AN ACCELERATION MEASURING SYSTEM VIA
RADIO FREQUENCY COMMUNICATION

A Design Project Report
Presented to the Engineering Division of the Graduate School
Of Cornéll University
In Partial Fulfillment of the Requirementsfor the Degr ee of
Master of Engineering (Electrical)

by
Wong, Kim Fung
Project Advisor: Dr. BruceLand
Degree Date: January 2004

Abstract

Master of Electrical Engineering Program
Cornéll University

Design Project Report

Project Title: An Acceleration Measuring System via Radio Frequency Communication

Author: Wong, Kim Fung

Abstract: This project is designed to explore the possibility of building a compact
acceleration measuring device and applying it in atypical middle/high school science
class. Such an interesting interactive device could to be used to improve the traditional
classroom environment. Students can carry the device on their bodies and see how fast
they move, and idedlly, it is hoped to help them become more interested in learning
simple physics. The project’ s design is based on a pair of microcontrollers.
Accelerometer’ s sensors are used and data are transmitted through radio frequency and
serial communication (RS232). Readings of the accelerometer’ s outputs are updated ten
times a second and data will be shown in graphical interpretation after measurement is
taken. The designed goal of this project isto provide a simple-to-use and reliable device

that can record the acceleration with good time resolution.

Report Approved by
Project Advisor: Date:

Executive Summary

This Master of Electrical and Computer Engineering project is designed to
measure accel eration through a simple microcontroller based system. It exploresthe
possibility of performing a simple interactive experiment in a science class to help
students in learning basic physics. This system should be easy to use by any grade
teacher with asimple user manual.

Two dual-axis accelerometers are arranged to form a tri-axis accel erometer and
outputs are sent to an Atmel Mega32 microcontroller (MCU). The accelerometer’s
outputs are analog. They are converted into digital counts by the built-in MCU anal og-
to-digital converters. The radio connection is established by a pair of radio packet
controllers (SP2) from Radiometrix. For both remote end’ s hardware and base station’s
hardware, radio packet controllers are connected to MCUs. Acceleration readings are
sent from the remote end’ s radio packet controller to the base station’s radio packet
controller. After performing some mathematics on the receiving data, the acceleration
readingsin digital count are converted into percentage and they are sent through a serial
communication to acomputer. Then Matlab is used to display the datainto a graphical
interpretation.

This system functions as a point-to-point system, but the SP2s are capable of
being applied as a point-to-multipoint system. The SP2 has the handshaking and
collision avoidance mechanism to prevent dataloss during transmission. It can aso be
customized to include source and designation address in the packet. However, the cost
would need to be lowered for production use.

The planning and implementation of this project have gone well and smoothly.
Planning was carefully thought through from the beginning of design and it was worth
the time since a careful plan saves alot development time. Thefinal deliverableisfairly
compact and solid. Data transmission between the pair of radio packet controllersis
robust. Accuracy of accelerometersis acceptable. Overall, the system functions well and

works as desired.

Table of Contents

An Acceleration Measuring System via Radio Frequency Communication
N 1 = T PP [
EXECULIVE SUMMAIY e e e e e s e ie e e e e ene e eaandl
) I 11 oo 11 o 1 o I 1
2) Design Problem and System Requirements...........ccccovviiiieiiecne e e e, 2
2.0 DESION PrOD M. .. et ittt e et e et e e e e e e e 2
2.2 SYStEM REQUITEMENES. .. e vt ete et et e e et aae e en et e e e e e enete e e e eenaneeenanens 2
3) RANQGE Of SOIULIONS.t e e e e e e e e e e e e D
K 0 A e oo Lo = 3
R I V= =S S @ o T= e o P 3
BT o= 1= o) 4= = S 4
I DT r= T o= | o TR 4
4) Design and Implementation..........co.ouvieieieie e e re e e 0D
4.1 REMOLE €NA NaIGWAIE. v e vee e et e et e et e e et e e e et e eeee e eaaeeeenaaeeens 5
4.2 Base Station NalOWare. ittt e e et et e e e e e e e e 11
e 101010 [0 =10 o0 1o AP
E Y (= o T o) o) [T (o) o P P 17
B) TSt RESUITS. ..o e e e e e e e e e e 18
B) CONCIUSION. ... ettt e e e e e e e e e e 20
7) ACKNOWIEAGEMENTS. .. .t e e e e 21
APPENAIX Al Ottt ittt e e e et e e e e e 22
Appendix B: SChematiCs..........ccoovii i e 00 23
Appendix C: Remote end microcontroller’sCode..............cccccvvvivieveeenn 25
Appendix D: Base station microcontroller’'sCode...........c.ccooeiiiiiiiiiiininnns 33
Appendix E: Matlab Code..........ccooviiiiiiiiiii 0. 38
Appendix F: Matlab result.............cooiiiiiii e 40
AppendixX G: User’'SManUal ..ot i et e e e e e 45
AppendixX H: PICtUre... ..o e a2 A6
Appendix |: Bibliography..........cooooiiiiiiiiiii e e 49

1) Introduction

Traditional learning method in classroom environment is not always enjoyable.
While some children do fine in learning fundamental physics with traditional way, there
are always others who prefer interactive learning. This project explores the possibility of
building a compact and reliable accel eration measuring device with cost effective
solution. Itsgoal isto provide students atool to enhance their learning experience in
classroom.

In fulfilling the Master of Engineering project requirement, | choseto design a
system based on microcontroller. This gives me a chance to build atangible and practical
deliverable rather than just some abstract fancy programming. In addition to this, | was
able to apply both hardware knowledge and software programming skill into the project.

Using radio packet controller for the wireless connection in this design gives
advantages such as longer reliable range, lower cost, and most importantly, the possibility
of extending the project’s goal into a small personal network with multiple client systems.
The accelerometers can be easily replaced with any desired acceleration range and only a
little modification is needed to be done on the embedded programs.

One of the main goals of this project issimplicity. The system should bereliable
and afriendly, easy to understand result should be available to user. Hence, the final data
isinamatrix form so that it will be easy to import into software, such as Excel or Matlab.
A user manual is provided in Appendix G to show how to get a graphical interpretation of
collected datain Matlab.

2) Design Problem and System Requirements
2.1 Design Problem

The goal of this project isto design alow cost, compact and reliable acceleration
measuring device. It should also be expandable into multiple clients system with few
code modifications. A simple graphical interpretation should be available to analysis the
collected data.

The system is composed with two major hardware and they are remote end’s
hardware and base station’ s hardware. Remote end’s hardware is responsiblein
collecting analog signals from accelerometers, converting signalsinto digital count by
built-in ADC, arranging data into packet, and sending the packet to the base station’s
hardware. Base station’s hardware is responsible in receiving packet, rearranging the
received datain percentage, and transmitting the rearranged data to a computer via

USART. Finally, datais analyzed in some graphs.

2.2 System Requirements

A simple-to-use and maintenance free system is the priority of thisdesign. A
nearly plug-and-play system is designed with minimum user’s operational steps. After
discussing with Dr. Land, system requirements are as following:

For a given tight budget, cost needs to be kept low.

The device should be fairly compact since it would be carried on a human’s body.
Range of the radio frequency connection should be highly stable up 20m.

The system should be expandable with multiple clientsif necessary.

Acceleration readings should be constantly updated at 10Hz.

A graphical interpretation should be available on the received readings.

No radio interference is allowed on other instruments.

3) Range of solutions

Theinitia project proposal is dlightly different from what the deliverable is at the
end of implementation. Various components of theinitial design have been replaced.
This could be areason of better fit or just happened that the wanted components were
unavailable at the time of implementation. As some of the hardware had been changed
throughout the devel opment, revisions on the design were constantly made. 1n the

following, four major components of the system are introduced.

