
A WIRELESS ELECTROCARDIOGRAM SYSTEM 
 
 
 
 
 
 
 
 
 
 
 
 

A Design Project Report 

Presented to the Engineering Division of the Graduate School 

of Cornell University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Engineering (Electrical) 

 

 

 

 

 

 

 

 

 

by 

Mathew David Melnyk 

& 

Joshua Marc Silbermann 

 

Project Advisor:  Dr. Bruce Land 

Degree Date: May 2004 



Abstract 

 

Master of Electrical and Computer Engineering Program 

Cornell University 

Design Project Report 

 

Project Title:  A Wireless Electrocardiogram System 

Authors:  Joshua Marc Silbermann and Matthew David Melnyk 

Abstract:  A wireless electrocardiogram system was designed for instructional purposes 

in a Cornell undergraduate class in Neurobiology and Behavior.  Using a series of filters, 

amplifiers, and voltage-to-frequency conversion, a small voltage signal detected on a 

human subject is transmitted to receiving circuitry using FM band frequencies.  A 

receiver unit uses frequency-to-voltage conversion that recovers the signal, which is 

again conditioned so that it is of suitable amplitude.  An Atmel Mega32 microcontroller 

is used to create a scrolling oscilloscope out of a television screen.  This television 

oscilloscope accurately displays the received signal in an aesthetically pleasing manner.  

In addition, by serially transferring the EKG data into MATLAB, several analysis tools 

check the wave for basic characteristics. The goal of this project is to create a reliable, 

safe, low-cost, low-power electrocardiogram system that will demonstrate a variety of 

circuit techniques to undergraduate students.       
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Executive Summary 

 

 For an undergraduate class in circuits and systems, a variety of techniques and 

circuit topologies should be demonstrated.  Often times, designing and constructing a 

practical electrical system provides a more interesting, effective means of demonstrating 

the course material.  An electrocardiogram system is comprised of a variety of analog 

circuits and has very practical applications.  If this system is to be used in a classroom 

setting, it must be reliable, low-cost, low power, and easily moved.  This report outlines 

the design of such a system that meets these requirements. 

 This system has three main components; a transmitter component, a receiving 

component, and a scrolling oscilloscope.  The transmitter detects the small voltage signal 

from the human body and uses filters, amplifiers, and voltage-to-frequency conversion to 

condition the signal for a FM transmitter microchip.  This chip broadcasts the signal at 

FM frequencies. 

 The receiving component reconstructs the signal.  Circuitry used here includes 

peak detectors, comparators, and frequency-to-voltage converters.  The recovered signal 

can then be used by the scrolling oscilloscope circuitry.  An Atmel Mega32 

microprocessor creates an NTSC raster for a television screen, accurately displaying the 

received signal representing the contractions and relaxations of the human heart.  

MATLAB code has been written to analyze the data from the receiver, and monitor that it 

within a reasonable limit. 

 After several design iterations and many hours spent debugging and refining our 

circuits, we have successfully implemented a system that meets the stated goals.  The 

transmitted and received electrocardiogram signal matches textbook examples.  The 

voltage amplitudes of these signals are suitable for inspection and further analytic 

analysis by software programs.  The reception range is currently about 30 feet, and may 

be increased by adding more efficient antennas.  A MATLAB program has also been 

developed to graph the EKG wave and perform some basic diagnostics on the signal.  We 

have a system that will be extremely useful in illustrating a variety of electrical concepts 

in a laboratory environment.     
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Division of Labor 
 

 This Master of Engineering Design Project was the work of two people, Joshua 

Silbermann and Matthew Melnyk.  Their technical interests are shared, and both students 

expressed an interest in working as part of a small team to produce a larger, working 

system.  Matthew and Joshua met with Professor Bruce Land to discuss possible joint 

projects.  After some discussion, the design project was chosen to be a wireless EKG 

system.  Matthew and Joshua had several meetings with Professor Land in order to more 

fully develop the project, and ensure that the workload would be suitable for two people.  

After these meetings, with Professor Land’s approval, they began work.  The paragraphs 

that follow will document each individual’s specific contributions to this joint design 

project. 

 Both students began by working on the transmitter unit, although different parts.  

Joshua began by designing the transmitter amplifiers and researching the best methods 

for the radio frequency circuitry.  Matthew worked on the transmitter filter circuitry, the 

voltage-to-frequency conversion, and researching the best method for a power supply.  

Each student performed their own tasks for this module, and when design work had been 

completed, they reviewed each other’s work.  Their work was combined into one piece of 

circuitry, and both worked on bread boarding the initial design.  Once the circuit was 

assembled, both students worked to debug the circuitry.  There were many issues to 

resolve, and both students contributed to this troubleshooting phase of the design. 

 Once the transmitter had been completed, Matthew began to work on the printed 

circuit board layout for the transmitter, while Joshua began to design the receiver 

circuitry.  Once the PCB had been laid out, Matthew met with Joshua to discuss his 

progress and design work.  There were several problems with the receiver circuitry.  Both 

students discussed the problems and possible solutions.  An agreement on the general 

strategy was reached, and Joshua began to work on the frequency-to-voltage circuitry and 

Matthew worked on the peak detection and the comparator.  Once both students had 

completed the design work, they again met to discuss their methods and jointly bread 

boarded the circuit.  They dealt with debugging together. 

 iv



 As Joshua began to layout the receiver PCB, Matthew began to examine C code 

to transform a television into a scrolling oscilloscope.  Once Joshua had completed his 

task, he began to work on the MATLAB Data acquisition software.  Each student worked 

primarily on their respective software tasks, however at times they offered assistance to 

one another.   

 Overall system testing was performed as a team, as was final validation.  Both 

students contributed to the final design report, each focusing on writing the parts for their 

respective design responsibilities.  After the writing of each section, the other team 

member would review the work, and make any necessary corrections.  Some sections 

were written together, such as the executive summary, some of the appendices, and the 

abstract.  Both Matthew and Joshua were pleased with their own and each other’s efforts 

on this design project.  Each had a significant role in the successful completion of this 

design project. 
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Introduction 
 

Motivation 

 Professor Land indicated to us that there was a need of a design project that would 

be used in an undergraduate class that would teach a variety of electrical concepts, 

including analog circuits and microcontroller design.  Further, the class is to be taught to 

students who have an interest in biology.  The students in the class would build this 

project, and the various circuits involved with the project would be used as illustrative 

examples.  An electrocardiogram (EKG) system meets the description above.  It involves 

a variety circuits and theories.  The system that is described in the report that follows is 

intended to meet this need. 

 

Disclaimer 

The electrocardiogram system described in this report is not intended to diagnose 

or treat any health problem or disease. This EKG device should not be used in place of a 

call or visit to a medical or health professional.  See your health professional for specific 

medical advice and assistance. This report is made available with the understanding that 

the authors are not engaged in administering any medical or health professional services. 

 

Overview of System Operation  

This system is comprised of three main components; the transmitter, the receiver, 

and the scrolling oscilloscope.  Three electrodes are placed on the subject’s skin.  One 

lead is used as a positive, one as a negative, and the third as a ground reference.  The 

positive and negative signals are fed into a differential amplifier, then a series of filters 

and amplifiers.  The ground reference provided by the third electrode is connected to the 

transmitter circuit’s ground.  Once the signal has been appropriately conditioned, a 

voltage-to-frequency (V-to-F) converter transforms the signal into a fixed amplitude 

square wave train of varying frequency.  This signal is then sent to a radio frequency 

(RF) microchip that transmits the signal at a user-selectable FM band frequency.   
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 Any FM radio can be tuned to the broadcasting frequency and receive the signal.  

A listener can then hear the heartbeat.  The higher the pitch of the signal, the higher the 

voltage level to which it corresponds.  There is also a receiving unit that can recover the 

broadcast signal.  It is composed of an FM radio receiver that outputs the signal to the 

receiving circuitry via the headphone jack.  The signal is then sent to a comparator that 

generates a fixed amplitude square wave train of varying frequency.  A frequency-to-

voltage (F-to-V) microchip takes this signal as an input and converts the frequency of the 

signal back into a corresponding voltage level.  This signal is amplified and then sent to 

the scrolling oscilloscope (“scope”). 

 At the heart of the scope module is an Atmel Mega32 that is used to read in the 

signal voltage and generate an NTSC compliant signal that controls a television screen.  

The screen then displays the EKG waveform as a scrolling signal.  There is a pulse 

detector that flashes each time a R-wave peak is detected.  A beats-per-minute (BPM) 

calculation is also performed and displayed in the lower left corner.  The scope supports 

several different voltages scales and two scroll rates.  The user can select which scale 

displays the signal in the most desirable fashion.  There is also a run/stop button, which 

enables the user to freeze the screen, parse the signal with a cursor, and restart the 

scrolling. 

 As the EKG data is sampled by the Mega32 for output to the screen, the data is 

also serially transferred by the microcontroller into a serial connection opened directly 

through MATLAB.  Now that the data is stored in a MATLAB vector, it can be analyzed 

for many of the basic characteristics listed in the background section of this report.  A 

MATLAB m-file has been written to parse the EKG data for basic metrics including 

beats per minute (BPM) and the QRS-interval time.  Warm-up data is taken first to create 

distributions from which confidence intervals are constructed.  These intervals are then 

applied to real time data and are used to flag the user for values that may be out of the 

valid range.    

 The above description is intended to provide a general understanding about how 

this EKG system was designed.  In the pages that follow, more detailed information will 

be provided. 
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Background 
 

The idea of the EKG has been around since 1887, yet it remains one of the most 

important indicators of proper heart functioning today.  The EKG is a non-invasive 

technique, meaning that this signal can be measured without entering the body at all.  

Electrodes are placed on the user’s skin to detect the bioelectric potentials given off by 

the heart that reach the skin’s surface.  This section is adapted from [Cromwell et. al. 

(1980)].   

 The four heart chambers, the left and right atria (upper chambers) and the left and 

right ventricles (lower chambers) work in a controlled manner to manage blood flow to 

and from the lungs and into the circulatory system.  There are specific timing constraints 

to ensure proper operation of the heart.  For instance, both atria work in synchronicity as 

well as both ventricles.  These electrical timing signals originate at a location on the heart 

called the pacemaker, or sinoatrial node.  The pacemaker node produces signals that are 

at regular intervals.  The regular signals the pacemaker produces are passed through delay 

channels that ensure different heart sections will fire at the proper time. As different heart 

cells are excited by this signals they become depolarized and display what is known as 

action potentials.  An action potential is a change in the cell’s chemical balance and can 

be translated into a voltage equal to roughly 20mV.   

 The cyclic changes in the heart cell’s polarization are what produce the standard 

EKG wave, shown below in figure 1.  Note the letters which are the names given to 

different wave sections.  The flat section that comes before the P-wave is called the 

baseline.  The following table highlights EKG sections and what they indicate: 

 

Section of Electrocardiogram Source 

P-Wave Atrial Excitation 

QRS-Complex Atria repolarization + Ventricle depolarization 

T- Wave Ventricle repolarization 

P-Q Interval Excitation timing delay  

Table 1: Electrocardiogram Basic Characteristics 
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Figure 1: An Electrocardiogram Waveform 

 
  
 There are many methodologies for hooking-up a subject for an EKG study.  As 

many as 12 electrodes could be hooked up to a candidate to offer the examiner a wide 

selection of waveforms, each highlighting various heart characteristics better than others.  

However as few as three electrodes (the number used in our system) can still record a 

typical EKG waveform.  One electrode serves as the ground reference and the other two 

serve to measure the heart’s electrical activity.  We have chosen to use disposable skin 

electrodes for our system, although other types of electrodes are sometimes used in 

practice.  It is important that the ground electrode be away from the heart, away from a 

lot of muscle activity.  We have found the forearm to be a good location for this, although 

often the right leg is used for grounding.  As for the other two electrodes, we have found 

good locations to be under the left breast and under the right section of the rib cage.  The 

waveform noise level and clarity is very sensitive to the placement of these electrodes 

and they need to be adjusted, as in commercial equipment, to find the optimal location. 

 The EKG wave serves as an excellent tool for heart analysis.  As mentioned 

before, the EKG wave has been studied over the years to yield nominal values of both 

individual wave amplitudes and time intervals between waves.  A summary of these 

values is shown in table 2. 

 4



 

EKG Wave Amplitude  EKG Interval Duration 

P 0.25 mV  P-R 0.12 - 0.20 sec 

R 1.60 mV  Q-T 0.35 – 0.44 sec

Q 25% of R  S-T 0.05 – 0.15 sec

T 0.1-0.5 mV  Q-R-S 0.09 sec 

Table 2: Nominal EKG Parameters 

 
By comparing a given EKG wave’s parameters against these nominal values, insight can 

be found into potential problems.  Our system is able to take an EKG waveform from a 

user and wirelessly transmit it to a receiving unit where the wave can both be viewed on a 

television monitor as well as analyzed in MATLAB for some of these basic 

characteristics.  The results portion of this paper will detail some of the specific data we 

were able to render from the system and how this data maps to the nominal values  

discussed in this section.              
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Design requirements 
 

 Because this system is to be used on humans and because it is to be used in a class 

laboratory environment, there are a variety of requirements that are placed upon this 

system.  Some of these requirements originated with our advisor and others we imposed 

upon our system: 

 

 First, the transmitter shall be independent of all off-the-wall voltages.  The 

transmitter component is directly hooked up to the human subject.  For safety reasons, 

this person should not in any way be in contact with the high voltages and currents that 

are associated with wall sockets. 

 The transmitter and receiver components shall not exceed fifty dollars in price.  

Price must be kept relatively low since this project is to be replicated numerous times in 

the lab.  In order to remain a practical solution, this system cannot be expensive.  Note 

that the scope component is not included in this cost requirement.  This is because it will 

require the use of a television set and an Atmel evaluation board, which is obviously 

more expensive.  However, one small television set could be shared among many people, 

which would still keep the combined costs low.  Also, the undergraduate course ECE 476 

also has a large number of evaluation boards and small television screens so these items 

do not necessarily need to be purchased. 

 The transmitter shall broadcast at frequencies ranging between 88MHz and 

108MHz (FM) or 560kHz to1800kHz (AM).  In order to be received by a commercial 

radio, the broadcast signal must be within this range. 

 The transmitter and receiver shall be low-power circuits that should not draw 

more than 10mA each.  This requirement is partially for safety reasons and partially 

because the circuits should be able to run off of a battery power source for a lengthy 

amount of time (roughly 50 hours). 

 The system shall be portable and easily fit in the space of a typical lab station.  

Again, this project is to be used in a classroom setting and there are space limitations.  To 
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be a useful solution, the system needs to be compact.  In addition, portability is a 

necessary requirement for a practical application of this system. 

 The scope component must output a signal that complies with the NTSC standard.  

This standard is used to generate pictures on American television screens.  In order to 

display artifact free images, the signal must meet a very specific set of guidelines.   

