, and to control the sound card. The

design goal for the software GUI was intuitive and easy use. The MATLAB StimScope written

by Bruce Land set the guidelines for the GUI. However, a few key features differed between the

two specifications. The input part of the software (i.e. oscilloscope) would only have one

channel as opposed to the two provided in the MATLAB program because a typical sound card

only has 2 input channels and one of those channels has to be used for the voltage calibration

hardware signal. The stimulator required use of 2 output channels: one for the amplitude of the

output and one for the timing. These 2 signals would then be used by the output hardware to

create the actual output. An image of the MATLAB StimScope GUI is included below:

7

Oscilloscope Interface Specifications

• Vertical voltage scale can be set from .001 to 5 volts.
• Horizontal time scale can be set from .001 to 30 seconds.
• Trigger Source:

o Manual: User initiates capture of one virtual window’s worth of data.
o Continuous: Acquire data continuously.
o Channel 1: Trigger when a certain voltage specified by the user is reached on the

input channel.
• Sample Frequency can be set to 11.025 kHz, 22.050 kHz, or 44.1 kHz. The default is

11.025 kHz.
• One input channel on which an AC voltage can be captured.
• One channel to calibrate the input channel voltage.
• Using mouse clicks in the virtual oscilloscope window to measure absolute voltage and

time differences.
• Exporting the data to an Excel type file with the 2 columns being time and input channel

voltage. The number of points in the data set exported is the sample frequency multiplied
by the per window time scale.

Stimulator Interface Specifications

• Modes:
o Pulse: One pulse of the user-inputted waveform.
o Continuous: Continuous repetition of the specified waveform with a user-

selected repeat interval.

(Adapted from MATLAB StimScope Specifications @

http://www.nbb.cornell.edu/neurobio/land/PROJECTS/softscope/)

• The waveforms can be set to single pulse, two pulse or tetanic. A tetanic signal consists
of a uniquely spaced initial pulse, a train of evenly spaced pulses, and then a uniquely
spaced final pulse. In tetanic mode, the trigger continuous mode is disabled.

• All pulse delays and durations are set with a set of edit fields and left-right arrows. The
stimulating waveform is drawn below the controls. The color of each time control
corresponds to the color of a line on the drawing.

o In One Pulse mode you can set “Pulse Duration” and “Trigger to Pulse” duration.
o In Two Pulse mode you can set “Pulse Duration”, “Trigger to Pulse” duration,

and “1st to 2nd Pulse” duration.
o In Tetanic mode you can set “Pulse Duration”, “Trigger to Pulse” duration, “1st to

2nd Pulse” duration, and “Train to Last Pulse” duration. Additionally, you can set
the “Tetanic duration”, which is the length of all the pulses in the train, and the
“Tetanic interval”, which is the spacing of pulses within the train.

o In all modes, you can set the repeat interval which determines how often the
entire stimulus will be produced, if the trigger mode is continuous.

• The amplitude percentage for the resulting output can also be adjusted using a slider from
0% to 100%.

8

Hardware

The input and calibration portions of the hardware were designed and built first. The

system placed on the input side from the measured input to the audio-in jack of the computer

sound card would contain two main circuits. The first, the signal path, would convert the input

from a differential voltage to an single band voltage, provide some gain, and then filter out the

signals outside of range of the audio capture devices and biological needs. The second channel

was necessary to be able to calibrate the overall gain from the inputs to the sound card.

Another option that changed during the design was the amount of gain that would be

applied. Originally there would be an optional switch that would allow the user to change the

gain from 100x to 1000x. Accompanying this, the calibration signal would change in such a

manner so the software could detect the change and adjust the readings accordingly. When the

design was tested, the gain change was deemed not necessary for several reasons that will be

discussed in the solutions section.

The purpose of the calibration channel is to give a signal to the software that allows for

the compensation of variations in components placed on the board (varying gains of op-amps due

to components) and variations in audio capture cards (different cards will read the same voltage

at a different level). The requirements of the calibration channel remained the same throughout

the project. The calibration channel had to output a square wave that was within the reading

envelope of the audio card on most computers. In addition the frequency of the signal had to be

chosen so that the device could sample the signal but still be fast enough so that it would not be

affected by the AC coupling of the audio devices. The signal frequency had to be high enough

so at least one full cycle of the calibration channel would be contained in any user-chosen time

scale. This is necessary because the software will recalculate the calibration every time it

9

recaptures the data, so there must be at least one minimum and maximum of the calibration

signal to be able to get the information from the signal.

Other requirements of the input and calibration circuits were that they could be combined

and the total power consumption is low enough to run for an extended period of time (i.e. months)

on batteries. It was decided that a power supply of +5V and –5V would be satisfactory.

The output channel is a set of circuits that will take an audio signal from the line out of

the sound card and convert this to a timed variable voltage output. The requirements for the

signal from the audio card called for using both channels of the stereo sound to create the two

needed signals: one for the timing of the output signal, and another one for the amplitude. To get

timing, one channel will output a signal that will oscillate when the output should be on. The

envelope of the signal will be used to determine if the output should be on, so the best timing that

is possible is the resolution of the audio channel, about 44khz. In practice the best resolution of

the signal is closer to around 10khz. The signal for amplitude would be filtered to take the

envelope of the signal. The fraction of the maximum possible audio output would be the desired

fraction of the output of the circuit. The timing signal would be another signal to be filtered so

that on the rising and falling edges of the signal envelopes the output would turn on and off

respectively.

The two signals for the output stage after being converted to a DC coupled signal will be

sent to the stimulator. The stimulator is a DC-to-DC converter with a variable resistor to tune the

range of voltages. The requirements of the output voltage were that the output voltage be

independent of the voltage of the rest of the circuit, and the output voltage be in a range of 0V to

10V.

10

Main Design Specifications and Issues

• Inexpensive, primarily software-based oscilloscope/stimulator
• Combine software, 16-bit sound card, and hardware to synthesize this “SimpleScope”
• Tool for neurobiology laboratory class

Software-specific

• Graphical User Interface similar to the MATLAB StimScope by Bruce Land
• One input channel and one calibration channel for oscilloscope
• One output channel for amplitude and one output channel for timing (stimulator)

Hardware-specific

• Oscilloscope (input)
o Hardware gain (vs. software gain)
o Voltage regulation
o Specifications for good calibration outputs
o Input filtering
o Power usage

• Stimulator (output)

o How to convert audio signals to usable waveforms
o Output isolation

III. Solutions

Software

 A number of different languages could have been used for the software coding. Because

there is such a large GUI element inherent in the design, it really didn’t make sense to choose a

language that did not easily support graphics and graphical controls; this basically left four

reasonable software language choices left: Visual C++, Java, and Visual Java, and Visual Basic.

Of the three, I am most proficient in Java, so that seemed like a natural choice, but Java is too

slow for the low level operations that needed to be done at the sound card driver level. It seemed

Visual C++ would be an excellent tool to use, but in my own experience as well as that of

Professor Land’s, we found visual basic to be better adapted for creating visual/GUI oriented

programs. So we chose visual basic as the language for the SimpleScope.

11

Oscilloscope Solutions

 First, I researched what was already available in the way of a software oscilloscope in the

public web domain. There were several offerings. However, a few of the possibilities were very

rudimentary. However, I was able to glean a great deal of knowledge about how to interface

with the sound card from these programs. During my research, I realized I would need to either

develop a driver for the sound card or find a third party driver available to the public. It seemed

unreasonable to write a driver for the sound card, so I went for the latter option.

Initially, I used a driver authored by He Lingsong, a professor in China. I obtained this

driver from his site http://heliso.tripod.com. Though the driver seemed to be very versatile and

even seemed to accommodate the output needs of our project, it turned out to be very slow. In

the prototype of this solution alternative, seconds and seconds of data were missed while trying

to capture data continuously.

The other driver I find in my research was a data acquisition library for visual basic. This

dynamically linked library (DLL) was written in C (available from http://www.ines.com) , so in

accessing the DLL, the C declarations had to be a converted to a VB format. This library seemed

to be very clean, and by all appearances, I thought it would be much more efficient than the

previous driver. However, upon testing a simple prototype for continuously capturing data, I

found the same problem as the previous driver; chunks of data were missed entirely.

 Accessing a DLL through visual basic was much too slow. The time it took for the visual

basic to communicate with the DLL was greater than the time it took to capture a chunk of data,

meaning filling the I/O buffer of the sound card. Consequently, chunks of data were being

overwritten in the buffer before they were read out of the buffer; therefore, that data was lost.

Clearly, all the software including the sound card access needed to be entirely encapsulated in

12

visual basic. As such, this meant that a visual basic driver would have to be written, but most

drivers if not all drivers in a Windows system are written in C. There was a dilemma. More

research on the web through forums and shareware libraries didn’t help. Then my advisor found

a very obscure website which had a very, very simple oscilloscope written entirely in visual basic.

The program, Deeth Stereo Oscilliscope

(http://www.fullspectrum.com/deeth/deethware/#Scope) authored by Murphy McCauley, used

the Windows API to perform basic wave functions, which could be equated to measuring

voltages through the line-in port on a sound card. Testing the program, we easily saw that it was

able to capture all the data in continuous mode. Using Deeth Stereo Oscilliscope as the skeleton

of the input software, I coded the rest of the functionality into the code adding and removing

code accordingly. It is important to note that the input was developed separately from the output

code in order to keep the development logical and more importantly debuggable.

Stimulator Solutions

 The output seemed more straightforward than the input due to all the knowledge

collected from the input development. However, additional research still had to be done. One

means of generating a stimulator signal involved writing to the output buffer of the sound card

using a circular buffer technique. Using this method, the signal would be continuously generated

and written out on the fly as long as it was desired. Though this seemed to be a very elegant

solution, getting it to work, especially with the visual basic and only visual basic framework

proved to be a bit time consuming. More importantly, this method seemed to be unnecessary

because the exact benefit of on-the-fly signal generation was not needed as specified in the

13

stimulator design task. A fixed pulse or pulse train was to be generated every set interval. The

specification indicated that the stimulator signal would be just a repetition of the same set signal.

 This specification led more naturally to producing the signal once and looping it

somehow. Fortunately, the windows API allows for this exact capability within its waveform

audio output support section. Again, I thought there might already be a simple implementation

of this publicly available. And indeed there was; I found a visual basic program along with

source code to generate a waveform and to repeatedly play that waveform. This programmed

named “Tones” was originally intended as a tone tester (authored by David M.Hitchner and @

http://www.thescarms.com/VBasic/tone.asp). Refer to appendix II.4 for the code. The code

allowed a waveform to be generated and either saved to file or main memory. For our design

specification, it was most relevant to save the waveform, the output signal, to memory and

repeatedly loop it. Using this code, which is included in the appendix, as the skeleton for the

output program, I added the appropriate GUI interface for the stimulator and some additional

functionality to meet the design specifications of the project. This additional functionality

included generating the different signals to actually be output and generating oscillation

underneath the signal envelope for purposes of hardware synchronization.

A good ways through the development of the oscilloscope software, I wondered why I

didn’t use visual C++ instead of visual basic. Many of the tasks would have been much more

straightforward to program and indeed possible if I had used C because it is such a low level

language. I really wasn’t able to efficiently program a lot of low level tasks with visual basic.

And I spent a considerable amount of time trying to figure out how to program a lot of

functionality for which visual basic just isn’t suited. C on the other hand would’ve been able to

14

handle these low level procedures much more effectively. Initially, neither Professor Land nor I

knew of the visual capabilities of Visual C++; in retrospect, the visual components of Visual

C++ were probably as good if not better than visual basic. Visual C++ might have been a much

better language choice given that I had to start from knowing so little about designing this

particular software.

Hardware

Oscilloscope solutions

Input signal paths. The requirements of the circuits were simple and are easily created

with several integrated circuits. So the solution we arrived at was a modification of Bruce

Land’s amplifier that he had previously designed (that project is listed here:

http://www.nbb.cornell.edu/neurobio/land/PROJECTS/PREAMP/). The total gain of the final

design is 40 times (10x in differential amplifier, and 2x in both remaining stages). This works

because of the 16-bit input and properly placing the voltage within the inputs of audio cards. At

the end of the amplifier stages, we added a 300-ohm resistor to prevent last op-amp from

oscillating. We found that the large capacitive input impedance of the audio cards can cause the

last stage of the preamp to osscilate, latch and destroy itself; the additional resistance prevents

this from happening.

Calibration channel. There were two considerations that had to be chosen for the

calibration channel: the frequency of the signal and the method to regulate the output voltage of

the calibration channel. The basic design of the circuit was chosen because of its simplicity.

The requirements needed a low power timer, so a 7555 timer was used instead of a 555 timer to

reduce the maximum power used by the circuit.

15

The choice of frequency of the calibration signal had several requirements. The signal

has to be fast enough to not be affected by the AC coupling of the sound cards, and slow enough

to be accurately captured by the sound cards. Through experimentation we found that 1500 Hz

was a good result. The design of the circuit is taken from the 7555 datasheet.

Stimulator solutions

The computer hardware output a signal that was AC coupled with a maximum peak to

peak voltage of about 1V – 1.5V. To compensate for the inability of AC coupling to send low

frequency signals, a higher frequency signal is used and the envelope of the signal is used instead

of the edges to determine the timing of the output. The AC-coupled signal must be converted to

a pulse that is usable by digital logic. Since the peak-to-peak voltage of the AC signal was not

significantly larger than the voltage threshold of integrated circuits, we used an active circuit

scheme to convert the signal. This solution to the AC-DC conversion used a fast active rectifier

and a gain stage to amplify to the proper levels.

The rectifier was very responsive up to the 44khz max frequency of audio signals,

allowing for the rectifier to be used for both control signals of the output. The rectifier did not

add noise that was unmanageable to the channels. The signal that comes out of the rectifier is

properly rectified, but has to be filtered and amplified before being used in other circuits. The

rectifier had a high enough frequency response that the oscillations of the input were still evident

in the rectified signals. So from this stage the signals had to be amplified from the one-two volt

range to the five-volt range, and the signals had to be filtered to remove the high frequency noise.

Please refer to Figure 4 in appendix I for a detailed output schematic.

16

IV. Design and Implementation

Using publicly available software as skeletons for the oscilloscope and stimulator, a

software program, very similar in function to the MATLAB StimScope, was created. From

shareware found on the web, Giles managed to use the Windows API support for waveform

audio to communicate and use the sound card for both input and output. For the oscilloscope,

Giles interfaced the GUI controls with many of the built-in API calls to manipulate the format of

the input signal. Using the event loop structure of the Deeth Stereo Oscilloscope program, Giles

added more detail and features to the drawing of the input waveform in the virtual oscilloscope

window. Additionally, the bytes received from the sound card input buffer had to be

manipulated in order to achieve the proper 16-bit stereo values needed. The stimulator aspect of

the program involved building a wave format file, creating the shape of the waveform manually,

playing the wave file from memory, and the GUI controls to manipulate the characteristics of the

waveform. With the exception of programming the GUI control events to function exactly as

specified, the stimulator development was very straightforward compared to the oscilloscope.

 For the hardware, Howard had to design and build several different circuits. The first set

was designed for the oscilloscope portion of the project and required an amplifier and a

calibration channel. The amplifier was designed to intensify low frequencies so that a small

differential signal can be converted into a voltage that an audio card can sample. And the

calibration channel creates a small oscillating signal that has a calibrated output voltage,

allowing the software to have a known voltage with values can be absolutely specified. The

other set of circuits designed was for the stimulator. The stimulator hardware takes an AC

coupled signal from the computer’s sound card, converts it to a DC coupled signal, and creates

17

an isolated voltage. This is achieved by the use of 2 output signals from the sound card: an

amplitude control signal and a timing control signal.

Software

 As noted earlier, the SimpleScope GUI layout is very similar to Bruce Land’s StimScope.

However, some important changes have been made. The oscilloscope portion of the program

can only accommodate one channel. This is due to the hardware requiring one of the channels

for voltage calibration. This channel is transparent to the user. Please refer to the hardware

implementation of the input for more details. The GUI is meant to be a little more intuitive than

in the previous version of SimpleScope.

18

GUI Design

Oscilloscope Window Screenshot

Stimulator Window

19

 The list box in the upper left hand corner allows the user to choose the sound card to use

for SimpleScope if more than one sound card is available for use in the computer. The quit

button allows the user to exit the program only if the oscilloscope is not capturing any data and

the stimulator is stopped. Sample Frequency allows the user to choose between 11025 Hz,

22050 Hz, and 44100 Hz for the frequency used for data acquisition. Voltage Scale allows the

user to choose the vertical scale in the virtual scope window ranging between .001 to 5 volts.

The Time Scale gives the user to the option to choose between .001 to 30 seconds for the

horizontal scale in the virtual scope. The trigger box allows a trigger level to be set in

continuous data acquisition mode if the trigger turn on check box is checked. The measurement

box gives the user more data by providing the absolute voltage and absolute time differences

between 2 user selected cursor points. The oscilloscope start button initiates continuous data

acquisition while the manual trigger button captures one virtual scope window’s worth of data

and then stops capturing. The stop button terminates continuous data acquisition mode.

 In the stimulator portion of the GUI, the 2 options in the mode box give the user the

choice of a single pulse of the appropriate signal or a continuous generation of that signal. For

the selection of each of the 2 modes, the irrelevant stimulator controls are grayed out and

disabled and the relevant options are enabled. The trigger button which is enabled in Pulse mode

allows one pulse of the appropriate waveform to be outputted upon clicking. The start button is

enabled in continuous mode and initiates a continuous signal of the appropriate signal when

clicked; clicking also enables the stop button, which stops the continuous signal generation.

 In the waveform box of the stimulator, the three options for the signal/waveform type are

one pulse, two pulse, and tetanic. The appropriate timing options are disabled and enabled

according to which pulse mode is selected. The 7 time options can be adjusted when enabled by

20

clicking on the arrow cursors or by clicking in the text box and entering the appropriate numbers.

The left arrow cursor for each time halves the current time and the right arrow cursor doubles the

current time.

 The amplitude slider controls the amplitude of the output signal. The slider is on a

relative scale meaning it runs from 0 to 100%. The waveform visual below the slider is one

repetition of the signal to be generated by the stimulator. The colors of the time fields

correspond to the colors in the waveform depiction so that each period of time can be visually

understood if not by its description. The graphic is an ideal representation of the waveform

which does not consider the actual fall and rise times which will occur from the hardware output.

Oscilloscope

 Visual Basic is an event driven language, so all programs must have an event driven

structure. For the oscilloscope portion of the code, interacting with the visual components

triggers events which in some cases have calls to other procedures. The start button for

continuous data acquisition triggers a call to a procedure that contains a loop which successively

waits for the sound card’s input buffer to be full, reads the bytes out, and draws them in the

virtual scope window. The loop is only exited upon clicking the stop button or if the program

exits abnormally. This notion of a repeated event loop originates from the Deeth Stereo

Oscilloscope code (refer to appendix for code and some documentation). This loop is a critical

section because as happened with the DLL approach to the input, if the input buffer is

overwritten by the sound card before the information can be read out, data is lost.

 The evolution of the program structure provided a great learning opportunity to

understand software development for a system in great detail. Starting with the Deeth Stereo

21

Oscilloscope code, I perused the 5 to 6 pages of code until I understood what every line did and

how that might contribute to the needs I had. Indeed, much of the code proved very useful in the

SimpleScope design because the original program was also an oscilloscope though a very simple

one. The superfluous code was then removed, and what was left was used as the skeleton of the

SimpleScope code. After adding a function or a GUI control event, I would perform a

rudimentary test on its functionality before adding another function. In this way, a minimal

modularization of the development process could be kept. Unfortunately, the test of the

hardware with the software could not take place for the most part in this step-by-step fashion due

to the need for the software to be very functional; the software needed to be fully interactive with

the sound card and to be able to draw the signal in the virtual scope window. After we were able

to start testing the software and hardware together, a lot of debugging and software

redevelopment occurred. We were able to test that the voltage calibration channel was actually

scaling the input channel correctly; these results are presented in the next section.

 The program does not implement asynchronous reading of the sound card’s input buffer.

This proved to be extremely difficult to implement because the low level construct needed could

not be easily programmed in visual basic. According to Microsoft’s Development notes for the

waveform audio support API, at least a double buffering scheme is needed to ensure gapless

recording through the input buffers of the sound card. This double buffering scheme is exactly

what proved to be difficult to synthesize in visual basic due to the primitive form of arrays and

array manipulation. Additionally, the design specifications didn’t specifically require gapless

capturing of the input. In general, oscilloscopes don’t have a gapless-stream capturing capability;

they capture and process, capture and process. Though originally I had thought the SimpleScope

would capture gapless streams of input, it turned out in later discussion that this feature was not

22

needed because most of the data measured and captured by an oscilloscope is just a repetitive

signal or a pulse waveform of some relatively short duration of time. These data requirements or

“non-requirements” allowed the program to be in the synchronous form it’s in now. So the

trade-off was less code complexity to have a feature that wasn’t needed anyways.

 As described before, the window’s API was used to take advantage of the waveform

audio support for sound input. Many of the data structures needed by the functions in the

interface were defined in the Globals sections of the code. The portion of the Window’s API

used is included in the appendix. The WaveFormatEx type included the number of channels, the

samples per second, bits per sample, and average bytes per second fields so that the captured

waveform could be fully specified. Each wave data chunk also needed a Wave Header to

provide the sound card control mechanisms with information about the status of the input capture

and the status of the actual data being captured.

 The program begins with initializing many of the GUI elements when the form loads.

Also the existence and capabilities of the sound card(s) in the computer is/are checked during

this initialization stage. And finally, the list boxes in the application are filled in with the

appropriate options. It is important to note that before initializing any data capture, the sample

frequency and time scale options are set, so when a capture is started these attribute values are

locked. Capturing must be halted to change these values, and the capture restarting to make use

of a different sample frequency or time scale. The voltage scale as well as the channel trigger

and its trigger level can be changed at any time during the capture (i.e. in mid-capture).