3.1 Microcontroller

Atmel AVR microcontroller is chosen for this project because | am relatively
familiar with it. It has been used in ECE476-Microcontroller classwhich | had taken
during spring semester and general technical support isavailable from Dr. Land or
various websites. It isagood fit for the project asit includes eight built-in analog-to-
digital conversion channels, built-in USART, two external interrupts, and four bi-

directional ports which are just enough for project devel opment and debugging purpose.

3.2 Wireless Connection

Initial design was to apply Bluetooth technology instead of using radio packet
controller (SP2). After much research had been done, the cost of apair of Bluetooth
module was from $300 to $400. The worse fact is that most modules can only support
point-to-point. It will be awhile before the next generation point-to-multipoint OEM
modules are available. After discussing thiswith Dr. Land, we omitted the choice of
Bluetooth technology and chose to use radio packet controller.

At acost of $198, the SP2 does give some advantages over Bluetooth modules
that are available. First and most important, multiple SP2 can form asmall personal
network and each packet can include the source and destination address/ID. Second, SP2
includes handshake mechanism to prevent packet loss. Packet framing and error
checking is user transparent. Third, it has areliable range of 50m in-building and 200m
outdoor.

3.3 Accelerometer

Aninitial design included an accelerometer of +/-10g with analog output. 1t was
hoped to fit the system into various application with alager range. In addition to this, the
project is designed to measure all X-axis, Y-axis, and Z-axis. Itisdifficult to find atri-
axis accelerometer with a suitable range since most accelerometers are designed for
industrial purpose. While most accelerometers are used in industries, the cost is not low.
As aresult, only a dual-axis accelerometer of +/-2g with analog output is available to be
sampled from Analog Devices. During implementation, two dual-axis accelerometers are
arranged in away that all three axes are perpendicular to each other. Thereis one axis of

an accelerometer isleft disconnected from microcontroller.

3.4 Data Processing

Data are collected and processed in three stages and each stage can process the
information in different ways. Itisentirely up to the developer on what data he wants to
have at each stage.

i) Accelerometer’ s outputs are analog and they are processed by
microcontroller’s ADC and then transmitted out.

i) Data received in base station’ s hardware are manipulated to convert to
percentage. After some mathematical manipulation, the data before
transmitting through serial communication to a computer are in percentage of
+/-29.

1)) At the hyper terminal, data are arranged into a matrix with three columns.
After collecting the necessary data, afileis saved by capturing the matrix.
Then, a Matlab program is opened and the data is once again processed by the
program. At thisfinal processing, datain percentage are converted into data

in unit g and this transation shows the real accelerations that have recorded.

This scheme of handling collected data in the above way eased the programming
effort and it will be elaborated later in this report.

4) Design and Implementation
The acceleration measuring system includes two major hardware and two major
software programs. The hardware is the remote end’ s hardware and the base station’s
hardware. The software programs are the embedded application and Matlab program.
A block diagram of the system is shown below.

Remote end

) radio packet

accelorometers microcontrol ler P control lar
rulag slgnal packet
Base station
T digieal
computer microcontrol ler packel | radic packet
control ler

Hupetr Terminal

Matlak

4.1 Remote end hardware

Remote end’ s hardware is the device that will be carried by auser. Lots of efforts
have been spent to make it compact, light and reliable. Overall, the device consists of
three major parts and they are microcontroller, accelerometer, and radio packet controller.

All of the major components are elaborated in the following sections.

Thereisacolor scheme used in this project and they are:
Red — 9V

Yellow —5V

Black — ground

White — data signals between MCU and SP2 or X-axis
Blue —transmission related signals

Green —receiving related signals or Y -axis

Purple — Z-axis value

Orange — interconnection signals or reset

Microcontroller
Atmel AVR Mega32 is chosen for the project because of its availability, familiar
by the developer, and its great features such as built-in analog-to-digital converters,

external interrupts, and USART transmission.

Port A has eight channels of ADC. ADCO is connected with X-axis of first
accelerometer. ADCL is connected with Y -axis of first accelerometer. ADC2is
connected with X-axis of second accelerometer that is held upright. Asaresult,
ADC2 isreading Z-axis value of the device.

Port B is connected with LEDs for testing and debugging purpose. These LEDs
help to debug the embedded program during development. It is amost impossible
to have program worked the first time without debugging and that iswhy it is
necessary to have these LEDs. They can be used to show the data transmitted, or
which state the microcontroller is at.

Port C is used to interface with aradio packet controller (SP2). PC6 is an output
signal connected with TXR’ of SP2. PC5 is an output signal connected with
RXA’. PC3, PC2, PC1, and PCO are bi-directional signals connected with D3, D2,
D1, DO of SP2 respectively.

Port D is also used to interface with SP2. PD2 is external interrupt zero and it is
an input signal connected with TXA’ from SP2. PD3 is external interrupt one and
itisaninput signal connected with RXR’' from SP2. PD7 is an output signal
connected with Reset’ of SP2.

A table with the list of signals connected with the microcontroller is shown below:

Pin Port Direction Signal
40 PAO Input X-axis
39 PA1l Input Y-axis
38 PA2 Input Z-axis
81 PB[7:0] Output Red LEDs
28 PC6 Output TXR’
27 PC5 Output RXA’
25:22 PC[3:0] Bi-directional D3,02,D01,00

21 PD7 Output Reset’
17 PD1 Input RXR’

16 PDO Input TXA’

Beside the Port signal's, basic connections on microcontroller are worth noticing.
The microcontroller isrunning at 16MHz with an external crystal. A reset button is
available on microcontroller and the MCU’ sreset is activated on low.

A 9V alkaline battery is used to power up this remote end' s hardware. Of course
thereisabV voltage regulator connected with the battery. The voltage regulator is
LM78MO5 of TO-220 package from National Instrument. A 0.1pF capacitor is
connected between Vcc and ground to stabilize the source. The prototype board that is

used is 0.1 inch spacing and it is the most popular standard for most components.

Accelerometer

Analog Devices ADXL 311 +/- 2g dual-axis accelerometer is selected for this
project. Itisoperational from 2.7V t0 5.25V. Itstypical sensitivity is 312mv/g at 5V and
Ogisabout 2.5V. Notice that the typical sensitivity changes with different input voltage
and each accelerometer has different electrical characteristic.

Accelerometer’ s output isin analog which is desired since the MCU has the built-
in ADC. First, a10-bit resolution is used for the AD conversion in which means 1023 is
the maximum digital count. Then the ADC data register isleft shifted and the higher 8-
bit which isregister ADCH is chosen. The measured analog signals from the
accelerometers are referenced with 5V supply voltage and the equation of getting digital
count of theanalog signalsis: X = 1023 * (Accelerometer’ s signal level / 5V)

A list of the equivalent values of accelerometer’s output in different formsis

shown below:
Ing | Involtage | Higher 8-bit digital count
2 3.124 10100000 = OxAO
1 2.812 10010000 = 0x90
0 2.500 10000000 = 0x80
-1 2.188 01110000 = 0x70
-2 1.876 01100000 = 0x60

Since two dual-axis accelerometers are used, they are arranged in away that all
three axes are perpendicular to each other. A strong wireis used to hold them as close as
possible at 90 degree. X-axisand Y-axisof first accelerometer are read as X-axisand Y -
axis of the system. X-axis of second accelerometer isread as Z-axis of the system and Y -
axis of second accelerometer isleft disconnected from microcontroller. Example of an

accelerometer orientation is shown below:

T Y-axis (-ve)

ADXL311
0309
X-axis (+ve) X-axis (-ve)
l Y-axis (+ve)

After carefully aligning and connecting them together, they are tested individually
since each accelerometer may differ from another on electrical characteristics. Asa
result of thistesting, the theoretical values of accelerometer’s outputs are neglected and

the practical values are derived.