 The system shall be accompanied by a design description and a discussion of the 

theories and considerations necessary to implement the system.  If the system is to be 

duplicated and/or extended by others, they should be able to refer to a document for 

reference.  This project report should meet this requirement. 
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Design Alternatives 

 
 Our design requirements were fairly specific about several key design choices.  

There were some design choices that we did have to consider, and weigh alternatives 

against one another. 

 One of the first major choices that we had to make was how to deal with the 

transmitter.  We could either attempt to build a transmitter ourselves, or use an IC that 

would handle most of the transmission.  If we were to build a transmitter, it could have 

cut down on costs since an IC would not need to be purchased.  Given our background 

and the complexity of building an FM transmitter, the transmitter constructed would have 

been AM.  It would also make our design less dependant on ICs and use more analog 

circuitry.  It would significantly increase the scope and complexity of this circuit.  It 

would take up less space on our PCB, which would make our unit more compact. 

 Ultimately we decided to use the FM transmitter IC for several reasons.  First, we 

were concerned that we would not be able to build a transmitter that would be able to 

accurately transmit the EKG signal.  The variations in voltage levels are not that large, 

and we were concerned that some of the waveform detail would be lost.  Second, after 

some design work, it was clear that this project already touched upon many topics in 

electrical engineering.  Students analyzing this system in their class might not have the 

necessary background to analyze and design RF circuitry.  We felt that including too 

much RF design in addition to all of the other design work involved with this system 

would make this project beyond the analytical capabilities of undergraduates.  Further, 

after analyzing how an FM transmitter IC would work, we discovered that there is still a 

large amount of supporting circuitry that must be built.  There are several considerations 

that must be made, and several RF considerations still must be addressed, even when 

using the IC. 

 There were more choices that had to be made about the transmitter.  We could 

either set the transmission frequency at some fixed value, or we could allow it to be 

selected by the user.  Obviously it would make for a more versatile system if this 

frequency could be selected.  If the frequency could be changed, the user could find an 

FM frequency that was not being used by a neighboring radio station.  By fixing the 
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broadcast frequency at some available value, we would run the risk of receiving 

interference from a station.  If the weather changed or if the system was used in a 

different location, it could pick up on interference that was not present at the time of 

design.  However, by allowing the transmission frequency to vary, we would have to 

include additional circuitry on the transmitter.  Undoubtedly the receiver circuitry would 

increase in complexity as well.  The added circuitry would increase cost, physical size of 

the circuit, and raise complexity.   

 We decided to allow the user to select the transmission frequency because it 

would be too inconvenient to continually have to change circuit components to select a 

different broadcast frequency.  We determined that the added circuitry would not 

consume too much power or physical area.  At the end of our design process, if we did 

not meet the power and physical area specifications, we would have reconsidered this 

design choice first. 

 There are a variety of ways to use electrodes to monitor the heart signal of a 

human.  Many electrodes can be used that increase the sensitivity of the EKG system as 

well as allow it to be more versatile in the different wave characteristics is can detect.  If 

we used more than three connections (considered the minimum) we could possibly get 

better results and observe a wider range of EKG characteristics.  By doing this however, 

we would increase the complexity of the system.  In addition we would increase the 

complexity to hook up and use our EKG. 

 We ultimately decided to use only three electrodes.  This choice was made 

primarily because of the added complexity of hooking the system up to a person.  There 

is a lot of science and skill associated with the proper placement of EKG electrodes.  

Being untrained in this area (and assuming that most system users, students, would also 

be untrained) we did not feel that added electrodes would significantly enhance our 

results, since human error in placement would probably degrade any added benefit.  Also, 

students would not require the finer details of an EKG wave, so long as the basic 

characteristics were present. 

 Initially, we chose not to include any EKG analysis tools at all.  After nearing the 

end of the design process however, we decided that adding this functionality would round 

out our system, and provide an interesting way of verifying our results.  When 

 9



implementing our EKG analysis tools, we thought of two unique ways of examining our 

collected data.  We could either use a PC-based software program (such as MATLAB), or 

use an Atmel Mega32.  If we used MATLAB, we would be able to take advantage of its 

ability to read in serial data and analyze it.  We could also opt to use some extended 

software packages that rely on MATLAB, such as Simulink.  Using Simulink would 

enable real time data analysis and offer a wider range of analysis tools.  MATLAB is 

more programmer friendly and powerful than anything we could accomplish using the 

Mega32.  Both the MATLAB and Simulink options require the use of a PC equipped 

with the MATLAB software package.  By using the Mega32, we would divorce ourselves 

from this requirement.  However, the EKG analysis would not be as in depth due to the 

lack of processing power.   

 We decided to use the MATLAB software package, since this project is designed 

for use at Cornell, where nearly every engineering PC has the software loaded on it.  In 

addition, we felt that student would be exposed to programming the Mega32 when 

working with the scrolling oscilloscope, and including MATLAB would enhance the 

overall design experience.  MATLAB also gives the user access to a wide range of 

statistical packages that might be useful for future additions.   
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Design Implementation 
 
Systems Engineering Description  

The CORE software package is a utility that helps classify a system by grouping 

characteristics of the system into classes and then establishing relationships between 

them.  By creating these relationships, one can keep track of all necessary functions, the 

components that are responsible for those functions, the physical connections between 

components, etc.  This is known as traceability and can be applied to physical hierarchies, 

functional hierarchies, requirement flow-downs, and others.  By exploring these 

relationships, we were better able to organize requirements, clarify our design ideas, and 

determine potential problems before we even began building our system. 

 Using CORE, we created a map of our EKG system.  One nice feature of CORE 

is the script function that the program can run on loaded databases.  Of particular interest 

is the script known as System Description Document (SDD).  This script takes the 

information in the database and prepares a report that summarizes many of the links in 

the database.  These links are presented in both a textual display and a graphical display.  

The SDD script that is included with the trial version of CORE seems to leave out 

physical hierarchy descriptions, but these can be easily supplemented by building the 

charts in CORE and copying them into the prepared report.  We generated an SDD, 

which is a very lengthy document.  Here, we have included highlights from this 

document showing key diagrams that characterize our system. 
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Figure 2: (ER) view of general system requirements  

 
Figure 3: Element relationship (E

 

R) view of general EKG system functions 
 
 
 
 

 
 

           Figure 4: N2 Diagram of general EKG system function
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            Figure 5: (ER) view of syst
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Figure 6: Functional Hierarchy of General System Functions 

 

 
Figure 7: Left Section of Figure 6 

 

 
Figure 8: Middle section of Figure 6 

 
 

 
Figure 9: Right section of figure 6 
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Figure 10: Physical Hierarchy of Wireless EKG System 

 
 

 
Figure 11: Left section of figure 10 

 
 
 

 
Figure 12: Middle section of figure 10 

 
 
 

 
Figure 13: Right section of figure 10 
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Figure 14: Traceability Hierarchy of General Requirements 

 
 

 
Figure 15: Left section of figure 14 

 
 
 

 
Figure 16: Middle section of figure 14 

 
 
 
 

 
Figure 17: Right section of figure 14 
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Figure 18: Traceability Hierarchy for MEng Proposal 

 
 

  

Figure 19: Left portion of figure 18 

 

 
Figure 20: Right portion of figure 18 
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The Transmitter 

The transmitter component takes in three signals from the user, a positive, a 

negative, and a ground.  Electrodes placed on the user’s skin detect these signals.  The 

transmitter conditions the signal for a V-to-F converter using amplifiers, filters, and a 

summing amp.  Once the V-to-F conversion has occurred, the signal is attenuated so it 

can be used in the RF circuitry to transmit at FM frequencies.  Because of the modularity 

of the transmitter, this unit can be broken down into smaller sub-components:  the gain 

circuitry, filter circuitry, the summing amplifier, V-to-F converter, and the RF circuitry.  

Each sub-component will be discussed below along with a description of the problems 

that arose, and the solutions that we found to correct them. 

 

The Gain Circuitry 

 Vpp of the EKG signal in from the user is about 1.6 mV.  This is clearly a very 

low-level signal, which is unusable at its current amplitude.  We added several gain 

stages to boost this Vpp up to fully utilize our rail levels (set to –4.5V, 4.5V by our power 

supply, to be discussed later).  Because of the initial low level of the signal, noise was a 

serious issue.  White noise alone was enough to distort any input signal that we received 

from the user.  Examining the input signals directly with a scope, the signal would look 

indistinguishable from the scope readout with nothing connected up to its probes.  

Because of this problem we used a differential amplifier, allowing us to effectively ignore 

the common signal between the positive and negative leads from the user (the common 

signal being the white noise).  We used a Burr-Brown INA121 low-power 

instrumentation amplifier.  The gain for this stage was set to ten by a resistor (5.55k), and 

the output was single-ended.   

More gain was necessary, so we decided to use Linear Technology’s LT1079 

operational amplifier package, which is designed with the intention of being used in 

instrumentation circuitry.  Before amplifying the signal further, we decided to use a 

simple RC high-pass filter to block any DC bias that the signal was riding on.  The DC 

level of the signal tended to fluctuate and caused difficulty in subsequent circuit stages.  

The time constant for this filter was set to pass very low frequencies (on the order of 1 
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Hz) without attenuation.  This is the lowest frequency contribution of the EKG frequency 

spectrum.  We used two stages for amplification, one stage with a gain of approximately 

100, and the other with a gain of approximately 6.   

We had initially designed these gain stages to set the signal up to maximum and 

minimum voltages of ±4.5 V (the rail voltages).  Upon completing the circuitry for this 

transmitter component, we found that at the input to the V-to-F converter the signal was 

clipping at the top and bottom rail.  After consulting the datasheet and experimenting on 

our own, we determined that the maximum voltage should be less than 4V, and minimum 

voltage should be greater than –4V.  We lowered the gain of one stage to be 5, while the 

others were left at 10 and 100.  Throughout our design process, we constantly had to 

adjust the gains of the amplifiers in this stage of the circuit.  As a general rule, we did not 

allow the gain of one stage to exceed 100, because of the gain bandwidth product 

restrictions on the op-amp.  Eventually, for reasons to be discussed in subsequent 

sections, we were able to completely eliminate one of these stages. 

 

Filter Circuitry 

Aside from the RC high-pass, several other filter stages were necessary in order to 

ensure that the signal was as noiseless as possible.  Despite having the differential 

amplifier, we still had concerns about noise.  A notch filter to eliminate 60-Hz noise 

seemed like an effective method to filter out noise from lighting and other off-the-wall 

appliances.  There was no gain associated with this stage of the transmitter. 

In our background research on the origins of the EKG signal and some of its 

characteristics, we found that almost all of the signal’s frequency content was below 200 

Hz.  For this reason, we decided to use another low-pass filter to attenuate frequencies 

higher than this value.  We used a Butterworth filter because it provides the flattest 

frequency response across the pass-band.  By using some other filter topology, such as a 

Chebyshev filter, we would be attenuating some frequencies of our signal due to the 

ripple in the low-pass band.  Although other filters have steeper responses than the 

Butterworth (that is they attenuate frequencies outside of the pass-band more quickly) we 

decided that this was not as important as keeping the pass-band response as flat as 

possible.  We decided to use an active Butterworth filter, utilizing another op-amp on the 
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LTC1079 (each package includes four op-amps).  We could have constructed the filter 

using only passive elements, however we already had the LT1079 present in the circuitry 

and there was no reason not to use it for this filter.  Also a butterworth filter made out of 

only passive components would consume much more physical area.  We made this stage 

of the circuit non-inverting, with a small gain of 1.1.   

 

The Summing Amplifier 

This is the final stage before the V-to-F converter.  We initially did not plan on 

including this stage, but it was determined that the V-to-F integrated circuit chip would 

not accept negative voltages as input.  After our AC coupling capacitor included in the 

amplification stage, the EKG signal was centered on 0V DC, and does contain some 

negative voltages.  We did not want to lose this signal content, since we wanted to 

reproduce the input signal as exactly as possible.  We therefore had to include an offset 

on the signal so that it never went below 0V.  Since the EKG signal can spike below the 

baseline voltage, we decided to set this nominal level to 2V DC, effectively centering our 

signal to the middle of ground and the positive voltage rail.   

 We quickly realized that this would require us to decrease the gain significantly, 

since we can now only support a maximum voltage swing from 0 to 4 V.  We went back 

and reassessed our gain circuitry.  We found that we could actually completely eliminate 

one stage, and only use two gain stages (plus the slight gain in our Butterworth filter).  

By eliminating one amplifying stage, we were able to keep the total number of needed 

LTC1079 op-amps to 4.  This will fit all on one package.  Keeping the IC count as low as 

possible for our circuit would ensure that the minimum amount of power was used, and it 

would also decrease the physical area needed for circuit layout when we designed the 

printed circuit board (PCB).  The INA121 was left with a gain of 10.  One amplifying 

stage of the LTC1079 was eliminated, and the other was left at 90.  This left us with a 

total gain of 900, which would give us a signal Vpp of 1.45V.  The notch filter slightly 

attenuates this Vpp, lowering it to 1.25V.  With the summing amp centering the signal at 

about 2V DC, our total swing was 1.6V to 2.8V.  Note that negative spike of the EKG is 

about .4V less than the positive EKG spike.   The observed Vpp at TH1 off of the PCB is 

slightly less than 1V peak to peak.  This is because there is a filter at the input to pin 
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seven of the V-to-F, which slightly attenuates our signal.  This signal voltage of about 

1Vpp is acceptable, and appears very similar to textbook examples of EKG waveforms.  

Note that the voltage levels above are examples only, and will vary depending on the 

placement of electrodes. 

  We initially used a resistive voltage divider to get 2V from our 4.5V supply.  

After having some difficulty getting a non-inverting summing amplifier to function 

properly, we changed it to inverting.  We also ensured that one other stage of the circuit 

was inverting so that the final signal was non-inverted.  The notch filter was an inverting 

stage that would meet this requirement.  Changing the summing amplifier to an inverting 

one required us to sum the signal with a –2V level.  This value was obtained using a 

resistive voltage divider with the –4.5V rail. 

 At the end of the amplifying, filtering, and summing stages, we had taken the 

noisy, small signal detected by the electrodes placed on the human subject and turned it 

into a clean signal whose amplitude was usable by the V-to-F circuitry. 

 

The Voltage-to-frequency Converter 

The purpose of this stage of the circuit was to take the voltage level of the EKG 

signal and convert it to a corresponding frequency level.  The output of this stage is a 0-

4V square wave train whose frequency varies according to the amplitude of the EKG 

signal incident on the input.  This stage required a great deal of fine-tuning.  The output 

frequency of the train corresponds to the audio frequency that will be heard when the 

signal is broadcast over FM band.  Thus we had to ensure the pulse train was within the 

range of 20Hz to 20kHz.  Furthermore, we wanted to ensure that the audio signal heard 

was of a pleasing tone, and that the frequency range of the wave train was high enough so 

that there would be a notable change in tone as the EKG signal changed in voltage level.  

We used a National LM231 V-to-F IC for this circuitry. 