Visualize() and DrawData() are the key functions that actually do the capturing through

the sound card and drawing the data on the scope window, respectively. When the data is

captured in the visualize() function, the raw data is calibrated using the calibration channel. The

23

number of 16-bit levels per calibration voltage is used to scale the data. Then that data is stored

as the actual voltages. In the DrawData() function, the voltages are drawn on the screen by

drawing a line from point to point. For small numbers of points, all the data is drawn on the

screen. But as the number of data points surpasses the number of pixels available in the virtual

oscilloscope window, only every n data points is plotted so that there are approximately 2 data

points for each pixel. This saves large amounts of time because drawing the signal on the screen

is the primary bottleneck.

 The ExportXL command just writes the input data out to a tab-delimited file with an .xls

extension. This outputted data set is complete, meaning all the sample points captured are

included. The Mouse_Down and Mouse_Up events of the oscilloscope window facilitate the

means of measuring the absolute voltage and absolute time between 2 points in the virtual scope

window just like cursors on a real oscilloscope.

Stimulator code internals

 As with the input, the output’s program structure was largely determined by the skeleton

framework found in the Tones program. The Tones program creates a wave format sound file

and plays it by means of the windows waveform audio support methods. I customized this

program to create the waveforms needed for the stimulator output and to interact with the GUI.

The Tones program is encapsulated in a module for better abstraction. The basic module

is named wav.bas. Initially, the wave format header has to be built before any wave data is

created. So the header is built upon a call to the module. Then a call to MakeBasisWave is

made in which the basis waveform for the stimulator output signal is constructed based on a

single pulse, two pulses, or a tetanic pulse and the 7 durations which define the exact

24

characteristics of the output signal. The basis waveform is generated based on a 1 kHz

oscillation when the signal is high and a 0 when the signal is low. The output comes out of both

channels. One channel called the synchronization has all the proper timing while the other

channel called the amplitude channel outputs the scale of the output signal. These two signals

are passed to the hardware where the information is used to make a properly calibrated and timed

output signal. Details to what happens in the output hardware can be found in the design and

implementation of the stimulator hardware. Once start or pulse is clicked, the waveform is

played repeatedly or once, respectively.

With 8 bits for each channel, the output is accurate enough so that the calibration

hardware can make the proper full-swing DC signal. The output code is very straightforward

with the aforementioned basic structure. The comments in the source code should enlighten any

of the small details unclear in the code.

Hardware

Oscilloscope circuits

 The implementation used for the input signal circuit was a modification of Bruce Land’s

previously designed amplifier: Physiological AC Preamplifier (more information available at

http://www.nbb.cornell.edu/neurobio/land/PROJECTS/PREAMP/). The bandwidth needed for

our circuits was low enough that we were able to use the lmc7111, which is also low current.

The op-amps used had a gain-bandwidth product of 40khz which provided enough bandwidth

considering the sample frequency of the audio input cards was a maximum of 44khz, so

maximum bandwidth of our design is 20 khz. The differential amplifier is given a gain of x10

with a 5.6kohm resistor, and the subsequent op amps were set up with a gain of 2x each using

25

10k and 20k ohm resistors for the second stage, and 100k , 200k ohm resistors for the last. This

gives a total amplification of 40x the original signal. The gain from the INA121 is given by (1+

(50kohms/Rgain)). We decided that the optional gain created with a switch on the last op-amp

gain stage was not necessary, since the computer can read the channel to 16 bits of accuracy,

which translates to a software zoom of 256x for 8-bit accurate data. The power supply for the

input circuits needs a positive and negative power supply. The circuits can run on power

supplies from 4.5V to 6V, so standard battery packs can be used.

Stimulator circuits

 There are two signals sent from the computer to the stimulator must be converted from

osscilating AC signals to the DC pulses that represent their envelopes. Two active recitifiers are

used, one for each signal, both using the same design. The rectifiers design (figure 3 in the

appendix) works well up to the maximum frequency output of the audio channels, and works for

the low voltage of the channels.

The paths of the different signals used for the output begin to differ here. The amplitude

signal can be sent through filters that have a very high time constant since the signal will not be

changing on a short time scale. We want the rectified amplitude signal to be as constant as

possible, so the filtering is necessary to remove the switching noise which came through the

rectifiers since we used the same fast rectifiers for both channels of the stimulator input. To

make sure that the user has a lot of granularity in the amplitude choices the gain of the amplitude

signal must be chosen to make sure that when the inputs are changed the outputs change linearly

and do not reach the maximums too early. This is accomplished by using a gain of two through

an op-amp and then put through a low pass filter before being sent to the stimulator amplitude

26

control. On the other hand, synchronization signal cannot and does not need to be linearly

filtered since the signal must be transmitted fast, so the signal is just amplified and send to

controls of the DC/DC (DCP010515DP) chip. Since the synchronization signal is supposed to

be a binary signal on or off, we want to maximize the gain after the rectifiers to make sure the

signal is at either Vdd or Vcc, so a gain of over 4 is used to ensure this.

The two signals for synchronization and amplitude are passed on to the stimulator circuit

that is taken from a project by Bruce Land

(http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Stimulator2/)

The idea of this circuit is to create an isolated voltage that can be controlled quickly and

independently. So the Burr-Brown DCP010515DP chip creates an isolated voltage when the

sync pin is allowed to have a floating voltage, created with the 4066 switches. This voltage

output is sent through a voltage divider that is controlled by the H11F1 optocoupler, which

isolated the inputs from the controlled resistance of its output. The stimulator’s power supply

runs on a supply voltage that can range from +4.5V to +6V, but a higher supply voltage will give

better voltage output waveforms.

Hardware Implementation Problems

 When running the stimulator, the Burr-Brown DCP010515DP chip drew a lot more

current than expected and required a 2uF capacitor to decouple the parasitics from heavily

affecting the signal. The symptoms for this was excessive noise on the power rails when the

device turned on and off, causing feedback that ruined the output. Even with the 2uF cap for

decoupling the amplifier on the input side, the stimulator cannot be run off the same power

supply as the input Vdd. So three separate power supplies are needed, two for the input, and one

for the output. The input will work on either 6V or 4.5V power supplies equally well. The

27

output will work on both, but I would recommend the 6V supplies since the output voltage is

directly proportional to the supply.

After being put through the H11F1 optocoupler, the isolated voltage output was not as

large as expected. A voltage of around 20V was expected since the DC/DC chip outputs around

25V, but the circuit only outputted around 9V. The culprit was the H11F1 chip not receiving

enough current (~40mA) to reach its lowest resistance. To raise this the small resistor (100ohms)

in this circuit should be made smaller, and the corresponding output will increase.

V. Testing

Software

 With software, testing is always taking place because a program has to be able to compile

and run. Throughout development, the software has been tested for functionality and correctness.

Verification is built-in to the software development process. However, all software can always

be continually developing. Though initial specifications were given, when it comes to software,

there is a whole range of specification-satisfying solutions.

 Having that in mind, we’ll take a look at the tests to verify the functionality of the

software. For the oscilloscope, prototypes were made early on to make sure that some of the

fundamental specifications could be met such as being able capture data continuously without

any loss. This was a requisite to make any solution alternative a plausible solution for the final

product; Deeth Stereo Oscilloscope fulfilled this requirement, so using this software as a base for

the rest of the program ensured some degree of functionality in the final product. As each GUI

element was added and its event calls associated with procedures, small tests were carried out to

ensure the desired and expected functionality. For instance, changing the sample rate of the

28

capture had to increase the accuracy of the voltage measurement on the virtual scope window, so

using a standard signal, I checked the number of bytes captured for each sample rate and made

sure that for each sample rate doubling bytes captured also doubled. To test the input as I

developed, I used a simple square wave signal produced by a small 555 timer circuit. To test the

compatibility of the software on different computers, I ran it on 4 different computers: a

Windows XP system, two differently configured Windows 98 systems, and one Windows NT

system. The program ran the same across 3 of the systems, but it had some major problems

running on the Windows 98 system in the lab where the program would actually be used. So I

needed to make sure the software ran on that Windows 98 system. The code had to be rewritten

to some extent to solve this problem.

 The waveInAddBuffer() API call would freeze the computer when a dynamically

allocated array was used for the buffer to be added. This problem only occurred in the lab

computers. So to solve this problem, I had to turn to the less elegant solution of creating the

arrays associated with that API call statically and ensuring the array length was large enough to

accommodate the largest buffer length needed in the program. This size ended up being

5292000 bytes. Though inelegant, this was a working solution for the lab computers.

 For the stimulator, I used a hardware oscilloscope to check that the signal I expected the

software to generate matched the signal coming out of the sound card. Indeed for all variations

of the one pulse, two pulse, and tetanic signals, the proper functionality was being achieved.

Once we began testing the stimulator software with the calibration hardware, improper software

functionality was immediately obvious. I had to revise the software functionality quite a few

times to achieve the best results with the hardware. We verified the signal at different stages in

the hardware processing on the oscilloscope as well. As for the output before hardware

29

processing, I thought the pulses would be very square, however, this turned out not to be the case;

the pulses were actually noisy square pulses.

 We tested the oscilloscope part of the system (software and hardware inclusive) with a

function generator and a circuit representing a neural system (refer to the figure for the circuit).

The expected output from square wave stimulation is shown below along with the input stimulus

on the standalone oscilloscope. Comparing the SimpleScope’s trace to this expected output, the

results are very similar. The timing is very accurate. And the voltages are different because the

software oscilloscope is reading a signal with gain. Additionally the variable resister on the

calibrator can be adjusted for each system. Looking at the 2 figures, we can see that the rise time

for the pulses on the SimpleScope is about 2.9ms while the stand-alone oscilloscope shows about

a 2.9ms rise time as well.

 Simulate neural system test circuit

30

The standalone scope trace of the input and the output. Square pulse put into the system
generates the bottom trace. It seems to have ~2.9ms rise time.

The SimpleScope trace of the output from the mock-neural system. (rise time – time between
the cursors is 2.9 ms- consistent with the above reading). The signal is AC coupled.

31

Hardware

Input Testing

The testing of this was rather straightforward - apply an input and see if the correct

amplification appeared on the output with an oscilloscope. A signal generator was used to create

the input. To test for noise, the inputs were both grounded and the outputs were scoped, and

there was less than 1mV of noise.

The testing of the calibration signal was different. We wanted to make sure that the

signal would remain constant as the supply voltage changed, simulating dying batteries. So the

output wave of the circuit was examined as the supply voltage was lowered from 5V down to

around 3.5V to make sure that the signal stayed constant. The biased diode worked as expected

and the calibration remained constant at a peak-to-peak voltage of .08V.

Output Testing

There were two things that we tested in the stimulator circuit: the timing of turning the

output on and off, and the linearity of the output amplitude vs. input. The expected times for the

rise and fall of the output was somewhere in the 50 microsecond region from the RC time

constants of the devices on the circuit. The stimulator when tested had a rise time of about 100

microseconds and a fall time of about 80 microseconds.

The rise time of the output is proportional to the desired amplitude of the output. Since

the H11F1 is in the resistive path of charging the output, the higher resistance used to lower

output voltage will correspond to a longer time to charge the output capacitance. The falling

time constant was confusing because there were no extraneous components other than one

capacitor and one resistor to drain the output, together having a time constant of around 50

32

microseconds. The device closely follows the linear pattern that it should except near the low

power region. The output voltage did not quite make the 0V to 10V swing that we expected it to

make when we defined our design task. Instead, the output voltage swing ranged from ~.8 V to

~7.8 V. The chart below displays the results.

An output voltage (top trace) created from a synchronization signal (bottom trace).

Output linearity

0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100

Amplitude percent requested

O
ut

pu
t v

ol
ta

ge

33

VI. Conclusions

 As a design project, SimpleScope taught both of us a great deal. Initially, we didn’t

understand or even have the insight to know some of the tough design challenges awaiting us.

We also didn’t realize the less-than-theoretically perfect results that we obtained. Many times

the noise levels that we encountered on the output and on the input were much worse than we

expected, and as a result, we had to solve a new problem and tweak our hardware and software a

little bit. This test and redesign process really was very key to establishing a working, usable

final result.

 Future improvements are certainly plentiful. Some of the features included in the original

MATLAB software oscilloscope program were not included in this design but could very well be.

These features include saving the entire state of the program, saving the captured data and being

able to reload it at a later time, a software zoom, and being able to print the virtual scope signal.

For the hardware, a nice package could be made for the boards so as to have a “black box”

device. And in conjunction with this idea, the originally intended battery power source could be

added. More gain could also be added to the output hardware if that was needed for an

application.

34

APPENDICES
APPENDIX 1: HARDWARE SCHEMATICS
APPENDIX 2: SOFTWARE REFERENCED/USED
APPENDIX 3: WINDOWS WAVFORM AUDIO AND SOUND API
APPENDIX 4: SIMPLESCOPE CODE LISTING
APPENDIX 5: SOFTWARE SETUP GUIDE

APPENDIX I: HARDWARE SCHEMATICS

Circuit used for amplification and conversion of differential input.

Figure 1. Preamp.

Figure 2. Calibration channel. Circuit behavior is independent of the supply voltage used.

35

Figure 3. Rectifier diagram

The value of Rx is different for the two channels controlling the output. The
synchronization channel needs more gain, so it uses Rx = 33k. The amplitude control channel
needs to maximize its use of the channel so only a gain of 2 is used, Rx=10k.

36

Figure 4. Stimulator diagram

37

Figure 5. Part placement for input PCB board

38

Figure 6a. PCB for stimulator. The part placement is on next page

39

Figure 6b. Part placement for stimulator PCB board.

Note that there is a shorted capacitor connection and an unused resistor spot on the upper
left part of the board. This was for a high pass filter that was taken out of the final design
because it wasn’t necessary.

40

APPENDIX II: SOFTWARE REFERENCED/USED

1. Deeth Oscilloscope Program by Murphy McCauley

'--
' Deeth Stereo Oscilloscope v1.0
' A simple oscilloscope application -- now in <<stereo>>
'--
' Opens a waveform audio device for 8-bit 11kHz input, and plots the
' waveform to a window. Can only be resized to a certain minimum
' size defined by the Shape box.
'--
' It would be good to make this use the same double-buffering
' scheme as the Spectrum Analyzer.
'--
' Murphy McCauley (MurphyMc@Concentric.NET) 08/12/99
'--

Option Explicit

Private DevHandle As Long
Private InData(0 To 511) As Byte
Private Inited As Boolean
Public MinHeight As Long, MinWidth As Long

Private Type WaveFormatEx
 FormatTag As Integer
 Channels As Integer
 SamplesPerSec As Long
 AvgBytesPerSec As Long
 BlockAlign As Integer
 BitsPerSample As Integer
 ExtraDataSize As Integer
End Type

Private Type WaveHdr
 lpData As Long
 dwBufferLength As Long
 dwBytesRecorded As Long
 dwUser As Long
 dwFlags As Long
 dwLoops As Long
 lpNext As Long 'wavehdr_tag
 Reserved As Long
End Type

Private Type WaveInCaps
 ManufacturerID As Integer 'wMid
 ProductID As Integer 'wPid
 DriverVersion As Long 'MMVERSIONS vDriverVersion

41

 ProductName(1 To 32) As Byte 'szPname[MAXPNAMELEN]
 Formats As Long
 Channels As Integer
 Reserved As Integer
End Type

Private Const WAVE_INVALIDFORMAT = &H0& '/* invalid format */
Private Const WAVE_FORMAT_1M08 = &H1& '/* 11.025 kHz, Mono, 8-bit
Private Const WAVE_FORMAT_1S08 = &H2& '/* 11.025 kHz, Stereo, 8-bit
Private Const WAVE_FORMAT_1M16 = &H4& '/* 11.025 kHz, Mono, 16-bit
Private Const WAVE_FORMAT_1S16 = &H8& '/* 11.025 kHz, Stereo, 16-bit
Private Const WAVE_FORMAT_2M08 = &H10& '/* 22.05 kHz, Mono, 8-bit
Private Const WAVE_FORMAT_2S08 = &H20& '/* 22.05 kHz, Stereo, 8-bit
Private Const WAVE_FORMAT_2M16 = &H40& '/* 22.05 kHz, Mono, 16-bit
Private Const WAVE_FORMAT_2S16 = &H80& '/* 22.05 kHz, Stereo, 16-bit
Private Const WAVE_FORMAT_4M08 = &H100& '/* 44.1 kHz, Mono, 8-bit
Private Const WAVE_FORMAT_4S08 = &H200& '/* 44.1 kHz, Stereo, 8-bit
Private Const WAVE_FORMAT_4M16 = &H400& '/* 44.1 kHz, Mono, 16-bit
Private Const WAVE_FORMAT_4S16 = &H800& '/* 44.1 kHz, Stereo, 16-bit

Private Const WAVE_FORMAT_PCM = 1

Private Const WHDR_DONE = &H1& '/* done bit */
Private Const WHDR_PREPARED = &H2& '/* set if this header has been prepared */
Private Const WHDR_BEGINLOOP = &H4& '/* loop start block */
Private Const WHDR_ENDLOOP = &H8& '/* loop end block */
Private Const WHDR_INQUEUE = &H10& '/* reserved for driver */

Private Const WIM_OPEN = &H3BE
Private Const WIM_CLOSE = &H3BF
Private Const WIM_DATA = &H3C0

Private Declare Function waveInAddBuffer Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer As
Long, ByVal WaveHdrStructSize As Long) As Long
Private Declare Function waveInPrepareHeader Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer As
Long, ByVal WaveHdrStructSize As Long) As Long
Private Declare Function waveInUnprepareHeader Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer
As Long, ByVal WaveHdrStructSize As Long) As Long

Private Declare Function waveInGetNumDevs Lib "winmm" () As Long
Private Declare Function waveInGetDevCaps Lib "winmm" Alias "waveInGetDevCapsA" (ByVal uDeviceID As Long, ByVal
WaveInCapsPointer As Long, ByVal WaveInCapsStructSize As Long) As Long

Private Declare Function waveInOpen Lib "winmm" (WaveDeviceInputHandle As Long, ByVal WhichDevice As Long, ByVal
WaveFormatExPointer As Long, ByVal CallBack As Long, ByVal CallBackInstance As Long, ByVal Flags As Long) As Long
Private Declare Function waveInClose Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long

Private Declare Function waveInStart Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long
Private Declare Function waveInReset Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long
Private Declare Function waveInStop Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long

Sub InitDevices()
 Dim Caps As WaveInCaps, Which As Long
 DevicesBox.Clear
 For Which = 0 To waveInGetNumDevs - 1
 Call waveInGetDevCaps(Which, VarPtr(Caps), Len(Caps))
 'If Caps.Formats And WAVE_FORMAT_1M08 Then
 If Caps.Formats And WAVE_FORMAT_1S08 Then 'Now is 1S08 -- Check for devices that can do stereo 8-bit 11kHz
 Call DevicesBox.AddItem(StrConv(Caps.ProductName, vbUnicode), Which)
 End If
 Next

42

 If DevicesBox.ListCount = 0 Then
 MsgBox "You have no audio input devices!", vbCritical, "Ack!"
 End
 End If
 DevicesBox.ListIndex = 0
End Sub

Private Sub Flicker_Click()
 Scope(0).Cls
 Scope(1).Cls
 If Flicker.Value = vbChecked Then
 Scope(0).AutoRedraw = True
 Scope(1).AutoRedraw = True
 Else
 Scope(0).AutoRedraw = False
 Scope(1).AutoRedraw = False
 End If
End Sub

Private Sub Form_Load()
 Call InitDevices

 'Set MinWidth and MinHeight based on Shape...
 Dim XAdjust As Long, YAdjust As Long
 XAdjust = Me.Width \ Screen.TwipsPerPixelX - Me.ScaleWidth
 YAdjust = Me.Height \ Screen.TwipsPerPixelY - Me.ScaleHeight

 MinWidth = Shape.Width + XAdjust
 MinHeight = Shape.Height + YAdjust

 Shape.BackStyle = vbTransparent

 'Set the window proceedure to my own (which restricts the
 'minimum size of the form...
 'Comment out the SetWindowLong line if you're working with it
 'in the development environment since it'll hang in stop mode.
 MinMaxProc.Proc = GetWindowLong(Me.HWnd, GWL_WNDPROC)
 SetWindowLong Me.HWnd, GWL_WNDPROC, AddressOf WindowProc

End Sub

Private Sub Form_Resize()
 Scope(0).Cls
 Scope(1).Cls

 Stuff.Top = Me.ScaleHeight - Stuff.Height - 3
 Scope(0).Height = Me.ScaleHeight - 75
 Scope(1).Height = Scope(0).Height
 Scope(0).Width = (Me.ScaleWidth - 13) \ 2
 Scope(1).Width = Scope(0).Width
 Scope(1).Left = Scope(0).Left + Scope(0).Width + 1

 DevicesBox.Width = Me.ScaleWidth - 13

 Scope(0).ScaleHeight = 256
 Scope(0).ScaleWidth = 255
 Scope(1).ScaleHeight = 256
 Scope(1).ScaleWidth = 255

43

 'Make the window resize now so that it doesn't interfere with redrawing the data
 DoEvents

 'Redraw the data at the new size
 If Inited = True Then
 Call DrawData
 End If
End Sub

Private Sub Form_Unload(Cancel As Integer)
 If DevHandle <> 0 Then
 Call DoStop
 End If
End Sub

Private Sub StartButton_Click()
 Static WaveFormat As WaveFormatEx
 With WaveFormat
 .FormatTag = WAVE_FORMAT_PCM
 .Channels = 2 'Two channels -- left and right
 .SamplesPerSec = 11025 '11khz
 .BitsPerSample = 8
 .BlockAlign = (.Channels * .BitsPerSample) \ 8
 .AvgBytesPerSec = .BlockAlign * .SamplesPerSec
 .ExtraDataSize = 0
 End With

 Debug.Print "waveInOpen:"; waveInOpen(DevHandle, DevicesBox.ListIndex, VarPtr(WaveFormat), 0, 0, 0)

 If DevHandle = 0 Then
 Call MsgBox("Wave input device didn't open!", vbExclamation, "Ack!")
 Exit Sub
 End If
 Debug.Print " "; DevHandle
 Call waveInStart(DevHandle)

 Inited = True

 StopButton.Enabled = True
 StartButton.Enabled = False

 Call Visualize
End Sub

Private Sub StopButton_Click()
 Call DoStop
End Sub

Private Sub DoStop()
 Call waveInReset(DevHandle)
 Call waveInClose(DevHandle)
 DevHandle = 0
 StopButton.Enabled = False
 StartButton.Enabled = True
End Sub

44

Private Sub Visualize()
 Static Wave As WaveHdr

 Wave.lpData = VarPtr(InData(0))
 Wave.dwBufferLength = 512 'This is now 512 so there's still 256 samples per channel
 Wave.dwFlags = 0

 Do

 Call waveInPrepareHeader(DevHandle, VarPtr(Wave), Len(Wave))
 Call waveInAddBuffer(DevHandle, VarPtr(Wave), Len(Wave))

 Do
 'Nothing -- we're waiting for the audio driver to mark
 'this wave chunk as done.
 Loop Until ((Wave.dwFlags And WHDR_DONE) = WHDR_DONE) Or DevHandle = 0

 Call waveInUnprepareHeader(DevHandle, VarPtr(Wave), Len(Wave))

 If DevHandle = 0 Then
 'The device has closed...
 Exit Do
 End If

 Scope(0).Cls
 Scope(1).Cls

 Call DrawData

 DoEvents
 Loop While DevHandle <> 0 'While the audio device is open

End Sub

Private Sub DrawData()
 Static X As Long

 Scope(0).CurrentX = -1
 Scope(0).CurrentY = Scope(0).ScaleHeight \ 2
 Scope(1).CurrentX = -1
 Scope(1).CurrentY = Scope(0).ScaleHeight \ 2

 'Plot the data...
 For X = 0 To 255
 Scope(0).Line Step(0, 0)-(X, InData(X * 2))
 Scope(1).Line Step(0, 0)-(X, InData(X * 2 + 1)) 'For a good soundcard...