Ing X-axis Y-axis Z-axis
2 OxA2 0x9D OxA5
1 0x92 0x8D 0x95
0 0x82 0x7D 0x85
-1 0x72 0x6D 0x75
-2 0x62 0x5D 0x65

Radio Packet Controller
Radiometrix SP2-433-16 radio packet controller is chosen for the project. SP2is

ahighly intelligent transceiver module at 160kbps half duplex. It isoperational at 5V and
isdirect interface to 5V CMOS logic. It has areliable 50m in-door and 200m outdoor
range. SP2 includes two modulesinternally. Oneis UHF module which isresponsible to
transmit and receive data. The other is space port controller which is responsible to
control data and to interface with external microcontroller. Operational method inside
SP2 isuser transparent. SP2 works either in transmitter mode or receiver mode and it
uses a handshaking mechanism to prevent data loss during transmission. In the remote
end’s hardware, four LEDs are used to indicate states of the SP2.

Green LED — transmitter enabled (Pin5 — TXSelect’)

Red LED — receiver enabled (Pind4 — RXSelect’)

Orange LED - valid preamble detected (Pin10 — Signal’)

Yellow LED —valid packet received (Pin13 — RXR’)

Preamble allows data slicer in receiver to establish a correcting slicing point. After the
receiver has settled, the SP2 identify and phase lock onto the incoming data. A %2 whip
wave whip of 433MHz is mounted onto the prototype board to boost its signal strength
and it does give a much longer range after being connected. Signal linessuch as TXR’,
TXA’, RXR', RXA’" and Reset’ are Active Low which means they are activated (enabled)
when low is passed into the signal line. Datasheets found on various Radiometrix’s
websites are inconsistent and may mislead developers.

When implementing the SP2, it gave me one difficulty that isworth to mention
here. The SP2 is manufactured by Radiometrix Limited which bases on England. The
size of the module isfairly compact and when | was trying to solder the SP2 into a
prototype board, problem happened. The SP2 would not fit into a standard 0.1” spacing
board. The spacing of the pinsis 2mm; in that case, a2mm grid prototype board is
needed. After so much effort had spent on the web in searching for the right board, a
relatively expensive board was found from Digikey but there was no luck to find a socket
that would fit the SP2. And that is why the expensive SP2s are soldered onto the board
directly.

10

4.2 Base station hardware

Base station is responsible for receiving collected data, manipulating received
datainto percentage format and sending to a computer through a serial communication
(RS232) for agraphical analysis. It consists three major parts which are microcontroller,

radio packet controller and serial communication hardware.

Microcontroller

The connection of microcontrollersin both the base station’s hardware and
remote end’ s hardware are nearly identical. The only differences between the two are the
USART and accelerometers. There is no accelerometer connected with base station’s
hardware since its purpose is used to receive and process data. For the USART, PD.1is
used to transmit data serially to the serial communication hardware. Please refer to

section 4.1 for detail on microcontroller.

Radio Packet Controller
The connection of SP2 in both the base station’ s hardware and the remote end’ s
hardware areidentical. Please refer to section 4.1 for detail on SP2.

Serial Communication

Serial communication (RS232) transmits data from microcontroller to computer’s
Hyper Terminal. The USART of base station has baud rate of 9600bps, one stop bits, no
parity bit and data frame is 8-bit.

The RS232 is negative logic which meansthat a‘1’ is negative voltageand a‘ 0’
ispositive voltage. A converter is needed for TXD and RXD and Max233 is chosen
because of itsinternal capacitors. Max232 is a popular choice but four external

capacitors seem too much for the design and Max233 functions just as well asit.

11

A female DB9 connector is soldered with Max233 mediadriver. Pin 5 (T1Out) of
Max233 is connected with pin 2 (Receive data) of DB9. Pin 5 (Signal ground) of DB9
connector is connected with ground bus of prototype board. Then, a serial cableis
connected with both DB9 connector and computer together. Since USART protocol is
used for the serial communication, PD1 of microcontroller which is TXD is connected
with pin 2 of Max233. RXD of microcontroller is not necessary in this project since the

data always goes into one direction to computer.
There was a problem encountered when soldering the DB9 connector onto the

prototype board. Its pin would not fit in either 0.1” grid board or the 2mm grid board.
However, with help from Dr. Land, it isfitted onto the board by drilling bigger holes.

12

4.3 Embedded program

There are two embedded application in the system. The program at the remote
end’ s microcontroller is responsible to collect data from accelerometers and to send the
datain packet through aradio packet controller. The program at the base station’s
microcontroller is responsible to receive data through radio packet controller and to
process packet into a meaningful dataformat. Then, reorganized packet is sent through a
USART to acomputer for graphical analysis.

Here, the remote end’ s program is explained in detail.

interrupt [TIMO_OVF] void timer0_overflow(void)

Since the system is required to collect datain 10Hz, an interrupt service routine
(ISR) serves the best by providing an accurate time interval for operation.
Timer/Counter 0 is chosen and ISR occurs every 100 millisecond. A 100
millisecond interval is chosen so that people normally would not notice
significant data delay. Moreover, a50ms interval had been tested on the system
and it worked.

unsigned char read_ADC(unsigned char ADC_input)

Thisfunction is called by passing avalue to read the accelerometer’ s signals. The
value passed is a channel number such as ADCO, ADC1, or ADC2. The function
allows one ADC reading at atime. Although multiple ADC readings are allowed
with Mega32, it is safer and more accurate to read one channel at atime. Thisis
done by aflag called ADC_doneconversion which indicates if an ADC channél is
being read.

void Taskl(unsigned char ADC _value)

This function isfor debugging purpose. It tests whether the accelerometer’s
signals are correct and it is done by reading a converted value of one of the three
channels. The value read must be within arange from 0x60 to OxAO (explained in
section 4.1 Accelerometer). One channel at atimeis tested.

13

void Task2(unsigned char ADC_v1, unsigned char ADC_v2)

Thisfunction isfor debugging purpose. It isvery similar to the Taskl1 function
above. However, instead of testing one channel’ s value at atime, two channel’s
values are compared with the range from 0x60 and OXAO. Thisfunction isused to

prove that microcontroller is reading multiple channels properly.

interrupt [EXT_INTO] void ext_intO(void) //detect TXA: MCU to SP2 transfer
The function is processed by an external interrupt O and it is used for the
microcontroller to acknowledge that SP2 is ready for the data transfer. Detail on
how it operates is explained below.

MCU to SP2 (Transmission)

Doing a byte transfer from the MCU to the SP2 is asynchronous and there are
couple procedures that should be handled before transmitting. First, if thereisavalid
packet in SP2 waiting to be uploaded into MCU, data must be uploaded before
transmitting. Second, data lines must not be set to output until step 3. After the SP2 has
accepted the transfer request, data lines could stay as output until the entire packet is sent
out. Then, steps for transmitting data are as follow:

1. MCU isready to transfer data. It asserts TXR’ from high to low to initiate a
transfer request.
MCU waits for SP2 to pull TXA’ low which means request is accepted.
MCU set data lines to output and place the lower 4-bit on the data lines.
MCU set TXR’ back to high to tell SP2 that datais present.
MCU waits for SP2 to set TXA’ back to high to acknowledge that data has been
read.
Then, the steps are done again for the higher 4-bit. Process will repeat until the entire
packet is read.

Externa interrupt O isused as TXA’. MCU needsto detect afalling or rising edge of
TXA’™ and it works by setting register MCUCR[1:0] to 10 or 11 respectively. Also,
GICR.6 must be set to enable the external interrupt O requested.

o M W DN

14

Here, the base station’s program is explained in detail.

interrupt [TIMO_OVF] void timer0_overflow(void)
This has the same purpose of the timer/counter O interrupt that is explained above.

void Repack Sendmsg(void)

This function serves two purposes. First, packet received by the base station’s
microcontroller isin digital count. Here, the packet is converted into percentage
of the acceleration and the range is from -100% to +100%. This conversion could
actualy be done by the remote end’ s microcontroller. However, in order to
minimize the amount of data transmission through the radio packet controllers,

the conversion is done at the base station to maintain data integrity.

