SHEET MUSIC GENERATOR: MIDI-PC INTERFACE

A Design Project Report
Presented to the Engineering Division of the Graduate School
Of Cornéll University
In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

By
Meg Walraed-Sullivan
Project Advisor: Dr. BruceLand

Degree Date: August, 2004

Abstract

Master of Electrica Engineering Program
Cornell University

Design Project Report

Project Title: Sheet Music Generator: MIDI-PC Interface

Author: Meg Walraed-Sullivan

Abstract:
This project entails a fully functioral interface between a standard Musical
Instrument Digital Interface (MIDI) device and a personal computer, including
a software application for processing and display of MIDI data. The hardware
interface uses an Atmel Mega32 microcontroller to facilitate communications
between a MIDI device and computer. The microcontroller receives MIDI
data through a standard MIDI cable, filters and encodes the data, then sends
packets o the PC viaaserial UART connection. Educational aspects of this
project include the mastery of a programming language and corresponding
package for graphics rendering, the design of a functioral and intuitive
software application, the creation of appropriate hardware to implement the
interface between two devices, and the design of efficient firmware to manage

al hardware.

Report Approved by

Project Advisor: Date:

Executive Summary

The goal of this project isto construct a fully functional interface between a standard
MIDI device and a personal computer operating with Windows XP. The solution to
such a problem can be divided into several sub-goadls, including the design of a
hardware circuit to interface with both the MIDI device and PC, the creation of
appropriate firmware to process, filter, and encode MIDI output and forward
information to the PC, and the design and generation of a software application to
receive, manage, process, and display MIDI data in a convenient and intuitive manner.
The hardware consists of an Atmel Mega32 microcontroller for manipulation and
forwarding of MIDI data, a ssimple circuit to isolate the MIDI connection from other
hardware, ad an RS232 interface to the personal computer. The MIDI processing
firmware for the Mega32 microcontroller is written in AVR Code Vision C, and
encodes information received from the MIDI device into packets to be sent to the PC.
The software application for the display and user manipulation of MIDI data is written
in C++ using Microsoft Foundation Classes for graphical output and receives data from

the hardware through a serial UART interface.

Design Problemand Requirements

The tedium of creating a software representation (sheet music) of amusical composition
remains a large problem for musicians today. Two primary alternatives for this task
exist. A musician can choose to enter notation manually, using a computer keyboard
and mouse. However, this choice requires that the user purchase the appropriate
software for this task, and the use of such software is often tiresome and time-
consuming. This option also removes part of the musical aspect of the creative process
of music composition by eliminating the possibility of using a rnusical instrument for
composition. A preferred alternative would allow for the entry of musical notation viaa
musical instrument. Since the composition is to be stored and manipulated on a

computer, adigital musical device is a natural choice for a musical instrument to use.

Solutions which facilitate the entry of musical notation via standard Musical Instrument
Digital Interface (MIDI) devices do exist, but they prove to be as tedious, expensive,
and difficult to use as do solutions involving solely the use of a computer. The
difficulty inherent in using such a tool stems primarily from the expense and time
required in order to begin using such a product. A user must purchase the appropriate
software, sometimes at costs which range in the hundreds of dollars, and must own a
compatible MIDI device and have a compatible sound card installed in his or her
personal computer. Not surprisingly, this feat is not easily accomplished. It is often
quite costly and extremely time-consuming to set up such a configuration, if one can be

found. However, many musicians endure these trials, as alternative methods are few

and far between. It is therefore desirable to create a package which accomplishes this
task without enforcing such expensive and unattainable requirements. The solution
created must include adequate software for the manipulation and display of the musica
notation, must be able to interface with any standard MIDI device, and must aso

interface seamlessly with most personal computers.

It is clear that the use of a microcontroller would be applicable to this problem; such a
solution would delegate management of the interface between the PC and MIDI device
to the microcontroller and surrounding hardware, thus greatly reducing compatibly
requirements. This solution would also alow for the creation of more generic software

for data display and manipulation, thus decreasing the cost of the system as awhole.

This project sets out to address the task of employing an inexpensive microcontroller in
an interface between a personal computer and standard MIDI device. The tasks relevant

to this process include:

The design and implementation of a software application for graphic rendering,
to be used to display a musical composition as it evolves.

The design and implementation of a software application capable of receiving
and processing serial data originally sent from aMIDI device.

The design and construction of hardware capable of physically connecting the

MIDI device to the personal computer.

The design and implementation of firmware to control and manage the interface

hardware.

The following discussion documents the design processes of all aspects of the goals

mentioned above.

Design and I mplementation

Details of the design and creation of this system can be separated into three distinct sub-

categories: hardware, firmware, and software. Each of these is discussed in turn below.

Hardware

The high-level design of the hardware used in this project consists of a multi-step
connection between a sandard MIDI keyboard and a seriad UART-16550 port on a
personal computer. MIDI packets travel from a standard MIDI device to a
microcontroller where they are received, processed, and filtered. The newly encoded
packets then travel through a simple RS232 seria interface and standard serial cable to
a COM port on a personal computer. A software application receives this seria data

and processes it, displaying results onscreen to the user.

The hardware used for this project was originally constructed wsing an AVR SDK 500
development board. The development board provides conveniences such as push
buttons, LED's, and an RS232 interface, with only the connection of a set of jumpers.
As the project progressed, it was moved to a breadboard and components previously
supplied by the development board were replaced with those discussed below. A
straightforward following step would be to construct a printed circuit board for the
entirety of the hardware, thus allowing for mass production. However, the expense and
time required for completion of this step forces the creation of a printed circuit board

outside of the scope of this project.

The crucid element of this hardware configuration is the Atmel Mega32
microcontroller, shown adjacent. This processor runs at 16MHz and offers four
Input/Output ports and an onchip UART, among many other convenient and valuable
features. The processor runs at 5 volts, powered by a 9 volt battery (or other DC power
source) connected through a voltage regulator. The battery is connected to the voltage

regulator through a switch so as to minimize

PDIP
power consumption when the device is not in _ W
(¥CKTOy PEO O] 4 40 O PaD (ADCO)
. . mMyPB1 O 2 Al O Pat (ADCT)
use. The Mega32 is driven by a 16MHz iwrzsing rsz o 8 38 b Faz (aDC2)
(OCAINTY PBI O 4 3T O PA3 (ADC3)
]) ESyPBALC] B 88 [Pag (ADC4)
external oscillator; however, it should be noted (MOS!) PES O 8 35 | PAs (ADCS)
(MISO)FEBE T B4 O Pag (aDCE)
(SCE) PET] A 83 O pav {ADCT)
P : : FESET O 9 82 O AREF
that it is also feasible to use a simple crystal to Foek=| b 1 5 oo
GHD O 11 an O AavCc
. . . . XTALZ O 12 29 O PCT (TOSCZ2)
drive the chip. This solution was not employed XTALT O] 13 28 b FCs (TOSC1)
(RXD) PDO] 14 27 O PCs [TDN
. (TXD) PDT] 16 2H O PC4 (TDO)
as the capacitance of the breadboard used can (INTO) PD2 O 18 26 [PC3 (TMS)
{INT1) PD2] 17 24 O PCz (TCK)
(OC1E) FDA O 18 23 O PC1 (S048)
. . - . (OC14) PDE] 10 22 O PCO {SCL)
interfere with proper oscillation of a crystal. RS 21 0 ror (o0,

Packets from the MIDI keyboard are received

Figure 1: Mega3?2 Pinout
via the on-chip UART of the Mega32 and are
then forwarded on with a software UART, detailed below in the section entitled

“Firmware.”

The MIDI device is connected to the microcontroller through an optoisolator, so as to
minimize the effects of ground loops on the circuit. The output of this optoisolator runs
to pin 0 of PORT D, one of the microcontroller’s four Input/Output ports, where it is

handled by the on-chip UART.

Upon passing through the microcontroller, encoded MIDI data must be forwarded on to
the PC for processing and display. This is accomplished through a serial connection
using a software UART written for the microcontroller and a standard COM port on the
PC. The software UART is implemented in firmware and communicates through an
external interrupt (PORT D, pin 2) and a generic port pin (PORT D, pin 3). A Max233
voltage level shifter converts values generated by the UART into those appropriate for
serial UART communication and sends the resulting data through a 9 pin femae D-Sub

connector. A full schematic of the hardware configuration is shown below.

rHATASn BB e T

Figure 2: Hardwar e Schematic

The microcontroller proves to be an inexpensive and convenient solution to the problem
of interfacing two hardware devices. The cost of the chip and surrounding hardware is
relatively low and would be less ill if mass production were to be explored. Another

cost under consideration is that of labor. Since this particular microcontroller is

generally straightforward and intuitive to interface with, it remains true that the Mega32
allows for the creation of an inexpersive but efficient solution. The following listing of

all hardware used details the cost of this portion of the project.