 There was some documentation in the datasheet about how to construct the 

circuit.  Especially helpful was an equation given to set the output frequency, given an 

input voltage level and the value of several passive components.   
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The equation was
ttL
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××= where RS, RL, Rt, and Ct are referenced in the 

schematic in Appendix I as R20, R19, R21, and C10 respectively.  We selected these 

values so that, given our range of Vin levels, we would produce a frequency that could be 

heard by the human ear.  Because our Vin was never zero volts, some tone was always 

heard.  Thus for small values of Vin a low frequency tone will be heard, while larger Vin 

amplitudes lead to higher tones.  Our low Vin is about 1.6V and our upper Vin is about 

2.5V.  Given these values, the frequency range is approximately 780Hz to 1230Hz. 

 

RF Circuitry 

At the heart of this circuitry is a Maxim 2606 RF Transmitter chip.  This chip 

takes a small AC signal in, and modulates it for FM transmission.  The output of the chip 

goes to a small wire antenna.  There were initially two potentiometers in this circuit, one 

to control the amplitude of the AC signal (thus the volume of the received signal), one to 

control the broadcast frequency.  The chip has an integrated varactor, which controls the 

broadcast frequency.  As the potentiometer alters the DC voltage level, the varactor 

changes capacitance values that, combined with an inductor, allow the broadcast 

frequency to be selected.  The AC signal input to pin 3 on the 2606 was the information 

to be broadcast.  The DC level on pin 3 sets the broadcasting frequency. 

Upon experimentation with the volume potentiometer, we decided to remove it 

from the circuit.  Since the volume could be controlled from the receiver and the 

potentiometer would take up a sizeable amount of area on the PCB, we reasoned that the 

pot was unnecessary. 

Because of the fast switching nature of the output from this IC, we isolated it as 

much as possible from the other transmission circuitry.  We did not want this high-

frequency signal to couple back into our circuit.  This led us to keep this circuitry as far 

removed on the breadboard as was possible.  During PCB layout, we took special 

considerations to ensure that this circuitry would not interfere with operation (to be 

discussed in PCB section of the report). 

The 2606 was also very sensitive to the proximity of the antenna and inductor.  

We found that if this distance was too great, it would interfere with the circuit’s 
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operation.  We soldered the 2606 onto a small external PCB and placed the antenna and 

inductor on the board as close as possible to the IC.  This greatly improved the range of 

broadcasting frequencies and transmission strength. 

Because we had limited access to inductor values, we had to wrap our own.  

Using 20 gauge wire (approximately), we used to formula:  

L(uH) = d  * n  / ( 18d+40l )2 2  d = Coil diameter(in), n = Number of turns, l = Coil length (in) 

to determine the inductance value of our wound coil.  This process was an iterative one, 

as we continued to fine-tune our inductance value until we came across one that would 

allow us to broadcast at a desired range of FM frequencies.  Our final inductor was 

approximately 280nH. 

 

Final Remarks 

There were two major issues we experienced in addition to the ones listed above.  

First, we found that our power rails were very noisy.  Most of this noise was high 

frequency, and we assumed that some of the high frequency signal from the RF IC was 

coupling back into our power supply.  We added several decoupling capacitors from 

power to ground to help filter out this noise.  These additions resolved the problem. 

 There were also a variety of inexplicable problems that occurred halfway through 

the design process.  On one particular day we would have part of the circuit operating 

correctly, only to leave the lab and come back the next day to find that the circuit no 

longer functioned.  We also had problems that would inexplicably occur and then 

disappear from one minute to the next.  After many hours of debugging we began to 

suspect the protoboard.  We decided to switch to a different protoboard and see if the 

problem still occurred.  Our suspicions were confirmed as these odd problems no longer 

occurred.  We never had any more trouble of this kind, even on our transmitter PCB. 

 

The Split Power Supply 

 We wanted our system to be small and portable.  Connecting to a large variable 

power supply was not an attractive design decision.  We decided to use a battery-based 

power supply.  However, because of the use of op-amps, we needed both a positive and a 

negative rail.  Each rail needed to be approximately 5V in magnitude.  We decided to use 
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a split power supply circuit.  Because values of ±5 V were needed, we decided to use a 

nine-volt battery.  This circuit would output three different signals to be used by the 

transmitter.  The positive terminal of the battery would become the 4.5V rail while the 

negative terminal would become the –4.5V rail.  This supply uses one op-amp, whose 

output is the ground reference from the circuit.  Essentially the voltage provided by the 

battery was divided by two (4.5V), and then used as the ground reference for each battery 

terminal. 

 

The Receiver 

 Once we had successfully designed the transmitter, we began work on the 

receiver component.  This unit was designed to receive the transmitted signal using a 

radio receiver, and then convert the modulating frequency of the signal back to a voltage.  

The received signal should be an accurate reconstruction of the transmitted signal.  The 

signal should be appropriately amplified so that the television oscilloscope can use it and 

displayed in an accurate, meaningful manner.  We had several initial ideas about how to 

achieve these goals.  Once we implemented our design however, we found some 

unexpected problems and had to completely redesign the circuitry to address these issues.  

Our final circuit had little in common with our initial design.  This section of the report 

will outline our initial design work, the problems that we encountered, and our solutions 

to them. 

 

Initial Design 

 We initially planned on using the signal from the headphone jack of the radio 

receiver and sending it directly to the F-to-V converter.  Afterwards, we expected that 

some amplification and filtering would be necessary.  We started by setting up the F-to-V 

circuitry and observing the output so that we would have some idea of how noisy the 

signal was and how much it would have to be amplified.  Once we had this circuit built 

and began testing, we quickly realized that all of the capacitance values in the F-to-V 

circuitry would have to be fine tuned to pass the signal without distorting it.  This was 

particularly important at the output, where the capacitance value had to be increased to 1 

µF so as not to attenuate the signal.  After some alterations were made, we did in fact get 
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a very small amplitude signal out.  It was very noisy however, and the signal was on the 

order of 50mV peak-to-peak.  We added several amplifiers and filters, hoping to see an 

improvement.  There was some, although it was impossible to filter out all of the noise.  

There were also some distortions to the signal itself that were not associated with noise.  

There were added voltage peaks that seemed to suggest the F-to-V was detecting some 

high frequency components of the signal and translating them to a high voltage level.  

After fully implementing our initial design, we had a very rough signal that did not look 

very similar to our original EKG waveform.   

 We checked our input signal to the F-to-V and were surprised at what we saw.  

We were expecting an approximate square wave train coming out of our radio receiver.  

Instead we found very sharp spikes in the voltage.  Instead of a square wave train, we had 

a signal that much more closely resembled an impulse train.  The F-to-V called for a 

nearly ideal square-wave train input, so we immediately knew that this was one source of 

our problems. 

 

Receiver Revised 

 We had to come up with a way to turn the pulse signal from our radio receiver 

into a square wave train.  We thought that a comparator would be the appropriate 

solution.  When we hooked up an LT1079 op-amp to perform this function, we were 

unable to get any sort of an output.  We found the reason for this to be that the 1079 was 

in fact too slow to handle the quick timing associated with the impulse train.  We had to 

switch ICs to one that could handle the quicker signal speed.  We decided upon an 

NTE834 IC.  Once we had switched over to this faster operational amplifier, a square 

wave was generated from the non-ideal radio receiver signal.  At first, we believed the 

problem to be solved.  Soon after we realized the addition of the comparator had 

improved the problem, but there were still some remaining issues to be solved.   

 A 2V reference signal had been used for the comparator.  For input signals less 

than this value, the comparator would pull its output to ground.  For values above this, 

the output would rail out.  This 2V comparison value was the middle of the high and low 

voltage level of the input impulse.  However, if the volume was changed on the radio 

receiver, a different user was hooked up to the circuit, or a different radio was used, this 
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2V value may no longer be the center of the impulse.  Thus the circuit we had constructed 

was entirely dependant upon reconstructing the exact situation we set up in the lab while 

designing.  We wanted this circuit to be as robust as possible, so we had to come up with 

a way to address the issue of varying amplitude on the input impulse. 

 

Final receiver circuitry 

 A peak detector is used to determine the maximum value of the impulse input.  

This level replaces the 2V comparison value discussed above.  This peak value is divided 

by two using a resistive voltage divider and used by our comparator to generate a square 

wave output.  Once one particular peak value was detected, a smaller peak could never 

register because there was no path for current to drain and subsequently allow for a lower 

peak voltage level.  To resolve this, we added a 1M “bleeder” resistor to ground in the 

peak detector circuitry.  Now, should the voltage level of the peak decrease, current can 

slowly drain through this resistor and allow a smaller peak value to be detected.  The 

exact radio receiver used and its volume level no longer matters.  Whatever the signal is, 

our comparator will find half of the peak amplitude and create a square pulse train that 

accurately represents the frequencies received from the radio. 

 Using the faster op-amp for the comparator, and using the peak detector combined 

with the voltage divider, we had solved the issues that had confronted us with our 

previous design.  With the new square wave train as input, the F-to-V produced a much 

cleaner, higher amplitude output.  We fine-tuned some of the RC values at the output so 

as to not to unnecessarily attenuate our signal.  With the new circuitry in place, our 

recovered EKG signal looked identical in shape to the one that was broadcast.  Since the 

amplitude was still a little low, we used an op-amp to increase the signal magnitude.  An 

extra shunt resistor to ground was needed between the coupling capacitor and the non-

inverting terminal for proper functioning.  This resistor provides a ground path for the 

operational amplifier, which is absent because of the insulating capacitor.  The ground 

path provides the small amount of current needed to run the operational amplifier 

properly.  The signal still seemed to have some high frequency components that were 

making it unnecessarily noisy.  We added in a capacitor to short all of the higher 

frequency signals to ground. 
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 We had successfully designed a receiver that recovered our broadcast signal.  The 

circuit, like the transmitter, uses a 9-volt battery split power supply.  Our scrolling 

oscilloscope uses the signal output from this component. 

 
Scrolling Television EKG Display 
 
 In order to round out the EKG system, we wanted to display the EKG wave on a 

monitor.  However, we did not want there to be a particular dedicated display system 

since that would defeat the purpose of the portability and “anytime” usage of the device.  

Having utilized microcontroller based television display techniques in the past, we knew 

that it was possible to generate NTSC raster from an Atmel controller.  It therefore 

seemed feasible that the on-board analog-to-digital converter (ADC) could sample the 

relatively low frequency heart signal and then write that data to the monitor.  This way 

not only would the transmitter and receiver be portable, but so would the display system 

as any television monitor with a video-in connection could be used to show the scrolling 

EKG data. 

 Professor Bruce Land had already created an television based oscilloscope that 

would read in a fixed number of data points through the ADC, store them into a buffer 

and then blast them out screen [TV Oscilloscope, Circuit Cellar Magazine #161, pp 20-

25, Dec 2003].  This created a refresh type effect on screen roughly every couple 

seconds.  It was decided that the code for this TV scope could be modified to generate a 

scrolling effect.  A full listing of our code can be found in Appendix IV. 

The original code samples an ADC channel at video rate (15.75 kHz) and displays 

a voltage trace as 128 dots across the screen.  Professor Land has adjusted the horizontal 

synch pulse time to be 63.625 µs in order to make each frame exactly 1/60 of a second.  

None of these timing constraints needed to be changed in order to create the scrolling 

display.  The basic mentality behind converting the scope into an EKG display was that 

because of the slow speed of the EKG wave, that data sampled over one frame would 

essentially be the same data value.  This assumption holds only because typical EKG 

rhythms have such a slow period of about 2-3 seconds, so if one were to sample that 

wave every 1/60 of a second (the NTSC frame rate) it is likely that there would be more 

then enough data to highlight the general features of the EKG wave.  Hence instead of 
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sampling a screen’s worth of data and then blasting it to the screen all at once, each frame 

that is repainted to the screen adds one new point to the right hand side of the screen and 

shifts the other 127 pieces of data in the 128 point screen to the left.   

 The ADC is still read out in the synch generation interrupt except now all except 

the last data point taken are essentially ignored.  The variable “ADnow” holds the most 

recent data point.  The rest of the code for the EKG monitor executes in the vertical 

blanking interval (when the electron beam makes its way back to the upper left of the 

screen), where Professor Land left space for additional calculation and data manipulation.  

A vector “Adout” holds the 128 data points that occupy the width of the screen.  Once the 

vertical blanking interval is reached, the data in that vector is scrolled, moving all points 

one index to the left and filling the right-most void with the information in ADnow.  Also 

at this point, the data in ADnow is sent to COM1 for collection by the MATLAB data 

collection and analysis code, which will be discussed next.  The refreshed ADout array is 

then parsed, fitting each point to the proper location on the screen based on its ADC 

value and the current voltage scale on the screen.  This constructs the data raster to be 

displayed on the next frame. 

Next, there is code for a visual pulse indicator and for calculating the user’s heart 

rate in beats per minute (BPM).  The pulse indicator is a flashing box on the screen that 

blinks every time the user’s R-wave is detected.  It was recognized that the R-Wave has a 

much larger amplitude then any of the other portions of the EKG wave, so by monitoring 

the newest addition to the ADout vector (ADout[127]) and seeing if it is exceeding a 

certain amplitude threshold the pulse indicator knows when to flash.  It is important that 

this threshold be adjustable since different users will produce R-waves with slightly 

different amplitudes.  To do this, we created dual roles for push buttons 7 and 6 on the 

STK-500 board.  When the waveform is stopped on the screen, push buttons 6 and 7 still 

have the same effect they did in the previous code, namely moving a cursor right and left 

along the wave and displaying the time and amplitude coordinates on the screen.  

However, now when the waveform is in motion on the screen, push buttons 7 and 6 

respectively raise and lower the “pulse threshold”.  The right hand corner of the screen 

keeps track of the current threshold setting in ADC units.  The trigger level is restricted to 

the range of 0 to 255.  The typical setting for measuring human EKG waves is around 
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167.  The operator can fine-tune this setting so that the pulse indicator is flashing in 

proper relationship to the R-waves entering from the right side of the screen.     

To calculate the user’s heart rate, the same initial information is used regarding 

whether ADout[127] is greater than the threshold voltage setting.  That is why the pulse 

indicator and heart rate calculation are together in the same conditional statement.  Once 

the program finds that index 127 of ADout contains an R peak, it begins a search to the 

left finding where the next R peak is.  It does this again by finding the first data point that 

exceeds the threshold voltage setting.  Because there could be a cluster of two or three 

points that reside above the threshold setting, a search offset of seven data points is hard 

coded to avoid counting the same R peak and registering an erroneously high pulse rate.  

This is the explanation for why the search begins at index 120 rather then 126.  This 

search offset could be adjusted if needed but it has worked well in the lab. 

  At this point, the heart rate is simply the index of the next closest R peak to the 

left of the one residing at index 127.  To convert this to a beats per minute value and 

recognizing the subsequent points are spaced 1/60 of a second apart, the following 

formula is applied: 

60
))127(016.0(

1
×
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 Because the human heart rate does tend to jump around quite a bit, some 

averaging was also coded in to help prevent the BPM display on the monitor from 

jumping around too much.  To do this, the three most recent BPM calculations are held as 

variables at all times and the three are averaged together to arrive at the value that is 

displayed on the screen.   