Second, the function calls built-in function printf to send data through USART.
Using printf function saves alot of time on writing codes for the USART.
Although the compiler generates a significant amount of assembler codes by
handling printf, it only generates afew codes after calling it the first time. So,
considering the pros and cons of using printf, | chose to implement it to ease the

programming effort.

interrupt [EXT_INT1] void ext_int1(void) //detect RXR: SP2 to MCU transfer
The function is processed by an external interrupt 1 and it is used for the
microcontroller to know that SP2 is ready for data upload. Detail on how it
operatesis explained below.

15

SP2 to MCU (Receiving)
Doing a byte transfer from the SP2 to the MCU is asynchronous and steps are
shown below:
1. SP2 asserts RXR’ low to initiate atransfer request.
2. MCU pullsRXA’ low to tell SP2 that request is accepted.
3. SP2 places data on the data lines and sets RXR’ back to high to tell MCU that
datais present.
4. MCU readsthe data from data lines and set RXA’ back to high to acknowledge
that data has been read.
Then, the steps are done again for the higher 4-bit. Process will repeat until the entire
packet isread. Notice that data lines should be set as input before initiate a transfer
request. They will only be set as output during a transmitting operation.
Externa interrupt 1 isused asRXR’. MCU needsto detect afalling or rising
edge of RXR’ and it works by setting register MCUCR[3:2] to 10 or 11 respectively.
Also, GICR.7 must be set to enable the external interrupt 1 requested.

16

4.4 Matlab application

Matlab is chosen to analysis datain graphical interpretation because of its
powerful mathematical and graphical tools. Through the serial communication, a matrix
with three columns is displayed on Hyper Terminal. Datareceived on Hyper Terminal is
saved into atext file on adirectory.

The matrix’s column is separated with a space and Matlab can easily |oad the text
fileinto workspace. Once data loaded, a matrix variable called data_percent is created.
Then, data_percent is processed and converted into a new matrix with unit g. The new
matrix is saved into variable named data_g. The range of data_g should be from +2g to -
20.

Each column of data_g is saved into a new variable representing its specific axis.
Five graphs are plotted and first three graphs show X-axis, Y-axis and Z-axis data
respectively. Fourth graph shows all three axes and fifth graph shows the scalar quantity
of al three axes. Axislabels and titles are shown on each graph and each axis has a
unigue color representing itself. Since this project is designed to be ssmple and user-
friendly. A color images of the graphs are saved automatically as xaxis.jpg, yaxis,jpg,

zaxis,jpg, result.jpg, scalarquan.jpg in the same folder of the Matlab command file.

17

5) Test Results

Demonstration has been given to Dr. Land at ateaching lab in Corson Hall. The
system functions well and data collected are good. The design has been proved to be
successful. During demonstration, the system was tested with arange of 20 plus meters
and the base station can receive data without any difficulty. The specification of radio
packet controller claims to be 50 meters range in building. Because of thisimpressive
range, the project can be greatly applied into future application or design.

The accelerometers are suitable for the designed application. From various tests,
aperson can hardly reach an acceleration of 2g although a 2g motion is possible with
vigorous movements. Z-axis of the system is positive pointing upward and negative
pointing downward. Gravitational force on earth is-1g and the tested value of Z-axis
while being idle is proved to be consistent with this theoretical value. Notice that both X
and Y axes have value of Og when they are idle but Z-axis has value of -1g when it isidle.

Two samples of test results are documented in thisreport. Thefirst test result is
shown below and the Matlab code is modified alittle to combine four graphs into afigure.
This is because a more understandabl e illustration can be done in a combine figure.
Second test result is shown in Appendix F and five graphsincluding scalar quantity are
shown.

Test 1

At thefirst test, the accelerometer device was moved in acircular motion along
XY plane. Sine waves were generated on X-axisand Y-axis. Z-axiswas supposed to be
constant at avalue of -1g. However, this test was done by a human being and the interval
between each circular motion varied. It isvery difficult to finish each circle with same
period of time and same speed. Asaresult, irregular sine waves were generated on X-
axisand Y-axis and Z-axis aso had values varying around -1g. A figure of thetestis

shown on next page.

18

Acceleration - Xaxis Acceleration - Yaxis

0.4
—_ - 0.2
o o
5 5
= SR S O O 1 O L O X I 1
5 5
[[
(5] (5]
@ @ 02
; ; : 0.4 : : i
50 100 150 200 0 50 100 150 200
samples (10Hz) samples (10Hz)
Acceleration - Zaxis Acceleration measurement - 3axes
-0.8 . * 1
3 ; # —— X-axis
i s i — Y-axis ||
A-O.B * = - . 0.5 — Z-axis
o : Pid i o
Rt i | g o =
D e R R B R o
g - | 80
< : SR : <
#w o ow
13 : : : 15 : : :
0 50 100 150 200 0 50 100 150 200
samples (10Hz) samples (10Hz)
Test 2

At thistest, all three axes were tested at a different period of time. One axiswas
tested along its positive and negative axis while the other two axes were kept still. X-axis
was tested from 8" second to 10" second. Z-axis was tested from 10™ second to 12
second. Finally Y -axiswas tested from 14™ second to 16™ second. Figures of X-axis, Y-
axis, Z-axis, combined axes and scalar quantity of combined axes are shown in Appendix

F.

19

6) Conclusion

This project has fulfilled my desire to build a system based on microcontroller. |
have been able to apply my electrical and computer engineering background to finish the
task. The project was based on heavy research and planning. Any aternative solutions
had been considered carefully. The system is kept compact throughout the
implementation and layout of prototype board was carefully designed. During the project,
| did not encounter any major problems and devel oping the system went well. Overall, |
enjoyed working on this project. | have trained myself to be good at soldering parts even
with surface mount capacitors. | have learned to be patient when debugging hardware
and software. Most important isthat | know how to make decision when there are

alternative solutions pointing into same or different directions.

There are many additions which could be made to the basic system | built. If
there were more manpower, this project could be expanded greatly and more interesting
features could be added into the system. Instead of just getting acceleration on three axes,
it could also keep track on how the device has moved. Also, asmaller board could be
built specially for the remote end’' s hardware. Although the final remote end’ s hardware
is not bulky, the device would fit into more applicable place if it was smaller. It could
truly be used in agrade school’ s science class if hardware is properly placed into an

enclosure.

20

7) Acknowledgements

This project would not be done without Dr. Bruce Land’ s support and guidance.
| would like to thank him for soldering the tiny accelerometers on to the prototype boards.

And | owe him an apology for hurting his finger when drilling a hole on the board.

| also would like to thank my family and girlfriend for supporting me. | have
gained alot of encouragement from them during my studies. They have been well
supporting and respecting my decision on the Mastering of Engineering studies at Cornell
University.

21

Appendix A: Cost

ltem # Item description Quantity Company Price($)
1 Radiometrix SP2-433-160 2 Lemos International 198
radio packet controller
2 Solderable perf board 2mm grid 1 Digikey 15.93
3 Solderable perf board 0.1” grid 2 All electronics 4
4 Breadboard 2 All electronics 10
5 Pushbuttons 4 All electronics 1
6 5V Voltage regulator (LM78M05) 2 All electronics 1
7 4.55V Voltage detector (TL7757) 2 Digikey 1.44
8 40 pin socket 2 Jameco electronics 2.6
9 9V Battery holder 2 Jameco €electronics 1.58
10 Green LED 10 Jameco electronics 12
11 Red LED 10 Jameco electronics 17
12 Orange LED 2 Jameco electronics 0.98
13 Yellow LED 2 Jameco electronics 0.52
14 D-sub femal e connector 1 Jameco electronics 0.6
15 9V dkaline battery 2 Jameco electronics 5.18
16 Antenna 433MHz 2 Digikey 6.9
17 ADSL 311 +/- 2g accel erometer 2 Analog Devices Sample
18 MAX?233 mediadriver 1 Maxim-1C Sample
Total: 252.63

Note: Miscellaneous parts such as Mega32, 16MHz crystals, resistor, capacitors, and
wires, etc are negligible as they are acquired from the lab.