Part Description Part Number Cost/Item Quantity Total Cost
Optoisolator HP 6N138 $1.08 1 $1.08
Voltage Regulator LM340T-5.0 $0.99 1 $0.99
Switch EG1903 $0.71 1 $0.71
Battery Strap 2240k $0.49 1 $0.49
Battery P145 $2.13 1 $2.13
Capacitors (.1pF) 399-2054 $0.157 3 $0471
Resistors (100 ?) BC100YCT $0.19 6 $1.14
Oscillator SE1711 $2.94 1 $2.94
Voltage Level Shifter Max233 $7.54 1 $7.54
9-Pin DSUB Receptacle 89909-8000 $4.42 1 $4.42
LED (blue) L 14006 $1.89 5 $9.45
Diode Varies ~$0.00 1 $0.00
Resistor (330 ?) OF331J $0.54 1 $0.54
Resistor (220 ?) 0OD221) $0.42 1 $0.42
Capacitor (8.2 uF) C1210C825K4PACTU $0.396 1 $0.396
Microcontroller Atmel Mega32 $3.00 1 $3.00
Totd: $40.72

10

A glance at the above listing immediately shows that the cost of this system is quite low
relative to those of alternative methods of creating musical annotation with standard
MIDI devices. Thus the hardware portion of this project fulfills the goal of creating a
fully functional and relatively inexpensive interface between a personal computer and

MIDI device.

Firmware

Firmware for this system includes all code written for the Atmel Mega32
microcontroller. This code is written in AVR Code Vision C, compiled with the AVR
Code Vision compiler, and manages the hardware interface between the MIDI device
and the personal computer. The firmware is separated into three sub-sections, the first
controls the software UART and serial interface, the second receives and filters MIDI

data, and the third synchronizes events between the MIDI and serial interfaces.

Software UART

As the Mega32 offers only one onchip UART, it is necessary to design a software
UART in order to simultaneously maintain two serial connections. The seria interface
to the PC operates using a half-duplex interrupt-driven UART created in software. This
UART consists of send and receive buffers and a status byte which indicates whether
the UART is busy, transmitting, and receiving. An RS232 line idles at logic high and
then falls to indicate the start of a data transmission, so an external interrupt triggered
on the falling edge of a port pin is a natural choice for implementation of the receive

portion of the UART. When this externa interrupt is triggered, a timer is started

11

according to the baud rate of the connection and the individua bits of a data byte are
masked and shifted into the receive buffer. When the receive operation completes, the
timer turrs off and the UART idles. It should be noted that send operations are disabled
during the full course of a receive operation, and the external interrupt which triggers a
receive operation is disabled during receipt of a data byte, thus removing the possibility
of concurrent receipt attempts. The send operation functions in a manner which is quite
similar to that of the receive operation. When transmission of data is requested, a timer
is again started in order to schedule the masking and shifting of individua bits.
Requests for transmission are ignored during a transmit operation and the externa

interrupt which triggers a receive operation is disabled.

Timer0Q, an 8-bit timer and counter on the Mega32 is used for data manipulation. The
microcontroller’s clock runs at 16 MHz, and the timer used to schedule transmission
and receipt of data is pre-scaled by 8, thus running at 2 MHz The timer is preloaded
with a value of 48 and is scheduled to interrupt upon overflow. The 8bit register
overflows at a value of 256. Therefore, an overflow interrupt occurs ever 212 ticks, or
roughly every .106 milliseconds. This corresponds to a baud rate of amost exactly
9600 bits per second. At the start of a receive operation, the timer is st to interrupt
after .159 milliseconds. Thisis because the external interrupt catches the falling edge of
the port pin and thus the beginning of the data byte's start bit. Data values are best
sampled towards the middle of a given bit and therefore it is necessary to wait forl.5
bits to pass upon receiving the external interrupt. It should also be noted that the initial

preloaded timer values for the send and receive operations differ. Thisisto compensate

12

for the difference in the nature of the two operations. When a send operation is
requested, the send algorithm simply begins to transmit data. However, a receive
operation requires entry into and reentry from an external interrupt, a task which takes
over 150 cycles when written in C. Clever use of assembly language could be
employed to circumvent this difference; however, the implementation in C functions

correctly and therefore is sufficient.

Several LED’s indicate the status of the UART for the user. Specificaly, LEDO is lit
when a UART receive eror is encountered, generally due to a mismatched baud rate.
LED1 lights to signal that the UART is busy and that too many transmit or receive
operations have been attempted simultaneously. LED?2 lights at the beginning of a send
operation and tur ns off when the operation completes, and LED3 behaves similarly for
receive operations. The transmit pin for the UART is defined to be pin 3 of PORT D,
and the receive pin islocated at pin 2 of PORT D, the location of the Mega32's external

interrupt 0. These LED’s are connected to pins O through 3 of PORT B.

MIDI Interface

The protocol for interaction with a MIDI device is straightforward. MIDI data is sent
asynchronoudly at a rate of 31.25kbaud. MIDI devices interact via “MIDI messages’
which are multiple-byte packets conveying information about musical events. Although
aMIDI device may generate hundreds of packets at atime, it is often the case that many
of these packets contain superfluous information and can be ignored. For the purposes

of this project, the microcontroller discards al messages expect those which fall within

13

aparticular category of MIDI messages, the status messages As anote is sounded on a
MIDI device, a message is sent through the device's MIDI output port, indicating the
occurrence of the event. This group of bytes has a fixed length and adheres to the
following protocol: The first byte is dways a status byte. This type of byte is the only
MIDI message byte with the eighth bit set, and therefore values for this byte can range

from 0x80 to OXFF. The upper nibble of the byte determines the type of status byte:

Vaue Meaning

8 Note Off

9 Note On

A Aftertouch

B Control
Change

C Program
Change

D Channel
Pressure

E Pitch Wheel

The values of interest for this project are 8 and 9, Note Off and Note On, respectively.
These bytes indicate the start and stop of a note being sounded by a user. The lower
nibble of the status byte indicates the channel of the event, which for this project is
aways channel 0. The first byte to follow a Note On or

Note Off status byte indicates the note number of the key being pressed or released.

14

MIDI devices number notes within a range of 0 to 127, with “middle C” on a piano
holding the place of number 60. The second byte to follow a Note On or Note Off status
byte is a velocity byte. This byte contains information regarding the pressure on the
particular key being depressed and is relevant only for devices with touch sensitivity
support. The keyboard used to demonstrate this systemis a Caso CTK-491 5-octave
keyboard and does not support touch sensitive keys; therefore the velocity byte is not
generally processed in the case of a Note On message. This byte was however used for
Note Off messages. Certain keyboards substitute a Note On message with a velocity of
0in lieu of a Note Off message (with an arbitrary velocity), and thus a Note On message

must be checked in case it truly indicates a Note Off event.

The MIDI device is connected to the Mega32 microcontroller via the on-chip UART.
The UART is set to interrupt upon receipt of a byte, and all processing code for MIDI
data occurs within the corresponding interrupt service routine. The code to process
MIDI data is sufficiently short and does not interfere with proper timing operation of
the interrupt. A simple state machine processes each byte as it arrives, storing the note
number of each note played. A timer runs in the background, interrupting once per
millisecond. This is accomplished by pre-scaling timerl by 64, creating a .4
microsecond time base. The timer is set to interrupt upon a compare match with the
value 250, and thus a timerl overflows interrupt is generated every 1 millisecond. This
timer serves two purposes. It creates a time base with which to determine the duration
of the sounding of a particular note, and it alows for the generation of a “heartbeat”

LED. The timer inverts the voltage applied to pin 7 on PORT B every 500 ticks, thus

15

creating a heartbeat effect with the LED connected to this pin. This is useful for
debugging purposes, especially when the microcontroller is not mounted on a
development board, as it can serve as an indication that the processor is currently
running. When a Note On message is received by the UART, the current value of the
millisecond counter is stored. Upon receipt of the corresponding Note Off message, the
stored start time of the note is subtracted from the current time, yielding the note's
duration in milliseconds. The variables which store the current millisecond count, note
start time, and note duration are integer types which can reach a maximum value of
65,535. For convenience, when the value of the current millisecond count reaches
65,000, it returnsto 0. Because of this, it is possible that the counter may “roll over”
between the depression and release of a key, generating a negative difference between
the start time and end time. However, it is a straightforward procedure to check for this
case and compensate accordingly. It is aso possible for overflow to occur, in a
situation where a user depresses a key for longer than 65 seconds. However, this caseis
extremely unlikely, and in the interest of saving computing cycles and memory space in
the common case, the solution of using a larger storage structure to maintain a note's
length was not employed. As MIDI data is received, information pertaining to each
note is stored in a buffer and a count of packets present in the buffer is updated.