 'Use these to plot dots instead of lines...
 'Scope(0).PSet (X, InData(X * 2))
 'Scope(1).PSet (X, InData(X * 2 + 1)) 'For a good soundcard...

 'My soundcard is pretty cheap... the right is
 'noticably less loud than the left... so I add five to it.
 'Scope(1).Line Step(0, 0)-(X, InData(X * 2 + 1) + 5)
 Next

 Scope(0).CurrentY = Scope(0).Width
 Scope(1).CurrentY = Scope(0).Width
End Sub

'--

45

' This is a dopey window proceedure that restricts the size of a
' window.
'--
' Murphy McCauley (MurphyMc@Concentric.NET) 08/06/99
'--

Option Explicit

Declare Function GetWindowLong Lib "user32" Alias "GetWindowLongA" (ByVal HWnd As Long, ByVal nIndex As Long)
As Long
Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA" (ByVal HWnd As Long, ByVal nIndex As Long,
ByVal dwNewLong As Long) As Long
Declare Function CallWindowProc Lib "user32" Alias "CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal HWnd As
Long, ByVal Msg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

Public Proc As Long
Public Const GWL_WNDPROC = (-4)

Private Const WM_GETMINMAXINFO = &H24

Declare Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" (_
 ByRef Destination As Any, _
 ByRef Source As Any, _
 ByVal ByteLength As Long)

Private Type POINTAPI
 X As Long
 Y As Long
End Type

Private Type MINMAXINFO
 ptReserved As POINTAPI
 ptMaxSize As POINTAPI
 ptMaxPosition As POINTAPI
 ptMinTrackSize As POINTAPI
 ptMaxTrackSize As POINTAPI
End Type

Function WindowProc(ByVal HWnd As Long, ByVal Msg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
 Static MinMax As MINMAXINFO

 Select Case Msg
 Case WM_GETMINMAXINFO
 Call MoveMemory(MinMax, ByVal lParam, Len(MinMax))
 MinMax.ptMinTrackSize.X = Base.MinWidth
 MinMax.ptMinTrackSize.Y = Base.MinHeight
 Call MoveMemory(ByVal lParam, MinMax, Len(MinMax))
 Case Else
 WindowProc = CallWindowProc(Proc, HWnd, Msg, wParam, lParam)
 End Select
End Function

46

2. Tones by David M.Hitchner

Option Explicit

Dim bytSound() As Byte
Private Type DTMF
 bytTones() As Byte
End Type

'---
' Create and Play all 16 DTMF Tones
'---
Private Sub cmdDTMF_Click()
 Dim i As Integer
 Dim intAudioMode As Integer
 Dim lngSampleRate As Long
 Dim intBits As Integer
 Dim intIndex As Integer
 Dim udtSineWaves(1 To 2) As SINEWAVE

 Dim udtDTMF(16) As DTMF

 intAudioMode = cboAudioMode.ItemData(cboAudioMode.ListIndex)
 lngSampleRate = cboSampleRate.ItemData(cboSampleRate.ListIndex)
 intBits = cboBits.ItemData(cboBits.ListIndex)

 Wav_Stop

 '---
 ' DTMF Tones
 ' Freq 1209 1336 1477 1633
 ' 697 1 2 3 A
 ' 770 4 5 6 B
 ' 852 7 8 9 C
 ' 941 * 0 # D
 '---
 For i = 1 To 16
 With udtSineWaves(1)
 .dblAmplitudeL = 0.25
 .dblAmplitudeR = 0.25
 End With

 With udtSineWaves(2)
 .dblAmplitudeL = 0.25
 .dblAmplitudeR = 0.25
 End With

 udtSineWaves(1).dblFrequency = Choose(i, _
 697, 697, 697, 697, _
 770, 770, 770, 770, _

47

 852, 852, 852, 852, _
 941, 941, 941, 941)

 udtSineWaves(2).dblFrequency = Choose(i, _
 1209, 1336, 1477, 1633, _
 1209, 1336, 1477, 1633, _
 1209, 1336, 1477, 1633, _
 1209, 1336, 1477, 1633)

 Wav_BuildHeader udtDTMF(i).bytTones, lngSampleRate, intBits, _
 intAudioMode, 0.5, 0.5
 Wav_MultiSineWave udtDTMF(i).bytTones, udtSineWaves, 0.25
 Next

 For i = 1 To 16
 Wav_Play udtDTMF(i).bytTones
 Next

End Sub

'---
' Create and Play Wave based on current settings.
'---
Private Sub cmdPlay_Click()
 Dim dblFrequency As Double
 Dim intAudioMode As Integer
 Dim lngSampleRate As Long
 Dim intBits As Integer

 dblFrequency = Val(txtFrequency)
 intAudioMode = cboAudioMode.ItemData(cboAudioMode.ListIndex)
 lngSampleRate = cboSampleRate.ItemData(cboSampleRate.ListIndex)
 intBits = cboBits.ItemData(cboBits.ListIndex)

 Wav_Stop
 Wav_BuildHeader bytSound, lngSampleRate, intBits, intAudioMode, 0.5, 0.5
 Wav_SineWave bytSound, dblFrequency

 ' Wav_WriteToFile "Test.wav", bytSound

 Wav_PlayLoop bytSound
End Sub

'---
' Stop current wave file.
'---
Private Sub cmdStop_Click()
 Wav_Stop
End Sub

'---
' Create and Play Wave using frequencies of a train horn.
'---
Private Sub cmdTrain_Click()
 Dim i As Integer
 Dim intAudioMode As Integer
 Dim lngSampleRate As Long
 Dim intBits As Integer
 Dim intIndex As Integer
 Dim udtSineWaves(1 To 3) As SINEWAVE
 Dim bytSound() As Byte

48

 intAudioMode = cboAudioMode.ItemData(cboAudioMode.ListIndex)
 lngSampleRate = cboSampleRate.ItemData(cboSampleRate.ListIndex)
 intBits = cboBits.ItemData(cboBits.ListIndex)

 Wav_Stop

 With udtSineWaves(1)
 .dblFrequency = 255
 .dblAmplitudeL = 0.25
 .dblAmplitudeR = 0.25
 End With

 With udtSineWaves(2)
 .dblFrequency = 311
 .dblAmplitudeL = 0.25
 .dblAmplitudeR = 0.25
 End With

 With udtSineWaves(3)
 .dblFrequency = 440
 .dblAmplitudeL = 0.25
 .dblAmplitudeR = 0.25
 End With

 Wav_BuildHeader bytSound, lngSampleRate, intBits, _
 intAudioMode, 0.5, 0.5
 Wav_MultiSineWave bytSound, udtSineWaves, 3

 Wav_Play bytSound

End Sub

Private Sub Form_Load()
 Dim i As Integer
 Dim intBitSize As Integer
 Dim lngSampleRate As Long

 txtFrequency = "1000"

 With cboAudioMode
 For i = 1 To 4
 .AddItem Choose(i, "Mono", "Stereo L+R", "Stereo L", _
 "Stereo R", "Stereo L-R")
 .ItemData(.NewIndex) = i - 1
 Next
 .ListIndex = 1
 End With

 With cboSampleRate
 For i = 1 To 8
 lngSampleRate = Choose(i, RATE_8000, RATE_11025, RATE_22050, _
 RATE_32000, RATE_44100, RATE_48000, RATE_88000, RATE_96000)
 .AddItem CStr(lngSampleRate)
 .ItemData(.NewIndex) = lngSampleRate
 Next
 .ListIndex = 1
 End With

 With cboBits
 For i = 1 To 2
 intBitSize = Choose(i, BITS_8, BITS_16)

49

 .AddItem CStr(intBitSize)
 .ItemData(.NewIndex) = intBitSize
 Next
 .ListIndex = 1
 End With

End Sub

**

'---
' modWAV - WAV File Routines
'
' Written By: David M.Hitchner
' k5dmh@bellsouth.net
' k5dmh@arrl.net
'
' This VB module is a collection of routines to uses to create a play WAV
' format files.
'---
Option Explicit

'---
' Wave File Format
'---
' RIFF Chunk (12 bytes)
' 00 00 - 03 "RIFF"
' 04 04 - 07 Total Length to Follow (Length of File - 8)
' 08 08 - 11 "WAVE"
'
' FORMAT Chunk (24 bytes)
' 0C 12 - 15 "fmt_"
' 10 16 - 19 Length of FORMAT Chunk Always 0x10
' 14 20 - 21 Audio Format Always 0x01
' 16 22 - 23 Channels 1 = Mono, 2 = Stereo
' 18 24 - 27 Sample Rate In Hertz
' 1C 28 - 31 Bytes per Second Sample Rate * Channels * Bits per Sample / 8
' 20 32 - 33 Bytes per Sample Channels * Bits per Sample / 8
' 1 = 8 bit Mono
' 2 = 8 bit Stereo or 16 bit Mono
' 4 = 16 bit Stereo
' 22 34 - 35 Bits per Sample
'
' DATA Chunk
' 24 36 - 39 "data"
' 28 40 - 43 Length of Data Samples * Channels * Bits per Sample / 8
' 2C 44 - End Data Samples
' 8 Bit = 0 to 255 unsigned bytes
' 16 Bit = -32,768 to 32,767 2's-complement signed integers
'---

Public Const MODE_MONO = 0 ' Mono
Public Const MODE_LR = 1 ' Stereo L+R
Public Const MODE_L = 2 ' Stereo L
Public Const MODE_R = 3 ' Stereo R

Public Const RATE_8000 = 8000
Public Const RATE_11025 = 11025
Public Const RATE_22050 = 22050
Public Const RATE_32000 = 32000
Public Const RATE_44100 = 44100
Public Const RATE_48000 = 48000

50

Public Const RATE_88000 = 88000
Public Const RATE_96000 = 96000

Public Const BITS_8 = 8
Public Const BITS_16 = 16

Public Type SINEWAVE
 dblFrequency As Double
 dblDataSlice As Double
 dblAmplitudeL As Double
 dblAmplitudeR As Double
End Type

Private PI As Double
Private intBits As Integer
Private lngSampleRate As Long
Private intSampleBytes As Integer
Private intAudioMode As Integer
Private dblFrequency As Double
Private dblVolumeL As Double
Private dblVolumeR As Double
Private intAudioWidth As Integer

Private Const SND_ALIAS = &H10000
Private Const SND_ALIAS_ID = &H110000
Private Const SND_ALIAS_START = 0
Private Const SND_APPLICATION = &H80
Private Const SND_ASYNC = &H1
Private Const SND_FILENAME = &H20000
Private Const SND_LOOP = &H8
Private Const SND_MEMORY = &H4
Private Const SND_NODEFAULT = &H2
Private Const SND_NOSTOP = &H10
Private Const SND_NOWAIT = &H2000
Private Const SND_PURGE = &H40
Private Const SND_RESERVED = &HFF000000
Private Const SND_RESOURCE = &H40004
Private Const SND_SYNC = &H0
Private Const SND_TYPE_MASK = &H170007
Private Const SND_VALID = &H1F
Private Const SND_VALIDFLAGS = &H17201F

Private Declare Function PlaySoundFile Lib "winmm.dll" Alias "PlaySoundA" _
 (ByVal lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long
Private Declare Function PlaySoundMemory Lib "winmm.dll" Alias "PlaySoundA" _
 (ptrMemory As Any, ByVal hModule As Long, ByVal dwFlags As Long) As Long
'---
' Wav_Play - Continuously plays the wav file from memory.
'---
Public Function Wav_PlayLoop(WavArray() As Byte) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundMemory(WavArray(0), ByVal 0&, SND_MEMORY Or SND_APPLICATION Or _
 SND_ASYNC Or SND_LOOP Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_PlayLoop = False
 Else
 Wav_PlayLoop = True
 End If
End Function

51

'---
' Wav_PlayFileLoop - Continuously plays the wav file from a file.
'---
Public Function Wav_PlayFileLoop(FileName As String) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundFile(FileName, 0, SND_FILENAME Or SND_APPLICATION Or _
 SND_ASYNC Or SND_LOOP Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_PlayFileLoop = False
 Else
 Wav_PlayFileLoop = True
 End If
End Function

'---
' Wav_Play - Plays the wav file from memory.
'---
Public Function Wav_Play(WavArray() As Byte) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundMemory(WavArray(0), 0, SND_MEMORY Or SND_APPLICATION Or _
 SND_SYNC Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_Play = False
 Else
 Wav_Play = True
 End If
End Function

'---
' Wav_Play - Plays the wav file from a file.
'---
Public Function Wav_PlayFile(FileName As String) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundFile(FileName, 0, SND_FILENAME Or SND_APPLICATION Or _
 SND_SYNC Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_PlayFile = False
 Else
 Wav_PlayFile = True
 End If
End Function
'---
' Wav_BuildHeader - Builds the WAV file header based on the sample rate, resolution,
' audio mode. Also sets the volume level for other routines.
'---
Public Sub Wav_BuildHeader(WavArray() As Byte, SampleRate As Long, _
 Resolution As Integer, AudioMode As Integer, VolumeL As Double, VolumeR As Double)
 Dim lngBytesASec As Long

 PI = 4# * Atn(1#)

 ' Save parameters.
 lngSampleRate = SampleRate
 intBits = Resolution
 intAudioMode = AudioMode
 dblVolumeL = VolumeL

52

 dblVolumeR = VolumeR

 ReDim WavArray(0 To 43)

 '---
 ' Fixed Data
 '---
 WavArray(0) = 82 ' R
 WavArray(1) = 73 ' I
 WavArray(2) = 70 ' F
 WavArray(3) = 70 ' F
 WavArray(8) = 87 ' W
 WavArray(9) = 65 ' A
 WavArray(10) = 86 ' V
 WavArray(11) = 69 ' E
 WavArray(12) = 102 ' f
 WavArray(13) = 109 ' m
 WavArray(14) = 116 ' t
 WavArray(15) = 32 ' .
 WavArray(16) = 16 ' Length of Format Chunk
 WavArray(17) = 0 ' Length of Format Chunk
 WavArray(18) = 0 ' Length of Format Chunk
 WavArray(19) = 0 ' Length of Format Chunk
 WavArray(20) = 1 ' Audio Format
 WavArray(21) = 0 ' Audio Format
 WavArray(36) = 100 ' d
 WavArray(37) = 97 ' a
 WavArray(38) = 116 ' t
 WavArray(39) = 97 ' a

 '---
 ' Bytes 22 - 23 Channels 1 = Mono, 2 = Stereo
 '---
 Select Case intAudioMode
 Case MODE_MONO:
 WavArray(22) = 1
 WavArray(23) = 0
 intAudioWidth = 1
 Case MODE_LR:
 WavArray(22) = 2
 WavArray(23) = 0
 intAudioWidth = 2
 Case MODE_L:
 WavArray(22) = 2
 WavArray(23) = 0
 intAudioWidth = 2
 Case MODE_R:
 WavArray(22) = 2
 WavArray(23) = 0
 intAudioWidth = 2
 End Select

 '---
 ' 24 - 27 Sample Rate In Hertz
 '---
 WavArray(24) = ExtractByte(lngSampleRate, 0)
 WavArray(25) = ExtractByte(lngSampleRate, 1)
 WavArray(26) = ExtractByte(lngSampleRate, 2)
 WavArray(27) = ExtractByte(lngSampleRate, 3)

 '---
 ' Bytes 34 - 35 Bits per Sample

53

 '---
 Select Case intBits
 Case 8:
 WavArray(34) = 8
 WavArray(35) = 0
 intSampleBytes = 1
 Case 16:
 WavArray(34) = 16
 WavArray(35) = 0
 intSampleBytes = 2
 End Select

 '---
 ' Bytes 28 - 31 Bytes per Second Sample Rate * Channels * Bits per Sample / 8
 '---
 lngBytesASec = lngSampleRate * intAudioWidth * intSampleBytes

 WavArray(28) = ExtractByte(lngBytesASec, 0)
 WavArray(29) = ExtractByte(lngBytesASec, 1)
 WavArray(30) = ExtractByte(lngBytesASec, 2)
 WavArray(31) = ExtractByte(lngBytesASec, 3)

 '---
 ' Bytes 32 - 33 Bytes per Sample Channels * Bits per Sample / 8
 ' 1 = 8 bit Mono
 ' 2 = 8 bit Stereo or 16 bit Mono
 ' 4 = 16 bit Stereo
 '---
 If (intAudioMode = MODE_MONO) And (intBits = 8) Then
 WavArray(32) = 1
 WavArray(33) = 0
 End If

 If ((intAudioMode = MODE_LR) Or (intAudioMode = MODE_L) Or _
 (intAudioMode = MODE_R)) And (intBits = 8) Then
 WavArray(32) = 2
 WavArray(33) = 0
 End If

 If (intAudioMode = MODE_MONO) And (intBits = 16) Then
 WavArray(32) = 2
 WavArray(33) = 0
 End If

 If ((intAudioMode = MODE_LR) Or (intAudioMode = MODE_L) Or _
 (intAudioMode = MODE_R)) And (intBits = 16) Then
 WavArray(32) = 4
 WavArray(33) = 0
 End If

End Sub

'---
' Wav_WriteToFile - Writes the wav file to disk.
'---
Public Function Wav_WriteToFile(FileName As String, WavArray() As Byte) As Long
 Static blnInitialized As Boolean

 Dim fd As Integer
 Dim i As Long, lngFileSize As Long

 Wav_WriteToFile = 0

54

 On Error GoTo Routine_Error

 fd = FreeFile
 Open FileName For Binary As #fd

 lngFileSize = UBound(WavArray)
 For i = 0 To lngFileSize
 Put #fd, , WavArray(i)
 Next

Routine_Exit:
 On Error Resume Next
 Close #fd
 Exit Function

Routine_Error:
 Wav_WriteToFile = Err.Number
 Resume Routine_Exit
End Function

'---
' Wav_SineWave - Builds a sine wave that may be played in a continuous loop.
'---
Public Sub Wav_SineWave(WavArray() As Byte, Frequency As Double)
 Dim i As Long
 Dim lngLimit As Long
 Dim lngDataL As Long, lngDataR As Long
 Dim dblDataPt As Double, blnPositive As Boolean
 Dim intCycles As Integer, intCycleCount As Integer
 Dim lngFileSize As Long
 Dim lngSamples As Long
 Dim lngDataSize As Long

 Dim dblDataSlice As Double
 Dim dblWaveTime As Double
 Dim dblTotalTime As Double
 Dim dblSampleTime As Double

 dblFrequency = Frequency

 If dblFrequency > 1000 Then
 intCycles = 100
 Else
 intCycles = 10
 End If

 dblWaveTime = 1 / dblFrequency
 dblTotalTime = dblWaveTime * intCycles
 dblSampleTime = 1 / CDbl(lngSampleRate)
 dblDataSlice = (2 * PI) / (dblWaveTime / dblSampleTime)

 lngSamples = 0
 intCycleCount = 0
 blnPositive = True
 Do
 dblDataPt = Sin(lngSamples * dblDataSlice)
 If lngSamples > 0 Then
 If dblDataPt < 0 Then
 blnPositive = False
 Else
 ' Detect Zero Crossing
 If Not blnPositive Then

55

 intCycleCount = intCycleCount + 1
 If intCycleCount >= intCycles Then Exit Do
 blnPositive = True
 End If
 End If
 End If
 lngSamples = lngSamples + 1
 Loop