 All of the above calculations done in the vertical blanking interval were initiated 

by an R-wave detected at the right hand side of the screen.  If there is no R-wave detected 

than no new BPM calculations are performed.  Also, all of the screen pixels that make up 

the pulse indicator are set to black.  This creates the flashing effect. 

 While Professor Land’s button state machine is used as before, not all of the 

buttons have the same function as they did before the code modification.  Below is a brief 

summary of what function the push buttons on the STK-500 serve for the EKGSCOPE: 
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Push Button Number EKGSCOPE Function 

1 Cursor Adjustment (Right) AND Threshold Adjustment (Up) 

2 Cursor Adjustment (Left) AND Threshold Adjustment (Down) 

3 No Function 

4 Voltage Scale Adjustment 

5 Fast / Slow Rate Adjustment 

6 No Function 

7 No Function 

8 Waveform Run / Stop 

Table 3:  Push Button Functions for EKGSCOPE 

 
 Push buttons 1 and 2 have already been discussed while push buttons 4 and 8 

have not had their original functionality altered.  Push button 5 has the new task of 

toggling between a full speed rate and a half speed rate.  It does this by simply toggling a 

variable named “rate” between 1 and 2.  A running counter is then checked as to whether 

it is divisible by “rate” and if it is, the scrolling loop that controls ADout is entered at the 

start of the vertical blanking interval.  Obviously, if “rate” is set to one, the loop is always 

entered and the screen scrolls at the maximum frame rate.  That means that a point on the 

right hand side of the screen takes 128
60
1
×  = 2.13 seconds to get across.  By pressing 

button 5, the scrolling loop is entered only half as much as it was before.  This cuts the 

scrolling rate in half, meaning that points now take roughly 4.27 seconds to move across 

the screen.  The only caveat to this is that in order to accommodate the half-speed rate 

while maintaining real time data, every other data point is now thrown out slightly 

impairing the resolution of the displayed waveform.  This corresponds to sampling the 

EKG waveform roughly once every 1/30 of a second.  An indicator of “FULL” or 

“HALF” at the bottom of the screen lets the user know what the current setting is. 

 Hooking up the EKGSCOPE to the receiving unit is very simple and requires only 

the following circuitry shown in figure 21.  This circuit simply scrubs off any DC from 
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the incoming waveform and centers the AC portion midway between the usable range of 

the ADC.  Note the Vref is being generated by the REF pin on PORT E since it changes 

for certain voltage range settings of the screen.  To hook up the television to the STK-500 

simply follow the circuit in figure 22.    The ground connection should be made to the 

outer conductor of the RCA cable while the “To TV” connection can be made to the 

center conductor.  This circuit combines the sync information with the video information 

and sends it out to the video input on the television.   

 

100 nF 

 

Figure 21: Circuit for Data Input into STK-500 (adapted from ECE 476 website) 

. 

 

Figure 22: Circuit for STK-500 output to TV (from ECE 476 website) 
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MATLAB Data Analysis 
 

 To further complement the EKG system, it seemed appropriate to add some data 

analysis into the mix.  Not only could a user see his/her heart wave travel across a 

television monitor, but also using any PC with MATLAB installed they could also more 

closely inspect that data and extract some of the basic EKG parameters.  To accomplish 

this required finding an easy way to transfer data into a MATLAB environment and then 

writing some macros to analyze the EKG waveforms. 

 We wanted to approach this analysis from a process control perspective.  In 

general, process control mentality provides basic approaches to help determine whether a 

given process’s mean and/or variability are in control (i.e. within acceptable tolerances).  

Often constructing what are known as control charts does this.  The control charts are 

meant to monitor major deviations from a target mean (X-bar chart) as well as excess 

variability around the target specification (Range or R chart).  An example of a control 

chart is shown below in figure 23:      

 

 

Figure 23: Sample Control Chart 

 
 The upper and lower dotted green lines are known respectively as the upper 

control limit (UCL) and the lower control limit (LCL).  These control limits are generated 

by monitoring the process when it is assumed to be in control, collecting and grouping 

data, and finally generating some basic statistics out of this data.  For instance, on an X-

bar chart an estimator for the mean is calculated and the UCL and LCL are generated as 
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the 99.7% confidence interval (3 standard deviations on either side assuming normality) 

about the mean.  The basic methodology that follows relies on the assumption that the 

random variables being analyzed are of the following nature: 

 

 y = µ + ε where ε ~ N(0, σ2) 
 

The random variable y is itself assumed to be normal so to facilitate the creation of the 

chosen confidence intervals as seen in the next section.  It will be assumed for now that 

the variables being tracked are normally distributed, however in the results discussion 

this issue will be addressed further and it will be shown that indeed that they are not all 

randomly distributed.   

 Based on the above discussion, there are six steps to creating a control chart and 

each one of these steps will be evident in the MATLAB script that analyzes the EGK 

waveform [adapted from Jackson]. 

 

Step 1) Data collection from a process assumed to be in control 

Step 2) Grouping of Data Elements 

Step 3) Process Mean and Variability Estimation 

Step 4) Establishing Control Limits 

Step 5) Confirmation that Previous Process was in Control 

Step 6) Plot Subsequent Data on Chart and Monitor for Out-of-Control Tendencies 

 

 As mentioned in the previous section, each time that a new data point is brought 

into the ADout array, it is also sent to COM1 for serial transfer into MATLAB.  Using 

the SERIAL command in MATLAB, we were able to open a direct serial connection into 

the program rather then going through an intermediary program such as HyperTerminal, 

which was our original thought.  Besides configuring the serial port that is being used and 

the baud rate, we have configured the input buffer size and the timeout length.  The input 

buffer size will determine the maximum amount of data that can be taken in at a time.  

This includes how much data could be taken in the initial collection before the control 

limits are calculated as well as how much could be taken in during monitoring before the 
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screen is refreshed.  This will be shown to be an important parameter since the more total 

data points the user has to work with the more they might be able to make use of the 

central limit theorem in case of a non-normal random variable.  The timeout length 

should simply be set high enough that all data can be taken in the span of it.    

 The first thing the software does is collect initial EKG data from the user based on 

the parameters of the “fread” command, which reads in a given number of binary pieces 

of information (maximum is input buffer size).  This stream of ADC values is stored 

directly in a vector and can be immediately worked with in MATLAB.  The user is asked 

which of two parameters they would like to track, heart rate (BPM) or QRS-interval 

length.  Depending on which parameter is chosen, the software will parse the initial data 

set and extract the information. 

 If heart rate is chosen, the software creates a vector of intervals between detected 

R-wave peaks.  The peaks are located in the same way that they are located with the 

scrolling display, by simply looking for values above a certain threshold.  This variable 

“threshold” is set in the code and should be adjusted on a person-by-person basis.  The 

software finds the intervals between the peaks and converts these intervals to seconds as 

before.  It then looks for noticeable outliers by sorting out values that are out of a certain 

range, which is also adjustable.  These outliers were mainly due to the occasional time 

where two data points were collected near the same peak.  This creates the illusion of a 

falsely high BPM that is then weeded out.  Due to the sampling rate of the system, this 

does not happen all the time.  All possible BPM calculations are made and stored in a 

vector.     

 For QRS-interval extraction,  finding the R-wave peaks, the intervals between the 

peaks and basic error correction are performed in the same fashion as for BPM.  The 

technique for finding the QRS-intervals is similar to the way one might find them by eye.  

The most noticeable feature of the EKG waveform are the R-wave peaks, which is why 

they are located first.  Next there is a two-step procedure for finding each  interval.  

Beginning at the peak, a backwards-in-time search is performed until the amplitude is 

within a close distance away from the baseline value (indicating the start of the Q-wave).  

This baseline value tends to be around 126, but depending on the baseline for a given 

user the value of the search parameter (now set to 130) can be changed.  Once this lower  
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time mark is found, it is saved.  Next the search is reset to the time of the peak.  Now a 

forward-in-time search is performed to find the end of the S-wave.  The criteria for 

location the end of the S-wave is that the value is within a given distance from the 

baseline but on a positive slope.  This means that the baseline is passed once on the way 

down from the peak and then located on the way up.  This upper time mark minus the 

lower time mark indicates the QRS interval.  This interval is converted into seconds and 

stored in a vector.  This analysis is performed for all peaks. 

 It should be noted that a function called Delmat was used to remove an item from 

a vector and automatically resize it.  This command was written by B. Rasmus Anthin 

Copyright (c) 2003-09-24.   

 After the initial data set is parsed for the appropriate parameters, that vector of 

parameters (either BPM values or QRS-intervals) needs to be grouped for control limit 

calculations.  The user is prompted to enter this group size and is given the total number 

of parameters extracted.  It is preferable that the number of parameters be divisible by the 

group size however if it is not, one group will simply be smaller than the rest.  The larger 

the group size the better since the application of the central limit theorem will help 

enforce normality.   

 The program will then compute group mean and range for each set of data.  After 

that, a mean of those means (grand mean) and a mean of those ranges (mean range) are 

calculated.  The grand mean will serve as centerline of the x-bar chart and the mean range 

will serve as the centerline of the range chart.  To estimate the corresponding standard 

deviations the following formulas from process control are used: 

 

σ for x-bar chart = 
2

_
d

rangemean  

σ for range chart = 
2

_3
d

rangemeand ×   

 

Note that d2 and d3 are pre-computed factors for creating control charts and are based on 

the group size (Montgomery).  A look-up table of these values is referenced in the code.  
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Once all of these values are calculated, a 99.7% confidence interval is constructed on 

both charts in the following manner: 

 

(grand mean) ± 
size group

chart)bar -for x  ()3( σ×   x-bar chart 

 (mean range) ± (3)*(σ for range chart)     range chart 

 

 These control limits are then applied to the charts.  At this point, the program 

begins taking in new data, the amount of which is set by new “fread” commands.  Also, 

the number of data sets to be monitored is established by a while loop conditional 

statement that can be changed by the user.  As the program takes in new data sets from 

the user, depending on which variable is being tracked, it will extract the new parameters, 

regroup them, create new group means and ranges and then refresh the plots with this 

new data.  Note that the control limits will remain fixed through this process.  One item 

of note is a 1ms pause in between subsequent plots.  This was found to be necessary to 

create the desired refresh effect.  Without this line, the plot window only displays the 

final data set and remains blank for the ones in between. 

 The results of these basic data analysis tools can be found in the results section.  

Sample plots are given there as well as general descriptions of how the algorithms 

appeared to work.  Finally, a small piece of code has been left commented out toward the 

beginning of the main code (see Appendix V) that can be used specifically for the 

purpose of recording data.  This code will simply read in a set number of data elements 

and store them in an array.  This is handy for gathering data for testing new EKG 

waveform analysis algorithms that could be added at a later date.    

 

Printed Circuit Board Design 

 We did not want our circuits to be on breadboards once our design work was 

complete.  We both wanted the design experience of laying out a PCB.  So after the 

transmitter circuitry was designed and tested, we used the software provided by 

ExpressPCB to design a circuit board for the transmitter.  Once the receiving circuitry 

was completed, we designed another PCB.  The following section will outline the 
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considerations and steps that we took while laying out our designs.  The full printed 

circuit boards we designed on were 3.8” x 2.5”, however our circuits only occupied 1.9” 

x 2.5” so that we could fit two circuits on every one board.   

 

The Transmitter PCB 

 The first consideration made was the placement of the split power supply and the 

RF circuitry.  As mentioned in previous sections, we wanted to isolate the RF circuit as 

much as possible from the rest of the design, especially the power supply.  For this 

reason, the split supply was placed in one corner of the board while the RF circuitry was 

placed in the opposite corner.  Space was left between the RF circuitry and other circuits 

so that the RF pickup would be at a minimum. 

 Another noise reduction technique that was utilized was ground plane shielding.  

The bottom layer of the PCB was almost entirely devoted to ground connections.  Instead 

of running ground traces around the circuit, large sections of metal were used to supply 

ground.  In fact, as much of the bottom layer of the PCB was shielded by ground 

connections as possible.  This was done to shield the supply and other circuit components 

from the RF transmission signals.   

 All power traces were laid slightly thicker than normal traces.  This was done so 

that they were easily identifiable and also to ensure that appropriate levels of current 

could flow through them without generating heat.  Power connections were made as 

directly as possible, without snaking around components.  This was to minimize the area 

that would be susceptible to noise pickup.  Also, decoupling capacitors were spaced 

throughout the power traces to eliminate noise on the supply lines.  Just like the power 

traces, ground traces were also slightly wider.  These traces, and all others were laid out 

in straight lines whenever possible.  When a corner had to be made, it was not done using 

90-degree angles, but rather with two 45-degree angles.  This was to avoid any 

fabrication errors when the boards were created. 

 Many other smaller considerations were also made during this layout process 

including the following:  labeling each IC with a unique number, spacing all components 

so that there would be enough room to solder them, including several test holes for 

debugging purposes (holes provided for ground, positive and negative rails, and the 
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signal before the V-to-F conversion), and adding a power switch in the circuit.  The 

transmitter layout schematic can be found in Appendix VI. 

 

The Receiver PCB 

 The signal in from the radio receiver was isolated from the rest of the circuitry.  

Many of the same considerations were made for this PCB as were made for the 

transmitter PCB.  Just like the transmitter PCB, a split rail supply was used to provide 

power.  Connections were provided for the output of the signal to the television 

oscilloscope.  The receiver layout schematic can be found in Appendix VI. 
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Results 
 

 With the design complete and described in the pages above, we can now analyze 

the results and examine some key characteristics of the design.  This section will 

highlight the performance specifications of our design.  Pictures of the circuitry and 

waveforms can be found in Appendix II. 

 Power consumption can be measured for both the receiver and transmitter by 

examining the current drawn from each nine volt supply and using P=IV where V is 9 

volts.  The transmitter draws 7.6mA, corresponding to 68.4 mW.  The receiver draws 

5.9mA amps, corresponding to 53.1mW.  In our design we tried to limit the use of ICs so 

that we could keep the power consumption as low as possible for each component.  It is 

estimated that a 9V battery has a capacity of 500mAh.  This will provide the transmitter 

with an operating life of 500mAh/7.6mA = 65.8 hours, and the receiver with an estimated 

operating time of 84.5 hours.  Note this satisfies the original operating time requirement. 

 

Transmitter Results 

 The transmitter converts an EKG signal to a frequency varying square wave train 

of 4V.  The broadcast frequency of the transmitter can be changed by varying the 

resistance of the potentiometer.  Transmission frequencies can range from 94MHz to 

108MHz.  The effective range of this transmitter varies depending on the number of 

obstructions in the path from transmitter to receiver.  It can range anywhere from a 

several feet if there are many thick walls between the transmitter and receiver, up to 50 

feet if there is a clear line of sight.  Note that this fifty-foot range was achieved with a 

very primitive wire antenna.  The receiver used also did not have any antenna.  If a more 

efficient antenna was used, and/or a receiving antenna was used the transmission range 

would likely increase significantly.  The FM band is also very crowded with radio 

stations, and interference with these signals tends to cut down on the transmission range.  