However, the forwarding of MIDI datais left to the main loop of the program.

Process Synchronization

The main program loop and entry point in to the application B contained in a file

entitted Sheet Musi cGener at or . ¢. This file includes two functions, initialize and

16

main. The initialize function makes calls to the individual initidization routines for
both the software UART and the MIDI interface, and then globally unmasks interrupts.
The main function calls initialize to set up all components of the firmware, and then
enters an endless processing loop. Within this loop, the count of stored data packets is
continuously checked. Upon discovery of a nonzero value, a note message is
transmitted serially and the buffer of stored packets is updated accordingly. The order
of operations for this sequence is as such in order to reduce possible conflict due to
global variables shared between the main application loop and the MIDI interrupt. This
isdone in an effort to mimic the effects of an atomic test-and-set operation on the global

index into the data buffer.

Each rote depressed causes a message of 4 bytes to be sent to the personal computer.
The first byte indicates the note’'s MIDI number, or pitch. The second two bytes are
used to convey information about the duration of the note. Two bytes are necessary for
this information as the software UART operates on 8bit values and the note length
value is stored in a 16-bit variable. Finally, a comma separator is sent to indicate the

completion of one note message.

Code Organization
The code for the project firmware is organized into severa files. UART. h contains the

type definitions, function prototypes, and constant declarations for UART. ¢ which

implements the software UART for the RS232 serial interface to the personal computer.

Similarly, M DI . h contains definitions for M DI . ¢ which implements the interface to

17

the MIDI device. Finaly, Sheet Musi cGener at or . h incorporates the MIDI and
UART definitions into the file responsible for coordinating al events,

Sheet Musi cGenerator.c. A full lisgting of the firmware code can be found in

Appendix C.

Software

The software segment of this application is written in Microsoft Visual C++ using
Microsoft Foundation Classes to implement a graphical user interface. A primary task
for this part of the project was the selection of an appropriate language and an
accompanying graphics design tool, followed by the mastery of the chosen language.
Consideration was given to a variety of methods for creating a graphical user interface
and MFC proved to be the most appropriate. Other possibilities included the use of Cin
conjunction with OpenGL or Java with Swing. A quick survey of OpenGL reveaed
that the tool is quite powerful and would allow for an interesting learning experience.
However, the graphics rendering capabilities of OpenGL far exceed what is necessary
for the construction of a simple graphical user interface. Because the tool is more suited
for extensive, in-depth graphics rendering, it became apparent that the complexities
which naturaly accompany such a powerful ool could potentially hinder the learning
and use of this product. The second language to be considered, Java, provided a much
more appropriate set of graphicstools, the Java Swing package from Sun Microsystems.
A significant portion of time was devoted to the study of both Java and Swing,
providing a useful first insight into the field of object oriented programming. Finaly,

the notion of Java was dismissed in favor of a language with programmer controlled

18

memory management, C++. The time spent on the study of Java proved to be time well
spent, as intuition about object oriented programming is an invaluable boost to the C++
learning curve. Extensive consideration and research determined that the C++ language
with the enhancement of Microsoft Foundation Classes was perfectly suited to the needs

of this project.

The primary purpose of the software component of this system isto display the results
of interactions with a MIDI device, a task which is twofold. A connection must be
established with the hardware via a COM port and any data transmitted along this
connection must be displayed graphically to the user. With the introduction of a user
interface comes the need for file manipulation. It can be assumed that a user will need
to save the data he or she collects from the MIDI device for viewing and editing a a
later date. Each of these tasks, along with the relevant sections of code, will be

discussed in turn.

As discussed above, the Microsoft Foundation Classes are used to display all graphics
for this application. The application’s user interface is intuitive to use and conforms to
the standards set forth by the Microsoft Developers Network, MSDN, for windows
applications. The program consists of a single window, which is used to display any
musical notation recorded, and to hold a set of menus through which the user interacts

with the application A screen capture of the running application follows.

19

L8]]

Fle MIDI Help

1 n n 2% =% A4 A4
7 =3 =% R R i ™ ™ - ' w—Hw —»——————
Pt P - i—#i - Hel H I
- Hel w #‘ L4
Py e -
—J;Q—:H:P“ - 53§t - T I
I; I; 5 B 54
F 73 B B Lo

=3

]

Figure 3: Software Application

The menus and other display items are contained in a text-editable resource file, which
specifies names and locations for al controls. This file is entitled
AppResour ces. r ¢ and can be found in Appendix D. Corresponding definitions for

constants used in this file appear in Resourcel ds. h. The remainder of the

implementation lies in the use of the classes provided by MFC.

An MFC program consists of two main parts, a main window object derived from the
class CFrameWnd, and a single application object, derived from the class CWinApp.
An instantiation of the application object begins the execution of the MFC program,

prompting the application object’s overloaded function, Initinstance, to create the main

20

window object and prepare the window to exchange messages with the Microsoft
Windows operating system. The nmain window definition includes a section of code
defining a message map. This map determines which messages sent to the application
by the operating system are handled and which messages are ignored. It matches a
handling function to each type of message specified by the programmer, thus allowing
the programmer to create event driven code for each control in the application. The
messages handled in this application are primarily those generated by user clicks on the
various menu items. The program includes a File menu, with full support for opening,
closing, and saving files. Interaction with the keyboard or other MIDI device is
accomplished with the MIDI menu. This menu allows for the opening and closing of a
connection to the MIDI device. Finally, he Help menu choice is used to display
information about the application itself. The implementations for the main window and
application objects are located in the file | npl enent ati on. cpp, and relevant class

definitions can be found in the C++ header fileCl assSkel et ons. h.

As the user captures input from the MIDI device, results are displayed onscreen in the
form of traditional sheet music. MFC provides an extensive list of classes for drawing
directly to the screen, outside of the confines of control objects such as a buttorns or
textboxes. These classes and routines are used to render musical notes onscreen and
thereby generate sheet music for the user. A musical score is an object oriented
representation of one piece of sheet music, or onefile. A score object contains a private
linked list of note objects as well as a flag which indicates whether the score has been

edited since it was last saved. The object also contains public routines for saving a

21

score, loading a previously saved score, drawing a score in the main window, adding a
note object to a score, and determining whether a score has been edited (and therefore
whether the user should be prompted to save before exiting). The most important
members of the score object are its notes. A musical composition consists of a series of
notes, each with a different pitch and length, and this concept is encapsulated in the
application within the note object. The note object’s private members include the note
length and pitch, a pointer to the next note in a linked list, and routines for drawing
specific pieces of a given note, such as its tail. A note’'s public methods allow other
objects to retrieve or set the pointer to the next note in a linked list, determine
parameters such as the note pitch and length, and draw the note onscreen. The final
public member of the note object is a routine for drawing a musical sharp symbol before
a note when appropriate. All objects within the program interact with the score object
currently loaded onscreen, and the score object interacts with its individual note
members. User input in the form of menu clicks prompts the main window to set or
change the current score and the serial input connection updates the current score upon

receipt of messages from a connected MIDI device.

A simple class for seria interaction obtained from www.codeguru.com is used for the

low-level manipulation of the seridl UART16550 port. The class includes functiors to
open and close a specific port witha given baud rate, and includes routines to read and

write data to and from an opened port. The class is written in C++ and can be found in

the files entitled seri al . h and seri al . cpp in Appendix D. The functions which

22

make use of the serial library are located in the file entitled | npl enent ati on. cpp.

These functions manage the creation and use of a serial port object.

Oftentimes, a user will choose to open a connection with a MIDI device for data
collection but will expect to be able to simultaneously interact with other menu options
within the application. Since MIDI data arrives asynchronously and may possibly
arrive in clusters of packets, it is clear that the serial port must either be interrupt-driven
or be read periodically until the user specifies that he or she has finished collecting data.
It cannot simply be read once and then ignored. The serial class used is designed to
work with the second of these methods, polling. Once the user indicates that he or she
is ready to receive MIDI data, it is necessary that the seria port be polled periodically
until further instruction from the user. This presents an interesting problem: code to
read the serial port must run continuously, in effect monopolizing the computer’s
processor, but certain instructions from the user must be able to disrupt this polling
procedure. Because user actions such as menu clicks are not interrupt driven in MFC, it
IS necessary that two separate threads of execution exist, one thread for polling the
serial port and another for accepting user input. Therefore, when a user selects the
Capture option from the menu, a serial connection is created and a new thread is
spawned to retrieve and process data for this connection. When the user selects the
Close Connection option, a flag is set by the main thread, notifying the serial thread of

thisaction. The serial thread finishes its current operation and then closes cleanly.