22

Appendix B: Schematics

+3u
+9
5{':1 8 vdd a frav

ST 1 7 Xout __”_‘|7
BIAS 2 u e 3
6 Yout
ADXL311 } . uee
R2 GND 3| 5 NC i 48 paa-Ance
33 patanct
38
|4 NC " PA2-/ADC2 pcasscL 122
-3 Pa3/ADCa pC1ssDa |23
+Su aRAhe peasTok [24
JAHS v PAS-ADCS peas T |25
o PA6-ADCE pc4asTHO 128
PA7/ADC? P F-rd
ke I PBa-Ta 3 PessTosct BTN
M LTt @ pceoTosce (B2
GND 3 PB2-AING é pDa-RxD M4
PB3/AINI pD1Txn H |
|4 NC PB4,SS pD2-INTG 16 :’_—.:
PBS/MOSI P03 INT1 HZ— 1 -
PB&-MISQ PD4,0C1E 8
PB?/SCK psac1a 2
/RESET 6, Icp 129
XTALL p7-aca F2L—ATH
XTAL2
AREF
-4 ayce
LM78Mas| GND GND
Uin out] 1 Iat
Ji n_L Com _L o
T [F T
+Su
433MHz antenna
+3u
A RF GND 1 22 ¢ND
2 Antenna 2 21 Yee
Red RF GND 3 20 D3
R1 5 RX Select? 4 19 D2
%) TX Select? S 18 D1
Green
4VV_|R1 Sfereen s GND 6 Radiometrix SP2-433-16 17 D@
5Txn/nF’ 7 16 Reset?
[:/)‘ Orange NC 8 IS T=R*
R1 NC 9 14 TxA?
,\N[Si)ygum Signal? 1@ 13 RXR’
Rl GND 11 12 R¥A’ iy
Cl = @.1 microfarad R1 = 158 ohms
e —— R | Cornell University MEng Project (ECE)
R3 = 108 kilo ohi
ilo ahns Remote end hardware

Wong, Kim Fung G0 Page 1-1
L2,4,2003

23

A*Su

e g
vee
4@ pag.ance
32 pat-anct A9 W@ @f «F w
38 pazanca peasscL L22 A% [|% |%
32 paa-ancs pe1sana 23 I e e
AtSu 36
=~ PA4-ADC4 pCa,TeK 24 J7
Rt & passancs pea, T 23
34
R po i Pe4sTHO L28
s i ARE
R1 +3Su
S|PRacTe 2 pcestosct 281N T?
RID P o peroTosce B
W PE2salna g Poa-RxD H4- Tlout|>
f I 2 .
%PBB/Q[N[P01 T LS riin Lis
%PBVSS pp2-INTa HE (Ing 2 L2
R1 5| Pasemost pnas vt AT T 8 ”
- i R1E§ o PD4-ac1B L8 Ll P
su & -’\/\/‘—D'—QPB?/SCK posvac1a |12 I‘7 oo IY!
S~ — 4| (RESET Poe.1cP 22
c1 Q L——3 %TALL pn7aca 2L A é 9
nNooXg 12
xTAL2
_L‘ . 32 arer
(1] 280 quce
GND GND
J;l ER
0
<
= |1
433MHz antenna s i
+3v r): c
A RF GND 1 22 GND I
2 Antenna 2 21 Vee gé
Red RF GND 3 28 D3 @
R1 RX Select’ 4 19 D2 *-——|F*
2 arean T Select? S 18 DL c1
‘W—|Rl Dfreen s GND & Radiametrix SP2-433-16 17 Do o
TXD/AF? 7 16 Reset’ €
2 oranae NC 8 15 TXR?
R1 NE 9 14 TxA?
% vellow Signal? 1@ 13 RXR’
R1 > GND 11 12 RxA* AL
Cl = @.1 microfarad R1 = 158 ohms
e —— R — Cornell University MEng Project (ECE)

Base station hardware

. Rev 1.0
Wong, Kim Fung
’ 12742003 pEE A

24

Appendix C: Remote end microcontroller’s Code

/***

Project : Conplete Transmtter

Version : 1.2

Dat e : 12/ 05/2003

Aut hor : Wing, Kim Fung

Conpany : Cornell University, Ithaca, NY, USA
Comments: Programis conplete and functi ons.

Chip type : ATmega32
Program type : Application
G ock frequency . 16. 000000 MHz
Menory nodel . Snal |

External SRAM size : O

Data Stack size : 512

***/

// LEDs i ndi cator

/1 Geen: transmtter enabled

// Red: receiver enabl ed

/1 Orange: preanbl e detected
/1Yellow valid packet received
#i ncl ude <Mega32. h>

#i ncl ude <string. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#def i ne begin {

#define end }

/I Accel eromet er paraneters
#defi ne ADC_VREF_TYPE 0x00
#defi ne ADC Xsel 0x00

#defi ne ADC Ysel 0x01

#def i ne ADC Zsel 0x02

/| #defi ne ADC_pos2g OxAO

/| #defi ne ADC_poslg 0x90

/| #defi ne ADC _0g 0x80

/| #defi ne ADC neglg 0x70

/| #defi ne ADC neg2g 0x60
#def i ne Accel eroneter_range 2
/1 SP2 reset

#define SP2 reset PORTD. 7

/1 MCU-SP2 transfer signals
#define TXR PORTC. 6 //TXA PI ND. 2
#define RXA PORTC.5 //RXR PI ND. 3
/1 SP2 states

#def i ne TXA regaccept _I|sb
#defi ne TXA dataread | sb
#defi ne RXR tranreq_| sb
#def i ne RXR _dat apresent | sb
#def i ne TXA regaccept _mnsb
#defi ne TXA dataread nsb
#defi ne RXR tranreq_nsb
#def i ne RXR dat apresent _nsb

ONO OIS WN -

25

/1 A obal variabl es

/1 Accel erometer variabl es

unsi gned char ADC X;

unsi gned char ADCY;

unsi gned char ADC Z;

unsi gned char ADC doneconver si on;

/1 Control byte for SP2 transmitter
unsi gned char TX control _byte;

/1 Counter for transmitting bytes
unsi gned char TX byte count;
//Position for transmtting bytes
unsi gned char TX byte_ pos;

/1 Buffer for data packet

unsi gned char MCU to _SP2 buffer[10];

/1 Control byte for SP2 receiver
unsi gned char RX _control _byte;

/] Counter for receiving bytes

unsi gned char RX _byte count;

/1 Position for receiving bytes
//unsi gned char RX byte pos;

/1 Buffer for data packet - junk
unsi gned char SP2_to_MCU buffer[2];
//1flag for getting Control byte

bit Getting control byte;

unsi gned char TX state;
unsi gned char RX st ate;

/linterrupt variables
unsi gned char rel oad;
unsi gned int tineo;

void initialize(void)

begi n
/1 ADC i nput (X, Y, Z axes)
/1 PAO=X, PAl=Y, PA2=Z
DDRA=0xF8;

//testing
DDRB=0xFF;
PORTB=0xFF;

//MCU to SP2 interface
//Bit6: TXR Bit5: RXA
DDRC=0xFO0;

PORTC=0xFO;

//Bit2: TXA Bit3:RXR Bit7:SP2 reset
DDRD=0xF3;

/Il Timer/Counter O initialization
/1 C ock source: System Cl ock

ti me0=0;

r el oad=256- 250;

TCCR0=0x03; //clk/64

26

end

TCNTO=r el oad;
[/ Timer/ Counter0 Overflow Interrupt Enable
TI MBK=0x01;