It should be noted that the electrodes are very sensitive to movement and in order to 

receive a good EKG signal, the user must remain as still as possible.  When an FM 

receiver outputs the EKG signal through its speakers, the frequency of the tone ranges 

from 780Hz to 1230Hz. 
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Receiver Results 

The receiver component can use any FM radio receiver’s output.  All that is 

required is a headphone jack to provide the input to the circuit.  There is minimum level 

of the AC pulse train that the input must have in order for the receiver to properly 

function.  This value is 1.0Vpp.  The receiver outputs the recovered EKG signal, which is 

about 1.0Vpp.  This signal can be examined either with a commercial oscilloscope, or it 

may be examined by using our scrolling display system.  Figure 24 below shows the 

signal on a commercial oscilloscope:   

 

Figure 24: EKG Waveform from receiver shown on a standard oscilloscope 

 

Scrolling Display Results (EKGSCOPE) 

 The television oscilloscope uses the output of the receiver component as an input.  

It displays the signal on any television, using RCA cables as an interface between the 

Atmel Mega32 and the television.  The scroll rate of the data across the television may be 

changed by the user.  The choices are a fast rate of 2.13 seconds per screen or half this 

rate at 4.26 seconds per screen.  At the slower rate, because the software ignores every 

other point, the resolution is not as good as the full rate.  This can be especially 

problematic since we are only sampling a few points on the sharp R-wave and these 
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points are occasionally missed at the half-speed rate.  It is suggested that the display be 

used at the full-speed rate in order to see the best resolution.  However, if data is being 

taken into MATLAB where all of the data will be captured anyway, there may be some 

interest in this slower speed.  Figure 25 below shows the waveform on our scrolling TV 

display. 

 As designed, the user can set the voltage threshold for R-wave detection via the 

push buttons on the STK-500.  The current threshold value is displayed in the lower right 

hand portion of the screen.  The averaged heart rate in beats per minute is shown in the 

lower left of the screen.  The averaging does help prevent this number from jumping 

around as much as it did with no averaging at all, however occasionally spikes are seen in 

this readout.  A suggestion would be to use this value as well as the BPM data that can be 

attained through MATLAB together to get a good tracking of the user’s heart rate.   

 One minor defect with the display system is some mild tearing of the screen when 

the buttons are pushed.  This does not always happen, but when it does it simply causes 

some artifacts to appear along either the top or bottom of the screen.  These artifacts 

however do not interfere with any of the data being displayed so they were not 

considered a major problem.  They most likely result from too much time being spent in 

the vertical blanking interval section, which is throwing off some of the precise 

synchronization timing necessary for the electron gun.  Code refinements could likely be 

made to get rid of these effects, such as reducing some of the C code into assembly 

language.          
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Figure 25: EKG Waveform from receiver shown on our scrolling display 

 

MATLAB Data Analysis Results 

 The major goals of the data analysis portion of the system were the following: 

• Accept serial data transfer of EKG signal from microcontroller 

• Display EKG waveforms to user in near real time 

• Estimate basic statistical characteristics of the data (mean and standard deviation) 

• Construct x-bar control chart for QRS-intervals and heart rate (BPM) 

• Construct range control chart for QRS-intervals and heart rate (BPM) 

• Monitor new data and evaluate process-based control limits 

 

We were able to meet all of the above goals.  It should be noted that the data analysis 

software was not designed to be an incredibly rigorous exercise in determining the exact 

characteristics of the EKG waveforms.  For example, given the way we locate the R-

wave, we could be a sample or two off in our timing.  The MATLAB code was designed 

for two specific reasons.  One, as a way to help confirm that the received data was 

consistent with typical EKG waveforms and that the EKG waveforms were not being 

massively distorted at other locations in the system.    And two, as a convenient tool for 

students to learn a little about data capture and analysis.  The MATLAB environment 
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allows users to easily build on the tools that we have opted to add.  Included in this 

section are various parameters extracted from a sample set of heart data that help 

illustrate the capabilities of the system.  As mentioned before, typically how the software 

would be used would be to have it take an initial data set and from that set, generate the 

upper- and lower- control limits per control chart type.  Those control limits would then 

be displayed on an updating chart that would refresh as new data was sampled.  In the 

results below, we will look at that initial data.  This is adequate since it encompassed all 

of the capabilities of the software. 

 The figures below show two suites of plots that are presented to the user when the 

characteristic selected is heart rate.  Figure 26 and 27 are derived from two different data 

sets, the first when the user was at rest and the second after prolonged activity: 
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Figure 26: Suite of Figures Characterizing BPM (group size = 3) 
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Figure 27: Second Suite of Figures Characterizing BPM (group size = 3) 

   

Similarly, figures 28 and 29 below are two suites of plots that are presented to the user 

when the characteristic selected is QRS interval.  The data sets are respectively the same 

as above. 

 In each figure the plot in the upper left is a plot of the actual EKG data.  In these 

plot suites it is impossible to make out the individual waves, so a close-up view is 

provided in figure 30.  Figure 30 shows the kind of resolution that the user will get in the 

MATLAB environment.  The QRS interval is quite well pronounced as is the T-wave that 

follows.  There also appears to be some trace of the P-wave just prior to the main spike.  

This figure generally matches the typical EKG waveform patterns discussed in the 

background section.  One interesting observation that can be made from any of the EKG 

plots in this section is that the amplitude of the peak R-wave does not remain constant as 

it generally should, but rather it oscillates sinusoidaly back and forth.  This is an atypical 

behavior and certainly seems to stem from the way our system is  
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Figure 28: Suite of Figures Characterizing QRS-interval (group size = 3)  
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Figure 29: Second Suite of Figures Characterizing QRS-interval (group size = 3) 
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Figure 30: Close-up view of EKG Waveform 

 
taking in data.  The most likely explanation for this sinusoidal variation is that it is a beat 

frequency due to the sampling rate.  This type of phenomenon is common and can be 

explained by observing figure 31 below.  The green wave is the signal frequency and the 

red signal is the “beat wave” that is generated by sampling at a frequency near the 

Nyquist frequency.  Hence, despite the fact that the green signal peaks are all at the same    

 

 

Figure 31: Illustration of beat frequency concept [Kostic (1999)] 
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amplitude, the user may get the false impression that there is another frequency that is 

really not there at all.  This is likely what is happening with the EKG data, since the 

peaks of the R-wave should all be the same height.  By sampling the R-wave at cyclic 

points just before the peak, then near the peak, then slightly after the peak then before the 

peak again, we are generating a beat wave similar to the red wave above.    

     Going back to the plot suites, the plots in the upper right are distribution 

histograms of the signal parameters.  Recall that the control limits are calculated in a way 

that assumes the parameters are distributed normally.   Looking at the BPM distributions 

is certainly appears feasible that this random variable could be normally distributed and 

that our original assumption was valid.  However, looking at the QRS interval 

distributions it does not appear that it is distributed normally.  This is likely a partial 

explanation for why some of the control charts are showing values exceeding the control 

limits.  This will issue will be touched on shortly.     

 Ignoring the distributions, the values that the system is giving are very consistent 

with what we expect.  Going back to table 2 in the background section, notice the 

nominal value for the QRS-interval was 0.09 second.  In the distributions in figures 28 

and 29, notice that there are clusters very near 0.1 seconds, which matches closely to the 

nominal result.  Also, an average adult resting heart rate typically varies between 70 and 

80 BPM, which corresponds to the first BPM figure above.  The second has a mean rate 

slightly upwardly shifted due to the activity of the user.  These results lead us to believe 

that the data collection is working properly.   

 The final two plots in the suites are the x-bar chart (lower left) and the range chart 

(lower right).  Both plots have fixed horizontal lines that represent the upper- and lower- 

control limits.  Recall that these limits are generated by grouping the data in sets of a 

number that is left up to the user when the software is first run.  Depending on how this 

group number is set, the control chart’s center lines and limits will change around 

somewhat.  All control charts’s shown used a grouping of size three.  One thing that can 

be noticed is that the control charts shown have data extending across the control limits.  

One possible reason for this, mentioned above, was that the random variables might not 

be normally distributed (the QRS interval certainly is not).  In terms of strict process 

control, this would be an indication that the limit data was taken when the process was 
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not in control.  However, in the case of the EKG data, they need to be interpreted a little 

more loosely, as the data outside of the control limits is not out of the bounds of normal 

heart activity and it all really depends on how much initial data went into the control limit 

calculations.  Here, roughly 3000 data points (Note not all these points are used for 

calculations) were taken but changing the input buffer in the MATLAB serial connection 

can change this number.  According to the central limit theorem, as group size goes up 

then the original distributions should approach a normal one with the same mean and 

with the same variance, now divided by group size.  In this case, the process control 

calculation should still apply.  This would require a large amount input data since only 

select data points are used for the computations.  For instance, for BPM calculation only 

the R-wave peak data points are needed.  In our opinion, the control limits here are better 

used as a rough guide to the user’s heart activity.  Someone might consider putting up a 

second set of bounds that mark the nominal heart values, such as those listed in table 2.  

That is, two limits can be checked to characterize the user’s heart activity.  A running 

average calculation could also be used to try and dynamically show how the heart rate 

activity compares to values sampled around the same time.  This would be relatively easy 

to implement. 
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Parts Listing and Price Estimate 
 

This table lists every component necessary 

to build a transmitter module, a receiver module, 

and the oscilloscope circuitry.  The part is 

displayed, along with the necessary quantity.  The 

total price for that quantity of that particular part is 

displayed in the column at right.  Most of the 

resistors and capacitors can be found in any 

existing electrical  lab.  Students can quickly 

consume these supplies, so it can be assumed that 

these parts must be purchased.  Other key 

components such as batteries and ICs are also 

quickly consumed and listed with the other 

components.  The cost estimate for this basic 

system is $38.82.  This project was designed with 

the intent of being used as part of Cornell 

University’s undergraduate program.  Certain 

components of this system are much more 

expensive, such as the STK500 boards and 

televisions.  However, these parts are not 

consumable and will last for a long time.  In 

addition, Cornell already possesses these items and 

should not need to repurchase them.  These 

components are listed separately, along with their 

estimated price.  An FM radio is also required for 

this project, but students could be asked to bring 

one in, as nearly everyone owns a radio.  A few 

spares could be purchased if necessary. 

The system total cost listed is the cost if 

every component must be purchased. 

Part Quantity  Price  
75 1  $            0.05 

150 1  $            0.05 
330 1  $            0.05 
1k 2  $            0.10 

2.2k 1  $            0.05 
3.3k 1  $            0.05 
4.7k 1  $            0.05 
5.5k 1  $            0.05 
6.8k 2  $            0.10 
10k 5  $            0.25 

14.7k 1  $            0.05 
21k 1  $            0.05 
33k 1  $            0.05 
41k 3  $            0.15 
47k 4  $            0.20 
56k 1  $            0.05 
68k 2  $            0.10 
100k 11  $            0.55 
150k 1  $            0.05 
200k 1  $            0.05 
470k 3  $            0.15 
1M 1  $            0.05 

diode 3  $            0.15 
.24nf 1  $            0.05 
1nf 4  $            0.20 

10nf 5  $            0.25 
27nf 4  $            0.20 
.1uf 10  $            0.50 

.33uf 1  $            0.05 
1uf 4  $            0.20 

4.7uF 3  $            0.15 
LM231 2  $            7.38 
2606 1  $            1.00 

LT1079 2  $            8.00 
switch  2  $            0.60 

9 volt battery 2  $            6.50 
LM358 2  $            0.66 

NTE834 1  $            2.88 
INA121 1  $            6.80 
100k pot 1  $            0.50 

battery clips 2  $            0.60 
TOTAL   $          38.82 

   
radio  $15.00 
TV  $50.00 

STK500   $80.00 
System Total   $        183.82 
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Conclusion 
 

 Our final EKG system met each design requirement listed previously in this 

report.  A low-power EKG system completely independent of wall voltages was designed 

at under $50 to transmit a detected EKG signal to a receiver.  Both the transmitter and 

receiver operate safely and reliably being powered from a 9-volt battery supply.  Given 

the current drawn from the battery, both circuits are estimated to run for about 65 hours 

on one battery.  A user sets the transmission frequency, and the receiving range can be up 

to 40 ft.  The recovered EKG signal is sent to a television controlled by an Atmel 

Mega32.  The waveform is displayed in an accurate manner, and exhibits all of the 

characteristics shown in physiological textbooks.  The oscilloscope has different scroll 

speeds and voltage scales.  Pulse rate and beats per minute calculations are also shown 

onscreen.   

 Most importantly, we feel that this design is useable in an undergraduate 

classroom, as was the original intent for this project.  There were several components to 

this design project, which do not have to be included in the design of this system, 

including the PCB layouts and MATLAB data analysis.  Time permitting, the course 

instructor may want to touch upon these topics.  This EKG system lends itself to a 

classroom setting by being easily broken down into sub topics needed to design and 

understand this system.  One topic covered in class could deal with the necessary C 

programming skills, cover the basic architecture of the Atmel Mega32, and review coding 

in MATLAB (if necessary).  A unit on op-amp circuitry could present amplifiers, filters, 

peak detectors, and comparators.  A unit on V-to-F and RF circuitry could also be 

presented.   There are many technical areas involved with this project.  Unless students 

have had a wide exposure to circuit design and microcontroller architecture, this may be 

too much material to cover in one semester.  If this is the case, this design project can be 

presented in a more structured fashion to the students.  For example, all of the circuit 

topologies can be given to them, and they must pick values for each of the components.  

A block diagram of the system, listing each circuit (notch filter, differential amplifier, 

etc.) could also be presented to them.  The students could then fill in what the circuits 
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would look like.  Ultimately, it is up to the instructor to determine the technical level of 

the class and decide how to best present this EKG system.   

 If we had additional time, and could relax the requirement that this system be 

built with an undergraduate student in mind, we would have liked to experiment with a 

few additional topics.  It would have been interesting to try and implement the transmitter 

without the RF IC, and see if we could still get the system to work.  An AM transmitter 

may have been something that was implementable using typical electrical components.   