 '---
 ' Bytes 40 - 43 Length of Data Samples * Channels * Bits per Sample / 8
 '---
 lngDataSize = lngSamples * intAudioWidth * (intBits / 8)
 ReDim Preserve WavArray(0 To 43 + lngDataSize)

 WavArray(40) = ExtractByte(lngDataSize, 0)
 WavArray(41) = ExtractByte(lngDataSize, 1)
 WavArray(42) = ExtractByte(lngDataSize, 2)
 WavArray(43) = ExtractByte(lngDataSize, 3)

 '---
 ' Bytes 04 - 07 Total Length to Follow (Length of File - 8)
 '---
 lngFileSize = lngDataSize + 36

 WavArray(4) = ExtractByte(lngFileSize, 0)
 WavArray(5) = ExtractByte(lngFileSize, 1)
 WavArray(6) = ExtractByte(lngFileSize, 2)
 WavArray(7) = ExtractByte(lngFileSize, 3)

 '---
 ' Bytes 44 - End Data Samples
 '---

 If intBits = 8 Then
 lngLimit = 127
 Else
 lngLimit = 32767
 End If

 For i = 0 To lngSamples - 1

 If intBits = 8 Then
 '---
 ' 8 Bit Data
 '---
 ' Calculate data point.
 dblDataPt = Sin(i * dblDataSlice) * lngLimit
 lngDataL = Int(dblDataPt * dblVolumeL) + lngLimit
 lngDataR = Int(dblDataPt * dblVolumeR) + lngLimit

 ' Place data point in wave tile.
 If intAudioMode = MODE_MONO Then _
 WavArray(i + 44) = ExtractByte(lngDataL, 0)

 If intAudioMode = MODE_LR Then 'L+R stereo
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = ExtractByte(lngDataR, 0)
 End If

 If intAudioMode = MODE_L Then ' L only stereo
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)

56

 WavArray((2 * i) + 45) = 0
 End If

 If intAudioMode = MODE_R Then ' R only stereo
 WavArray((2 * i) + 44) = 0
 WavArray((2 * i) + 45) = ExtractByte(lngDataR, 0)
 End If

 Else

 '---
 ' 16 Bit Data
 '---
 ' Calculate data point.
 dblDataPt = Sin(i * dblDataSlice) * lngLimit
 lngDataL = Int(dblDataPt * dblVolumeL)
 lngDataR = Int(dblDataPt * dblVolumeR)

 ' Place data point in wave tile.
 If intAudioMode = MODE_MONO Then
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = ExtractByte(lngDataL, 1)
 End If

 If intAudioMode = MODE_LR Then
 WavArray((4 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((4 * i) + 45) = ExtractByte(lngDataL, 1)
 WavArray((4 * i) + 46) = ExtractByte(lngDataR, 0)
 WavArray((4 * i) + 47) = ExtractByte(lngDataR, 1)
 End If

 If intAudioMode = MODE_L Then
 WavArray((4 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((4 * i) + 45) = ExtractByte(lngDataL, 1)
 WavArray((4 * i) + 46) = 0
 WavArray((4 * i) + 47) = 0
 End If

 If intAudioMode = MODE_R Then
 WavArray((4 * i) + 44) = 0
 WavArray((4 * i) + 45) = 0
 WavArray((4 * i) + 46) = ExtractByte(lngDataR, 0)
 WavArray((4 * i) + 47) = ExtractByte(lngDataR, 1)
 End If

 End If

 Next
End Sub

'---
' Wav_MultiSineWave - Builds a complex wave form from one or more sine waves.
'---
Public Sub Wav_MultiSineWave(WavArray() As Byte, SineWaves() As SINEWAVE, _
 Seconds As Double)

 Dim i As Long, j As Long
 Dim lngLimit As Long
 Dim lngDataL As Long, lngDataR As Long
 Dim dblDataPtL As Double, dblDataPtR As Double
 Dim dblWaveTime As Double
 Dim dblSampleTime As Double

57

 Dim lngSamples As Long
 Dim lngFileSize As Long, lngDataSize As Long

 Dim intSineCount As Integer

 intSineCount = UBound(SineWaves)

 For i = 1 To intSineCount
 dblWaveTime = 1 / SineWaves(i).dblFrequency
 dblSampleTime = 1 / CDbl(lngSampleRate)
 SineWaves(i).dblDataSlice = (2 * PI) / (dblWaveTime / dblSampleTime)
 Next

 lngSamples = CLng(Seconds / dblSampleTime)

 '---
 ' Bytes 40 - 43 Length of Data Samples * Channels * Bits per Sample / 8
 '---
 lngDataSize = lngSamples * intAudioWidth * (intBits / 8)
 ReDim Preserve WavArray(0 To 43 + lngDataSize)

 WavArray(40) = ExtractByte(lngDataSize, 0)
 WavArray(41) = ExtractByte(lngDataSize, 1)
 WavArray(42) = ExtractByte(lngDataSize, 2)
 WavArray(43) = ExtractByte(lngDataSize, 3)

 '---
 ' Bytes 04 - 07 Total Length to Follow (Length of File - 8)
 '---
 lngFileSize = lngDataSize + 36

 WavArray(4) = ExtractByte(lngFileSize, 0)
 WavArray(5) = ExtractByte(lngFileSize, 1)
 WavArray(6) = ExtractByte(lngFileSize, 2)
 WavArray(7) = ExtractByte(lngFileSize, 3)

 '---
 ' Bytes 44 - End Data Samples
 '---

 If intBits = 8 Then
 lngLimit = 127
 Else
 lngLimit = 32767
 End If

 For i = 0 To lngSamples - 1

 If intBits = 8 Then
 '---
 ' 8 Bit Data
 '---
 dblDataPtL = 0
 dblDataPtR = 0
 For j = 1 To intSineCount
 dblDataPtL = dblDataPtL + (Sin(i * SineWaves(j).dblDataSlice) * _
 SineWaves(j).dblAmplitudeL)
 dblDataPtR = dblDataPtR + (Sin(i * SineWaves(j).dblDataSlice) * _
 SineWaves(j).dblAmplitudeR)
 Next

 lngDataL = Int(dblDataPtL * dblVolumeL * lngLimit) + lngLimit

58

 lngDataR = Int(dblDataPtL * dblVolumeR * lngLimit) + lngLimit

 If intAudioMode = MODE_MONO Then _
 WavArray(i + 44) = ExtractByte(lngDataL, 0)

 If intAudioMode = MODE_LR Then 'L+R stereo
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = ExtractByte(lngDataR, 0)
 End If

 If intAudioMode = MODE_L Then ' L only stereo
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = 0
 End If

 If intAudioMode = MODE_R Then ' R only stereo
 WavArray((2 * i) + 44) = 0
 WavArray((2 * i) + 45) = ExtractByte(lngDataR, 0)
 End If

 Else

 '---
 ' 16 Bit Data
 '---
 dblDataPtL = 0
 dblDataPtR = 0
 For j = 1 To intSineCount
 dblDataPtL = dblDataPtL + (Sin(i * SineWaves(j).dblDataSlice) * _
 SineWaves(j).dblAmplitudeL)
 dblDataPtR = dblDataPtR + (Sin(i * SineWaves(j).dblDataSlice) * _
 SineWaves(j).dblAmplitudeR)
 Next

 lngDataL = Int(dblDataPtL * dblVolumeL * lngLimit)
 lngDataR = Int(dblDataPtL * dblVolumeR * lngLimit)

 If intAudioMode = MODE_MONO Then
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = ExtractByte(lngDataL, 1)
 End If

 If intAudioMode = MODE_LR Then
 WavArray((4 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((4 * i) + 45) = ExtractByte(lngDataL, 1)
 WavArray((4 * i) + 46) = ExtractByte(lngDataR, 0)
 WavArray((4 * i) + 47) = ExtractByte(lngDataR, 1)
 End If

 If intAudioMode = MODE_L Then
 WavArray((4 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((4 * i) + 45) = ExtractByte(lngDataL, 1)
 WavArray((4 * i) + 46) = 0
 WavArray((4 * i) + 47) = 0
 End If

 If intAudioMode = MODE_R Then
 WavArray((4 * i) + 44) = 0
 WavArray((4 * i) + 45) = 0
 WavArray((4 * i) + 46) = ExtractByte(lngDataR, 0)
 WavArray((4 * i) + 47) = ExtractByte(lngDataR, 1)
 End If

59

 End If

 Next
End Sub
'---
' ExtractByte - Extracts the high or low byte from a short (16 bit) VB integer.
'
' intWord - VB Integer from which to extract byte.
' intByte - Returned high or low byte.
' intPosition - | Word |
' | Byte = 3 | Byte = 2 | Byte = 1 | Byte = 0 |
'---
Private Function ExtractByte(lngWord As Long, intPosition As Integer) As Byte
 Dim lngTemp As Long
 Dim intByte As Integer

 If intPosition = 3 Then
 ' Byte 2
 lngTemp = lngWord

 ' Mask off byte and shift right 24 bits.
 ' Mask -> 2130706432 = &H7F000000
 ' Shift -> Divide by 16777216
 lngTemp = (lngTemp And 2130706432) / 16777216

 ' Cast back to integer.
 intByte = lngTemp

 ElseIf intPosition = 2 Then
 ' Byte 2
 lngTemp = lngWord

 ' Mask off byte and shift right 16 bits.
 ' Mask -> 16711680 = &HFF0000
 ' Shift -> Divide by 65536
 lngTemp = (lngTemp And 16711680) / 65536

 ' Cast back to integer.
 intByte = lngTemp

 ElseIf intPosition = 1 Then
 ' Byte 1
 lngTemp = lngWord

 ' Mask off high byte and shift right 8 bits.
 ' Mask -> 65290 = &HFF00
 ' Shift -> Divide by 256
 lngTemp = (lngTemp And 65290) / 256

 ' Cast back to integer.
 intByte = lngTemp
 Else
 ' Byte 0
 intByte = lngWord And &HFF
 End If

 ExtractByte = intByte
End Function

60

'---
' Wav_Stop - Stop the currently playing wav.
'---
Public Sub Wav_Stop()
 Dim lngStatus As Long

 lngStatus = PlaySoundMemory(ByVal 0&, ByVal 0&, SND_PURGE Or SND_NODEFAULT)
End Sub

61

APPENDIX III: WINDOWS WAVEFORM AUDIO AND SOUND API

/**

 Waveform audio support

**/

/* waveform audio error return values */
#define WAVERR_BADFORMAT (WAVERR_BASE + 0) /* unsupported wave format */
#define WAVERR_STILLPLAYING (WAVERR_BASE + 1) /* still something playing */
#define WAVERR_UNPREPARED (WAVERR_BASE + 2) /* header not prepared */
#define WAVERR_SYNC (WAVERR_BASE + 3) /* device is synchronous */
#define WAVERR_LASTERROR (WAVERR_BASE + 3) /* last error in range */

/* waveform audio data types */
DECLARE_HANDLE(HWAVE);
DECLARE_HANDLE(HWAVEIN);
DECLARE_HANDLE(HWAVEOUT);
#ifndef _WIN32_VXD
typedef HWAVEIN FAR *LPHWAVEIN;
typedef HWAVEOUT FAR *LPHWAVEOUT;
typedef DRVCALLBACK WAVECALLBACK;
typedef WAVECALLBACK FAR *LPWAVECALLBACK;
#endif

/* wave callback messages */
#define WOM_OPEN MM_WOM_OPEN
#define WOM_CLOSE MM_WOM_CLOSE
#define WOM_DONE MM_WOM_DONE
#define WIM_OPEN MM_WIM_OPEN
#define WIM_CLOSE MM_WIM_CLOSE
#define WIM_DATA MM_WIM_DATA

/* device ID for wave device mapper */
#define WAVE_MAPPER ((UINT)-1)

/* flags for dwFlags parameter in waveOutOpen() and waveInOpen() */
#define WAVE_FORMAT_QUERY 0x0001
#define WAVE_ALLOWSYNC 0x0002
#if(WINVER >= 0x0400)
#define WAVE_MAPPED 0x0004
#define WAVE_FORMAT_DIRECT 0x0008
#define WAVE_FORMAT_DIRECT_QUERY (WAVE_FORMAT_QUERY | WAVE_FORMAT_DIRECT)
#endif /* WINVER >= 0x0400 */

/* wave data block header */
typedef struct wavehdr_tag {
 LPSTR lpData; /* pointer to locked data buffer */
 DWORD dwBufferLength; /* length of data buffer */
 DWORD dwBytesRecorded; /* used for input only */
 DWORD dwUser; /* for client's use */
 DWORD dwFlags; /* assorted flags (see defines) */
 DWORD dwLoops; /* loop control counter */
 struct wavehdr_tag FAR *lpNext; /* reserved for driver */

62

 DWORD reserved; /* reserved for driver */
} WAVEHDR, *PWAVEHDR, NEAR *NPWAVEHDR, FAR *LPWAVEHDR;

/* flags for dwFlags field of WAVEHDR */
#define WHDR_DONE 0x00000001 /* done bit */
#define WHDR_PREPARED 0x00000002 /* set if this header has been prepared */
#define WHDR_BEGINLOOP 0x00000004 /* loop start block */
#define WHDR_ENDLOOP 0x00000008 /* loop end block */
#define WHDR_INQUEUE 0x00000010 /* reserved for driver */

/* waveform output device capabilities structure */
#ifdef _WIN32

typedef struct tagWAVEOUTCAPSA {
 WORD wMid; /* manufacturer ID */
 WORD wPid; /* product ID */
 MMVERSION vDriverVersion; /* version of the driver */
 CHAR szPname[MAXPNAMELEN]; /* product name (NULL terminated string) */
 DWORD dwFormats; /* formats supported */
 WORD wChannels; /* number of sources supported */
 WORD wReserved1; /* packing */
 DWORD dwSupport; /* functionality supported by driver */
} WAVEOUTCAPSA, *PWAVEOUTCAPSA, *NPWAVEOUTCAPSA, *LPWAVEOUTCAPSA;
typedef struct tagWAVEOUTCAPSW {
 WORD wMid; /* manufacturer ID */
 WORD wPid; /* product ID */
 MMVERSION vDriverVersion; /* version of the driver */
 WCHAR szPname[MAXPNAMELEN]; /* product name (NULL terminated string) */
 DWORD dwFormats; /* formats supported */
 WORD wChannels; /* number of sources supported */
 WORD wReserved1; /* packing */
 DWORD dwSupport; /* functionality supported by driver */
} WAVEOUTCAPSW, *PWAVEOUTCAPSW, *NPWAVEOUTCAPSW, *LPWAVEOUTCAPSW;
#ifdef UNICODE
typedef WAVEOUTCAPSW WAVEOUTCAPS;
typedef PWAVEOUTCAPSW PWAVEOUTCAPS;
typedef NPWAVEOUTCAPSW NPWAVEOUTCAPS;
typedef LPWAVEOUTCAPSW LPWAVEOUTCAPS;
#else
typedef WAVEOUTCAPSA WAVEOUTCAPS;
typedef PWAVEOUTCAPSA PWAVEOUTCAPS;
typedef NPWAVEOUTCAPSA NPWAVEOUTCAPS;
typedef LPWAVEOUTCAPSA LPWAVEOUTCAPS;
#endif // UNICODE

#else
typedef struct waveoutcaps_tag {
 WORD wMid; /* manufacturer ID */
 WORD wPid; /* product ID */
 VERSION vDriverVersion; /* version of the driver */
 char szPname[MAXPNAMELEN]; /* product name (NULL terminated string) */
 DWORD dwFormats; /* formats supported */
 WORD wChannels; /* number of sources supported */
 DWORD dwSupport; /* functionality supported by driver */
} WAVEOUTCAPS, *PWAVEOUTCAPS, NEAR *NPWAVEOUTCAPS, FAR *LPWAVEOUTCAPS;
#endif

63

/* flags for dwSupport field of WAVEOUTCAPS */
#define WAVECAPS_PITCH 0x0001 /* supports pitch control */
#define WAVECAPS_PLAYBACKRATE 0x0002 /* supports playback rate control */
#define WAVECAPS_VOLUME 0x0004 /* supports volume control */
#define WAVECAPS_LRVOLUME 0x0008 /* separate left-right volume control */
#define WAVECAPS_SYNC 0x0010
#define WAVECAPS_SAMPLEACCURATE 0x0020
#define WAVECAPS_DIRECTSOUND 0x0040

/* waveform input device capabilities structure */
#ifdef _WIN32

typedef struct tagWAVEINCAPSA {
 WORD wMid; /* manufacturer ID */
 WORD wPid; /* product ID */
 MMVERSION vDriverVersion; /* version of the driver */
 CHAR szPname[MAXPNAMELEN]; /* product name (NULL terminated string) */
 DWORD dwFormats; /* formats supported */
 WORD wChannels; /* number of channels supported */
 WORD wReserved1; /* structure packing */
} WAVEINCAPSA, *PWAVEINCAPSA, *NPWAVEINCAPSA, *LPWAVEINCAPSA;
typedef struct tagWAVEINCAPSW {
 WORD wMid; /* manufacturer ID */
 WORD wPid; /* product ID */
 MMVERSION vDriverVersion; /* version of the driver */
 WCHAR szPname[MAXPNAMELEN]; /* product name (NULL terminated string) */
 DWORD dwFormats; /* formats supported */
 WORD wChannels; /* number of channels supported */
 WORD wReserved1; /* structure packing */
} WAVEINCAPSW, *PWAVEINCAPSW, *NPWAVEINCAPSW, *LPWAVEINCAPSW;
#ifdef UNICODE
typedef WAVEINCAPSW WAVEINCAPS;
typedef PWAVEINCAPSW PWAVEINCAPS;
typedef NPWAVEINCAPSW NPWAVEINCAPS;
typedef LPWAVEINCAPSW LPWAVEINCAPS;
#else
typedef WAVEINCAPSA WAVEINCAPS;
typedef PWAVEINCAPSA PWAVEINCAPS;
typedef NPWAVEINCAPSA NPWAVEINCAPS;
typedef LPWAVEINCAPSA LPWAVEINCAPS;
#endif // UNICODE

#else
typedef struct waveincaps_tag {
 WORD wMid; /* manufacturer ID */
 WORD wPid; /* product ID */
 VERSION vDriverVersion; /* version of the driver */
 char szPname[MAXPNAMELEN]; /* product name (NULL terminated string) */
 DWORD dwFormats; /* formats supported */
 WORD wChannels; /* number of channels supported */
} WAVEINCAPS, *PWAVEINCAPS, NEAR *NPWAVEINCAPS, FAR *LPWAVEINCAPS;
#endif

/* defines for dwFormat field of WAVEINCAPS and WAVEOUTCAPS */
#define WAVE_INVALIDFORMAT 0x00000000 /* invalid format */

64

#define WAVE_FORMAT_1M08 0x00000001 /* 11.025 kHz, Mono, 8-bit */
#define WAVE_FORMAT_1S08 0x00000002 /* 11.025 kHz, Stereo, 8-bit */
#define WAVE_FORMAT_1M16 0x00000004 /* 11.025 kHz, Mono, 16-bit */
#define WAVE_FORMAT_1S16 0x00000008 /* 11.025 kHz, Stereo, 16-bit */
#define WAVE_FORMAT_2M08 0x00000010 /* 22.05 kHz, Mono, 8-bit */
#define WAVE_FORMAT_2S08 0x00000020 /* 22.05 kHz, Stereo, 8-bit */
#define WAVE_FORMAT_2M16 0x00000040 /* 22.05 kHz, Mono, 16-bit */
#define WAVE_FORMAT_2S16 0x00000080 /* 22.05 kHz, Stereo, 16-bit */
#define WAVE_FORMAT_4M08 0x00000100 /* 44.1 kHz, Mono, 8-bit */
#define WAVE_FORMAT_4S08 0x00000200 /* 44.1 kHz, Stereo, 8-bit */
#define WAVE_FORMAT_4M16 0x00000400 /* 44.1 kHz, Mono, 16-bit */
#define WAVE_FORMAT_4S16 0x00000800 /* 44.1 kHz, Stereo, 16-bit */

/* OLD general waveform format structure (information common to all formats) */
typedef struct waveformat_tag {
 WORD wFormatTag; /* format type */
 WORD nChannels; /* number of channels (i.e. mono, stereo, etc.) */
 DWORD nSamplesPerSec; /* sample rate */
 DWORD nAvgBytesPerSec; /* for buffer estimation */
 WORD nBlockAlign; /* block size of data */
} WAVEFORMAT, *PWAVEFORMAT, NEAR *NPWAVEFORMAT, FAR *LPWAVEFORMAT;

/* flags for wFormatTag field of WAVEFORMAT */
#define WAVE_FORMAT_PCM 1

/* specific waveform format structure for PCM data */
typedef struct pcmwaveformat_tag {
 WAVEFORMAT wf;
 WORD wBitsPerSample;
} PCMWAVEFORMAT, *PPCMWAVEFORMAT, NEAR *NPPCMWAVEFORMAT, FAR
*LPPCMWAVEFORMAT;

#ifndef _WAVEFORMATEX_
#define _WAVEFORMATEX_

/*
 * extended waveform format structure used for all non-PCM formats. this
 * structure is common to all non-PCM formats.
 */
typedef struct tWAVEFORMATEX
{
 WORD wFormatTag; /* format type */
 WORD nChannels; /* number of channels (i.e. mono, stereo...) */
 DWORD nSamplesPerSec; /* sample rate */
 DWORD nAvgBytesPerSec; /* for buffer estimation */
 WORD nBlockAlign; /* block size of data */
 WORD wBitsPerSample; /* number of bits per sample of mono data */
 WORD cbSize; /* the count in bytes of the size of */
 /* extra information (after cbSize) */
} WAVEFORMATEX, *PWAVEFORMATEX, NEAR *NPWAVEFORMATEX, FAR *LPWAVEFORMATEX;
typedef const WAVEFORMATEX FAR *LPCWAVEFORMATEX;