23

Two globa routines in the user interface remain to be discussed. The first routine,
SetTempo, accepts an integer value of a desired tempo in beats per minute and
calculates the length in milliseconds of each type of note present in musical notation.
For instance, a setting of 120 beats per minute would imply that a quarter note receives
.5 seconds; an eighth note receives .25 seconds, and so forth. As discussed above, the
hardware sends to the software application a record of the length of time for which a
particular note has been held. The second global function, FindNotelength uses this
value to determine which type of note to display. The implementations and class
definitions for al note and score objects, as well as for the drawing of these objects, can
be found in Appendix D, in the files entitted | npl ementati on.cpp ad

Cl assSkel et ons. h.

The final aspect of the application to discuss is the implementation of file input/output
routines. This program provides support for saving musical scores and for loading
previousy saved files. Interaction with the user for these tasks occurs through menu
selections. Standard Microsoft Windows directory browsing is implemented using the
common dialog objects provided by MFC. This allows the program to have a similar

“look and feel” to that of most Microsoft Windows applications.

24

Results

This system succeeds in its goal to implement a fully functioral interface between a
MIDI device and a personal computer, and to graphically display MIDI data received on
the computer. There are, however, certain limitations inherent in the design. One
shortcoming is the possibility of overflow in the firmware variable which keeps track of
the number of milliseconds for which a keyboard note is held down. Since the range of
values for this variable is from 0 to 65,000, a user could cause overflow by holding a
key down for longer than 65 seconds. This could clearly be fixed with the introduction
of alarger storage container for the applicable variables, but such a solution necessitates
the use of more memory and potentially more CPU cycles per operation. Therefore, the
motto “make the common case fast” was followed in this design. Another drawback
arises due to the conservative design of the software UART. In order to exclude the
possibility of overlapping transmit operations, the firmware includes a delay after
sending each serial byte. This then limits the speed at which data may be transported
from the MIDI device to the computer, thus increasing the latency in the display when a
user chooses to play notes quickly in succession. Again, the effects of this situation
could be reduced if the duration of the delay were to be minimized, but such a change
could cause the transmission of MIIDI data to become less reliable. Findly, it is
possible that synchronization problems could appear due to the fact that the main
firmware loop shares an index into a buffer with another routine. This is because the

requests to read and subsequently update this variable are not guaranteed to operate

25

atomically. However, this situation is highly unlikely to arise and has not been

encountered during a demonstration thus forth.

Despite these few drawbacks, the system performs quite well overall. Data is reliably
transported from the MIDI device to the personal computer, and is processed by
firmware in such a manner that it can be used efficiently by the software part of the
system. The graphical user interface is functional, intuitive, and includes al of the

expected and necessary features for MIDI data collection.

26

Conclusions

This project set out to address the task of allowing a musician to create musical scores
on a personal computer using a digital musical instrument. This task is accomplished
successfully by the system presented here. The system created relies on the use of a
microcontroller, thus significantly reducing compatibility issues. Such a reliance on
firmware also has the effect of dramatically reducing the cost of such a solution.
Therefore, the system presented fully satisfies the goals specified at the start of this

project.

Additionally, the project provided an equally important benefit in the area of education.
Completion of this project mandated the mastery of several computer languages and
caled for extensive research and work in the areas of firmware and hardware. Serial
communication protocols were explored from the point of view of both a personal
computer and a small microcontroller. Finally, this project necessitated a thorough
study into the creation of graphical user interfaces with the various tools available to

developers today.

27

References

Azelson, Jan. Serial Port Complete. Madison, WIL Lake View Research, 2000.

Barnett, Cox, and O’ Cull. Embedded C Programming and the Atmel AVR. Clifton

Park, NY: Delmar Learning, 2003.

Kernighan, Brian W. and Dennis M. Ritchie. The C Proggamming L anguage, Second

Ed. Marry Hill, NJ AT&T Bell Laboratories 1988.

Schildt, Herbert. MEC programming from the ground up. Berkeley, CA:

Osborne/McGraw-Hill, 1998.

Land, Dr. Bruce. ECE 476 Lecture Notes, Spring 2003,2004. Ithaca, NY: Dr. Bruce

Land, 2003,2004.

http://www.borg.com/~jgl att/tech/midispec/intro.htm (Midi specification)

http://www.cplusplus.com/doc/tutorial/ (C++)

http://www.intap.net/~drw/cpp/ (C++)

http://www.codeguru.com/Cpp/1-N/network/serial communi cations arti cl e.php/c2503/

(Serid Library)

http://msdn.microsoft.com/ (MFC and Visual C++ reference)

http://www.nbb.cornell.edu/neurobio/land/ (Serial reference)

DataSheets

http://www.national.com/ds/L M/L M 340.pdf (V oltage Regulator)

http://www.toshiba.com/taec/components/Datasheet/6N 138DS. pdf

(Optoisolator)

28

http://rocky.digikey.com/WebLib/E-Switch/Web%20Data/ EG1201 -

1302%020Slide%20Switches.pdf (Switch)

http://www.keyel co.com/kec/pdfs/p23.pdf (Battery Strap)

http://rocky.digikey.com/\WebL ib/Panasoni c/\Webh%20data/Panasonic Alkaline

Hdbk 03-04 v1.pdf (Battery)

http://rocky.digikey.com/WebL ib/K emet%20Caps/Web%20D atal Cerami c%20C

onformally%20Coated%20-%20Radial %20Series.pdf (.1uF Capacitor)

http://rocky.digikey.com/WebL ib/BC%20Components/Web%20Data/'5033E,50

43E,5053H%20M etal %20Film%20Res.pdf (100 ? Resistor)

http://rocky.digikey.com/WebLib/Y AGEO/Web%20Datal M FR%620Seri es.pdf

(100 k? Resistor)

-http://rocky.digikey.com/WebL ib/Epson/Web%20Data/ SG-

51,531%20Series.pdf (Oscillator)

http://rocky.digikey.com/WebL ib/Chicago%20M ini ature/\Web%20Data/Blue¥o2

OL ED%20L amps.pdf (L ed)

http://instruct1.cit.cornell.edu/courses/eed76/Atmel Stuff/ful| 32.pdf (Mega32)

http://rocky.digikey.com/WebL ib/3M/Web%20D ata/899%20Series.pdf (D-SUB

9)

http://rocky.digikey.com/scripts/Productl nfo.dl ?Site=US& V=175& M=M A X 23

3CPP (MAX233)

29

Appendices

Appendix A: Software User’s Manual
Appendix B: Pictures and Schematics of Hardware
Appendix C: Firmware Code Listing

Appendix D: Software Code Listing

30

Appendix A: Software User’s Manual
Use of the software application accompanying this system is quite straightforward. The
user interface components of the application conform to the standards presented by the

Microsoft Developer Network for Microsoft Windows applications. A view of the

running application is depicted below.

e
i o o e A R R
p PR f g @ ge @ xe @ fd B
o He W fw * ¥

L
L

Figure 1: Software Application

File interaction is accomplished via the File menu. The New option creates a new
score, the Save option saves the current score, if applicable, the Open option opens an
existing score, and the Close option closes the current score. If the user attempts to

close the current score, either by selecting Close from the File menu or by exiting the

31

program, creating a new score, or opening a different score, the application determines

E;IShEEI: Music Generator

whether the current score needs to be save and prompts the

user accordingly. The user may exit the application by | File MIDI Help

Mew Cnkl-M —————
selecting Exit from the File menu or by clicking the button 3¢ €N