 As outlined above, our EKG system has met every requirement, and even gone 

beyond what was expected in some cases.  As mentioned above, the data analysis wasn’t 

originally even included as part of the system.  With the discussion included in this 

report, a person should be able to redesign the system and understand its functionality.  It 

is our hope that this project provides undergraduate students with a fun, educational, 

challenging design exercise for years to come. 
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Appendix I: Final Circuit Schematics 

 

 

 

 

 

Figure 32: Final transmitter schematic 
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Figure 33: Final receiver schematic 
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Appendix II: Pictures of EKG Transmitter and Receiver Circuitry 

 

 

Figure 34: Final transmitter circuit on proto-board 

 

 

Figure 35: Final transmitter circuit on a PCB (1.9” x 2.5”) 
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Figure 36: Final transmitter circuit on PCB plus battery (3.8” x 2.5”) 

 

 

Figure 37: Underside of final transmitter PCB (1.9” x 2.5”) 
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Figure 38: Final receiver circuit on proto-board 

 

 

Figure 39: Final receiver circuit on a PCB (1.9” x 2.5”) 
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Figure 40: Underside of final receiver PCB (1.9” x 2.5”) 

 

 

Figure 41: Radio and receiver PCB 
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Appendix III: Comprehensive Instruction Manuel for EKG System 

 

 The following steps will walk a user through the use of the EKG system.  These 

steps detail the use of both the hardware and the software components of the system.  

Tips are also given on the best places to hook up the electrodes in order to maximize the 

signal quality: 

 

Section 1: Connections 

1) Make sure that both the transmitter and receiver are connected to an operational 9V 

battery.  Also make sure that the STK-500 board’s power supply is connected. 

2) Make sure that the STK-500’s RS232-SPARE serial port is connect to COM 1 of the 

PC.  If the user wishes to use COM 2, then the ‘COM1’ parameter in the “serial” function 

of dataprocess.m needs to be changed to ‘COM2’. 

3) To hook up the television to the STK-500 simply follow the circuit in figure 21.  The 

ground connection should be made to the outer conductor of the RCA cable while the 

“To TV” connection can be made to the center conductor.   

4) Make sure that the connection from ‘RX’ on the receiver PCB is connected to the 

‘analog input’ of the Oscilloscope circuitry as shown in Figure 22. 

5) Now take three electrodes and three alligator clips and connect one alligator clip to 

each electrode’s metal connector.  Attach the unconnected side of each clip to the 

transmitter PCB wire leads located next to the INA121 IC (one clip per lead).  Now take 

the electrode that is attached to the lead furthest from the antenna and place it on the 

user’s upper left chest, immediately below the collarbone, halfway between the shoulder 

and the center of the throat.  Take the electrode attached to the middle Transmitter PCB 

lead and attach it to the user’s left side, just below the rib cage, several inches off of the 

centerline of the body.  This location should be about three inches up from and three 

inches to the side of the user’s naval.  Connect the final electrode near the user’s left 

elbow, about one inch from this joint on the upper-arm side.  The electrode should be 

placed just above the bony part of the elbow. 
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 These electrodes are the positive, negative, and ground connections respectively.  

Note that the EKG system’s results are highly dependant upon the placement of these 

electrodes.  If noisy or undesirable results are obtained, consider moving the electrodes 

on the user.  There are several considerations that can be made to help with placement.  

Ideally the skin surface on which the electrode is placed should be clean and free of hair.  

Make sure to press the electrode firmly so that a good bond is made with the user’s skin.  

In general, electrodes should not be placed directly above any bone.  Note that there are 

numerous ways to connect up EKG electrodes, each one producing a different EKG 

signal.  The placement described above was the one we used while designing and testing 

the EKG system.  It is not necessarily always the most optimal placement.  For further 

information about electrode placement, see [Cromwell et al.] in Reference section.  

 

Section 2:  Tuning the Receiver 

1)  Turn the Transmitter Power switch to the ‘on’ position. 

2)  Turn the Receiver Power switch to the ‘on’ position. 

3)  Turn the radio receiver on. 

4)  Plug in the earphones provided with the radio receiver into the headphone jack.  Tune 

the radio until the EKG signal can be clearly heard.  This signal will be a constant tone, 

with several higher pitched excursions from the constant tone.  An easy way to check if 

the signal is in fact from the transmitter is to turn the transmitter unit off and see if the 

signal goes away.   

5)  If no signal can be detected, try adjusting the potentiometer on the transmitter.  To 

turn the dial, a small screwdriver will be needed.  Once the potentiometer has been 

adjusted, repeat step 4).  Note that due to many FM interferences with other radio 

broadcasts, steps four and five may have to be repeated several times before the signal 

can be detected. 

6)  Now unplug the earphones and plug in the cable that connects the headphone jack 

directly to the receiver PCB.  Make sure that the volume on the radio receiver is set to at 

least half of the maximum. 
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Section 3:  Waveform Display and MATLAB Data Analysis 

1)  (If the user just wishes to use the scrolling TV scope than this step can be skipped).  

Open up MATLAB and run dataprocess.m.  The user will receive the prompt, “Unit 

Off?”.  It is important that the STK-500 board be turned off when dataprocess.m first 

runs, or else the program will crash.  Once the user turns off the STK-500 they can hit 

“enter”, and they will receive a prompt to “Turn unit on.”   

2) Turn ON the STK-500 board (press enter at prompt if running MATLAB). 

3) If scrolling output is desired, then switch on the television set now.  You should see 

the EKG waveform scrolling across the screen.  You will need to adjust the voltage 

threshold with the push buttons as discussed in Table 3 to get the proper BPM reading.  

Adjust this so that the pulse indicator is flashing with every R-wave, but is bright for as 

short a time possible.  The user can also adjust the rate of the wave at this point as well as 

stop the wave and inspect it with the cursor.  THE USER NEED ONLY READ ON IF 

THEY ARE RUNNING THE MATLAB SOFTWARE.     

4) Immediately after “enter” is pressed in step 1, the software will begin to take the 

warm-up data to create the control limits.  After it has done this, it will ask the user if 

they would like to track BPM or QRS-interval.  The user should enter their choice.   

5)  Next the program will report how many useable data points were found in the data.  It 

will then ask the user to enter the size of the groups in which to place the data.  The user 

can enter any number, although numbers that the total data size is not divisible by will 

create one group not of the requested size.   

6)  The program will then create x-bar and range control charts with the proper control 

limits.  Data will be refreshed to these charts each time the input buffer is filled.  

Depending on the number controlling the loop, the corresponding number of data sets 

will be taken.   

7) There is no formal shutdown procedure, all components can be turned off at any time 

and MATLAB should be exited.   
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Appendix IV: CodeVision C Code for Scrolling Oscilloscope 
//Modified Video Scope -- EKG Version 
//Matt Melnyk & Josh Silbermann 
//2003-2004 MEng Project 
//Code adapted from Professor Bruce Land's Original Scope Code 
//   [TV Oscilloscope, Circuit Cellar Magazine #161, pp 20-25, Dec 2003].   
 
//D.5 is sync:1000 ohm to 75 ohm resistor 
//D.6 is video:330 ohm to 75 ohm resistor   
 
#pragma regalloc-    //I allocate the registers myself 
#pragma optsize-     //optimize for speed 
                     
#include <Mega32.h>    
#include <stdio.h> 
#include <stdlib.h>  
#include <math.h>  
#include <delay.h>    
 
//cycles = 63.625 * 16 Note that normal NTSC is 63.55  
//but this line duration makes each frame exactly 1/60 sec 
//which is nice for keeping a realtime clock  
#define lineTime 1018 
  
#define begin { 
#define end   } 
#define ScreenTop 30 
#define ScreenBot 210 
 
//NOTE that v1 to v8 and i must be in registers!   
//These registers contain the current line to be 
//blasted to the screen 
register char v1 @4;  
register char v2 @5; 
register char v3 @6; 
register char v4 @7; 
register char v5 @8; 
register char v6 @9; 
register char v7 @10; 
register char v8 @11;  
register int i @12; 
 
#pragma regalloc+  
 
//video stuff 
char syncON, syncOFF;  
//current line 
int LineCount;  
 
//voltage trace and last one  
char ADout[128], ADold[128];  
// current voltage sample and previous one 
char ADnow, ADlast;    
//ii counts current trace length 
//jj counts sample skipping 
//k counts trace drawing 
char ii,jj,k;  
//trigger variables  
//level, arm flag, run/stop flag 
char trigLevel, oneShotenable; 
char trigmode ;   
// time scale -- factors of 2 from 8 ms/screen to about 1000 
char tscale;  
// number of samples-1 to skip for each time scale 
char tscalemask[]={0,1,3,7,15,31,63,127}  ;  
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// actual time scale value 
char tscaleV[]={1,2,4,8,16,32,64,128}; 
 
//button state machine 
//sample rate for buttons, machine state 0-3, actual button data 
char bstep, bstate, buttons; 
  
//voltage bit scale, zero pt on screen, actual point on screen  
//voltage scale 
char vscale, vzero, vpoint,vselect; 
 
//The actual screen image 
char screen[90*16], vs[10];  
 
//All the strings 
char cu1[]="EKGSCOPE";  
char thrsh[]="THRSH"; 
char fast[]="FULL", slow[]="HALF" ; 
char tbpm[]="BPM", tstop[]="STP";  
char blanks[]="           ";    
char tind[]="PULSE", vind[]="RATE";  
 
//cursor position  
char curx ;    
   
//Point plot lookup table 
flash char pos[8]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01};    
 
//define some character bitmaps 
//5x7 characters 
flash char bitmap[38][7]={  
 //0 
 0b01110000, 
 0b10001000, 
 0b10011000, 
 0b10101000, 
 0b11001000, 
 0b10001000, 
 0b01110000, 
 
 … (Additional characters omitted for length.  Please see online version for complete character listing)  
 
 //figure2 
 0b01110000, 
 0b10101000, 
 0b01110000, 
 0b00100000, 
 0b00100000, 
 0b01010000, 
 0b10001000}; 
 
 
//================================  
//3x5 font numbers, then letters 
//packed two per definition for fast  
//copy to the screen at x-position divisible by 4 
flash char smallbitmap[39][5]={  
 //0 
    0b11101110, 
 0b10101010, 
 0b10101010, 
 0b10101010, 
 0b11101110, 
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 … (Additional characters omitted for length.  Please see online version for complete character listing)  
 

//Z 
 0b11101110, 
 0b00100010, 
 0b01000100, 
 0b10001000, 
 0b11101110 
 }; 
  
//================================== 
//This is the sync generator and raster generator. It MUST be entered from  
//sleep mode to get accurate timing of the sync pulses 
#pragma warn- 
interrupt [TIM1_COMPA] void t1_cmpA(void)   
begin  
  //start the Horizontal sync pulse     
  PORTD = syncON;      
  //count timer 0 at 1/usec 
  TCNT0=0; 
  //update the curent scanline number 
  LineCount ++ ;    
  //begin inverted (Vertical) synch after line 247 
  if (LineCount==248) 
  begin  
    syncON = 0b00100000; 
    syncOFF = 0; 
  end 
  //back to regular sync after line 250 
  if (LineCount==251)  
  begin 
    syncON = 0; 
    syncOFF = 0b00100000; 
  end   
  //start new frame after line 262 
  if (LineCount==263)  
  begin 
     LineCount = 1; 
    end   
   
  delay_us(2); //adjust to make 5 us pulses 
  //end sync pulse 
  PORTD = syncOFF;    
   
  //read A/D and restart it 
ADnow = ADCH ;  
ADCSR.6 = 1 ;   
     
  //If the line is a display line, put it on the screen   
  if (LineCount<ScreenBot && LineCount>=ScreenTop)  
    begin  
        
       //compute byte index for beginning of the next line 
       //left-shift 4 would be individual lines 
       // <<3 means line-double the pixels  
       //The 0xfff8 truncates the odd line bit 
       //i=(LineCount-ScreenTop)<<3 & 0xfff8; // 
        
       #asm 
       push r16 
       lds   r12, _LineCount 
       lds   r13, _Linecount+1 
       ldi   r16, 30 
       sub  r12, r16  
       ldi  r16,0 
       sbc  r13, r16  
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       lsl  r12 
       rol  r13 
       lsl  r12 
       rol  r13 
       lsl  r12     
       rol  r13 
       mov  r16,r12 
       andi r16,0xf0 
       mov  r12,r16 
       pop r16  
       #endasm 
         
       //load 16 registers with screen info 
       #asm 
       push r14 
       push r15 
       push r16 
       push r17 
       push r18  
       push r19  
       push r26 
       push r27 
        
       ldi  r26,low(_screen)   ;base address of screen 
       ldi  r27,high(_screen)    
       add  r26,r12            ;offset into screen (add i) 
       adc  r27,r13 
       ld   r4,x+           ;load 16 registers and inc pointer 
       ld   r5,x+ 
       ld   r6,x+   
       ld   r7,x+ 
       ld   r8,x+  
       ld   r9,x+ 
       ld   r10,x+   
       ld   r11,x+ 
       ld   r12,x+  
       ld   r13,x+ 
       ld   r14,x+   
       ld   r15,x+ 
       ld   r16,x+    
       ld   r17,x+   
       ld   r18,x+ 
       ld   r19,x  
        
       pop  r27 
       pop  r26 
       #endasm   
 
       delay_us(1);  //adjust to center image on screen 
         
       //blast 16 bytes to the screen    
       #asm 
       ;but first a macro to make the code shorter   
       ;the macro takes a register number as a parameter 
       ;and dumps its bits serially to portD.6    
       ;the nop can be eliminated to make the display narrower 
       .macro videobits ;regnum 
        BST  @0,7 
 IN   R30,0x12 
 BLD  R30,6 
 nop 
 OUT  0x12,R30   
  
 BST  @0,6 
 IN   R30,0x12 
 BLD  R30,6 
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 nop 
 OUT  0x12,R30  
  
 BST  @0,5 
 IN   R30,0x12 
 BLD  R30,6  
 nop 
 OUT  0x12,R30  
  
 BST  @0,4 
 IN   R30,0x12 
 BLD  R30,6 
 nop 
 OUT  0x12,R30  
  
 BST  @0,3 
 IN   R30,0x12 
 BLD  R30,6 
 nop 
 OUT  0x12,R30  
  
 BST  @0,2 
 IN   R30,0x12 
 BLD  R30,6 
 nop 
 OUT  0x12,R30  
  
 BST  @0,1 
 IN   R30,0x12 
 BLD  R30,6  
 nop 
 OUT  0x12,R30  
  
 BST  @0,0 
 IN   R30,0x12 
 BLD  R30,6 
 nop 
 OUT  0x12,R30  
       .endm      
         
 videobits r4 ;video line -- byte 1 
        videobits r5 ;byte 2   
        videobits r6 ;byte 3 
        videobits r7 ;byte 4 
        videobits r8 ;byte 5 
        videobits r9 ;byte 6 
        videobits r10 ;byte 7 
        videobits r11 ;byte 8  
        videobits r12 ;byte 9 
        videobits r13 ;byte 10   
        videobits r14 ;byte 11 
        videobits r15 ;byte 12 
        videobits r16 ;byte 13 
        videobits r17 ;byte 14 
        videobits r18 ;byte 15 
        videobits r19 ;byte 16  
 clt   ;clear video after the last pixel on the line 
    IN   R30,0x12 
 BLD  R30,6 
 OUT  0x12,R30 
         
       pop r19 
       pop r18 
       pop r17  
       pop r16   
       pop r15 
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       pop r14 
       #endasm 
               
    end //of bit-blast to screen   
     
    GIFR = 0b01000000;       
 