#endif /* _WAVEFORMATEX_ */

#ifndef _WIN32_VXD
/* waveform audio function prototypes */

65

WINMMAPI UINT WINAPI waveOutGetNumDevs(void);

#ifdef _WIN32

WINMMAPI MMRESULT WINAPI waveOutGetDevCapsA(UINT uDeviceID, LPWAVEOUTCAPSA pwoc,
UINT cbwoc);
WINMMAPI MMRESULT WINAPI waveOutGetDevCapsW(UINT uDeviceID, LPWAVEOUTCAPSW pwoc,
UINT cbwoc);
#ifdef UNICODE
#define waveOutGetDevCaps waveOutGetDevCapsW
#else
#define waveOutGetDevCaps waveOutGetDevCapsA
#endif // !UNICODE

#else
WINMMAPI MMRESULT WINAPI waveOutGetDevCaps(UINT uDeviceID, LPWAVEOUTCAPS pwoc, UINT
cbwoc);
#endif

#if (WINVER >= 0x0400)
WINMMAPI MMRESULT WINAPI waveOutGetVolume(HWAVEOUT hwo, LPDWORD pdwVolume);
WINMMAPI MMRESULT WINAPI waveOutSetVolume(HWAVEOUT hwo, DWORD dwVolume);
#else
WINMMAPI MMRESULT WINAPI waveOutGetVolume(UINT uId, LPDWORD pdwVolume);
WINMMAPI MMRESULT WINAPI waveOutSetVolume(UINT uId, DWORD dwVolume);
#endif

#ifdef _WIN32

WINMMAPI MMRESULT WINAPI waveOutGetErrorTextA(MMRESULT mmrError, LPSTR pszText, UINT
cchText);
WINMMAPI MMRESULT WINAPI waveOutGetErrorTextW(MMRESULT mmrError, LPWSTR pszText, UINT
cchText);
#ifdef UNICODE
#define waveOutGetErrorText waveOutGetErrorTextW
#else
#define waveOutGetErrorText waveOutGetErrorTextA
#endif // !UNICODE

#else
MMRESULT WINAPI waveOutGetErrorText(MMRESULT mmrError, LPSTR pszText, UINT cchText);
#endif

WINMMAPI MMRESULT WINAPI waveOutOpen(LPHWAVEOUT phwo, UINT uDeviceID,
 LPCWAVEFORMATEX pwfx, DWORD dwCallback, DWORD dwInstance, DWORD fdwOpen);

WINMMAPI MMRESULT WINAPI waveOutClose(HWAVEOUT hwo);
WINMMAPI MMRESULT WINAPI waveOutPrepareHeader(HWAVEOUT hwo, LPWAVEHDR pwh, UINT
cbwh);
WINMMAPI MMRESULT WINAPI waveOutUnprepareHeader(HWAVEOUT hwo, LPWAVEHDR pwh, UINT
cbwh);
WINMMAPI MMRESULT WINAPI waveOutWrite(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);
WINMMAPI MMRESULT WINAPI waveOutPause(HWAVEOUT hwo);
WINMMAPI MMRESULT WINAPI waveOutRestart(HWAVEOUT hwo);
WINMMAPI MMRESULT WINAPI waveOutReset(HWAVEOUT hwo);
WINMMAPI MMRESULT WINAPI waveOutBreakLoop(HWAVEOUT hwo);

66

WINMMAPI MMRESULT WINAPI waveOutGetPosition(HWAVEOUT hwo, LPMMTIME pmmt, UINT cbmmt);
WINMMAPI MMRESULT WINAPI waveOutGetPitch(HWAVEOUT hwo, LPDWORD pdwPitch);
WINMMAPI MMRESULT WINAPI waveOutSetPitch(HWAVEOUT hwo, DWORD dwPitch);
WINMMAPI MMRESULT WINAPI waveOutGetPlaybackRate(HWAVEOUT hwo, LPDWORD pdwRate);
WINMMAPI MMRESULT WINAPI waveOutSetPlaybackRate(HWAVEOUT hwo, DWORD dwRate);
WINMMAPI MMRESULT WINAPI waveOutGetID(HWAVEOUT hwo, LPUINT puDeviceID);

#if (WINVER >= 0x030a)
#ifdef _WIN32
WINMMAPI MMRESULT WINAPI waveOutMessage(HWAVEOUT hwo, UINT uMsg, DWORD dw1, DWORD
dw2);
#else
DWORD WINAPI waveOutMessage(HWAVEOUT hwo, UINT uMsg, DWORD dw1, DWORD dw2);
#endif
#endif /* ifdef WINVER >= 0x030a */

WINMMAPI UINT WINAPI waveInGetNumDevs(void);

#ifdef _WIN32

WINMMAPI MMRESULT WINAPI waveInGetDevCapsA(UINT uDeviceID, LPWAVEINCAPSA pwic, UINT
cbwic);
WINMMAPI MMRESULT WINAPI waveInGetDevCapsW(UINT uDeviceID, LPWAVEINCAPSW pwic, UINT
cbwic);
#ifdef UNICODE
#define waveInGetDevCaps waveInGetDevCapsW
#else
#define waveInGetDevCaps waveInGetDevCapsA
#endif // !UNICODE

#else
MMRESULT WINAPI waveInGetDevCaps(UINT uDeviceID, LPWAVEINCAPS pwic, UINT cbwic);
#endif

#ifdef _WIN32

WINMMAPI MMRESULT WINAPI waveInGetErrorTextA(MMRESULT mmrError, LPSTR pszText, UINT
cchText);
WINMMAPI MMRESULT WINAPI waveInGetErrorTextW(MMRESULT mmrError, LPWSTR pszText, UINT
cchText);
#ifdef UNICODE
#define waveInGetErrorText waveInGetErrorTextW
#else
#define waveInGetErrorText waveInGetErrorTextA
#endif // !UNICODE

#else
MMRESULT WINAPI waveInGetErrorText(MMRESULT mmrError, LPSTR pszText, UINT cchText);
#endif

WINMMAPI MMRESULT WINAPI waveInOpen(LPHWAVEIN phwi, UINT uDeviceID,
 LPCWAVEFORMATEX pwfx, DWORD dwCallback, DWORD dwInstance, DWORD fdwOpen);

WINMMAPI MMRESULT WINAPI waveInClose(HWAVEIN hwi);
WINMMAPI MMRESULT WINAPI waveInPrepareHeader(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);

67

WINMMAPI MMRESULT WINAPI waveInUnprepareHeader(HWAVEIN hwi, LPWAVEHDR pwh, UINT
cbwh);
WINMMAPI MMRESULT WINAPI waveInAddBuffer(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);
WINMMAPI MMRESULT WINAPI waveInStart(HWAVEIN hwi);
WINMMAPI MMRESULT WINAPI waveInStop(HWAVEIN hwi);
WINMMAPI MMRESULT WINAPI waveInReset(HWAVEIN hwi);
WINMMAPI MMRESULT WINAPI waveInGetPosition(HWAVEIN hwi, LPMMTIME pmmt, UINT cbmmt);
WINMMAPI MMRESULT WINAPI waveInGetID(HWAVEIN hwi, LPUINT puDeviceID);

#if (WINVER >= 0x030a)
#ifdef _WIN32
WINMMAPI MMRESULT WINAPI waveInMessage(HWAVEIN hwi, UINT uMsg, DWORD dw1, DWORD
dw2);
#else
DWORD WINAPI waveInMessage(HWAVEIN hwi, UINT uMsg, DWORD dw1, DWORD dw2);
#endif
#endif /* ifdef WINVER >= 0x030a */

#endif /* ifndef _WIN32_VXD */

#endif /* ifndef MMNOWAVE */

/**

 Sound support

**/

#ifdef _WIN32

WINMMAPI BOOL WINAPI sndPlaySoundA(LPCSTR pszSound, UINT fuSound);
WINMMAPI BOOL WINAPI sndPlaySoundW(LPCWSTR pszSound, UINT fuSound);
#ifdef UNICODE
#define sndPlaySound sndPlaySoundW
#else
#define sndPlaySound sndPlaySoundA
#endif // !UNICODE

#else
BOOL WINAPI sndPlaySound(LPCSTR pszSound, UINT fuSound);
#endif

/*
 * flag values for fuSound and fdwSound arguments on [snd]PlaySound
 */
#define SND_SYNC 0x0000 /* play synchronously (default) */
#define SND_ASYNC 0x0001 /* play asynchronously */
#define SND_NODEFAULT 0x0002 /* silence (!default) if sound not found */
#define SND_MEMORY 0x0004 /* pszSound points to a memory file */
#define SND_LOOP 0x0008 /* loop the sound until next sndPlaySound */
#define SND_NOSTOP 0x0010 /* don't stop any currently playing sound */

#define SND_NOWAIT 0x00002000L /* don't wait if the driver is busy */
#define SND_ALIAS 0x00010000L /* name is a registry alias */
#define SND_ALIAS_ID 0x00110000L /* alias is a predefined ID */

68

#define SND_FILENAME 0x00020000L /* name is file name */
#define SND_RESOURCE 0x00040004L /* name is resource name or atom */
#if(WINVER >= 0x0400)
#define SND_PURGE 0x0040 /* purge non-static events for task */
#define SND_APPLICATION 0x0080 /* look for application specific association */
#endif /* WINVER >= 0x0400 */

#define SND_ALIAS_START 0 /* alias base */

#ifdef _WIN32
#define sndAlias(ch0, ch1) (SND_ALIAS_START + (DWORD)(BYTE)(ch0) | ((DWORD)(BYTE)(ch1) <<
8))

#define SND_ALIAS_SYSTEMASTERISK sndAlias('S', '*')
#define SND_ALIAS_SYSTEMQUESTION sndAlias('S', '?')
#define SND_ALIAS_SYSTEMHAND sndAlias('S', 'H')
#define SND_ALIAS_SYSTEMEXIT sndAlias('S', 'E')
#define SND_ALIAS_SYSTEMSTART sndAlias('S', 'S')
#define SND_ALIAS_SYSTEMWELCOME sndAlias('S', 'W')
#define SND_ALIAS_SYSTEMEXCLAMATION sndAlias('S', '!')
#define SND_ALIAS_SYSTEMDEFAULT sndAlias('S', 'D')

WINMMAPI BOOL WINAPI PlaySoundA(LPCSTR pszSound, HMODULE hmod, DWORD fdwSound);
WINMMAPI BOOL WINAPI PlaySoundW(LPCWSTR pszSound, HMODULE hmod, DWORD fdwSound);
#ifdef UNICODE
#define PlaySound PlaySoundW
#else
#define PlaySound PlaySoundA
#endif // !UNICODE

#else
BOOL WINAPI PlaySound(LPCSTR pszSound, HMODULE hmod, DWORD fdwSound);
#endif

#endif /* ifndef _WIN32_VXD */
#endif /* ifndef MMNOSOUND */

69

APPENDIX IV: SIMPLESCOPE CODE LISTING
Oscilliscope Code
‘fundamental.frm code
'Left channel (channel 1) is the input channel
'Right channel (channel 2) is the output channel

Option Explicit 'All variables must first be declared

'Global Variable declarations

Private DevHandle As Long

Private InData(0 To 2645999) As Integer 'Contains the raw bytes from sound card
Private InDataWord(0 To 2645999) As Long 'Raw bytes converted to values
Private Voltages(0 To 2645999) As Single 'Calibrated voltages
Private NumSampleBytes As Long 'Number of sample bytes
Private UpperBound As Long 'Number of sampled values on both channels
Private Inited As Boolean
Private MinCal, MaxCal As Long 'Used for calibrating voltage
Public MinHeight As Long, MinWidth As Long
Private FirstTime As Single, FirstVoltage As Single
Private SecondClick As Boolean
Private DivSize As Long
Private TriggerOnce As Boolean
Private Triggered As Boolean
Private TriggerIsOn As Boolean
Private PlotInc As Long
Private OldCursors(0 To 1, 0 To 1) As Single
Private ZoomOn, ZoomBegun As Boolean 'Not Used
Private zoomrect(0 To 1, 0 To 1) As Single 'Not Used

'Calibration voltage
Private Const VOLTS_PER_DIV = 0.2

'Windows API required types

Private Type WaveFormatEx
 FormatTag As Integer
 Channels As Integer
 SamplesPerSec As Long
 AvgBytesPerSec As Long
 BlockAlign As Integer
 BitsPerSample As Integer
 ExtraDataSize As Integer
End Type

Private Type WaveHdr
 lpData As Long
 dwBufferLength As Long
 dwBytesRecorded As Long
 dwUser As Long
 dwFlags As Long
 dwLoops As Long
 lpNext As Long 'wavehdr_tag
 Reserved As Long
End Type

Private Type WaveInCaps
 ManufacturerID As Integer 'wMid
 ProductID As Integer 'wPid
 DriverVersion As Long 'MMVERSIONS vDriverVersion

70

 ProductName(1 To 32) As Byte 'szPname[MAXPNAMELEN]
 Formats As Long
 Channels As Integer
 Reserved As Integer
End Type

'Windows API constants

Private Const WAVE_INVALIDFORMAT = &H0& '/* invalid format */
Private Const WAVE_FORMAT_1M08 = &H1& '/* 11.025 kHz, Mono, 8-bit
Private Const WAVE_FORMAT_1S08 = &H2& '/* 11.025 kHz, Stereo, 8-bit
Private Const WAVE_FORMAT_1M16 = &H4& '/* 11.025 kHz, Mono, 16-bit
Private Const WAVE_FORMAT_1S16 = &H8& '/* 11.025 kHz, Stereo, 16-bit
Private Const WAVE_FORMAT_2M08 = &H10& '/* 22.05 kHz, Mono, 8-bit
Private Const WAVE_FORMAT_2S08 = &H20& '/* 22.05 kHz, Stereo, 8-bit
Private Const WAVE_FORMAT_2M16 = &H40& '/* 22.05 kHz, Mono, 16-bit
Private Const WAVE_FORMAT_2S16 = &H80& '/* 22.05 kHz, Stereo, 16-bit
Private Const WAVE_FORMAT_4M08 = &H100& '/* 44.1 kHz, Mono, 8-bit
Private Const WAVE_FORMAT_4S08 = &H200& '/* 44.1 kHz, Stereo, 8-bit
Private Const WAVE_FORMAT_4M16 = &H400& '/* 44.1 kHz, Mono, 16-bit
Private Const WAVE_FORMAT_4S16 = &H800& '/* 44.1 kHz, Stereo, 16-bit

Private Const WAVE_FORMAT_PCM = 1

Private Const WHDR_DONE = &H1& '/* done bit */
Private Const WHDR_PREPARED = &H2& '/* set if this header has been prepared */
Private Const WHDR_BEGINLOOP = &H4& '/* loop start block */
Private Const WHDR_ENDLOOP = &H8& '/* loop end block */
Private Const WHDR_INQUEUE = &H10& '/* reserved for driver */

Private Const WAVE_ALLOWSYNC = &H2&

Private Const WIM_OPEN = &H3BE
Private Const WIM_CLOSE = &H3BF
Private Const WIM_DATA = &H3C0

'Windows API functions

Private Declare Function waveInAddBuffer Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer As
Long, ByVal WaveHdrStructSize As Long) As Long
Private Declare Function waveInPrepareHeader Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer As
Long, ByVal WaveHdrStructSize As Long) As Long
Private Declare Function waveInUnprepareHeader Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer
As Long, ByVal WaveHdrStructSize As Long) As Long

Private Declare Function waveInGetNumDevs Lib "winmm" () As Long
Private Declare Function waveInGetDevCaps Lib "winmm" Alias "waveInGetDevCapsA" (ByVal uDeviceID As Long, ByVal
WaveInCapsPointer As Long, ByVal WaveInCapsStructSize As Long) As Long

Private Declare Function waveInOpen Lib "winmm" (WaveDeviceInputHandle As Long, ByVal WhichDevice As Long, ByVal
WaveFormatExPointer As Long, ByVal CallBack As Long, ByVal CallBackInstance As Long, ByVal Flags As Long) As Long
Private Declare Function waveInClose Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long

Private Declare Function waveInStart Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long
Private Declare Function waveInReset Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long
Private Declare Function waveInStop Lib "winmm" (ByVal WaveDeviceInputHandle As Long) As Long

'This function converts an integer into a long; since Visual Basic Integers are signed 16-bit numbers,
'any 16-bit number above 32768 is misrepresented as a negative number. By converting to a long using this function,
'data is automatically converted to a +/- y-axis scale

Public Function MAKEINTLONG(SignedInt As Integer) As Long

71

 MAKEINTLONG = SignedInt + 32768
End Function

'Ensure that a sound card exists and that it can capture at least 16-bit stereo at 11kHz
Sub InitDevices()
 Dim Caps As WaveInCaps, Which As Long
 DevicesBox.Clear
 For Which = 0 To waveInGetNumDevs - 1
 Call waveInGetDevCaps(Which, VarPtr(Caps), Len(Caps))
 'If Caps.Formats And WAVE_FORMAT_1S16 Then 'Now is 1S16 -- Check for devices that can do stereo 16-bit 11kHz
 If Caps.Formats And WAVE_FORMAT_1S16 Then
 Call DevicesBox.AddItem(StrConv(Caps.ProductName, vbUnicode), Which)
 End If
 Next
 If DevicesBox.ListCount = 0 Then
 MsgBox "You have no audio input devices!", vbCritical, "Ack!"
 End
 End If
 DevicesBox.ListIndex = 0

 'initialize the graphic permanency for picture boxes
 Scope(0).AutoRedraw = True
 Scope(1).AutoRedraw = True
 Yaxis.AutoRedraw = True
 Xaxis.AutoRedraw = True

 Call CheckSFreqs(DevicesBox.ListIndex)

End Sub

'List all the sample frequencies supported by a particular sound card
Sub CheckSFreqs(ByVal DevNum As Long)
 Dim Caps As WaveInCaps

 Call waveInGetDevCaps(DevNum, VarPtr(Caps), Len(Caps))
 'These are all the 8-bit sampling frequencies, but may change to 16-bit
 If Caps.Formats And WAVE_FORMAT_1S16 Then
 Call SampleFreq.AddItem("11025", 0)
 SampleFreq.ListIndex = 0
 End If
 If Caps.Formats And WAVE_FORMAT_2S16 Then
 Call SampleFreq.AddItem("22050", 1)
 SampleFreq.ListIndex = 1
 End If
 If Caps.Formats And WAVE_FORMAT_4S16 Then
 Call SampleFreq.AddItem("44100", 2)
 End If

End Sub

'Quit out of SimpleScope

Private Sub Quit_Click()
 Unload Base
 Unload Stimulator
End Sub

'Make sure to only list sample frequencies supported by the "changed-to" sound card
Private Sub DevicesBox_Change()
 Dim DevNum As Long

 DevNum = DevicesBox.ListIndex

72

 Call CheckSFreqs(0)
End Sub

Private Sub Form_Load()
 'Do some value initializing here

 Tscale.AddItem "2.0"
 Tscale.AddItem "5.0"
 Tscale.AddItem "10.0"
 Tscale.AddItem "15.0"
 Tscale.AddItem "20.0"
 Tscale.AddItem "30.0"

 Tscale.ListIndex = 5
 Vscale.ListIndex = 9

 Call InitDevices

 'From Deeth Oscilloscope Program - needed to control the scaling of
 'the virtual oscilloscope window properly
 'Set the window procedure to my own (which restricts the
 'minimum size of the form...
 'Comment out the SetWindowLong line if you're working with it
 'in the development environment since it'll hang in stop mode.
 MinMaxProc.Proc = GetWindowLong(Me.HWnd, GWL_WNDPROC)
 'SetWindowLong Me.HWnd, GWL_WNDPROC, AddressOf WindowProc

 Yaxis.BackColor = BackColor
 Xaxis.BackColor = BackColor

 'VOLTS_PER_DIV = 0.7

 FirstTime = -1
 FirstVoltage = -1
 SecondClick = False

 TriggerIsOn = False
 Triggered = False

 Call DrawAxis

End Sub

'Function from Deeth Oscilloscope Program used with the MinMaxProc module
'To control virtual scope window scaling

Private Sub Form_Resize()
 Dim x As Integer

 Scope(0).Cls
 Scope(1).Cls

 Scope(0).ScaleHeight = 65536
 Scope(0).ScaleWidth = 255
 Scope(1).ScaleHeight = 65536
 Scope(1).ScaleWidth = 255

 Xaxis.ScaleWidth = 255
 Yaxis.ScaleHeight = 65536
 Yaxis.ScaleWidth = 10

 'Make the window resize now so that it doesn't interfere with redrawing the data

73

 DoEvents

 'For debugging
 SampleValues.Text = "Resized"

 Call DrawAxis

 'Redraw the data at the new size
 If Inited = True Then
 Call DrawData
 End If
End Sub

Private Sub Form_Unload(Cancel As Integer)
 ' make sure that I/O access is closed in case of a premature quit
 If DevHandle <> 0 Then
 Call DoStop
 End If
 Cancel = 0
End Sub

'Partial Function for software zooming

Private Sub Scope_MouseUp(Index As Integer, Button As Integer, Shift As Integer, x As Single, Y As Single)

 If ZoomOn Then
 zoomrect(1, 0) = x
 zoomrect(1, 1) = Y
 'Scope(0).Cls
 'Scope(0).Line (ZoomRect(0, 0), ZoomRect(0, 1))-(X, Y), RGB(0, 0, 0), B
 'Debug.Print Abs(zoomrect(0, 0) - X)
 'Scope(0).ScaleWidth = Abs(zoomrect(0, 0) - X)
 'Scope(0).ScaleHeight = Abs(zoomrect(0, 1) - Y)
 Call DrawZoom
 End If
End Sub