/1 ADC initialization

ADMUX=ADC VREF TYPE| 0x20;//Left adjust result
ADCSR=0x87;

ADC doneconver si on=1;

/[1SP2 initialization
SP2_reset =0;

TXR=1; //PORTC. 6-out
RXA=1; //PORTC. 5-out
TX control _byte=0x04;

RX byt e _count =0;
/1 RX_byte pos=0;
Getting_control _byte=1;

TX st at e=1,
RX_st at e=3;

G CR=0xC0; //External interrupts 0,1 enabl ed
MCUCR=0x0A; //Falling edge generates interrupt

/1 d obal enable interrupts
#asn("sei ")

/1 Timer O overflow interrupt service routine
interrupt [TIM)_OVF] void tinerO_overflow void)
begi n

end

//reload to force 1nms overfl ow
TCNTO=r el oad;
++t i meo;

/1 Read the AD conversion result
unsi gned char read_ADC(unsi gned char ADC i nput)
begi n

end

ADMUX=ADC_VREF_TYPE| 0x20;

ADMUX| =ADC i nput ;

//Start the ADC conversion

/1 ADSC(bit6) returns to zero after conversion
ADCSR| =0x40; // ADCSR=0xc7

//Wait for the ADC conversion to conplete
while ((ADCSR & 0x10)==0);

ADCSR| =0x10;

ADC doneconver si on=1;

return ADCH,

27

/*
/] Testing: show one axis working al one
voi d Taskl(unsi gned char ADC val ue)

begi n
if (ADC val ue<=0xA2 && ADC val ue>=0x92) PORTB=~0x0f ;
el se if (ADC val ue<0x92 && ADC val ue>0x82) PORTB=~0x55;
el se if (ADC _val ue==0x82) PORTB=~0x00;

el se if (ADC_val ue<0x82 && ADC val ue>0x72) PORTB=~0xaa;
el se if (ADC val ue<=0x72 && ADC val ue>=0x62) PORTB=~0xf 0;
el se PORTB=~0xff;

end

*/

/1 Testing: show two axes wor ki ng together
voi d Task2(unsi gned char ADC v1, unsigned char ADC v2)
begi n

unsi gned char LED, LED X, LEDY;

if (ADC v1<=0xA2 && ADC v1>=0x92) LED X=0b11000000;
else if (ADC_v1<0x92 && ADC v1>0x82) LED_X=0b10000000;
else if (ADC_v1<0x82 && ADC v1>0x72) LED_X=0b01000000;
else if (ADC v1<=0x72 && ADC v1>=0x62) LED X=0b00000000;
else if (ADC_v1==0x82) LED X=0b11000001;
if (ADC v2<=0x9D && ADC v2>=0x8D) LED_Y=0b00110000;
else if (ADC_v2<0x8D && ADC v2>0x7D) LED_Y=0b00100000;
else if (ADC_v2<0x7D && ADC v2>0x6D) LED_Y=0b00010000;
el se if (ADC v2<=0x6D && ADC v2>=0x5D) LED_Y=0b00000000;
el se if (ADC_v2==0x7D) LED_Y=0b00110010;
LED=LED X| LEDY;

PORTB=~LED,;

end

//detect TXA: MCU to SP2 transfer
interrupt [EXT_INTO] void ext_intO(void)
begi n

unsi gned char tenp_TX dat a;

/1 PORTB=~0xFO0; //debuggi ng!

switch (TX state)

{

case (TXA reqaccept | sb):
begi n
/1 PORTB=~0x10; //debuggi ng!
//set data lines to output & place data on the data lines
DDRC=DDRC | OxOF;
PORTC=(PORTC&OxFO0) | (MCU_t o_SP2_buffer[TX byte_pos] & 0xO0F);

TXR=1; //tell SP2 that data is present
MCUCR=0x03; //rising edge for data read
TX state=TXA dataread | sb; //Next state
end
br eak;

28

i nterrupt

case (TXA dataread_|sb):
begi n

end

/1 PORTB=~0x20; //debuggi ng!

/[/wait for SP2 to set TXAto high to tell

/1 MCU that data has been read

TXR=0; //transfer request by MU

MCUCR=0x02; //falling edge for request accept
TX st at e=TXA regaccept _nsb;

br eak;

case (TXA reqaccept_nsh):
begi n

end

/1 PORTB=~0x40; //debuggi ng!

//shift the M5 nibble to LS and send to data |ines
temp_TX data=(MCU to_SP2 buffer[TX byte pos] &0xF0)>>4;
PORTC=(PORTC & OxFOQ)| tenp_TX data;

TX byte_pos++;//increment transmit buffer position

TXR=1; //data present
MCUCR=0x03; //rising edge for data read
TX stat e=TXA dat aread_nsb;

br eak;

case (TXA dataread _nsb):
begi n

/1 PORTB=~0x80; //debuggi ng!
if (TX byte pos < TX byte count)

TXR=0; //transfer request
MCUCR=0x02; //falling edge for request accept

}
el se
{
DDRC=0xFO0; //done TX, set data |lines to input
MCUCR=0x0A; //enable EXT_INT1 on falling edge
}
TX stat e=TXA reqgaccept | sb;
end
br eak;

RXR SP2 to MCU transfer

[EXT_INT1] void ext_intl(void)

switch (RX_state)

case (RXR_tranreq_Il sb):
begi n

/1 PORTB=~0x01; //debuggi ng!
RXA=0; [//Step2: MCU pulls RX accept |ow

29

MCUCR=0x0C; //rising edge for data present
RX st at e=RXR dat apresent | sh; //Next state
end
br eak;

case (RXR datapresent | sh):

begi n
/1 PORTB=~0x02; //debuggi ng!
/1 SP2 turns on bus drivers, places LS nibble
//onto data lines and set RX request to high
SP2 to_MCU buffer[0] =PI NC & OxOF;

RXA=1; //data read
MCUCR=0x08;//falling edge for transfer request
RX st ate=RXR_tranreq_nsb;

end

br eak;

case (RXR_tranreq_nsb):

begi n
/1 PORTB=~0x04; //debuggi ng!
RXA=0; //request accept by MCU
MCUCR=0x0C; //rising edge for data read
RX st at e=RXR _dat apr esent _nsb;

end

br eak;

case (RXR_dat apresent _nsb):
begi n
/1 PORTB=~0x08; //debuggi ng!
//shift the M5 nibble to |ower, read data |ines
SP2_to_MCU buffer[0] =(PI NC<<4)| SP2_to_MCU buffer[0];
MCUCR=0x08; //falling edge for transfer request
if (Getting control _byte)
{
Getting_control _byte=0;
RX _control _byte=SP2 to_MCU buffer[O0];
RX _byte count=SP2_to_MCU buffer[0] & Ox3F;

else if (RX byte count > 0) RX byte count--;

if ((Getting_control _byte==0)&& RX_byte_count ==0))
{
Getting_control byte=1;
MCUCR=MCUCR | 0x02;
}
RXA=1;
RX st ate=RXR_tranreq_| sb;
end
br eak;

end

30

voi d mai n(voi d)
begi n
initialize();

while (1)
{
if (tinme0==10) SP2 reset=1; //SP2 ready

if (time0==100)
begi n
ti me0=0; //reset timer

/] X-axis
i f (ADC_doneconversi on==1)

ADC doneconver si on=0;
ADC_X=r ead_ADC(ADC Xsel);

[1Y-axis
i f (ADC _doneconversi on==1)

ADC _doneconver si on=0;
ADC_Y=r ead_ADC(ADC Ysel) ;
}
/1Z-axis
i f (ADC _doneconversi on==1)

ADC _doneconver si on=0;
ADC Z=r ead_ADC(ADC Zsel);

}
/| Task2(ADC_X, ADC_Y);