    //save last sample     
    ADlast = ADnow; 
 
    //if triggered, then get waveform  
    //set the time scale by skipping samples 
     jj = ++jj & tscalemask[tscale] ;    
   
end   
 
#pragma warn+ 
 
//================================== 
//plot one point  
//at x,y with color 1=white 0=black 2=invert  
#pragma warn- 
void video_pt(char x, char y, char c) 
begin    
  
 #asm 
 ;  i=(x>>3) + ((int)y<<4) ;   the byte with the pixel in it 
 
 push r16 
 ldd r30,y+2   ;get x 
 lsr r30 
 lsr r30 
 lsr r30       ;divide x by 8 
 ldd r12,y+1   ;get y 
        lsl r12       ;mult y by 16 
        clr r13 
 lsl r12 
 rol r13 
 lsl r12 
 rol r13 
 lsl r12 
 rol r13 
 add r12, r30      ;add in x/8 
  
 ;v2 = screen[i];   r5 
        ;v3 = pos[x & 7];  r6 
 ;v4 = c            r7 
 ldi r30,low(_screen) 
 ldi r31,high(_screen) 
 add r30, r12 
 adc r31, r13 
 ld r5,Z    ;get screen byte 
 ldd r26,y+2   ;get x 
 ldi r27,0 
 andi r26,0x07           ;form x & 7  
 ldi r30,low(_pos*2)   
 ldi r31,high(_pos*2) 
 add r30,r26 
 adc r31,r27 
 lpm r6,Z 
 ld r16,y   ;get c  
        
       ;if (v4==1) screen[i] = v2 | v3 ;  
       ;if (v4==0) screen[i] = v2 & ~v3;  
       ;if (v4==2) screen[i] = v2 ^ v3 ;  
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       cpi r16,1 
       brne tst0 
       or  r5,r6 
       tst0: 
       cpi r16,0 
       brne tst2  
       com r6 
       and r5,r6 
       tst2: 
       cpi r16,2 
       brne writescrn 
       eor r5,r6 
       writescrn: 
        ldi r30,low(_screen) 
 ldi r31,high(_screen) 
 add r30, r12 
 adc r31, r13 
 st Z, r5         ;write the byte back to the screen 
  
 pop r16 
 #endasm 
        
end 
#pragma warn+ 
 
//================================== 
// put a big character on the screen 
// c is index into bitmap 
void video_putchar(char x, char y, char c)   
begin  
    v7 = x; 
    for (v6=0;v6<7;v6++)  
    begin 
        v1 = bitmap[c][v6];  
        v8 = y+v6; 
        video_pt(v7,   v8, (v1 & 0x80)==0x80);   
        video_pt(v7+1, v8, (v1 & 0x40)==0x40);  
        video_pt(v7+2, v8, (v1 & 0x20)==0x20); 
        video_pt(v7+3, v8, (v1 & 0x10)==0x10); 
        video_pt(v7+4, v8, (v1 & 0x08)==0x08); 
    end 
end 
 
//================================== 
// put a string of big characters on the screen 
void video_puts(char x, char y, char *str) 
begin 
 char i ; 
 for (i=0; str[i]!=0; i++) 
 begin   
  if (str[i]>=0x30 && str[i]<=0x3a)  
   video_putchar(x,y,str[i]-0x30); 
  else video_putchar(x,y,str[i]-0x40+9); 
  x = x+6;  
 end 
end 
       
//================================== 
// put a small character on the screen 
// x-cood must be on divisible by 4  
// c is index into bitmap 
void video_smallchar(char x, char y, char c)   
begin  
 char mask; 
 i=((int)x>>3) + ((int)y<<4) ; 
 if (x == (x & 0xf8)) mask = 0x0f;     //f8 
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 else mask = 0xf0; 
  
 screen[i] =    (screen[i] & mask) | (smallbitmap[c][0] & ~mask);  
    screen[i+16] = (screen[i+16] & mask) | (smallbitmap[c][1] & ~mask); 
        screen[i+32] = (screen[i+32] & mask) | (smallbitmap[c][2] & ~mask); 
        screen[i+48] = (screen[i+48] & mask) | (smallbitmap[c][3] & ~mask); 
    screen[i+64] = (screen[i+64] & mask) | (smallbitmap[c][4] & ~mask);  
end   
 
//================================== 
// put a string of small characters on the screen 
// x-cood must be on divisible by 4  
void video_putsmalls(char x, char y, char *str) 
begin 
 char i ; 
 for (i=0; str[i]!=0; i++) 
 begin   
  if (str[i]>=0x30 && str[i]<=0x3a)  
   video_smallchar(x,y,str[i]-0x30); 
  else if (str[i]>=0x41) 
      video_smallchar(x,y,str[i]-0x40+12); 
  else if (str[i]==0x20) 
   video_smallchar(x,y,12);    
  else if (str[i]==0x2e) 
   video_smallchar(x,y,10);   
   else if (str[i]==0x2d) 
   video_smallchar(x,y,11); 
  x = x+4;  
 end 
end 
        
//================================== 
//plot a line  
//at x1,y1 to x2,y2 with color 1=white 0=black 2=invert  
//NOTE: this function requires signed chars    
//Code is from David Rodgers, 
//"Procedural Elements of Computer Graphics",1985 
void video_line(char x1, char y1, char x2, char y2, char c) 
begin    
 int e; 
 signed char dx,dy,j, temp; 
 signed char s1,s2, xchange; 
        signed char x,y; 
         
 x = x1; 
 y = y1; 
 dx = cabs(x2-x1); 
 dy = cabs(y2-y1); 
 s1 = csign(x2-x1); 
 s2 = csign(y2-y1); 
 xchange = 0;    
 if (dy>dx) 
 begin 
  temp = dx; 
  dx = dy; 
  dy = temp; 
  xchange = 1; 
 end  
 e = ((int)dy<<1) - dx;    
 for (j=0; j<=dx; j++) 
 begin 
  video_pt(x,y,c) ;  
  if (e>=0) 
  begin 
   if (xchange==1) x = x + s1; 
   else y = y + s2; 
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   e = e - ((int)dx<<1); 
  end 
  if (xchange==1) y = y + s2; 
  else x = x + s1; 
  e = e + ((int)dy<<1); 
 end 
end 
 
//================================== 
//return the value of one point  
//at x,y with color 1=white 0=black 2=invert 
char video_set(char x, char y) 
begin 
 //The following construction  
   //detects exactly one bit at the x,y location 
 i=((int)x>>3) + ((int)y<<4) ;   
    return ( screen[i] & 1<<(7-(x & 0x7)));     
end 
 
//================================== 
// set up the ports and timers 
void main(void) 
begin   
  
 //Scroll Variables   
  char inc; //keeps last 3 BPMs saved for averaging 
  char counter; //used to control rate of scroll    
  char thresh; //sets threshold for R-wave detection  
  char rate;  //toggles between FULL and HALF scroll speed 
  char bpm;   //variables to store BPM intervals 
  float bpm3, bpm3old1,bpm3old2,bpm3old3,bpmout; 
   
  inc = 0; 
  rate = 1; 
  thresh = 164; //this should be adjusted per individual 
      
  //init timer 1 to generate sync 
  OCR1A = lineTime;  //One NTSC line 
  TCCR1B = 9;   //full speed; clear-on-match 
  TCCR1A = 0x00; //turn off pwm and oc lines 
  TIMSK = 0x10;  //enable interrupt T1 cmp  
   
  //init ports 
  DDRD = 0xf0;  //video out and int0 input on d.2 
  //D.5 is sync:1000 ohm + diode to 75 ohm resistor 
  //D.6 is video:330 ohm + diode to 75 ohm resistor 
  // port B is switches with pullups ON 
  DDRB = 0x00;  
  PORTB = 0xff; 
      
  //init A/D converter to  
  //channel 0 ; internal AVcc reference ; left adjust 
  ADMUX = 0b01100001;  
  //ON--bit7  and start conversion--bit6 
  //clock of 500 Khz (xtal/32)  bits2-0 
  ADCSR = 0b11000101 ;  
   
  //initial trigger level 
  trigLevel = 128;   
   
  //init index to indicate ready to get data 
  ii = 129 ;   
  //trigger mode 0=level 1=edge 
  trigmode = 0; 
   
  //initialize synch constants  
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  LineCount = 1; 
  syncON = 0b00000000; 
  syncOFF = 0b00100000;   
   
  //init UART and set baud to 19.2 
  UCSRB = 0x18; 
  UBRRL = 103; 
   
  //Print "EKGSCOPE"  
  video_puts(4,3,cu1);    
                             
  //initial rate 
  video_putsmalls(64,83,fast); //"FULL" 
  //time and voltage scales 
  video_putsmalls(60,5,tind); //"PULSE" 
  //sprintf(vs,"%4.0f",(float)120*0.063625*(float)(1<<tscale));   
  //video_putsmalls(64,5,vs); 
  video_putsmalls(92,5,vind); //"RATE" 
  //voltage scale init to 1/4 
  vscale=2; 
  //zero pt for drawing 
  vzero=76;                   
   
  //threshold level 
  video_putsmalls(84,83,thrsh); 
  //BPM/stop 
  video_putsmalls(4,83,tbpm);  
   
  #define width 126 
   
  //top line & bottom lines 
  video_line(0,1,width,1,1); 
  video_line(0,89,width,89,1); 
  video_line(0,11,width,11,1); 
  video_line(0,79,width,79,1);   
   
  //enable sleep mode and int0 rising edge 
  MCUCR = 0b10000011; 
  #asm ("sei"); 
   
  //The following loop executes once/video line during lines 
  //1-230, then does all of the frame-end processing 
  while(1) 
  begin 
   
    //stall here until next line starts 
    //sleep enable; mode=idle   
    //use sleep to make entry into sync ISR uniform time   
      
    #asm ("sleep");  
     
    //The following code executes during the vertical blanking 
    //Code here can be as long as   
    //a total of 60 lines x 63.5 uSec/line x 8 cycles/uSec  
     
    if (LineCount==211) 
    begin               
           ++counter;     
            
           //check rate & stop conditions 
           if ((counter%rate == 0) && !oneShotenable)  
           begin 
            //scroll the data     
                for (k=0; k<127; k++) 
                 ADout[k] = ADout[k+1]; 
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                ADout[127] = ADnow;       
                putchar(ADnow);  //send data to serial port 1 
             
            //format the data for screen output 
            for(k=0; k<128; k++) 
            begin  
               video_pt(k,ADold[k],0); 
                
                 vpoint = vzero - (ADout[k]>>vscale) ; 
                 if (vpoint>78) vpoint=78; 
                 if (vpoint<12) vpoint=12;  
                 video_pt(k,vpoint,1); 
                 ADold[k] = vpoint ;   
                end  
           end      
            
           //Visual Pulse Indicator 
           if(ADout[127] > thresh) 
           begin 
         
        inc = (inc+1)%3; 
        
        video_pt(85,5,1); 
        video_pt(86,5,1); 
        video_pt(85,6,1); 
        video_pt(86,6,1); 
        video_pt(85,7,1); 
        video_pt(86,7,1); 
               
         //Pulse BPM calculation 
          bpm = 120; //search offset to avoid counting same peak 
               while ((ADout[bpm] < thresh)) 
                  bpm--; 
          
               //Points are spaced 1/60second apart 
               bpm3 = (1/(0.016 * (127-bpm)))*60;   
                
               //Adjust BPM for slower rate  
               if (rate == 2) bpm3=bpm3/2; 
               
              //Save last 3 BPMs for averaging  
              switch(inc) 
              { 
               case 0: 
                bpm3old1 = bpm3;     
                break; 
        
               case 1:  
                       bpm3old2 = bpm3;             
                 break; 
                  
                 case 2:  
                bpm3old3 = bpm3;    
                 
                //Running BPM average 
                       bpmout = (bpm3old1+bpm3old2+bpm3old3)/3; 
                
                        //Display BPM  
                 sprintf(vs, "%3.1f",bpmout); 
                 video_putsmalls(20,83,vs);   
                break;                 
              } 
               
     end 
      
     else  
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     begin //Blink pulse indicator 
        video_pt(85,5,0); 
        video_pt(86,5,0);  
        video_pt(85,6,0); 
        video_pt(86,6,0); 
        video_pt(85,7,0); 
        video_pt(86,7,0); 
     end 
                    
        if (ii==128) 
           begin 
            //freerun mode -- just wait for next trigger 
            if(oneShotenable==0) ii=129; 
            //clear armed state in stop mode 
            else  video_putsmalls(4,83,tstop); 
           end      
        
       bstep++ ; 
       //These buttons are not in the state machine 
       //because they should autorep at bstep speed 
       if (oneShotenable && bstep==4) 
       begin  
         bstep=0; 
         //not running -- move cursor  
         if (PINB.7==0 && curx<127)  
         begin 
          video_pt(curx,vzero+2-(ADout[curx]>>vscale),0); 
          curx++ ;  
          video_pt(curx,vzero+2-(ADout[curx]>>vscale),1); 
         end  
            if (PINB.6==0 && curx>0)  
            begin 
             video_pt(curx,vzero+2-(ADout[curx]>>vscale),0); 
             curx-- ; 
             video_pt(curx,vzero+2-(ADout[curx]>>vscale),1); 
            end 
            sprintf(vs,"%5.1f",(float)curx*0.063625*(float)tscaleV[tscale]);   
            video_putsmalls(16,83,vs); 
            if (vselect==0 || vselect==2) 
             sprintf(vs,"%5.2f",(float)ADout[curx]*.0195-2.50);  
            if (vselect==1 || vselect==3) 
             sprintf(vs,"%5.2f",(float)ADout[curx]*.01-1.28); 
            video_putsmalls(40,83,vs);  
        end  
           
        //Set the pulse rate voltage threshold 
        else if (!oneShotenable && bstep==4) 
        begin   
        //running -- set R-Wave trigger threshold 
            bstep=0; 
            if (PINB.7==0 && trigLevel<255) thresh++ ;  
            if (PINB.6==0 && trigLevel>0) thresh-- ; 
            sprintf(vs,"%03d",thresh); 
            video_putsmalls(108,83,vs);   
        end 
            
       //button state machine 
       switch (bstate) 
       begin 
           case 0: //unpressed 
               if (PINB==0xff) break; 
               else  
               begin 
                    bstate=1; 
                    buttons=PINB; 
                end 
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                break; 
                 
           case 1: //posible press 
             if (buttons==PINB)  //then actual press    
                 begin  
                     bstate=2; 
              //choose run/stop  
           if (PINB.0==0) oneShotenable=!oneShotenable ; 
           if (oneShotenable) video_putsmalls(4,83,tstop); 
                       
                      else 
                      begin 
                        video_putsmalls(4,83,tbpm);  
                      video_putsmalls(16,83,blanks); //wipes t/v readout     
                        sprintf(vs,"%02d",bpm); 
                    video_putsmalls(20,83,vs);  
                      end 
                              
                    //fast/slow rate toggle 
                 if (PINB.3==0 && !oneShotenable)  
                 begin 
                  
                  if(rate==1)  
                  begin 
                   rate = 2; 
                   video_putsmalls(64,83,slow); 
                  end 
                   
                  else  
                  begin 
                       rate = 1; 
                   video_putsmalls(64,83,fast); 
                  end 
                 end 
                  
                 //choose voltage scale--one of 4 levels when running 
            if (PINB.4==0 && !oneShotenable) vselect = ++vselect & 3; 
            if (vselect==0) 
            begin 
             vscale=2; 
             vzero=76; 
             ADMUX = 0b01100001 ; 
            end    
            if (vselect==1) 
            begin 
             vscale=2; 
             vzero=76; 
             ADMUX = 0b11100001 ; 
            end 
         if (vselect==2)  
        begin 
             vscale=0; 
             vzero=-80; 
             ADMUX = 0b01100001 ; 
            end  
             if (vselect==3) 
            begin 
             vscale=0; 
             vzero=-80; 
             ADMUX = 0b11100001 ; 
            end   
              
                end  //actual buton press 
                 
                else bstate=0;    
                break; 
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           case 2: //possible release 
                  if (buttons==PINB) break; 
                  else bstate=3; 
                  break; 
            
           case 3: //release 
                  if (buttons==PINB) 
                  begin 
                    bstate=3; 
                    break; 
                  end 
                  else bstate=0; 
       end  
        
      end  //line 211 
  end  //while 
end  //main 
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Appendix V: MATLAB Script for EKG Data Analysis 
%Data Processing Code for Wireless EKG% 
%Josh Silbermann and Matt Melnyk% 
%MENG Project 2003/2004% 
 
close all 
clear 
clc 
 
%%%%%clean up any leftover serial connections%%%%%%%%%%%%%%%% 
try 
    fclose(instrfind) %close all serial connections   
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
 
input('Unit Off?') 
 