'Start continuous mode data acquisition

Private Sub StartButton_Click()
 Static WaveFormat As WaveFormatEx
 With WaveFormat
 .FormatTag = WAVE_FORMAT_PCM
 .Channels = 2 'Two channels -- left and right
 .SamplesPerSec = CLng(SampleFreq) 'Sampling Frequency
 .BitsPerSample = 16
 .BlockAlign = (.Channels * .BitsPerSample) \ 8
 .AvgBytesPerSec = .BlockAlign * .SamplesPerSec
 .ExtraDataSize = 0
 End With

 TriggerOnce = False

 'Disable quit button because we need to close the Capturing
 Quit.Enabled = False

 NumSampleBytes = CLng(CSng(SampleFreq) * CSng(Tscale)) * 4
 UpperBound = NumSampleBytes / 2

 Scope(0).ScaleWidth = UpperBound / 2 - 1

74

 Xaxis.ScaleWidth = UpperBound / 2 - 1

 Debug.Print UpperBound
 Debug.Print SampleFreq
 Debug.Print NumSampleBytes

 'Open the sound card recording device

 Debug.Print "waveInOpen:"; waveInOpen(DevHandle, DevicesBox.ListIndex, VarPtr(WaveFormat), 0, 0,
WAVE_ALLOWSYNC)

 If DevHandle = 0 Then
 Call MsgBox("Wave input device didn't open!", vbExclamation, "Ack!")
 Exit Sub
 End If
 Debug.Print " "; DevHandle

 Inited = True

 StopButton.Enabled = True
 StartButton.Enabled = False

 Call Visualize
End Sub
'Capture one virtual scope window's worth of data
Private Sub ManualTrigger_Click()
 Static WaveFormat As WaveFormatEx
 With WaveFormat
 .FormatTag = WAVE_FORMAT_PCM
 .Channels = 2 'Two channels -- left and right
 .SamplesPerSec = CLng(SampleFreq) 'Sampling Frequency
 .BitsPerSample = 16
 .BlockAlign = (.Channels * .BitsPerSample) \ 8
 .AvgBytesPerSec = .BlockAlign * .SamplesPerSec
 .ExtraDataSize = 0
 End With

 TriggerOnce = True

 'Disable quit button because we need to close the Capturing
 Quit.Enabled = False

 NumSampleBytes = CLng(CSng(SampleFreq) * CSng(Tscale)) * 4
 UpperBound = NumSampleBytes / 2

 Scope(0).ScaleWidth = UpperBound / 2 - 1

 Xaxis.ScaleWidth = UpperBound / 2 - 1

 'Open the sound card recording device
 Debug.Print "waveInOpen:"; waveInOpen(DevHandle, DevicesBox.ListIndex, VarPtr(WaveFormat), 0, 0,
WAVE_ALLOWSYNC)

 If DevHandle = 0 Then
 Call MsgBox("Wave input device didn't open!", vbExclamation, "Ack!")
 Exit Sub
 End If
 Debug.Print " "; DevHandle

 Inited = True

 StartButton.Enabled = False

75

 Call Visualize
End Sub

Private Sub StartStim_Click()
 Load Stimulator
 Stimulator.Show
End Sub

Private Sub StopButton_Click()
 Call DoStop
 Scope(0).ScaleMode = 3
 Quit.Enabled = True
End Sub

'Stop sound card capturing

Private Sub DoStop()
 Call waveInReset(DevHandle)
 Call waveInClose(DevHandle)
 DevHandle = 0
 StopButton.Enabled = False
 StartButton.Enabled = True
End Sub

'Captures the actual data and calibrates the voltages

Private Sub Visualize()
 Dim i As Integer
 Dim x As Long
 Static calmin As Long
 Static calmax As Long
 Dim w$
 Dim once As Boolean

 Static Wave As WaveHdr

 Wave.lpData = VarPtr(InData(0))
 Wave.dwBufferLength = NumSampleBytes '(in bytes) This is now 512 so there's still 256 samples per channel
 Wave.dwFlags = 0

 once = True
 Do
 If Not TriggerIsOn Or (TriggerIsOn And Triggered) Then
 Debug.Print "Wave.dwFlags:"; Wave.dwFlags
 Call waveInPrepareHeader(DevHandle, VarPtr(Wave), Len(Wave))
 Do
 Debug.Print "Wave.dwFlags:"; Hex(Wave.dwFlags)
 'Nothing -- we're waiting for the audio driver to mark
 'this wave chunk as done.
 Loop Until ((Wave.dwFlags And WHDR_PREPARED) = WHDR_PREPARED) Or DevHandle = 0
 'SampleWords.ForeColor = &HFF0000

 Call waveInAddBuffer(DevHandle, VarPtr(Wave), Len(Wave))

 If once Then
 Call waveInStart(DevHandle)
 once = False
 End If

76

 Debug.Print "Wave.dwFlags:"; Hex(Wave.dwFlags)
 Debug.Print "Right before Second Do"

 Do
 Debug.Print "Wave.dwFlags:"; Hex(Wave.dwFlags)
 'Nothing -- we're waiting for the audio driver to mark
 'this wave chunk as done.
 Loop Until ((Wave.dwFlags And WHDR_DONE) = WHDR_DONE) Or DevHandle = 0
 'SampleWords.ForeColor = &HFF&
 'If SampleWords.ForeColor = &HFF& Then
 ' SampleWords.ForeColor = &HFF0000
 'Else
 SampleWords.ForeColor = &HFF&
 'End If

 SampleWords.Text = Str(Wave.dwBytesRecorded) + " bytes captured" + Chr$(13) + Chr$(10)

 Call waveInUnprepareHeader(DevHandle, VarPtr(Wave), Len(Wave))

 DoEvents

 If DevHandle = 0 Then
 'The device has closed...
 Exit Do
 End If

 Scope(0).Cls
 Scope(1).Cls

 'Shift the bits of each element of InData so the value is unsigned
 For x = 0 To UpperBound - 1
 InDataWord(x) = MAKEINTLONG(InData(x))
 Next

 'Calculate the min. and max of the calibration channel (channel 2)
 calmin = 32786
 calmax = 32786
 For x = 0 To UpperBound / 2 - 1 '(NumSampleBytes / 4) - 1
 If calmin > InDataWord(x * 2 + 1) Then
 calmin = InDataWord(x * 2 + 1)
 End If
 If calmax < InDataWord(x * 2 + 1) Then
 calmax = InDataWord(x * 2 + 1)
 End If
 Next
 MinCal = calmin
 MaxCal = calmax

 ' number of 16-bit values per division
 DivSize = MaxCal - MinCal

 Min.Text = MinCal
 Max.Text = MaxCal

 ' adjust the voltage scale
 Scope(0).ScaleHeight = 2 * CSng(Vscale) '65536 / DivSize * VOLTS_PER_DIV
 Scope(1).ScaleHeight = 2 * CSng(Vscale)
 'Yaxis.ScaleHeight = 2 * CSng(Vscale)

 ' Calculate calibrated voltage on channel 1
 For x = 0 To UpperBound - 1
 Voltages(x) = InData(x) / DivSize * VOLTS_PER_DIV + CSng(Vscale)

77

 If TriggerIsOn And Not Triggered Then
 If Abs(Voltages(x) - CSng(Vscale)) > CSng(TrigValue.Text) Then
 Triggered = True
 End If
 End If
 Next

 ' Draw the data
 Call DrawData
 Call DrawAxis
 Else
 Scope(0).Cls
 Call DrawAxis
 End If
 DoEvents
 Loop While DevHandle <> 0 And Not TriggerOnce 'While the audio device is open

 If TriggerOnce Then
 Call DoStop
 Scope(0).ScaleMode = 3
 Quit.Enabled = True
 End If

End Sub

'Draw the data on-screen

Private Sub DrawData()
 Static x As Long
 Dim temp As Long
 Dim A$

 Scope(0).CurrentX = -1
 Scope(0).CurrentY = Scope(0).ScaleHeight \ 2
 Scope(1).CurrentX = -1
 Scope(1).CurrentY = Scope(0).ScaleHeight \ 2

 A$ = "Value # " + "Result" + Chr$(13) + Chr$(10)

 temp = 0
 Scope(1).PSet (0, 0)
 If Not TriggerIsOn Or (TriggerIsOn And Triggered) Then
 PlotInc = (UpperBound / 2 - 1) / 500 'Scope(0).ScaleWidth
 If PlotInc = 2 Or PlotInc = 1 Or PlotInc = 0 Then
 PlotInc = 2
 Else
 PlotInc = PlotInc
 End If
 For x = 0 To UpperBound / 2 - 1 '(NumSampleBytes / 4) - 1
 If ((x + PlotInc) Mod (PlotInc / 2) = 0) Then
 'temp = temp + 1
 Scope(0).Line Step(0, 0)-(x, Voltages(x * 2)), RGB(0, 0, 0)
 'Scope(1).Line Step(0, 0)-(X, Voltages(X * 2 + 1)), RGB(0, 0, 0) 'For a good soundcard...
 '2 channels (stereo that is)
 'printing data point values

 'A$ = A$ + Str$(X + 1) + " " + Str$(InDataWord(X * 2)) + Chr$(13) + Chr$(10)
 End If
 Next
 End If
 SampleWords.Text = SampleWords.Text + Str(temp) + " points plotted" + Chr$(13) + Chr$(10)
 SampleValues.Text = A$

78

 Scope(0).CurrentY = Scope(0).ScaleHeight \ 2
 Scope(1).CurrentY = Scope(0).ScaleHeight \ 2
End Sub

'Draw the data virtual scope grid

Private Sub DrawAxis()
 Dim x As Integer

 ' y-axis grid
 For x = 1 To 9
 Scope(0).Line (0, x * Scope(0).ScaleHeight / 10)-(Scope(0).ScaleWidth, x * Scope(0).ScaleHeight / 10), RGB(128, 128,
128)
 'If X = 5 Then SampleWords.Text = Scope(0).ScaleHeight * (X / 10)
 Next
 'Scope(0).Line (128, 0)-(128, 65536)

 ' x-axis grid
 For x = 0 To 5
 Scope(0).Line (x * (Scope(0).ScaleWidth / 5), 0)-(x * (Scope(0).ScaleWidth / 5), Scope(0).ScaleHeight), RGB(128, 128,
128)
 Next

 Call PrintLabels

 'Scope(0).DrawMode
End Sub

'Labels for x and y axises

Private Sub PrintLabels()
 Dim x As Integer
 Dim Y As Integer

 Dim YaxisHalfHeight As Integer

 YaxisHalfHeight = TextHeight("0") * (Yaxis.ScaleHeight / Yaxis.Height) / 2
 Yaxis.Cls
 Xaxis.Cls

 Xaxis.CurrentX = 0
 Xaxis.CurrentY = 0

 Xaxis.ForeColor = RGB(0, 0, 255)

 ' prints the x-axis labels
 Xaxis.Print "0.0"

 For x = 1 To 4
 Xaxis.CurrentX = x * (Xaxis.ScaleWidth / 5) - 6 * TextWidth("0") * (Xaxis.ScaleWidth / Xaxis.Width) / 2
 Xaxis.CurrentY = 0
 Xaxis.Print Round(x * Tscale.List(Tscale.ListIndex) / 5, 3)
 Next

 Xaxis.CurrentX = Xaxis.ScaleWidth - 5 * TextWidth("0") * (Xaxis.ScaleWidth / Xaxis.Width)
 Xaxis.CurrentY = 0

 Xaxis.Print Round(Tscale.List(Tscale.ListIndex), 4)
 ' ***

 Yaxis.CurrentX = 0
 Yaxis.CurrentY = 0

79

 Yaxis.ForeColor = RGB(0, 0, 255)

 'prints the y-axis labels
 Yaxis.Print Vscale.List(Vscale.ListIndex)

 For Y = 1 To 9
 Yaxis.CurrentX = 0
 Yaxis.CurrentY = Y * Yaxis.ScaleHeight / 10 - YaxisHalfHeight
 Yaxis.Print Round((10 - Y) * (Vscale.List(Vscale.ListIndex) / 5) - Vscale.List(Vscale.ListIndex), 4)
 Next

 Yaxis.CurrentX = 0
 Yaxis.CurrentY = Yaxis.ScaleHeight - 2 * YaxisHalfHeight

 Yaxis.Print "-" + Vscale.List(Vscale.ListIndex)

End Sub

'Function for drawing cursors when the mouse button is clicked

Private Sub Scope_MouseDown(Index As Integer, Button As Integer, Shift As Integer, x As Single, Y As Single)

 If ZoomOn Then
 zoomrect(0, 0) = x
 zoomrect(0, 1) = Y
 ZoomBegun = True
 'Scope(Index).Drag (vbBeginDrag)

 Else
 If Button = vbLeftButton Then
 'Debug.Print SMtemp
 Scope(Index).FillStyle = 0
 Scope(Index).DrawWidth = 1
 If Not SecondClick Then
 'Clear the old cursor points
 DrawCursor OldCursors(0, 0), OldCursors(0, 1), RGB(255, 255, 255)
 DrawCursor OldCursors(1, 0), OldCursors(1, 1), RGB(255, 255, 255)

 'Draw the first new cursor
 OldCursors(0, 0) = x
 OldCursors(0, 1) = Y
 DrawCursor x, Y, RGB(255, 0, 0) 'could be commented out
 FirstTime = x
 FirstVoltage = Y
 SecondClick = True
 Scope(Index).ToolTipText = Str(x / Scope(Index).ScaleWidth * CSng(Tscale)) + ", " + Str((1 - 2 * Y /
Scope(Index).ScaleHeight) * CSng(Vscale))
 'Scope(Index).ToolTipText = Str(X) + ", " + Str((Scope(Index).ScaleHeight / 2) - Y)'could be commented out
 ElseIf SecondClick Then
 'Draw the second new cursor
 OldCursors(1, 0) = x
 OldCursors(1, 1) = Y
 DrawCursor x, Y, RGB(255, 0, 0) 'could be commented out
 SecondClick = False
 Scope(Index).ToolTipText = ""
 End If
 Scope(Index).DrawWidth = 1
 CurrentX = 0 'could be commented out
 CurrentY = Scope(Index).ScaleHeight / 2 'could be commented out
 Scope(Index).FillStyle = 1 'could be commented out

80

 End If
 End If
End Sub

'

Private Sub Scope_MouseMove(Index As Integer, Button As Integer, Shift As Integer, x As Single, Y As Single)
 'If ZoomBegun Then
 ' Scope(0).Line (ZoomRect(0, 0), ZoomRect(0, 1))-(X, Y), RGB(0, 255, 0), B
 'End If

 If SecondClick Then
 Vdiff.Text = Abs(FirstVoltage - Y) * 2 / Scope(Index).ScaleHeight * CSng(Vscale)
 Tdiff.Text = Abs(FirstTime - x) / Scope(Index).ScaleWidth * CSng(Tscale)
 End If
 Scope(Index).ToolTipText = Str(x / Scope(Index).ScaleWidth * CSng(Tscale)) + ", " + Str((1 - 2 * Y /
Scope(Index).ScaleHeight) * CSng(Vscale))
End Sub

Private Sub DrawCursor(MidPointX As Single, MidPointY As Single, RGBColor As Long)
 Scope(0).Line (MidPointX - 2, MidPointY + 2)-(MidPointX + 3, MidPointY - 3), RGBColor
 Scope(0).Line (MidPointX - 2, MidPointY - 2)-(MidPointX + 3, MidPointY + 3), RGBColor
End Sub

'Activates channel triggering...channel only records when TrigValue is reached

Private Sub TrigOn_Click()
 If TrigOn.Value = vbChecked Then
 TriggerIsOn = True
 TrigValue.Enabled = False
 ElseIf TrigOn.Value = vbUnchecked Then
 TriggerIsOn = False
 Triggered = False
 TrigValue.Enabled = True
 End If
End Sub

'Exports the current screen's datapoints to an Excel file

Private Sub ExportXL_Click()
 Dim x As Long
 Dim timeInc As Double
 Dim fs, tf

 On Error GoTo ErrHandler
 timeInc = CDbl(1 / CDbl(SampleFreq))

 CD1.ShowSave

 Set fs = CreateObject("Scripting.FileSystemObject")
 Set tf = fs.CreateTextFile(CD1.FileName, True)
 For x = 0 To UpperBound / 2 - 1
 tf.WriteLine (Str$(CSng(timeInc * CDbl(x))) + Chr$(9) + Str$(Voltages(x)))
 Next
 tf.Close

ErrHandler:
 'User pressed Cancel button.
 Exit Sub
End Sub

'Function for printing the virtual scope capture

81

Private Sub Capture_Click()
 Dim FormControl As Control
 Dim debugControls
 Dim FormName As String
 Dim Msg ' Declare variable.
 On Error GoTo ErrorHandler ' Set up error handler.
 PrintForm ' Print form.
 Exit Sub
ErrorHandler:
 Msg = "The form can't be printed."
 MsgBox Msg ' Display message.
 Resume Next

 Set debugControls = CreateObject("Scripting.Dictionary")

 'Base.PrintForm

 For Each FormControl In Base.Controls
 If Not TypeOf FormControl Is CommonDialog Then
 'The control is possibly visible to the user
 If FormControl.Visible = True Then
 If Not (FormControl.Name = "Scope" Or FormControl.Name = "Xaxis" Or FormControl.Name = "Yaxis") Then
 FormControl.Visible = False
 End If
 ElseIf FormControl.Visible = False Then
 debugControls.Add FormControl.Name, "For Debugging"
 End If
 End If
 Next FormControl

 'Scope(0).Visible = True
 'Xaxis.Visible = True
 'Yaxis.Visible = True

 'Base.PrintForm

 'Base.Name = FormName

 'Call Controls_Appear

End Sub
'Auxillary function for virtual scope window printing
Private Sub Controls_Vanish()
 Dim FormControl As Control

 For Each FormControl In Base.Controls
 If Not TypeOf FormControl Is CommonDialog Then
 'The control is possibly visible to the user
 FormControl.Visible = False
 End If
 Next FormControl
End Sub
'Auxillary function for virtual scope window printing
Private Sub Controls_Appear()
 Dim FormControl As Control

 For Each FormControl In Base.Controls
 If Not TypeOf FormControl Is CommonDialog Then
 'Make all possibly visible controls visible
 FormControl.Visible = True

82

 End If
 Next FormControl

 'Hide the debugging controls
 Scope(1).Visible = False
 SampleWords.Visible = False
 Max.Visible = False
 Min.Visible = False
 Shape.Visible = False
 Zoom.Visible = False
End Sub
'For zooming
Private Sub Zoom_Click()
 ZoomOn = True
 'Scope(0).ScaleMode = 0
 'ZoomOut.Enabled = True
End Sub
'For zooming
Private Sub DrawZoom()
 Static x As Long
 Dim temp As Long
 Dim A$
 Dim zoomwidth As Long
 Dim zoomstart As Long

 zoomwidth = Abs(zoomrect(0, 0) - zoomrect(1, 0)) / Scope(0).ScaleWidth * (UpperBound / 2)
 zoomstart = CLng(zoomrect(0, 0) / Scope(0).ScaleWidth * (UpperBound / 2))
 Scope(0).Cls

 Scope(0).ScaleHeight = 2 * CSng(Vscale)
 Scope(0).ScaleWidth = zoomwidth

 Scope(0).CurrentX = -1
 Scope(0).CurrentY = Scope(0).ScaleHeight \ 2
 Scope(1).CurrentX = -1
 Scope(1).CurrentY = Scope(0).ScaleHeight \ 2

 temp = 0
 Scope(1).PSet (0, 0)
 If Not TriggerIsOn Or (TriggerIsOn And Triggered) Then
 PlotInc = (UpperBound / 2 - 1) / zoomwidth 'Scope(0).ScaleWidth
 If PlotInc = 2 Or PlotInc = 1 Or PlotInc = 0 Then
 PlotInc = 2
 Else
 PlotInc = PlotInc
 End If

 For x = 0 To zoomwidth '(NumSampleBytes / 4) - 1
 'If ((X + PlotInc) Mod (PlotInc / 2) = 0) Then
 temp = temp + 1
 'Debug.Print X
 Scope(0).Line Step(0, 0)-(x, Voltages((x + zoomstart) * 2)), RGB(0, 0, 0)
 'Scope(1).Line Step(0, 0)-(X, Voltages(X * 2 + 1)), RGB(0, 0, 0) 'For a good soundcard...
 '2 channels (stereo that is)
 'printing data point values

 'End If
 Next
 End If
 SampleWords.Text = "number points is" + Str(temp) + Chr(13) + Chr(10)
 Scope(0).CurrentY = Scope(0).ScaleHeight \ 2
 Scope(1).CurrentY = Scope(0).ScaleHeight \ 2

83

 Debug.Print Scope(0).ScaleWidth
 Debug.Print Scope(0).ScaleHeight
 Debug.Print UpperBound
End Sub

**

Declare Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" (_
 pDest As Any, pSource As Any, ByVal dwLength As Long)

'*--*
'* Name : MAKELONG *
'*--*
'* Purpose : Combines two integers into a long integer. *
'*--*
'* Parameters : wLow Required. Low WORD. *
'* : wHigh Required. High WORD. *
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language MAKELONG macro. *
'*--*
Public Function MAKELONG(wLow As Long, wHigh As Long) As Long
 MAKELONG = LOWORD(wLow) Or (&H10000 * LOWORD(wHigh))
End Function

'*--*
'* Name : MAKELPARAM *
'*--*
'* Purpose : Combines two integers into a long integer. *
'*--*
'* Parameters : wLow Required. Low WORD. *
'* : wHigh Required. High WORD. *
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language MAKELPARAM macro. *
'*--*
Public Function MAKELPARAM(wLow As Long, wHigh As Long) As Long
 MAKELPARAM = MAKELONG(wLow, wHigh)
End Function