TX byt e_count =0;
TX_ byt e_pos=0;
MCU_t o_SP2_buffer[0] =TX_control _byte;
TX_byt e_count ++;
while (TX byte _count < 4)
{
//testing: hardcode sequence of data
/1 MCU to_SP2 buffer[TX byte count] =0x55;
[1if (TX byte count==1)
MCU t o_SP2_buffer[TX byte_count]=0x70;
[lelse if (TX byte_count==2)
MCU to_SP2 buffer[TX byte count]=0x75;
/lelse if (TX byte count==3)
MCU to_SP2 buffer[TX byte count]=0x78;

if (TX_ byte_count==1)

MCU to_SP2 buffer[TX byte count]=ADC X;
else if (TX byte_ count==2)

MCU to_SP2 buffer[TX byte count]=ADCY;
el se if (TX byte_count==3)

MCU to_SP2_buffer[TX byte count]=ADC Z;

31

// Show Y-axis on renote end' s hardware
PORTB=~ADC Y,

TX byt e_count ++;
}

/lassert TXRlowto initiate transfer to SP2

/1 & make sure RXA is high

TXR=0;

MCUCR=0x0A; //falling edge for request accept
end

end

32

Appendix D: Base station microcontroller’s Code

/***

Project : Conplete Receiver

Version : 1.2

Dat e : 12/ 06/ 2003

Aut hor : Wong, Kim Fung

Conpany : Cornell University

Conments: Programis conplete and functions.

Chip type . ATnmega32
Program type . Application
G ock frequency . 16. 000000 MHz
Menory nodel : Smal |

I nternal SRAM size : 2048
External SRAMsize : O

Data Stack size . 512
***/
// LEDs i ndi cat or

// Geen: transmtter enabl ed
// Red: receiver enabl ed

/1 Orange: preanbl e detected
/1Yellow valid packet received
#i ncl ude <Mega32. h>

#i ncl ude <string. h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#def i ne begin {
#define end }
//difference of 2g & Og in digital count
#defi ne ADC di ff 0x20

/1SP2 reset

#define SP2 reset PORTD. 7

/1 MCU-SP2 transfer signals

#define TXR PORTC. 6 //TXA PI ND. 2
#define RXA PORTC.5 //RXR PI ND. 3

/1 SP2 states

#def i ne TXA regaccept _I|sb
#define TXA dataread | sb
#defi ne RXR tranreq_| sb
#def i ne RXR dat apresent | sb
#def i ne TXA regaccept _mnsb
#defi ne TXA dataread nsb
#defi ne RXR_ tranreq_mnsb
#def i ne RXR dat apresent _nsb

O~NO O WN P

/1 d obal variables

/] Control byte for SP2 receiver
unsi gned char RX _control _byte;
/1 Counter for receiving bytes
unsi gned char RX _byte count;

/1 Position for receiving bytes
unsi gned char RX_byte_ pos;

33

//Buffer for data packet

unsi gned char SP2_to MCU buffer[4];
//flag for getting Control byte
bit Getting_control _byte;

//unsi gned char TX state;
unsi gned char RX state;

[/ for TXC interrupt

unsi gned char RS head,;

unsi gned char RS tail;

//buffer for reorgani zed packet to PC
int RS buffer[6];

/linterrupt variables
unsi gned char rel oad;
unsi gned int tineo;

void initialize(void)
begi n
//testing
DDRB=0xFF;
PORTB=0xFF;

//MCU to SP2 interface
//Bit6: TXR Bit5: RXA
DDRC=0xFO;

PORTC=0xFO;

//Bit0: RXD Bitl: TXD
//Bit2: TXA Bit3:RXR Bit7:SP2 reset
DDRD=0xF3; //try bit0 as output?????

[/ Timer/Counter O initialization

ti me0=0;

r el oad=256- 250;

TCCR0=0x03; //clk/64

TCNTO=r el oad;

[/ Timer/ Counter0 Overflow Interrupt Enable
TI MBK=0x01;

//TUSART initialization
UCSRA=0x00;

UCSRB=0x08; //transmtter enable
UCSRC=0x86; //8bit data
UBRRL=0x67; //9600 baud rate
UBRRH=0x00;

/[1SP2 initialization
SP2_reset =0;

TXR=1; //PORTC. 6-out
RXA=1; //PORTC. 5-out
/1 TX _control _byt e=0x04;
/1 TX byte_ count =0;

/1 TX byte pos=0;

RX control byt e=0;

end

RX byt e _count =0;

RX byt e pos=0;
Getting_control _byte=1;
/1 RX_done_f I ag=0;

/1 TX state=1;
RX_st at e=3;

RS head=0;
RS tail =4;

G CR=0xC0; //External interrupts 0,1 enabl ed
MCUCR=0x0A; //Falling edge generates interrupt

/1 d obal enable interrupts
#asn("sei ")

/1 Timer O overflow interrupt service routine
interrupt [TIM)_OVF] void tinerO_overflow void)
begi n

end

//reload to force 1nms overfl ow
TCNTO=r el oad;
++t i meo;

/| Repacketize received data into percentrage of 2g
//and then print the new buffer(in %9 to PC

voi d Repack_Sendnsg(voi d)

begi n

end

int tenmp_val ue;

RS head=0;
RS tail =4;
/ | PORTB=~0x70;

//reorgani zed the SP2 packet into another buffer
//this is for user readability on the hyperterninal
RS buffer[RS _head++] =SP2_ to_MCU buffer[0];
while (RS head < RS tail)
{ i f (RS_head==1)
temp_val ue=((int)SP2_to_ MCU buffer[RS _head] - 130)*100;
el se if (RS _head==2)
temp_val ue=((int)SP2 to MCU buffer[RS _head] - 125)*100;
el se if (RS_head==3)
temp_val ue=((int)SP2_to MCU buffer[RS _head] - 133)*100;
RS _buffer[RS _head] =t enp_val ue / 32;

printf("%d", RS buffer[RS head]);
printf(" ");
RS head++;

}

printf("\n\r");

RS head=0;

35

//detect RXR: SP2 to MCU transfer
interrupt [EXT_INT1] void ext_intl(void)

begi n

unsi gned char tenp_RX dat a;

switch (RX_state)

{

case (RXR_tranreq_Il sb):
begi n

end

/ | PORTB=~0x01;
RXA=0; [//Step2: MCU pulls RX accept | ow
MCUCR=0x0C; //rising edge for data present
RX_st at e=RXR _dat apresent _| sb; //Next state

br eak;

case (RXR datapresent | sh):
begi n

end

/ | PORTB=~0x02;
/1 SP2 turns on bus drivers, places LS nibble
//onto data lines and set RX request to high
SP2 to_MCU buffer[RX byte pos] =PI NC & OxOF;

RXA=1; //data read
MCUCR=0x08;//falling edge for transfer request
RX st ate=RXR_tranreq_nsb;

br eak;

case (RXR tranreq_nsb):
begi n

end

/ | PORTB=~0x04;
RXA=0; //request accept by MCU
MCUCR=0x0C; //rising edge for data read
RX st at e=RXR _dat apr esent _nsb;

br eak;

case (RXR_datapresent _nsb):
begi n

/ 1 PORTB=~0x08;
//shift the M5 nibble to lower, read data |lines
temp_RX data = PI NC;
SP2_to_MCU buffer[RX_byte_pos] =(tenp_RX dat a<<4)
| SP2_to_ MCU buffer[RX byte pos];

RX byt e pos++;

if (Getting_control_byte)
/1 get to know how many bytes the packet are
Getting_control byte=0;
RX _control _byte=SP2_to_MCU buffer[0];
/lzero the bit6,7 to get the exact count
RX byte count=SP2_to MCU buffer[0] & Ox3F;

}
else if (RX byte count > 0) RX byte count--;