Open Cnkl-C
in the top right corner of the window. EL”I:E L

Figure 2: ‘File’ Menu

Interaction with the MIDI device is accomplished via the MIDI menu. The MIDI
device must be attached to the system hardware using the MIDI cable provided. The
seria cable extending from the hardware should be attached to the COM1 port of the
persona computer. Finally, the power switch for the hardware should be moved to the
‘on’ position. When ready to collect data from the MIDI device, the user may select the
Capture option from the MIDI menu in order to open a

serial connection. When finished, the user may select the Fie [mipr Help

Capture
Close Connection option from the same menu. ‘ Close Connection |_

Figure3: ‘MIDI’ Menu

Finaly, the user may view information about the

E;IShEEI: Music Generator

application by selecting the About option if the Help menu. it MIPT | Help

Ii About |

Figure 4: ‘About’ Menu

32

Appendix B: Picturesand Schematicsof Hardware

= =) ° ==tk
§_ =
) =
= z =
L 8
== T AT
¢||‘/
S
O 1 PEO PAC 40 [
O 2 PB1 PA1 38 [0
O & PB2 PAZ 38 [0
]| 4 PB2 PA3 37 1
O] 5 PB4 PA4 36 [
O] & PES PAS 36 [
o= O] 7 PBe PAG 34 O
*= . e PB7 PA7 33 [0 =
—ﬂg 9 RESET AREF 32 [——H—
5 10 vee GND 31 3—-——
L—— > 1 {116nD AVCC 30
] 12 XTALZ PC7 29 1 =
13 XTAL1 PCs 28 [
14 PDO (RXD) PCs 2T O —
1§ PD1 (TXD) PC4 28 O =
16 PD2(NTD) PC3 25 O
&l ls 17 PD2(INT1) PC2 24 N1
Jelez 18 PD4 PC1 23 11
= z 19 PDS5 PCO 22 O
= 20 PD6 PD7 24 O
g
)
g
T E’n—‘
(zo)+z) oM EJ
(+20)-A ana B
- H |
=0 +A opl4
2 § anaf 3 ——-
. %§ YU B
joxy
- KR8 =y [v]
b [81 |10z ELHGIHE
(6] me el
0Z | 1no; Nz
[%2] 1nogy 2]

ALCOME

o
F L
voLime

Appendix C: Firmware Code Listing

/**
Meg Walraed-Sullivan

Corndl University M.Eng Project

Submitted: August, 2004

Thisfile contains the prototypes and definitions for the entire project

**/

ﬁ
Includes
>/
#include <Mega32.h> [/Imicrocontroller defines, etc
#include "uart.h" /Isoftware UART stuff
#include "MIDI.h" /IMIDI interface
P
Defines
>/
ﬁ
Prototypes
>/
void initidize(void); /linitialize al components

#***
Meg Walraed-Sullivan

Corndl University M.Eng Project

Submitted: August, 2004

Thisfile contains the implementation for a half -duplex interrupt-driven software UART

**/

ﬁ
Includes

>/
#include " SheetMusicGen.h" /lprototypes, defines, etc
#include "delay.h"
ﬁ
Globas

*/
ﬁ
Implementation

>/

ﬁ***

function: main
description: entry point and task loop for program
args: none

returns: none
KK KK KA A KRR K IR A KR AK IR K IR KRR KRR KRR KRR KRR KK IR KRR KRR R R h R ARk Rk ko hh kK hhkhkkkkkkkkkdkkkkkkkkkk kK|

35

void main(void){

char low_byte;
char high_byte;
initialize(); /linitialize al components
while(1{
if (new_data_packets>0){ //if thereisMIDI data

begin_xmit(midi_in[first_packet_index]); //send first packet
delay_ms(100);

low_byte = (char) (OxO0FF & len_in[first_packet_index]);
high_byte = (char)((len_in[first_packet_index]& OxFF00)>>8);

begin_xmit(high_byte); /lsend second packet
delay_ms(100);
begin_xmit(low_byte); /Isend third packet
delay_ms(100);
begin_xmit(',’); /Isend separator
delay_ms(100);
first_packet_index++; /Imove to next packet
if (first_packet_index==max_MIDI_packets) /Irollover index if necessary

first_packet index++;
new_data packets-; //decrement the number of packets
}HIiif (new_data_packets>0)
}Hiwhile

H/main

/**
function: initialize

description: initializes all components and then starts interrupts

args: none

returns: none
**/

void initialize(void){

UART _initialize(); /linitialize the UART component
MIDI_initialize(); /linitializethe MIDI interface
#asm("sal"); [fturn on interrupts

Hiinitidize

F***

Meg Walraed-Sullivan
Corndl University M.Eng Project
Submitted: August, 2004

Thisfile contains the prototypes and definitions for ahalf-duplex interrupt-driven software UART

**/

ﬁ
Includes
>/
#include <Mega32.h> /Imicrocontroller defines, etc

36

#include "genera.h" /Isoftware UART stuff
ﬁ
Defines

*/

#define UART_busy_mask 0b00000001

#define UART_xmit_mask 0b00000010

#define UART _data_mask 0b00000100

#define UART _busy _mask_inverse 0b11111110
#define UART_xmit_mask_inverse 0b11111101
#defineUART _data mask_inverse0b11111011

/Imasks for UART status byte, indicate
/lwhether UART is busy, transmitting
/lor has datato receive

#define UART_xmit PORTD.3 /Idefine PORT pinsused for UART
#defineUART _rcv PIND.2
#define UART _error_led PORTB.O
#define UART _busy led PORTB.1
#defineUART _send_led PORTB.2
#defineUART _rev_led PORTB.3
ﬂ
Prototypes
*/

void UART _initiaize(void);

void begin_xmit(char byte to_send);
void begin_rcv(void);

void finish_xmit(void);
voidfinish_rcv(void);

void enable UART_timer_send(void);
void enable UART_timer_rcv(void);

/linitialize everything necessary
/Isets up UART for sending

/Isets up UART for receiving
/lcleans up after asend

/Icleans up after areceive
[fturnson timer for UART send
[fturns on timer for UART receive

/**

Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

Thisfile contains the implementation for ahaf-duplex interrupt-driven software UART

**/

ﬂ

Includes

#include "UART.h"

/*

*/

/lprototypes, defines, etc

Globals

char UART_gtatus byte;
char UART _send_buffer;
char UART _rcv_buffer;

char UART _bits_done;
char UART _hits done_mask;

/*

>/

/Igtatus byte for software UART
//holds byte to send on UART
/holds byte received on UART

/Inumber bits xmitted/received
/Imask for sending individual bits

Implementation

>/

37

/**

function: timerO overflow interrupt

description: resets the timer to interrupt again in 52 us
args: none
returns. none

**/

interrupt [TIMO_OVF] void timer0_overflow(void){

TCNTO0=48;

if (UART_status byte& UART_busy_mask) {
if (UART_status byte& UART_xmit_mask){

switch (UART _bits_done){

caseO:

case9:

case10:

casell:

default:

/Ireload to interrupt again in 52us
/IUART isxmitting/receiving
/IUART istransmitting

/Isee how many bits sent so far

[ffirgt bit is start bit
UART_xmit=PORT _Io; [Istart bit islow

break;

ast bit is stop bit

UART_xmit=PORT_hi; /Istop bit ishigh

break;

/ffirst idle bit
UART_xmit=PORT _hi; /lidle high
break;

[ffirst idle bit
UART_xmit=PORT _hi; /lidle high
finish_xmit(); fIclean up
break;

/ldata bit

if (UART_send_buffer& UART _bits done_mask)
UART_xmit=PORT _hi;

else
UART_xmit=PORT _lo;

UART _bits done_mask<<=1; //move mask to next bit

}Hiswitch (UART _bits_done)

UART_bits donet+;

Illincrement # bits sent

Hiif (UART_status byte & UART_xmit_mask)

dse{

switch (UART_bits_done){

caseO:

case9:

default:

/Isee how many bits received so far

/Ino bits sampled yet
if(UART_rcv==PORT_hi) /Istart bit should be low
UART _error_led=led_on;
UART _bits_done++; //middle of first data bit

break;
/ast bit should be stop bit
if (UART_rcv==PORT_l0) /lif stop bit islo, problem
UART _error_led = led_on;
finish_rev(); /Iclean up
break;
/ldata bit

if(UART_rcv==PORT_hi) /lif received a 1, set bit
UART _rcv_buffer = UART_bits_done_mask;

38

UART _bits donet+; /lincrement # bits received
UART _bits done mask<<=1; //move mask to next bit
}Hiswitch (UART _bits_done)
Hidse
Hiif (software UART _status_byte& software UART _busy mask)

}itimerO_overflow

/**
function: externa interrupt O

description: indicates that UART has something to receive

args: none

returns. none

**/

interrupt [EXT_INTO] void external_interruptO(void){

if ((UART _status byte & UART_data mask))
begin_rcv(); /Istart receiving!