'*--*
'* Name : MAKEWORD *
'*--*
'* Purpose : Combines two integers into a 16-bit unsigned*
'* : integer (word). *
'*--*
'* Parameters : wLow Required. Low BYTE. *
'* : wHigh Required. High BYTE. *
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language MAKEWORD macro. *
'*--*
Public Function MAKEWORD(wLow As Long, wHigh As Long) As Long
 MAKEWORD = LOBYTE(wLow) Or (&H100& * LOBYTE(wHigh))
End Function

'*--*
'* Name : LOWORD *
'*--*

84

'* Purpose : Returns the low 16-bit integer from a 32-bit*
'* : long integer. *
'*--*
'* Parameters : dwValue Required. 32-bit long integer value.*
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language LOWORD macro. *
'*--*
Public Function LOWORD(dwValue As Long) As Integer
 MoveMemory LOWORD, dwValue, 2
End Function

'*--*
'* Name : HIWORD *
'*--*
'* Purpose : Returns the high 16-bit integer from a *
'* : 32-bit long integer. *
'*--*
'* Parameters : dwValue Required. 32-bit long integer value.*
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language HIWORD macro. *
'*--*
Public Function HIWORD(dwValue As Long) As Integer
 MoveMemory HIWORD, ByVal VarPtr(dwValue) + 2, 2
End Function

'*--*
'* Name : LOBYTE *
'*--*
'* Purpose : Returns the low 8-bit byte from a low word *
'* : of 32-bit long integer. *
'*--*
'* Parameters : dwValue Required. 32-bit long integer value.*
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language LOBYTE macro. *
'*--*
Public Function LOBYTE(dwValue As Long) As Byte
 MoveMemory LOBYTE, LOWORD(dwValue), 1
End Function

'*--*
'* Name : HIBYTE *
'*--*
'* Purpose : Returns the high 8-bit byte from a low word *
'* : of 32-bit long integer. *
'*--*
'* Parameters : dwValue Required. 32-bit long integer value.*
'*--*
'* Description: This function is equivalent to the 'C' *
'* : language HIBYTE macro. *
'*--*
Public Function HIBYTE(dwValue As Long) As Byte
 MoveMemory HIBYTE, ByVal VarPtr(LOWORD(dwValue)) + 1, 1
End Function
**

'--

85

' This is a dopey window proceedure that restricts the size of a
' window.
'--
' Murphy McCauley (MurphyMc@Concentric.NET) 08/06/99
'--

Option Explicit

Declare Function GetWindowLong Lib "user32" Alias "GetWindowLongA" (ByVal HWnd As Long, ByVal nIndex As Long)
As Long
Declare Function SetWindowLong Lib "user32" Alias "SetWindowLongA" (ByVal HWnd As Long, ByVal nIndex As Long,
ByVal dwNewLong As Long) As Long
Declare Function CallWindowProc Lib "user32" Alias "CallWindowProcA" (ByVal lpPrevWndFunc As Long, ByVal HWnd As
Long, ByVal Msg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long

Public Proc As Long
Public Const GWL_WNDPROC = (-4)

Private Const WM_GETMINMAXINFO = &H24

Declare Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" (_
 ByRef Destination As Any, _
 ByRef Source As Any, _
 ByVal ByteLength As Long)

Private Type POINTAPI
 x As Long
 Y As Long
End Type

Private Type MINMAXINFO
 ptReserved As POINTAPI
 ptMaxSize As POINTAPI
 ptMaxPosition As POINTAPI
 ptMinTrackSize As POINTAPI
 ptMaxTrackSize As POINTAPI
End Type

Function WindowProc(ByVal HWnd As Long, ByVal Msg As Long, ByVal wParam As Long, ByVal lParam As Long) As Long
 Static MinMax As MINMAXINFO

 Select Case Msg
 Case WM_GETMINMAXINFO
 Call MoveMemory(MinMax, ByVal lParam, Len(MinMax))
 MinMax.ptMinTrackSize.x = Base.MinWidth
 MinMax.ptMinTrackSize.Y = Base.MinHeight
 Call MoveMemory(ByVal lParam, MinMax, Len(MinMax))
 Case Else
 WindowProc = CallWindowProc(Proc, HWnd, Msg, wParam, lParam)
 End Select
End Function

Stimulator Code

‘stimulator.frm code
Option Explicit

'CONSTANTS
Private Const ONE_PULSE_TYPE = 1
Private Const TWO_PULSE_TYPE = 2
Private Const TETANIC_TYPE = 3

86

Private Const CONTINUOUS = 0
Private Const once = 1

'Global Variables
Private DevHandle As Long
Private WaveFormType As Integer
Private Increment(0 To 6) As Single
Private OldTimeValue(0 To 6) As Single
Private OldTimeScroll(0 To 6) As Long
Private byteSound() As Byte

Private Type WaveFormatEx
 FormatTag As Integer
 Channels As Integer
 SamplesPerSec As Long
 AvgBytesPerSec As Long
 BlockAlign As Integer
 BitsPerSample As Integer
 ExtraDataSize As Integer
End Type

Private Type WaveHdr
 lpData As Long
 dwBufferLength As Long
 dwBytesRecorded As Long
 dwUser As Long
 dwFlags As Long
 dwLoops As Long
 lpNext As Long 'wavehdr_tag
 Reserved As Long
End Type

Private Type WaveOutCaps
 ManufacturerID As Integer 'wMid
 ProductID As Integer 'wPid
 DriverVersion As Long 'MMVERSIONS vDriverVersion
 ProductName(1 To 32) As Byte 'szPname[MAXPNAMELEN]
 Formats As Long
 Channels As Integer
 Reserved As Integer
 Support As Long 'functionality supported by driver
End Type

'flags for Support field of WAVEOUTCAPS
Private Const WAVECAPS_PITCH = &H1 '/* supports pitch control */
Private Const WAVECAPS_PLAYBACKRATE = &H2 '/* supports playback rate control */
Private Const WAVECAPS_VOLUME = &H4 '/* supports volume control */
Private Const WAVECAPS_LRVOLUME = &H8 '/* separate left-right volume control */
Private Const WAVECAPS_SYNC = &H10
Private Const WAVECAPS_SAMPLEACCURATE = &H20
Private Const WAVECAPS_DIRECTSOUND = &H40

'Access the Windows API library functions used for outputting sound

Private Declare Function waveOutGetNumDevs Lib "winmm" () As Long
Private Declare Function waveOutGetDevCaps Lib "winmm" Alias "waveOutGetDevCapsA" (ByVal uDeviceID As Long,
ByVal WaveOutCapsPointer As Long, ByVal WaveOutCapsStructSize As Long) As Long

Private Declare Function waveInAddBuffer Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer As
Long, ByVal WaveHdrStructSize As Long) As Long

87

Private Declare Function waveInPrepareHeader Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer As
Long, ByVal WaveHdrStructSize As Long) As Long
Private Declare Function waveInUnprepareHeader Lib "winmm" (ByVal InputDeviceHandle As Long, ByVal WaveHdrPointer
As Long, ByVal WaveHdrStructSize As Long) As Long
'Ensures that 100% is the max amplitude that can be entered
Private Sub amp_Change()
 If amp.Text > 100 Then
 amp.Text = 100
 End If
End Sub

'Changes the amplitude of the amplitude signal

Private Sub AmpScroll_Change()
 amp.Text = AmpScroll.Value
 Wav_Stop
 CreateWaveForm (CONTINUOUS)
 Wav_PlayLoop byteSound
End Sub

'---
' Stop the current playing wave.
'---
Private Sub cmdStop_Click()
 Wav_Stop
 cmdStop.Enabled = False
 StartPulses.Enabled = True
End Sub

Private Sub Form_Load()
 Dim i As Integer
 'Initialize Time Increment Amounts for each time
 Increment(0) = 0.001 'Pulse Duration
 Increment(4) = 0.1 'Repeat Interval - determines how often the entire waveform shown will be repeated in continuous
trigger mode
 Increment(1) = 0.001 'Trigger to Pulse
 Increment(2) = 0.001 '1st to 2nd Pulse (in tetanic mode, a.k.a 1st pulse to train)
 'Applies only to Tetanic Waveform Type
 Increment(3) = 0.001 'Train to Last Pulse
 Increment(5) = 0.01 'Tetanic Duration - time of the pulse train from 1st rising edge to last falling edge
 Increment(6) = 0.001 'Tetanic Interval - spacing of pulses within the train

 'Initialize the OldTimeValue array with current Time values
 'and the scroll bar values with the current Time values represented in the # of corresponding increments
 For i = 0 To 6
 OldTimeValue(i) = CSng(Time(i).Text)
 OldTimeScroll(i) = CInt(CSng(Time(i).Text) / Increment(i))
 TimeScroll(i).Value = OldTimeScroll(i)
 Next

 AmpScroll.Value = 100

 cmdStop.Enabled = False

 Waveform.ScaleWidth = 100
 Waveform.ScaleHeight = 30

End Sub

Private Sub Form_Unload(Cancel As Integer)
 ' make sure that the wavefor has stopped playing if it hasn't

88

 Call Wav_Stop
 Cancel = 0
End Sub

Private Sub Cont_Click()
 If (Cont.Value = True) Then
 StartPulses.Enabled = True
 Trigger1pulse.Enabled = False
 Tetanic.Visible = False
 WaveFormAll True
 ReClickWaveFormType
 End If
End Sub

Private Sub Pulse_Click()
 If (Pulse.Value = True) Then
 Trigger1pulse.Enabled = True
 StartPulses.Enabled = False
 WaveFormAll True
 Time(4).Enabled = False
 TimeScroll(4).Enabled = False
 TimeLabel(4).Enabled = False
 'Tetanic.Visible = True
 ReClickWaveFormType
 End If
End Sub

Private Sub OnePulse_Click()
 If (OnePulse.Value = True) Then
 AllChangeableTimes (False)
 WaveFormType = ONE_PULSE_TYPE
 Call DrawWaveForm
 End If
End Sub

Private Sub StartPulses_Click()
 StartPulses.Enabled = False
 CreateWaveForm (CONTINUOUS)
 cmdStop.Enabled = True
 Wav_PlayLoop byteSound
 Wav_PlayLoop byteSound
End Sub

Private Sub TimeScroll_Change(Index As Integer)
 Dim ScrollChange As Single
 Dim TimeValue As Single

 TimeValue = CSng(Time(Index).Text)
 ScrollChange = Round(TimeScroll(Index).Value - OldTimeScroll(Index), 3)

 If (Not (OldTimeValue(Index) = TimeValue)) Then 'Rare case of the time being manually entered
 'And then changing it's value using the l/r scroll arrows
 If (ScrollChange < 0) Then
 Time(Index).Text = Round(TimeValue / 2, 3)
 OldTimeValue(Index) = Round(OldTimeValue(Index) / 2, 3)
 ElseIf (ScrollChange > 0) Then
 Time(Index).Text = Round(TimeValue * 2, 3)
 OldTimeValue(Index) = Round(OldTimeValue(Index) * 2, 3)
 End If
 Else 'The usual case
 If (ScrollChange < 0) Then

89

 OldTimeValue(Index) = Round(OldTimeValue(Index) / 2, 3)
 Time(Index).Text = OldTimeValue(Index)
 ElseIf (ScrollChange > 0) Then
 OldTimeValue(Index) = Round(OldTimeValue(Index) * 2, 3)
 Time(Index).Text = OldTimeValue(Index)
 End If
 End If

 OldTimeScroll(Index) = TimeScroll(Index).Value

End Sub

Private Sub Trigger1pulse_Click()
 CreateWaveForm (once)
 Wav_Play byteSound
End Sub

Private Sub TwoPulse_Click()
 If (TwoPulse.Value = True) Then
 AllChangeableTimes (False)
 Time(2).Enabled = True
 TimeScroll(2).Enabled = True
 TimeLabel(2).Enabled = True
 WaveFormType = TWO_PULSE_TYPE
 Call DrawWaveForm
 End If
End Sub

Private Sub Tetanic_Click()
 If (Tetanic.Value = True) Then
 AllChangeableTimes (True)
 WaveFormType = TETANIC_TYPE
 Call DrawWaveForm
 End If
End Sub

Private Sub Time_Validate(Index As Integer, KeepFocus As Boolean)
 ' If the value is not a valid numeric time value, keep the focus.
 If Not IsNumeric(Time(Index).Text) Then
 KeepFocus = True
 MsgBox "Please insert a valid decimal number in the text box.", , "Invalid Number"
 End If
End Sub

'***************Element Enabling and Disabling Helper Functions*************************
Private Sub WaveFormAll(Exists As Boolean)
 Dim i As Integer
 Wavetype.Enabled = Exists
 OnePulse.Enabled = Exists
 TwoPulse.Enabled = Exists
 Tetanic.Enabled = Exists
 TetanicFreq.Enabled = Exists
 Freq.Enabled = Exists
 TIS.Enabled = Exists
 For i = 0 To 6
 Time(i).Enabled = Exists
 TimeLabel(i).Enabled = Exists
 TimeScroll(i).Enabled = Exists
 Next
End Sub

Private Sub AllChangeableTimes(Exists As Boolean)

90

 Dim i As Integer
 ' The Interval, Delay settings which can change between the three pulse types
 For i = 2 To 3
 Time(i).Enabled = Exists
 TimeScroll(i).Enabled = Exists
 TimeLabel(i).Enabled = Exists
 Next
 For i = 5 To 6
 Time(i).Enabled = Exists
 TimeScroll(i).Enabled = Exists
 TimeLabel(i).Enabled = Exists
 Next
 TetanicFreq.Enabled = Exists
End Sub

Private Sub ReClickWaveFormType()
 Select Case WaveFormType
 Case ONE_PULSE_TYPE
 OnePulse_Click
 Case TWO_PULSE_TYPE
 TwoPulse_Click
 Case TETANIC_TYPE
 Tetanic_Click
 Case Else
 OnePulse.SetFocus 'Default to One Pulse WaveForm Type
 End Select
End Sub

Private Sub Time_Change(Index As Integer)
 Call DrawWaveForm
End Sub

Private Sub CreateWaveForm(OutputMode As Integer)
 Dim dblFrequency As Double
 Dim intAudioMode As Integer
 Dim lngSampleRate As Long
 Dim intBits As Integer
 Dim Times() As Double
 Dim i As Integer
 Dim amplitude As Long

 If OutputMode = CONTINUOUS Then
 dblFrequency = 1 / Val(Time(4).Text)
 Else 'OutputMode is manual trigger (so calculate the appropriate length for the wave file)
 Select Case (WaveFormType)
 Case ONE_PULSE_TYPE
 dblFrequency = 1 / (Val(Time(1)) + Val(Time(0)))
 Case TWO_PULSE_TYPE
 dblFrequency = 1 / (Val(Time(1)) + Val(Time(2)) + Val(Time(0)))
 Case TETANIC_TYPE
 dblFrequency = 1 / (Val(Time(1)) + Val(Time(2)) + Val(Time(5)) - Val(Time(6)) + Val(Time(3)) + Val(Time(0)))
 Debug.Print (Val(Time(1)) + Val(Time(2)) + Val(Time(5)) - Val(Time(6)) + Val(Time(0)) + Val(Time(3)))
 End Select
 End If

 intAudioMode = 1
 lngSampleRate = RATE_88200
 intBits = 8
 amplitude = CLng((amp.Text / 100) * 110)

 'Store the appropriate times to pass to the waveform making function

91

 Select Case WaveFormType
 Case ONE_PULSE_TYPE
 ReDim Times(1)
 For i = 0 To 1
 Times(i) = CDbl(Time(i).Text)
 Next
 Case TWO_PULSE_TYPE
 ReDim Times(2)
 For i = 0 To 2
 Times(i) = CDbl(Time(i).Text)
 Next
 Case TETANIC_TYPE
 ReDim Times(6)
 For i = 0 To 6
 Times(i) = CDbl(Time(i).Text)
 Next
 End Select

 Wav_Stop
 Wav_BuildHeader byteSound, lngSampleRate, intBits, intAudioMode, 0.5, 0.5
 MakeBasisWave byteSound, dblFrequency, WaveFormType, Times, amplitude, CDbl(ampFreq.Text)

End Sub

Private Sub DrawWaveForm()
 Dim PulseDuration As Single
 Dim SingleTime(0 To 6) As Single
 Dim i As Integer

 Waveform.Cls

 Waveform.CurrentX = 0
 Waveform.CurrentY = 15 '(0, 0) is in the upper left corner

 For i = 0 To 6
 SingleTime(i) = CSng(Time(i).Text)
 Next

 PulseDuration = SingleTime(0)

 'Draw the appropriate waveform on the bottom of the form
 Select Case WaveFormType
 Case ONE_PULSE_TYPE
 Waveform.ScaleWidth = SingleTime(0) + SingleTime(1)

 Waveform.Line Step(0, 0)-Step(SingleTime(1), 0), RGB(&HFF, &HE0, &HC0)
 Call DrawPulse(PulseDuration)
 Case TWO_PULSE_TYPE
 Waveform.ScaleWidth = SingleTime(0) + SingleTime(1) + SingleTime(2)

 Waveform.Line Step(0, 0)-Step(SingleTime(1), 0), RGB(&HFF, &HE0, &HC0)
 Call DrawPulse(PulseDuration)
 Waveform.Line Step(-PulseDuration, 0)-Step(SingleTime(2), 0), RGB(&HFF, &HFF, &HC0)
 Call DrawPulse(PulseDuration)

 Case TETANIC_TYPE
 Waveform.ScaleWidth = SingleTime(1) + SingleTime(2) + SingleTime(5) - SingleTime(6) + SingleTime(3) +
SingleTime(0)

 Waveform.Line Step(0, 0)-Step(SingleTime(1), 0), RGB(&HFF, &HE0, &HC0)
 Call DrawPulse(PulseDuration)
 Waveform.Line Step(-PulseDuration, 0)-Step(SingleTime(2), 0), RGB(&HFF, &HFF, &HC0)

92

 Waveform.Line (SingleTime(1) + SingleTime(2), 10)-(SingleTime(1) + SingleTime(2) + SingleTime(5), 10),
RGB(&HFF, &HC0, &H80)
 Waveform.CurrentX = SingleTime(1) + SingleTime(2)
 Waveform.CurrentY = 15

 Call RiseTime(0)
 Waveform.Line Step(0, 0)-Step(PulseDuration, 0), RGB(&HC0, &HFF, &HC0)
 Call FallTime(0)
 For i = 1 To CLng(SingleTime(5) / SingleTime(6)) - 1
 Waveform.Line Step(0, 0)-Step((SingleTime(6) - PulseDuration), 0), RGB(&HC0, &HFF, &HC0)
 Call RiseTime(0)
 Waveform.Line Step(0, 0)-Step(PulseDuration, 0), RGB(&HC0, &HFF, &HC0)
 Call FallTime(0)
 Next
 Waveform.Line Step(-PulseDuration, 0)-Step(SingleTime(3), 0), RGB(&HFF, &H80, &H80)
 Call DrawPulse(PulseDuration)

 End Select

 Waveform.CurrentX = 0
 Waveform.CurrentY = 25
 Waveform.Print "Time = "; Str(Round(Waveform.ScaleWidth, 6))

End Sub
Private Sub DrawPulse(ByVal PulseDuration As Single)
 Call RiseTime(0)
 Waveform.Line Step(0, 0)-Step(PulseDuration, 0), RGB(&HFF, &HC0, &HC0)
 Call FallTime(0)
End Sub

Private Sub RiseTime(Rise As Integer)
 Waveform.Line Step(0, 0)-Step(Rise, -10), RGB(128, 128, 128)
End Sub

Private Sub FallTime(Fall As Integer)
 Waveform.Line Step(0, 0)-Step(Fall, 10), RGB(128, 128, 128)
End Sub

**

'---
' modWAV - WAV File Routines
'
' Originally Written By: David M.Hitchner
' k5dmh@bellsouth.net
' k5dmh@arrl.net
' Modified by Giles Peng
'
' This VB module is a collection of routines to create a play WAV
' format files.
'---
Option Explicit

'---
' Wave File Format
'---
' RIFF Chunk (12 bytes)
' 00 00 - 03 "RIFF"
' 04 04 - 07 Total Length to Follow (Length of File - 8)
' 08 08 - 11 "WAVE"
'

93

' FORMAT Chunk (24 bytes)
' 0C 12 - 15 "fmt_"
' 10 16 - 19 Length of FORMAT Chunk Always 0x10
' 14 20 - 21 Audio Format Always 0x01
' 16 22 - 23 Channels 1 = Mono, 2 = Stereo
' 18 24 - 27 Sample Rate In Hertz
' 1C 28 - 31 Bytes per Second Sample Rate * Channels * Bits per Sample / 8
' 20 32 - 33 Bytes per Sample Channels * Bits per Sample / 8
' 1 = 8 bit Mono
' 2 = 8 bit Stereo or 16 bit Mono
' 4 = 16 bit Stereo
' 22 34 - 35 Bits per Sample
'
' DATA Chunk
' 24 36 - 39 "data"
' 28 40 - 43 Length of Data Samples * Channels * Bits per Sample / 8
' 2C 44 - End Data Samples
' 8 Bit = 0 to 255 unsigned bytes
' 16 Bit = -32,768 to 32,767 2's-complement signed integers
'---

Public Const MODE_MONO = 0 ' Mono
Public Const MODE_LR = 1 ' Stereo L+R
Public Const MODE_L = 2 ' Stereo L
Public Const MODE_R = 3 ' Stereo R

Public Const RATE_8000 = 8000
Public Const RATE_11025 = 11025
Public Const RATE_22050 = 22050
Public Const RATE_32000 = 32000
Public Const RATE_44100 = 44100
Public Const RATE_88200 = 88200
Public Const RATE_48000 = 48000
Public Const RATE_88000 = 88000
Public Const RATE_96000 = 96000