36

/1 done receiving a packet
if ((Getting_control_byte==0)&& RX_ byt e_count ==0))
{
Getting_control _byte=1;//done RX, enable
/1if statements make sure the data are valid
//otherw se, data wouldn't be sent to USART
if ((SP2_to_MCU buffer[1l] <= 0xA2)
&& (SP2_to_MCU buffer[1l] >= 0x62)
&& (SP2_to _MCU buffer[2] <= 0x9D)
&& (SP2_to _MCU buffer[2] >= 0x5D)
&& (SP2_to _MCU buffer[3] <= 0xA5)
&& (SP2_to_MCU buffer[3] >= 0x65))
/I repacketize and dunp data to PC
Repack_Sendnsg() ;
PORTB=~SP2_to_MCU buffer[2];
}

MCUCR=0x08;//falling edge for transfer request
RXA=1,;
RX state=RXR tranreq_| sb;

end

br eak;

}

end

voi d mai n(voi d)
begi n
initialize();

while (1)

{
if (time0==10) SP2_reset=1;

if (time0==500)
begi n
ti me0=0; //reset tinmer
RX_ byt e_count =0;
RX byt e _pos=0;
UCSRB=0x08; //transmitter enable
MCUCR=0x08; //falling edge for request accept

end

end

37

Appendix E: Matlab Code

%Version: 1

%Date: December 1,2003

%This matlab fileis used to display the data collected
%Dby the acceleration reading device

data_percent = load(‘result.txt’)

data g = data_percent* (2/100)

[row_size,col_size] = size(data_percent)

X=data g(1:end,1)' %put 1st column of data gin X
Y=data g(1:end,2)' %put 2nd column of data ginY
Z=data g(1:end,3)' %put 3rd column of data ginZ

%ocalculating total scalar quantity of 3 axes
fori=lirow _size

scalar_quan(i) = sgrt(X(i).2 + Y (i)./2 + Z(i).~2)
end

t=1.row_size,

%subplot(2,2,1);

plot(t,X,'bo--")

grid on;

title("Acceleration - Xaxis)

xlabel ('samples (10Hz)")

ylabel (‘acceleration (g)')

%Automatically save the figure into the current
%work directory as xaxis.jpg with best resuoltion
print -djpegl00 xaxis.jpg

figure;

%subplot(2,2,2);
plot(t,Y,'gp-")

grid on;

title("Acceleration - Yaxis)
xlabel ('samples (10Hz)")
ylabel (‘acceleration (g))
print -djpegl00 yaxis.jpg

figure;

%subplot(2,2,3);
plot(t,Z,'r*:")

grid on;

title("Acceleration - Zaxis)
xlabel ('samples (10Hz)")

38

ylabel (‘acceleration (g)")
print -djpegl00 zaxis.jpg

figure;

%subplot(2,2,4);

plot(data Q)
legend('X-axis,'Y-axis,'Z-axis)
title("Acceleration measurement - 3axes)
xlabel ('samples (10Hz)")

ylabel (‘acceleration (g))

print -djpegl00 result.jpg

figure;

plot(vector_quan)

title('Accel eration measurement - scalar quantity of 3axes)
xlabel ('samples (10Hz)")

ylabel (‘acceleration (g)')

print -djpeg100 scalarquan.jpg

39

Appendix F: Matlab result

Test 2

Acceleration - Xaxis

0.6

0.4

|
B) o
o

(6) :o_um_w_wu_om

0.6

-0.8

180

160

140

100

80

60

40

20

samples (10Hz)

A movement on X-axis was performed along positive and negative direction.

40

Acceleration - Yaxis

acceleration (g)

12 ! ? | | | ?

N |
I I __________ __________ _________ i
N __________ - | — i
0.41- —
0.2 B

O i o 2 L i
L0 2 e L _
0.4 s
0.6 i | | i | | | |

0 20 40 60 80 100 120 140 160 180

samples (10Hz)

A movement on Y -axis was performed along positive and negative direction.

41

Acceleration - Zaxis

0.2 T T T T T T

- :
_02 b e e e e —
0.4} | i
06} bl 7

acceleration (g)

18 | i i | ; i | i
0

20 40 60 80 100 120 140 160 180
samples (10Hz)

A movement on Z-axis was performed along positive and negative direction.

42

Acceleration measurement - 3axes

1.5 T T T T T

<
T

o
wn
T

acceleration (g)

-1.51

) ! I I ! I I

— X-axis
— Y-axis
— Z-axis

LT

0 20 40 60 80 100 120
samples (10Hz)

A figureincluding the X, Y and Z axesis shown.

43

140

160

180

Acceleration measurement - scalar quantity of 3axes

1.8 T T T T

:

(=]
o]
T

acceleration (g)

0.4

0.2+

0 | 1 1 | 1

-

0 20 40 60 80 100
samples (10Hz)

Scalar quantity of X, Y, and Z axesis shown.

120

140

160

180

Appendix G: User’'s Manual

System set up:

@ Plugin aseria cable with base station’s DB9 connector and a computer.

@ Make sure coml isavailable for Hyper Terminal. If not, go to Device Manager of
Windows OS to change the com port.

@ Open up aHyper Termina with 9600 baud rate, 1 stop bits, no parity and no flow
control. Connection’sname is up to user’s preference.

@ Goto“File’ on menu and “Properties’ and select “ Settings’. Click “ASCII
setup...”, choose “ Append line feeds to incoming line ends’ from “ASCI|I
Receiving”.

@ Put 9V batteriesinto the base station’s and remote end’ s battery holders. Make

sure the polarities are correct.

Data collecting:
@ Make connection to the Hyper Terminal and go to “ Transfer” and “Capture
Text...” on menu. Open the file named result.txt and make sureit is empty.

Q

Press “start” on the “ Capture Text” window to start collecting data.

Q

When datais being collected, it is shown in three columns.
@ When enough data are collected, click “stop” from Capture Text..” from
“Transfer”. Then, Hyper Terminal should be disconnected.

Data analysis:
@ If matlabcommand.mis not yet available, copy it from the Appendix E above.
@ Saveresult.txt and mathlabcommand.m on the same directory.
@ Run the matlabcommand.min Matlab and change the Matlab working directory

if necessary.

Q

A figure with the X-axis's, Y-axis'sand Z-axis s data is shown.
@ Fiveimagefiles called xaxis,jpg, yaxis,jpg, zaxis.jpg, result.jpg and
scalarquan.jpg are automatically saved into the same directory of the two other

files.

45

Remote end’ s hardware

Appendix H: Picture

N/S

®©

)
=
>
=]
)
(=]
o

46

SOy
GOG0GG0
NSNS NN TN
DE OGO
YOG
OOGG0GG
VARSI NV
GOOG
16 € i)
OGO

.
€re
(XS
by
Xy
(VXN

Base station’s hardware

9020XI%! 1Y
(D68gb?
01-68721

000000
N00000000000
ABOOO0 O

47

System Overview:

Appendix | : Bibliography

1. Mega32 datasheet
http://www.atmel .com/dyn/resources/prod documents/doc2503.pdf

2. Radiometrix SP2-433-16 radio packet controller
http://www.radiometrix.co.uk/dsheets/sp2.pdf

3. Radiometrix SP2-433-16 radio packet controller evaluation kit
http://www.radiometrix.co.uk/dsheets/sp2ek.pdf

4. Mega32 prototype board
http://homepage.sunrise.ch/mysunrise/pfleury/avr-starterkit.html

5. Max233 driver/receiver
http://pdf serv.maxim-ic.com/en/ds/M AX 220-M A X 249.pdf

6. Analog Device ADXL311 +/-2g dual-axis accelerometer
http://www.anal og.com/UploadedFiles/Data_Sheets/39398238692761ADXL 311 a.pdf

7. National Instrument 5V voltage regulator (LM78MO05)
http://www.national .com/ds/L M/L M 341.pdf

8. CodeVision AVR evaluation download

http://www.hpinfotech.ro/html/download.htm

49