%establish serial connection 
s = serial('COM1',... 
    'baudrate',9600);  
s.inputbuffersize = 3000; 
s.timeout = 80; 
 
%open COM1 
fopen(s) 
fprintf(s,'*IDN?') 
 
input('Turn Unit On') 
 
%centerline = 126  
 
%%%%%THIS CODE CAN BE USED TO RECORD DATA%%%%%%%% 
%    counter1 = 1; 
%  
%     while (counter1 < 2) 
%      
%         data2 = fread(s,3000); 
%         plot(data2); 
%      
%         pause(0.001) %YOU NEED ME TO WORK 
%      
%         counter1 = counter1 + 1; 
%     end   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%for normal distributions (factor for constructing control charts) 
d2 = [0 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.97 3.078 3.173 3.258 3.336 3.407 3.472]; 
d3 = [0 0.853 0.888 0.88 0.864 0.848 0.833 0.82 0.808 0.797 0.787 0.778 0.77 0.763 0.756]; 
 
% Process Control Technique 
% 1) Gather initial Data on Past Process Assumed in Control 
 
data = fread(s,2000); 
 
% 2) Extract Desired Observatons 
track = input('Track BPM(1) or QRS-Interval(2)??   '); %1 = BPM  2 = QRS Interval 
if(track == 1) 
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    %BPM 
Extraction%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
    %set threshold and find points that exceed it (R-waves) 
    threshold = 163; 
    intervals = find(data > threshold); 
     
    tempCnt = 1; 
     
    %plot initial EKG data  
    subplot(2,2,1); 
    plot(data); 
    title('EKG Waveform') 
    xlabel('time'); 
    ylabel('amplitude'); 
     
    %parse R-wave spike vector and find intervals between spikes 
    while(tempCnt < length(intervals)) 
        intervals(tempCnt) = intervals(tempCnt+1)-intervals(tempCnt); 
        tempCnt = tempCnt + 1; 
    end 
     
    %convert interval vector to seconds 
    intervals = intervals(1:(length(intervals)-1)); 
    intervals = intervals .* (1/60); 
    intervals = 1 ./ intervals; 
    intervals = intervals .* 60; 
     
    tempCnt = 1; 
     
    %remove noticibly erroneous data from interval vector 
    %NOTE ON DELMAT FUNCTION: 
    %% Copyright (c) 2003-09-24, B. Rasmus Anthin. 
    % Revision 2003-10-27, 2003-10-29. 
    % GPL license, freeware. 
    while(tempCnt <= length(intervals)) 
        if((intervals(tempCnt) > 120) | (intervals(tempCnt) < 45)) 
            intervals = delmat(intervals,tempCnt);    
        else 
            tempCnt = tempCnt + 1;     
        end 
    end 
     
    %plot histogram of BPM times 
    subplot(2,2,2); 
    hist(intervals); 
    title('Distribution of BPM Times') 
     
    data = intervals; 
     
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
 
%QRS Interval 
Extraction%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if(track == 2) 
     
    %set threshold and find points that exceed it (R-waves) 
    threshold = 152; 
    peaks = find(data > threshold); 
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    %plot initial EKG data 
    subplot(2,2,1); 
    plot(data); 
    title('EKG Waveform') 
    xlabel('time'); 
    ylabel('amplitude'); 
     
    tempCnt = 1; 
     
    %parse R-wave spike vector and find intervals between spikes 
    while(tempCnt < length(peaks)) 
        intervals(tempCnt) = (peaks(tempCnt+1)-peaks(tempCnt)); 
        tempCnt = tempCnt + 1; 
    end 
     
    tempCnt = 1; 
     
    %basic error correction 
    while(tempCnt < length(intervals)) 
        if((intervals(tempCnt) < 15)) 
            peaks = delmat(peaks,tempCnt);    
        end  
        tempCnt = tempCnt + 1;     
    end 
     
    currentPeak = peaks(1); %time of first peak 
    tempTime = currentPeak; 
    currentQrsPeak = 1; 
     
    while (currentPeak < peaks(length(peaks))) %while you are not at last time 
        while((data(tempTime) > 130)) %find start of Q-wave via backwards search 
            tempTime = tempTime - 1; 
        end 
         
        lowSide = tempTime; %mark this lower time 
         
        tempTime = currentPeak+1; %reset start time for hi side search 
        dataPrev = data(tempTime-1); 
         
        %find end of S-wave by checking distance from center and positive slope 
        while((data(tempTime) < 122) | (dataPrev > data(tempTime))) 
            dataPrev = data(tempTime); 
            tempTime = tempTime + 1; 
        end 
         
        hiSide = tempTime; %mark this upper time 
         
        %convert QRS-interval to seconds 
        qrsTimes(currentQrsPeak) = (1/((hiSide - lowSide)*60))*60; 
         
        currentQrsPeak = currentQrsPeak + 1; 
         
        %if not at end, advance to next peak 
        if(currentQrsPeak <= length(peaks)) 
            currentPeak = peaks(currentQrsPeak); 
            tempTime = currentPeak; 
        end 
         
    end 
     
    %plot histogram of QRS times 
    subplot(2,2,2); 
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    hist(qrsTimes); 
    title('Distribution of QRS Interval Times') 
     
    data = qrsTimes; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
% 3) Group Observations 
 
counter = 1; 
LCV = 1; 
 
dataInit = length(data) 
groupSize = input('Please choose groupsize which dataInit divible by: '); 
 
% 4) Calculate Group Means 
% 5) Calculate Group Ranges 
 
while (counter < length(data)) 
    if(counter+groupSize-1 <= length(data)) 
        averages(LCV) = mean(data(counter:(counter+groupSize-1))); 
        ranges(LCV) = max(data(counter:(counter+groupSize-1))) - ... 
            min(data(counter:(counter+groupSize-1))); 
    else 
        averages(LCV) = mean(data(counter:(length(data)))); 
        ranges(LCV) = max(data(counter:(length(data)))) - ... 
            min(data(counter:(length(data)))); 
    end    
     
    counter = counter + groupSize; 
    LCV = LCV + 1; 
     
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
 
% 6) Estimate Mean and Standard Dev. of y 
% 7) Estimate Mean and Standard Dev. of R 
 
grandMean = mean(averages); 
grandRange = mean(ranges); 
 
muHat = grandMean; 
sigmaHat = grandRange/(d2(groupSize)); 
 
muRHat = grandRange; 
sigmaRHat = ((d3(groupSize))*(grandRange))/(d2(groupSize)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
 
% 8) Calculate Estimated Confidence Interval  
%For normal random variable, 99.7% of observations in 6 SDs 
yCIL = ones(1,dataInit/groupSize) .* (muHat - (3*sigmaHat)/(sqrt(groupSize))); 
yCIH = ones(1,dataInit/groupSize) .* (muHat + (3*sigmaHat)/(sqrt(groupSize))); 
 
rCIL = ones(1,dataInit/groupSize) .* max([0,(muRHat - 3*sigmaRHat)]); 
rCIH = ones(1,dataInit/groupSize) .* (muRHat + 3*sigmaRHat); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
 
% 9) Apply Control Limits 
% 10) Determine if system is in control 
 
if(track == 1) %Monitor BPM 
    counter1 = 1; 
     
    while (counter1 < 4) %Take # Sets of "Live" Data 
        data = fread(s,1500); 
        counter = 1; 
        LCV = 1; 
         
        subplot(2,2,1); 
        plot(data); 
        title('EKG Waveform') 
         
        intervals = find(data > threshold); %find peaks 
        tempCnt = 1; 
         
        while(tempCnt < length(intervals)) %calculate intervals btwn peaks 
            intervals(tempCnt) = intervals(tempCnt+1)-intervals(tempCnt); 
            tempCnt = tempCnt + 1; 
        end 
         
        %convert intervals to BPM 
        intervals = intervals(1:(length(intervals)-1)); 
        intervals = intervals .* (1/60); 
        intervals = 1 ./ intervals; 
        intervals = intervals .* 60; 
         
        tempCnt = 1; 
         
        %filter intervals for obvisouly erroneous data 
        while(tempCnt <= length(intervals)) 
            if((intervals(tempCnt) > 120) | (intervals(tempCnt) < 45)) 
                intervals = delmat(intervals,tempCnt);    
            else 
                tempCnt = tempCnt + 1;     
            end 
        end 
         
        data = intervals; 
         
        subplot(2,2,2); 
        hist(intervals); 
        title('Distribution of BPM Times') 
         
        %calculate groups means and group ranges paying attention to vector 
        %lengths and orginal group sizes making sure no bounds errors occur 
        while (counter < length(data)) 
            if(counter+groupSize-1 <= length(data)) 
                averages(LCV) = mean(data(counter:(counter+groupSize-1))); 
                ranges(LCV) = max(data(counter:(counter+groupSize-1))) - ... 
                    min(data(counter:(counter+groupSize-1))); 
            else 
                averages(LCV) = mean(data(counter:(length(data)))); 
                ranges(LCV) = max(data(counter:(length(data)))) - ... 
                    min(data(counter:(length(data)))); 
            end    
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            counter = counter + groupSize; 
            LCV = LCV + 1; 
        end 
         
        %Refresh mean plots with fixed control limits 
        subplot(2,2,3); 
        plot(averages); 
        title('Mean Control Chart') 
        hold; 
        plot(yCIL);  
        plot(yCIH); 
        hold; 
         
        subplot(2,2,4); 
        plot(ranges); 
        title('Range Control Chart') 
        hold; 
        plot(rCIL);  
        plot(rCIH); 
        hold; 
         
        pause(0.001) %NECESSARY FOR REFRESH EFFECT 
         
        counter1 = counter1 + 1; 
    end 
end 
 
if(track == 2) %Monitor QRS Int 
    counter1 = 1; 
     
    while (counter1 < 4) %Take # Sets of "Live" Data 
        data = fread(s,1500); 
        LCV = 1; 
        counter = 1; 
         
        subplot(2,2,1); 
        plot(data); 
        title('EKG Waveform') 
         
        peaks = find(data > threshold); 
        tempCnt = 1; 
         
        while(tempCnt < length(peaks)) 
            intervals(tempCnt) = (peaks(tempCnt+1)-peaks(tempCnt)); 
            tempCnt = tempCnt + 1; 
        end 
         
        tempCnt = 1; 
         
        while(tempCnt < length(intervals)) 
            if((intervals(tempCnt) < 15)) 
                peaks = delmat(peaks,tempCnt);    
            end  
            tempCnt = tempCnt + 1;     
        end 
         
        currentPeak = peaks(1); %time of first peak 
        tempTime = currentPeak; 
        currentQrsPeak = 1; 
         
        while (currentPeak < peaks(length(peaks))) %while you are not at last time 
            while((data(tempTime) > 130)) 
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                tempTime = tempTime - 1; 
            end 
             
            lowSide = tempTime; 
             
            tempTime = currentPeak+1; %reset start time for hi side search 
            dataPrev = data(tempTime-1); 
             
            while((data(tempTime) < 122) | (dataPrev > data(tempTime))) 
                dataPrev = data(tempTime); 
                tempTime = tempTime + 1; 
            end 
             
            hiSide = tempTime; 
             
            qrsTimes(currentQrsPeak) = (1/((hiSide - lowSide)*60))*60; 
             
            currentQrsPeak = currentQrsPeak + 1; 
             
            if(currentQrsPeak <= length(peaks)) 
                currentPeak = peaks(currentQrsPeak); 
                tempTime = currentPeak; 
            end 
        end     
     
    data = qrsTimes; 
     
    subplot(2,2,2); 
    hist(qrsTimes); 
    title('Distribution of QRS Interval Times') 
     
        %calculate groups means and group ranges paying attention to vector 
        %lengths and orginal group sizes making sure no bounds errors occur 
        while (counter < length(data)) 
            if(counter+groupSize-1 <= length(data)) 
                averages(LCV) = mean(data(counter:(counter+groupSize-1))); 
                ranges(LCV) = max(data(counter:(counter+groupSize-1))) - ... 
                    min(data(counter:(counter+groupSize-1))); 
            else 
                averages(LCV) = mean(data(counter:(length(data)))); 
                ranges(LCV) = max(data(counter:(length(data)))) - ... 
                    min(data(counter:(length(data)))); 
            end    
             
            counter = counter + groupSize; 
            LCV = LCV + 1; 
        end 
         
        %Refresh mean plots with fixed control limits 
        subplot(2,2,3); 
        plot(averages); 
        title('Mean Control Chart') 
        hold 
        plot(yCIL);  
        plot(yCIH); 
        hold 
         
        subplot(2,2,4); 
        plot(ranges); 
        title('Range Control Chart') 
        hold 
        plot(rCIL);  
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        plot(rCIH); 
        hold 
         
        pause(0.001) %NECESSARY FOR REFRESH EFFECT 
         
        counter1 = counter1 + 1; 
    end 
end  
 
fclose(s); 
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Appendix VI: PCB Layout Files  

 

Figure 42: PCB Layout of Transmitter 

 

Figure 43: PCB Layout of Receiver 
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