Public Const BITS_8 = 8
Public Const BITS_16 = 16

Public Type SINEWAVE
 dblFrequency As Double
 dblDataSlice As Double
 dblAmplitudeL As Double
 dblAmplitudeR As Double
End Type

Private PI As Double
Private intBits As Integer
Private lngSampleRate As Long
Private intSampleBytes As Integer
Private intAudioMode As Integer
Private dblFrequency As Double
Private dblVolumeL As Double
Private dblVolumeR As Double
Private intAudioWidth As Integer
Public amp As Long

'CONSTANTS
Private Const ONE_PULSE_TYPE = 1
Private Const TWO_PULSE_TYPE = 2
Private Const TETANIC_TYPE = 3

94

Private Const SND_ALIAS = &H10000
Private Const SND_ALIAS_ID = &H110000
Private Const SND_ALIAS_START = 0
Private Const SND_APPLICATION = &H80
Private Const SND_ASYNC = &H1
Private Const SND_FILENAME = &H20000
Private Const SND_LOOP = &H8
Private Const SND_MEMORY = &H4
Private Const SND_NODEFAULT = &H2
Private Const SND_NOSTOP = &H10
Private Const SND_NOWAIT = &H2000
Private Const SND_PURGE = &H40
Private Const SND_RESERVED = &HFF000000
Private Const SND_RESOURCE = &H40004
Private Const SND_SYNC = &H0
Private Const SND_TYPE_MASK = &H170007
Private Const SND_VALID = &H1F
Private Const SND_VALIDFLAGS = &H17201F

Private Declare Function PlaySoundFile Lib "winmm.dll" Alias "PlaySoundA" _
 (ByVal lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long
Private Declare Function PlaySoundMemory Lib "winmm.dll" Alias "PlaySoundA" _
 (ptrMemory As Any, ByVal hModule As Long, ByVal dwFlags As Long) As Long
'---
' Wav_Play - Continuously plays the wav file from memory.
'---
Public Function Wav_PlayLoop(WavArray() As Byte) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundMemory(WavArray(0), ByVal 0&, SND_MEMORY Or SND_APPLICATION Or _
 SND_ASYNC Or SND_LOOP Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_PlayLoop = False
 Else
 Wav_PlayLoop = True
 End If
End Function

'---
' Wav_PlayFileLoop - Continuously plays the wav file from a file.
'---
Public Function Wav_PlayFileLoop(FileName As String) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundFile(FileName, 0, SND_FILENAME Or SND_APPLICATION Or _
 SND_ASYNC Or SND_LOOP Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_PlayFileLoop = False
 Else
 Wav_PlayFileLoop = True
 End If
End Function

'---
' Wav_Play - Plays the wav file from memory.
'---
Public Function Wav_Play(WavArray() As Byte) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundMemory(WavArray(0), 0, SND_MEMORY Or SND_APPLICATION Or _

95

 SND_SYNC Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_Play = False
 Else
 Wav_Play = True
 End If
End Function

'---
' Wav_Play - Plays the wav file from a file.
'---
Public Function Wav_PlayFile(FileName As String) As Boolean
 Dim lngStatus As Long

 lngStatus = PlaySoundFile(FileName, 0, SND_FILENAME Or SND_APPLICATION Or _
 SND_SYNC Or SND_NODEFAULT)

 If lngStatus = 0 Then
 Wav_PlayFile = False
 Else
 Wav_PlayFile = True
 End If
End Function
'---
' Wav_BuildHeader - Builds the WAV file header based on the sample rate, resolution,
' audio mode. Also sets the volume level for other routines.
'---
Public Sub Wav_BuildHeader(WavArray() As Byte, SampleRate As Long, _
 Resolution As Integer, AudioMode As Integer, VolumeL As Double, VolumeR As Double)
 Dim lngBytesASec As Long

 PI = 4# * Atn(1#)

 ' Save parameters.
 lngSampleRate = SampleRate
 intBits = Resolution
 intAudioMode = AudioMode
 dblVolumeL = VolumeL
 dblVolumeR = VolumeR

 ReDim WavArray(0 To 43)

 '---
 ' Fixed Data
 '---
 WavArray(0) = 82 ' R
 WavArray(1) = 73 ' I
 WavArray(2) = 70 ' F
 WavArray(3) = 70 ' F
 WavArray(8) = 87 ' W
 WavArray(9) = 65 ' A
 WavArray(10) = 86 ' V
 WavArray(11) = 69 ' E
 WavArray(12) = 102 ' f
 WavArray(13) = 109 ' m
 WavArray(14) = 116 ' t
 WavArray(15) = 32 ' .
 WavArray(16) = 16 ' Length of Format Chunk
 WavArray(17) = 0 ' Length of Format Chunk
 WavArray(18) = 0 ' Length of Format Chunk
 WavArray(19) = 0 ' Length of Format Chunk

96

 WavArray(20) = 1 ' Audio Format
 WavArray(21) = 0 ' Audio Format
 WavArray(36) = 100 ' d
 WavArray(37) = 97 ' a
 WavArray(38) = 116 ' t
 WavArray(39) = 97 ' a

 '---
 ' Bytes 22 - 23 Channels 1 = Mono, 2 = Stereo
 '---
 Select Case intAudioMode
 Case MODE_MONO:
 WavArray(22) = 1
 WavArray(23) = 0
 intAudioWidth = 1
 Case MODE_LR:
 WavArray(22) = 2
 WavArray(23) = 0
 intAudioWidth = 2
 Case MODE_L:
 WavArray(22) = 2
 WavArray(23) = 0
 intAudioWidth = 2
 Case MODE_R:
 WavArray(22) = 2
 WavArray(23) = 0
 intAudioWidth = 2
 End Select

 '---
 ' 24 - 27 Sample Rate In Hertz
 '---
 WavArray(24) = ExtractByte(lngSampleRate, 0)
 WavArray(25) = ExtractByte(lngSampleRate, 1)
 WavArray(26) = ExtractByte(lngSampleRate, 2)
 WavArray(27) = ExtractByte(lngSampleRate, 3)

 '---
 ' Bytes 34 - 35 Bits per Sample
 '---
 Select Case intBits
 Case 8:
 WavArray(34) = 8
 WavArray(35) = 0
 intSampleBytes = 1
 Case 16:
 WavArray(34) = 16
 WavArray(35) = 0
 intSampleBytes = 2
 End Select

 '---
 ' Bytes 28 - 31 Bytes per Second Sample Rate * Channels * Bits per Sample / 8
 '---
 lngBytesASec = lngSampleRate * intAudioWidth * intSampleBytes

 WavArray(28) = ExtractByte(lngBytesASec, 0)
 WavArray(29) = ExtractByte(lngBytesASec, 1)
 WavArray(30) = ExtractByte(lngBytesASec, 2)
 WavArray(31) = ExtractByte(lngBytesASec, 3)

 '---

97

 ' Bytes 32 - 33 Bytes per Sample Channels * Bits per Sample / 8
 ' 1 = 8 bit Mono
 ' 2 = 8 bit Stereo or 16 bit Mono
 ' 4 = 16 bit Stereo
 '---
 If (intAudioMode = MODE_MONO) And (intBits = 8) Then
 WavArray(32) = 1
 WavArray(33) = 0
 End If

 If ((intAudioMode = MODE_LR) Or (intAudioMode = MODE_L) Or _
 (intAudioMode = MODE_R)) And (intBits = 8) Then
 WavArray(32) = 2
 WavArray(33) = 0
 End If

 If (intAudioMode = MODE_MONO) And (intBits = 16) Then
 WavArray(32) = 2
 WavArray(33) = 0
 End If

 If ((intAudioMode = MODE_LR) Or (intAudioMode = MODE_L) Or _
 (intAudioMode = MODE_R)) And (intBits = 16) Then
 WavArray(32) = 4
 WavArray(33) = 0
 End If

End Sub

'---
' Wav_WriteToFile - Writes the wav file to disk.
'---
Public Function Wav_WriteToFile(FileName As String, WavArray() As Byte) As Long
 Static blnInitialized As Boolean

 Dim fd As Integer
 Dim i As Long, lngFileSize As Long

 Wav_WriteToFile = 0
 On Error GoTo Routine_Error

 fd = FreeFile
 Open FileName For Binary As #fd

 lngFileSize = UBound(WavArray)
 For i = 0 To lngFileSize
 Put #fd, , WavArray(i)
 Next

Routine_Exit:
 On Error Resume Next
 Close #fd
 Exit Function

Routine_Error:
 Wav_WriteToFile = Err.Number
 Resume Routine_Exit
End Function

'---
' MakeBasisWave - Builds the basis waveform that can be played in a continuous loop.
'---

98

Public Sub MakeBasisWave(WavArray() As Byte, Frequency As Double, Wavetype As Integer, Times() As Double, amplitude
As Long, ampFreq As Double)

 Dim i As Long
 Dim lngLimit As Long
 Dim lngDataL As Long, lngDataR As Long
 Dim dblDataPt As Double, blnPositive As Boolean
 Dim intCycles As Integer, intCycleCount As Integer
 Dim lngFileSize As Long
 Dim lngSamples As Long
 Dim lngDataSize As Long
 Dim lngDataPoints() As Long
 Dim Time1_Samples As Long, NumHigh_Samples As Long
 Dim NumTetanicSamples As Long
 Dim dblAmpliSignalTime As Double
 Dim ampSamples As Long
 Dim tempInitI As Long

 Dim dblWaveTime As Double
 Dim dblSampleTime As Double

 dblFrequency = Frequency

 dblWaveTime = 1 / dblFrequency
 'dblTotalTime = dblWaveTime * intCycles
 dblSampleTime = 1 / CDbl(lngSampleRate)
 'dblDataSlice = (2 * PI) / (dblWaveTime / dblSampleTime)
 lngSamples = CLng(dblWaveTime / dblSampleTime)
 ReDim lngDataPoints(lngSamples - 1)
 'Debug.Print "lngDataPoints = "; lngSamples

 'Right Channel Signal
 dblAmpliSignalTime = 1 / ampFreq
 ampSamples = CLng(dblAmpliSignalTime / (dblSampleTime))
 amp = amplitude

 'Create the waveform based on the times array and the WaveType
 Select Case Wavetype
 Case ONE_PULSE_TYPE
 Time1_Samples = CLng(Times(1) / dblSampleTime)
 'Debug.Print "Time1_Samples"; Time1_Samples
 For i = 0 To Time1_Samples - 1
 lngDataPoints(i) = 0
 Next
 'Generate Oscillation under Pulse Envelope
 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i
 For i = i To lngSamples - 1
 lngDataPoints(i) = 0
 Next
 Case TWO_PULSE_TYPE
 Time1_Samples = CLng(Times(1) / dblSampleTime)
 'Debug.Print "Time1_Samples"; Time1_Samples
 For i = 0 To Time1_Samples - 1
 lngDataPoints(i) = 0
 Next
 'Generate Oscillation under Pulse Envelope
 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i

 For i = i + 1 To CLng((Times(1) + Times(2)) / dblSampleTime) - 1
 lngDataPoints(i) = 0
 Next
 'Generate Oscillation under Pulse Envelope

99

 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i

 For i = i + 1 To lngSamples - 1
 lngDataPoints(i) = 0
 Next
 Case TETANIC_TYPE
 Debug.Print (Times(1) + Times(2) + Times(5) - Times(6) + Times(0) + Times(3))
 NumHigh_Samples = CLng(Times(0) / dblSampleTime)
 NumTetanicSamples = CLng(Times(6) / dblSampleTime)
 For i = 0 To CLng(Times(1) / dblSampleTime) - 1
 lngDataPoints(i) = 0
 Next
 'Generate Oscillation under Pulse Envelope
 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i

 For i = i + 1 To CLng((Times(1) + Times(2)) / dblSampleTime)
 lngDataPoints(i) = 0
 Next

 tempInitI = i + 1
 For i = i + 1 To i + CLng((Times(5) - Times(6)) / dblSampleTime) ' Tetanic duration
 If (((i + NumTetanicSamples - tempInitI) Mod NumTetanicSamples) <= NumHigh_Samples) Then
 'Pulse is High: Generate Oscillation under Pulse Envelope
 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i
 Else
 lngDataPoints(i) = 0 'Pulse is low
 End If
 Next
 'Generate Oscillation under Pulse Envelope
 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i

 For i = i + 1 To (i + CLng(Times(3) - Times(0) / dblSampleTime))
 lngDataPoints(i) = 0
 Next
 'Generate Oscillation under Pulse Envelope
 GenerateOsc lngDataPoints, CLng(Times(0) / dblSampleTime), dblSampleTime, i

 For i = i + 1 To lngSamples - 1
 lngDataPoints(i) = 0
 Next
 End Select

 '---
 ' Bytes 40 - 43 Length of Data Samples * Channels * Bits per Sample / 8
 '---
 lngDataSize = lngSamples * intAudioWidth * (intBits / 8)
 ReDim Preserve WavArray(0 To 43 + lngDataSize)

 WavArray(40) = ExtractByte(lngDataSize, 0)
 WavArray(41) = ExtractByte(lngDataSize, 1)
 WavArray(42) = ExtractByte(lngDataSize, 2)
 WavArray(43) = ExtractByte(lngDataSize, 3)

 '---
 ' Bytes 04 - 07 Total Length to Follow (Length of File - 8)
 '---
 lngFileSize = lngDataSize + 36

 WavArray(4) = ExtractByte(lngFileSize, 0)
 WavArray(5) = ExtractByte(lngFileSize, 1)
 WavArray(6) = ExtractByte(lngFileSize, 2)
 WavArray(7) = ExtractByte(lngFileSize, 3)

100

 '---
 ' Bytes 44 - End Data Samples
 '---

 If intBits = 8 Then
 lngLimit = 127

 Else
 lngLimit = 0 '32767
 End If

 For i = 0 To lngSamples - 1

 If intBits = 8 Then
 '---
 ' 8 Bit Data
 '---
 ' Calculate data point.
 dblDataPt = lngDataPoints(i) * lngLimit
 lngDataL = Int(dblDataPt * dblVolumeL) + lngLimit
 'lngDataR = lngDataL

 ' Extract amplitude channel here
 If (i Mod ampSamples < (ampSamples / 2)) Then
 lngDataR = amplitude
 Else
 lngDataR = 0
 End If

 ' Place data point in wave tile.
 If intAudioMode = MODE_MONO Then _
 WavArray(i + 44) = ExtractByte(lngDataL, 0)

 If intAudioMode = MODE_LR Then 'L+R stereo
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = ExtractByte(lngDataR, 0)
 End If

 If intAudioMode = MODE_L Then ' L only stereo
 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = 0
 End If

 If intAudioMode = MODE_R Then ' R only stereo
 WavArray((2 * i) + 44) = 0
 WavArray((2 * i) + 45) = ExtractByte(lngDataR, 0)
 End If

 Else

 '---
 ' 16 Bit Data - THIS IS CURRENTLY UNUSED, BUT COULD EASILY BE INCORPORATED
 ' IN CASE A MORE ACCURATE OUTPUT SIGNAL IS REQUIRED.
 '---
 ' Calculate data point.
 dblDataPt = lngDataPoints(i) * lngLimit
 lngDataL = Int(dblDataPt) ' * dblVolumeL)
 lngDataR = Int(dblDataPt) ' * dblVolumeR)

 ' Place data point in wave tile.
 If intAudioMode = MODE_MONO Then

101

 WavArray((2 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((2 * i) + 45) = ExtractByte(lngDataL, 1)
 End If

 If intAudioMode = MODE_LR Then
 WavArray((4 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((4 * i) + 45) = ExtractByte(lngDataL, 1)
 WavArray((4 * i) + 46) = ExtractByte(lngDataR, 0)
 WavArray((4 * i) + 47) = ExtractByte(lngDataR, 1)
 End If

 If intAudioMode = MODE_L Then
 WavArray((4 * i) + 44) = ExtractByte(lngDataL, 0)
 WavArray((4 * i) + 45) = ExtractByte(lngDataL, 1)
 WavArray((4 * i) + 46) = 0
 WavArray((4 * i) + 47) = 0
 End If

 If intAudioMode = MODE_R Then
 WavArray((4 * i) + 44) = 0
 WavArray((4 * i) + 45) = 0
 WavArray((4 * i) + 46) = ExtractByte(lngDataR, 0)
 WavArray((4 * i) + 47) = ExtractByte(lngDataR, 1)
 End If

 End If

 Next
End Sub

'---
' ExtractByte - Extracts the high or low byte from a short (16 bit) VB integer.
'
' intWord - VB Integer from which to extract byte.
' intByte - Returned high or low byte.
' intPosition - | Word |
' | Byte = 3 | Byte = 2 | Byte = 1 | Byte = 0 |
'---
Private Function ExtractByte(lngWord As Long, intPosition As Integer) As Byte
 Dim lngTemp As Long
 Dim intByte As Integer

 If intPosition = 3 Then
 ' Byte 2
 lngTemp = lngWord

 ' Mask off byte and shift right 24 bits.
 ' Mask -> 2130706432 = &H7F000000
 ' Shift -> Divide by 16777216
 lngTemp = (lngTemp And 2130706432) / 16777216

 ' Cast back to integer.
 intByte = lngTemp

 ElseIf intPosition = 2 Then
 ' Byte 2
 lngTemp = lngWord

 ' Mask off byte and shift right 16 bits.
 ' Mask -> 16711680 = &HFF0000
 ' Shift -> Divide by 65536

102

 lngTemp = (lngTemp And 16711680) / 65536

 ' Cast back to integer.
 intByte = lngTemp

 ElseIf intPosition = 1 Then
 ' Byte 1
 lngTemp = lngWord

 ' Mask off high byte and shift right 8 bits.
 ' Mask -> 65290 = &HFF00
 ' Shift -> Divide by 256
 lngTemp = (lngTemp And 65290) / 256

 ' Cast back to integer.
 intByte = lngTemp
 Else
 ' Byte 0
 intByte = lngWord And &HFF
 End If

 ExtractByte = intByte
End Function

'---
' Wav_Stop - Stop the currently playing wav.
'---
Public Sub Wav_Stop()
 Dim lngStatus As Long

 lngStatus = PlaySoundMemory(ByVal 0&, ByVal 0&, SND_PURGE Or SND_NODEFAULT)
End Sub

'Number of samples that can fit into the envelope of this pulse
Public Sub GenerateOsc(lngDataPoints() As Long, numSamples As Long, dblSampleTime As Double, i As Long)
 Dim modFreq As Double
 Dim modInterval As Double
 Dim intervalSamples As Long
 Dim x As Long

 modFreq = 1000
 modInterval = 1 / modFreq
 intervalSamples = CLng(modInterval / dblSampleTime)
 x = i

 For i = i + 1 To i + numSamples - 1
 If (i Mod intervalSamples < (intervalSamples / 2)) Then
 lngDataPoints(i) = 10
 Else
 lngDataPoints(i) = -10
 End If
 Next

End Sub

103

APPENDIX V: SOFTWARE SETUP GUIDE

Before beginning to use the SimpleScope Software, the following configuration must be
performed:

• The SimpleScope hardware should be attached to the sound card. Line-in is for input
(what is to be seen on the virtual oscilloscope window) and line-out (or stereo-out) for the
output (stimulator pulses).

• If the recording line on the sound card can be changed (i.e. could be microphone or line-

in), set the recording line to line-in. This can be adjusted by a widget in the control panel.

• The master volume and the wave volume should be adjusted to max with the volume
control provided by Windows.

• Additionally ensure that both the master volume and the wave volume is unmuted.

• The master volume and wave volume should be balanced between left and right channels

(50/50)

• Mute the line-in volume.

Oscilloscope Operation

• Vertical voltage scale can be set from .001 to 5 volts.
• Horizontal time scale can be set from .001 to 30 seconds.
• Trigger Source:

o Manual Trigger: User initiates capture of one window’s worth of data.
o Start: Acquire data continuously.
o Trigger Check Box: Trigger when a certain voltage specified by the user is

reached on the input channel.
• Sample Frequency can be set to 11.025 kHz, 22.050 kHz, or 44.1 kHz. The default is

11.025 kHz.
• Use mouse clicks in the virtual oscilloscope window to measure absolute voltage and

time differences.
• Export the data to an Excel type file with the 2 columns being time and input channel

voltage. The number of points in the data set exported is the sample frequency multiplied
by the per window time scale.

104

Stimulator Operation

• Started by clicking the stimulator button in the oscilloscope window
• Modes:

o Pulse: One pulse of the user-inputted waveform.
o Continuous: Continuous repetition of the specified waveform with a user-

selected repeat interval.
• The waveforms can be set to single pulse, two pulse or tetanic. A tetanic signal consists

of a uniquely spaced initial pulse, a train of evenly spaced pulses, and then a uniquely
spaced final pulse.

• All pulse delays and durations are set with a set of edit fields and left-right arrows. The
stimulating waveform is drawn below the controls. The color of each time control
corresponds to the color of a line on the drawing.

o In One Pulse mode you can set “Pulse Duration” and “Trigger to Pulse” duration.
o In Two Pulse mode you can set “Pulse Duration”, “Trigger to Pulse” duration,

and “1st to 2nd Pulse” duration.
o In Tetanic mode you can set “Pulse Duration”, “Trigger to Pulse” duration, “1st to

2nd Pulse” duration, and “Train to Last Pulse” duration. Additionally, you can set
the “Tetanic duration”, which is the length of all the pulses in the train, and the
“Tetanic interval”, which is the spacing of pulses within the train.

o In all modes, you can set the repeat interval which determines how often the
entire stimulus will be produced, if the trigger mode is continuous.

• The amplitude percentage for the resulting output can also be adjusted using the slider
from 0% to 100%.