}iexternal _interruptO

#***

function: UART _initidize

description: sets up software UART
args: none

returns. none

**/

void UART _initidlize(void) {

MCUCR |= 0b00000010; /lexterna interruptO occurs on falling edge
GICR |= 0b01000000; /lunmask external interruptO

UART _status_byte = 0b00000000; /Ino dataready, not busy/transmitting
UART_send_buffer=0; /Ino bytesto send yet

UART _rcv_buffer=0; /Ino bytes received yet

UART_bits done =0; /Ino bits to xmit/receive

UART_hits done_mask=0b00000001; [Istart with first bit

DDRB = OxFF; //IPORTB used as indicator LEDS
PORTB = OxFF; /Istart with all the leds of f

DDRD = 0b00001000; //PORTD inputs except UART xmit
PORTD = OxFF; /fturn on pullups, idle xmit hi

HIUART _initialize

#***
fundion: begin_xmit

description: sets up UART for asend

args: (char) data to send with the software UART

returns. none

**/

void begin_xmit(char byte to_send){

if (UART_status byte & UART_busy mask) /lif UART is busy
UART _busy_led = led_on; /Ireport an error to user
elsg{ /lif UART not busy

39

UART _send_led = led_on; /Ireport send action to user

GICR &= 0b10111111; [fturn off externd interruptO
UART_status byte |- UART_busy mask; /lset busy bit
UART_status_byte |= UART_xmit_mask; /lset transmitting bit
UART_send_buffer=byte to _send; /lset byte to send
UART _bits done = 0; /Ino bits sent yet
UART _bits_done_mask=0b00000001; [Istart with first bit
enable UART_timer_send(); //start the UART timer
Hidse
}Hibegin_xmit

#***
function: begin_rcv

description: setsup UART for areceive

args: none

returns. none

**/

void begin_rcv(voidy{

if (UART_status byte & UART_busy mask) /lif UART is busy
UART _busy_led = led_on; /Ireport an error to user

else{ /lif UART not busy
UART _rcv_led = led_on; /Ireport receive action to user
GICR &= 0b10111111; [lturn off external interruptO
UART_status byte |- UART_busy_mask; /Iset busy bit
UART_status byte &=UART_xmit_mask_inverse; //clear transmit bit
UART _bits done = 0; /Ino bits received yet
UART_hits done_mask=0b00000001; [Istart with first bit
UART _rcv_buffer=0; [Istart with al 0 in receive buffer
enable UART _timer_rcv(); [Istart the UART timer

Hielse

}//begin_rcv

#***

function: finish_xmit

description: resets UART after a send
args: none

returns. none

**/

voidfinish xmit(void){

TIMSK &=0b11111110; //stop the UART timer
UART_status byte &= UART_busy_mask_inverse; /Iclear busy bit
UART_gtatus byte &= UART_xmit_mask_inverse; /lclear transmitting bit
UART _bits done = 0; /Ireset bits sent

UART _send_led = led_off; [fturn off the send led

GICR |- 0b01000000; [lturn external interruptO back on

}ifinish_xmit

#***

function: finish_rcv

description: resets UART after areceive
args: none

returns. none

**/

void finish_rcv(void){

TIMSK &=0b11111110; //stop the UART timer

UART_status byte &= UART_busy_mask_inverse; /Iclear busy bit

UART_dtatus byte |- UART_data mask; /lset data ready bit

UART _bits_done = 0; /Ireset bitsreceived

PORTD.2=1,

GICR |= 0b01000000; [lturn external interruptO back on

UART _rev_led = led _off; [lturn off thereceiveled
}ifinish_rev

#***

function: enable UART _timer_send

description: sets up and startsthe UART timer for sending
args: none

returns. none

**/

void enable UART _timer_send(void){

TCNTO= 48; /Ireload timerO with 48
TCCRO = 0b00000010; //set timerQ prescalar to 8
TIMSK |= 0b00000001,; /lunmask timerO overflow interrupt

}Hlenable UART _timer_send

/**

function: enable UART _timer_rcv

description: sets up and starts the UART timer for receiving
args: none

returns. none

**/

void enable UART_timer_rcv(voidy{

TCNTO = 180; /Ireload timerO with 48
TCCRO = 0b00000010; //set timerQ prescalar to 8
TIMSK |= 0b00000001; /lunmask timer 0 overflow interrupt

}lenable UART _timer_rcv

#***

Meg Walraed-Sullivan
Corndl University M.Eng Project
Submitted: August, 2004

Thisfile contans the prototypes and definitions for an interface to aMIDI controller

**/

ﬁ
Includes
*/
#include <Mega32.h> /Imicrocontroller defines, etc
#include "genera .h" lIsoftware UART stuff

41

Defines
>/
#defineMIDI_error_led PORTB.7 [luser interface to MIDI device
#define max_MIDI_packets 100 //maximum number of pending packets
#defineMIDI_status mask 128 //mask to check for status byte
P
Prototypes
>/
void MIDI_initialize(void); /linitialize everything necessary

ﬁ***

Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

Thisfile contains the implementation for an interface to aMIDI controller

**/

P
Includes
*/
#include "MIDI.h" /lprototypes, defines, etc
/*
Globas
*/
char midi_in[max_MIDI_packets]; /Istorage for midi datareceived
unsigned int len_in[max_MIDI_packets]; /Istorage for midi lengths calculated
char new_data packets; /Inumber of packetsto send to pc
char packet_array_index; /lindex to array of datareceived
cha first_packet_index; /lindex of first packet in array
char state; /Istate of MIDI receiver
enum{ status state,
note_num_state,
velocity_state,
end_status state,
end_note_num_state,
end_velocity_state};
unsigned int cur_note_start_ms; IIrecords start time of notes
unsigned int ms_count; /Inumber of milliseconds that have passed
char curr_note_num; /lcurrent note's number
unsigned int curr_note_ms_dff; [lcurrent note's length in ms
ﬂ
Implementation
=/

ﬁ***
function: UART receive interrupt

description: reads and handles data received from the UART

args: none

42

returns: none

**/

interrupt [USART_RXC] void MIDI_data received(voidy{

char temp_UDR_storage;

if (new_data packets<=max_MIDI_packets){ /lif there isroom in temp storage
temp_UDR_storage= UDR; llgrab packet
switch (state) { /Irun state machine (inlined for speed)

[Iwaiting for first status byte
case status_dtate:
curr_note_ms_dff=0;

if (!(temp_UDR_storage& MIDI_status mask)) /hif didn't receive status byte
MIDI_error_led = led_on; /Ishould've gotten status byte

state=note_num_state; /Iwait for note number

break;

case note_num_state:
curr_note_num =temp_UDR_storage; /Irecord note number
cur_nate_start ms=ms_count; /Irecord current time

state=velocity _state;
break;

casevelocity state:
state=end_status state;
break;

caseend_status_state:
//calculate length of note

if (ms_count-cur_note_start_ ms>0) /lif clock didn't roll during note
curr_note_ms_dff = ms_count-cur_note start ms;
ese /lif clock rolled, compensate

curr_note_ms_dff = (65000-cur_note_start_ms) + ms_count;

state=end_note_num_state;
break;

case end_note_num_state:

midi_in[packet_array_index]=curr_note_num; /Isave note number for transmitting
len_in[packet_array_index]=curr_note_ms _dff; //save note number for transmitting
packet_array_index++; //move to next storage space
if (packet_array_index==max_MIDI_packets) /Iroll over index if necessary

packet_array_index=0;
new_data_packetst+;

state=end_velocity_state;
break;

case end_velocity_state:
State=gtatus_state;

break;
}/switch

}Hiif (new_data packets<=max_MIDI_packets)

dse /lif temp storageis full
MIDI_error_led = led_on; [lalert user

}/IMIDI_data received

ﬁ***

function: timl_cmpA

description: occursevery 1ms, updatestime

args: none
returns: none

**/

interrupt [TIM1_COMPA] void tim1_cmpA (void){

if (ms_count++%500==0)
PORTB.7=~PORTB.7,

if (ms_count==65000)
ms_count=0;

Hitim1_cmpA

/lincrement the # of ms passed
/Iblink LED every 1/2 second

/lif asecond has passed
/Ireset ms count

/**

function: MIDI_initiaize

description: setsup interface to MIDI device

args: none
returns: none

**/

void MIDI_initialize(void) {

UBRRL =31;
UCSRB = 0b10010000;
UCSRC = 0b00000000;

new_data packets=0;
packet_array_index=0;
first_packet_index=0;
ms_count=0,

OCRI1A = 250;
TCCR1B = 0b00001011;
TCCRI1A = 0x00;
TIMSK = 0b00010000;
state=status_state;

}IMIDI_initialize

/IUBRR = f_osc/16BAUD -1
/lenable receive and receive interrupt
[lasynchronous, no parity, 1 stop bit

/Inothing received yet

/Istart at beginning of the array
[ffirst packet will bein beg. of array
/Igtart at time 0

/1250 ticks* 4us/tick = Img/interrupt
/Iclear compare, prescale by 64

/lunmask timer1 compare interrupt

Appendix D: Software Code Listing

F***

Meg Walraed-Sullivan

Cornell University School of Electrical Engineering
Masters of Engineering Project: Sheet Music Generator
Resources.RC

Thisfileincludesall graphical resources used in the application

**/

#include <Resourcelds.h> /lids of al resources used in app
#include <afxres.h> /ldialogs, controls
#
Menu
* [

MainMenu MENU {

POPUP"&File" {
MENUITEM "&NewtCntl-N", IDM_FILE_NEW
MENUITEM "“&SavetCnttS', IDM_FILE SAVE
MENUITEM "&Open\tCntl-O", IDM_FILE_OPEN
MENUITEM "&Close", IDM_FILE_CLOSE
MENUITEM "&Exit", IDM_FILE_EXIT

}/IPOPUP"&File

POPUP"&MIDI" {

MENUITEM "&Capture’, IDM_SCORE_KEY
MENUITEM "& Close Connection”, IDM_SCORE_STOP

}/IPOPUP" & Score’
POPUP"&Help" {

MENUITEM "About", IDM_HELP ABOUT
}/IPOPUP"&Help"

}IMainMenu MENU

ManMenu ACCELERATORS {
""N",IDM_FILE_NEW
"AS', IDM_FILE_SAVE
""O",IDM_FILE_OPEN

}IMainMenu ACCELERATORS

ﬁ
About Box

>/
AboutDialog DIALOG 200, 100, 142, 92

CAPTION "About: Sheet Music Generator"

STYLE DS MODALFRAME |WS_POPUP| WS CAPTION {
CTEXT "Sheet Music Generator\ntVersion 1.0n\nMeg Walraed-Sullivan”, IDD_ABOUTTEXT, 20, 10, 100, 40
PUSHBUTTON "Ok", IDOK, 52, 65, 37, 14 WS _CHILD | WS_VISIBLE | WS TABSTOP

}//AboutDiaog

P
Icon/Cursor
* |

Mainlcon ICON MUSIC.ICO

#***

Meg Walraed-Sullivan

Cornell University School of Electrical Engineering
Masters of Engineering Project: Sheet Music Generator
ClassSkeleton.h

Thisfileincludes dl class definitions used in the application

**/

#include "serial .h" //serid interface

/Inote sizes
typedef enum{ sixteenth_note,eighth_note,quarter_note half_note,whole_note} note length_t;

ﬁ
class CMainWwin:
Main Window of Application

* |
class CMainWin :public CFrameWnd{
CBitmap m_bmp; [Ivirtual window bitmap
CBrush m_bkbrush; //brush for virtual window
CPen m_ScorePen; //pen used to draw score
CBrush m_ScoreBrush; /lbrush used for score background
public:
CWinThread *seria_thread, [lthread for serial interaction
CSeria serial_conn; /Iserial connection object
bool serial_thread_running; /lindicates whether the serid thread exists
bool seria_thread stop flag; /lflag used to kill the serial thread
CDC m_memDC; [lvirtual window device context
CMainWin(LPCSTR ClassName); [lcongt ructor (includes style class)
afx_msg void OnPaint(); [ffor displaying the window
afx_msg void OnDestroy(); /Irespond to closing the window
afx_msg void OnFileNew(); /Irespond to menu clicks

afx_msg void OnFileSave();
afx_msg void OnFileOpen();
afx_msg void OnFileClose();
afx_msg void OnFileExit();

afx_msg void OnScoreKey();
afx_msg void OnScoreStop();

46

afx_msg void OnHelpAbout();

void DrawBlankScore();
void DrawClef(int y_pos);
void ClearScoreScreen();
void CheckSave();

void DestroyCurrentScore();

DECLARE_MESSAGE_MAP()

};/Iclass CMainWin

/*
class CSeria Thread:

Thred which controls serial access
*

class CSeria Thread :public CWinThread{
public:
CSeria Thread();
DECLARE_MESSAGE_MAR()
};//CSeriad Thread
*

class CAbouDialog:
"About" Dialog Box

>/
class CAboutDialog: public CDialog{

public:

CAboutDiaog(char * DialogName, CWnd *Owner) : //constructor

CDiaog(DialogName, Owner) {}

};//class CAboutDiaog

/*
class CMainApp:
Main Application Object
* |
class CMainApp:public CWinApp {
public:
BOOL InitInstance();
}:/lclass CMainApp
/*
class Note:
Note Object
* [
class CNote{
int note_num;
note_length_t note length;
CNote* next_note;
void DrawTail(int x_start, inty_start, CDC*);
void DrawUpsideDownTail(int x_start, inty_start, CDC*);
public:

CNote();
CNote(int num,note_length_t length);

/ldraws a new blank score

/ldraws a clef at given height

/Iclears the drawing area

/Icheck for ascoreto save

/Idestroys object holding the current score

/Imessage map

/luse default constructor

/Imessage map

/luse parent's constructor

[loverride Initlnstance from CWinApp

/Ipitch of note
/Nength of note

/Ipointer to the next notein list
/ladds the tail (s) onto a note
/ladds the tail(s) onto a note

/lempty constructor
/Iparameter congructor

47

void DrawNote(int cur_x, int staff_bottom,CDC*); //draws the note onscreen

void DrawSharp(int start_x, int start_y, CDC*); /ldraws a sharp sign
void SetNext(CNote* next_n); /lsetsnext notein list
CNote* GetNext(void); [Ireturnsthe next note
int GetNoteNum(); [Ireturnsthe pitch value
note_length_t GetNotel ength(); IIreturnsthe length
}:/lclass Note
P
class CScore:
Score Object
* |
class CScore{
bool edited;
[lwhether score has been edited since loaded
CNote* note list; /Nlinked list of notes
CNote* last_note; /last notein linked list
public:
CScore(); /lconstructor
~CScore(); //destructor
void AddNote (int num,note_length_t len); //adds a note to the score
bool IsEdited(); /Ireturns whether score has been edited
bool SaveScore (); //saves the current scoreto afile
void LoadScore(); /Nloads a score from afile
void DrawScore(CMainWin*); /ldisplays the score onscreen

};//class CScore

#***

Meg Walraed-Sullivan
Cornell University School of Electrical Engineering
Masters of Engineering Project: Sheet Music Generator

DrawingCongtants.h

Thisfileincludesall constants used for drawing.

**/

//score borders

#define LEFT_BORDER 5
#define RIGHT_BORDER 5
#defineTOP_BORDER 5
#defineBOTTOM_BORDER 5
#defineINNER_BORDER 15

#define SCORE_START_Y 2*BETWEEN_STAFFS+TOP_BORDER
#define SCORE_START X LEFT_BORDER + INNER_BORDER + 40

[Istaff constants

#define BETWEEN_STAFFS 30

#define BETWEEN_LINES 10

#define STAFF_HEIGHT 4*BETWEEN_LINES

/Iclef constants

#define CLEF_TOP_OVERHANG 5

#define CLEF_BOTTOM_OVERHANG 10

#define CLEF_INDENT 10

#define CLEF_X CLEF_INDENT+RIGHT_BORDER+INNER_BORDER
#define CLEF_TOP_ARC_WIDTH 6

48

/Inote constants

#defineNOTE_WIDTH 15
#defineNOTE_HEIGHT BETWEEN_LINES
#defineNOTE_STEM BETWEEN_LINES*3
#define BETWEEN_NOTES NOTE_WIDTH*4
#define TAIL_HEIGHT BETWEEN_LINES
#defineTAIL_WIDTH TAIL_HEIGHT*3/4
#defineTAIL_SPACING TAIL_HEIGHT/2
#define C_LINE_OVERHANG 4

[Isharpl/flat symbols

#define SHARP_WIDTH NOTE_WIDTH
#define SHARP_SKEW 3

#define SHARP_HEIGHT NOTE_HEIGHT+1
#define SHARP_OFF_LINE 3

/lindividua staff lines
#defineLINE_LENGTH 900

/**

Meg Walraed-Sullivan

Cornell University School of Electrical Engineering

Masters of Engineering Project: Sheet Music Generator

FileConstants.h

Thisfileincludesall constants used for file 10.
**/
#define FILE_BUFFER_LEN 100
#define FILE_DEFAULT_NAME "my_music.txt"

#***

Meg Walraed-Sullivan

Cornell University School of Electrical Engineering
Masters of Engineering Project: Sheet Music Generator
Resourcelds.h

Thisfileincludes al ids of al resources used in the application.

**/

ﬁ
Menu:1000
* |
//File Menu: 000
#define|DM_FILE_NEW 1000
#defineIDM_FILE_SAVE 1001
#defineIDM_FILE_OPEN 1002
#defineIDM_FILE_CLOSE 1003
#defineIDM_FILE_EXIT 1005
//Score Menu: 100
#defineIDM_SCORE_KEY 1100
#defineIDM_SCORE_STOP 1101
/Help Menu:200
#defineIDM_HELP_ABOUT 1200
P
Dialogs:2000
* |

49

//About Box: 000
#defineIDD_ABOUTTEXT 2000

Il Sexid.h

#indef _ SERIAL_H__
#oefine_SERIAL_H__

#defineFC_DTRDSR ~ 0x01
#define FC_RTSCTS ~ Ox02
#define FC_XONXOFF 0x04
#define ASCII_BEL ~ 0x07
#defineASCII_BS ~ 0x08
#define ASCII_LF OxO0A
#defineASCII_CR ~ 0xOD
#defineASCII_XON Ox11
#define ASCII_XOFF 0x13

class CSeria

{

public:
CSerid();
~CSerid();

BOOL Open(int nPort = 2, int nBaud = 9600);
BOOL Close(void);

int ReadData(void *, int);
int SendData(const char *, int);
int ReadDataWaiting(void);

BOOL 1sOpened(void){ return(m_bOpened); }

protected:
BOOL WriteCommByte(unsigned char);
HANDLE m_hIDComDeyv;
OVERLAPPED m_OverlappedRead, m_OverlappedWrite;
BOOL m_bOpened;
h
#endif

/**

Meg Walraed-Sullivan

Cornell University School of Electrical Engineering
Masters of Engineering Project: Sheet Music Generator

I mplementation.cpp

Thisfileincludes the implementations for each classin the application

**/

#

Includes

*/

#include <afxwin.h>
#include <afxdlgs.h>
#include <fstream.h>
#include <afxmt.h>

/lall MFC headers, classes, etc

/lcommon dialogs
lfilelO
[lthreads

50

#include " ClassSkeleton.h"
#include "Resourcel ds.h"
#include "DrawingConstants.h"
#include "FileConstants.h"
[H#include "serial .h"

/*

/[class definitions

/lids of all resources
/lconstants used to draw score
/lconstants used to do File |O
included in class skeleton

Globals

*/

int screen_width=0;
int screen_height=0;

CScore* curr_score=NULL;

int quarter_note_ms;
int eighth_note_ms;
int sixteenth_note ms;
int half_note ms;

int whole_note_ms;

/*

[Iwidth of entire window whem maximize
IIheight of entire window whem maximize

/Ireference to the current score object

/linformation about current tempo

Prototypes

*/

UINT Seria ThreadFunction(LPVOID TFParam);
void SetTempo(int beats per_minute);
note_length_t FindNoteL ength(int note_time_ms);

/*

/lserial thread function
/ffunction to set the current tempo
/[function to determine a note length

class CManWin: Main Window of Application

*/

CMainWin::CManWin(LPCSTR ClassName) {

/lcreate awindow with defined class style and no parent
Create(ClassName,
"Sheet Music Generator”,
WS_OVERLAPPEDWINDOW|WS MAXIMIZE,
rectDefault, NULL,
"MainMenu");

//IDC for main window
CClientDC DC(this);

/lget screen dimensions
screen_width = GetSystemMetrics(SM_CXSCREEN);
screen_height = GetSystemMetrics(SM_CY SCREEN);

/lcreate amemory DC compatible with this window
m_memDC.CreateCompatibleDC(& DC);

/lcreate and select a bitmap to store the screen
m_bmp.CreateCompatibleBitmap(& DC, screen_width, screen_height);
m_memDC.SelectObject(&m_bmp);

/lcreste a standard brush background and use in virtaul window
m_bkbrush.CreateStockObject(WHITE_BRUSH);
m_memDC.SelectObject(& m_bkbrush);

/Ipaint background of virtual window
m_memDC.PaBIt(0, 0, screen width, sreen_height, PATCOPY);

//load menu accelerators
if(LoadAccel Table("MainMenu"))

51

/lalert user upon error
MessageBox (" Cannot Load Accelerators', "Error");

/lcreate pen and brush to draw score with
m_ScorePen.CreateStockObject(BLACK _PEN);
m_ScoreBrush.CreateStockObject(WHITE_BRUSH);

[linitialize serid stuff
serial_thread = NULL;
seria_thread running=FAL SE;
seria_thread stop_flag=FALSE;

}iconstructor CMainWin
BEGIN_MESSAGE_MAP(CMainWin, CFrameWnd)

//keyboard
ON_WM_CHAR ()

/lwindow
ON_WM_DESTROY ()
ON_WM_PAINT ()

/Imenu

ON_COMMAND(IDM_FILE_NEW, OnFileNew)
ON_COMMAND(IDM_FILE_SAVE, OnFileSave)
ON_COMMAND(IDM_FILE_OPEN, OnFileOpen)
ON_COMMAND(IDM_FILE_CLOSE, OnFileClose)
ON_COMMAND(IDM_FILE_EXIT, OnFileExit)

ON_COMMAND(IDM_SCORE_KEY, OnScoreK ey)
ON_COMMAND(IDM_SCORE_STOP, OnScoreStop)

ON_COMMAND(IDM_HELP_ABOUT, OnHelpAbout)
END_MESSAGE_MAP()

/*
Menu Implementation

>/

afx_msg void CMainWin::OnHelpAbout() {

/lcreste dialog box
CAboutDia og diagObject("AboutDialog", this);

/Ishow dialog modally
diagObject.DoModal();

}//0OnHelpAbout
afx_msg void CMainWin::OnFileExit() {
int response;

/lprompt user to exit
response = MessageBox("Quit the Program?', "Exit", MB_Y ESNO);

/lif user opted to exit
if(response == IDYES) {
/Iclose the current scoreif applicable

OnFileClos();

/Isend windows a message to close
SendM essage(WM_CLOSE);

52

}iif(response == IDYES)
}//OnFileExit
afx_msg void CMainWin::OnFileNew() {

/lclose the current score if applicable
OnFileClos();

//draw a new score
DrawBlankScore();

/lset up anew score object
curr_score=new CScore;

}//OnFileNew
afx_msg void CMainWin::OnFileSave() {

/lattemp to save score, if user cancels, don't care
curr_score->SaveScore();

}H/OnFileSave
afx_msg void CMainWin::OnFileOpen() {

//closethe current score if applicable
OnFileClos();

[ffirst draw background
DrawBlankScore();

/lcreate anew score object
curr_score = new CScore;

/Nload the score from thefile
curr_score->L oadScore();

curr_score->DrawScore(this);
}//OnFileOpen
afx_msg void CMainWin::OnFileClose() {

/Icheck for saving current score
CheckSave();

/lclear screen
ClearScoreScreen();

}//OnFileClose

afx_msg void CMainWin::OnScoreKey() {

/Icheck to see that we are not already capturing
if (serial_thread running) {

MessageBox("Already capturing!!1", "Invalid Action”, MB_OK|MB_ICONEXCLAMATION);
return;

YIiif (serid_thread running)

[/start a new score
OnFileNew();

/lattempt to open aconnection on COM 1 at 9600 baud
if (seria_conn.Open(1, 9600)) {

/lcreate anew thread to handle the serial interaction

53

serial_thread=AfxBeginThread(Seria ThreadFunction, /IAFX_THREADPROC

this /ILPVOID Param
THREAD_PRIORITY_NORMAL, /fint InitPriority =
THREAD_PRIORITY_NORMAL
0,
/IUINT StackSize=0
0,
/[DWORD dwFlags = 0
NULL);

/ILPSECURITY_ATTRIBUTES Security = NULL

//set flag to indicate thread exists
serid_thread_running=TRUE;

/lclear the flag used for stopping the thread
serid_thread_dop_flag=FALSE;

//set tempo
SetTempo(120);

HIif (seria_conn.Open(1, 9600))

else
AfxMessageBox (" Failed to open port!");

}/OnScoreKey
afx_msg void CMainWin::OnScoreStop() {

/lcheck to seeif we are capturing
if (serial_thread_running) {

MessageBox("No captureto stop!!!", "Invalid Action", MB_OK|MB_ICONEXCLAMATION);
return;

Hiif (Yserid_thread running)

/Iset theflag to thread the stop
serial_thread stop flag=TRUE;

}//OnScoreStop

/*
Window Implementation

>/

afx_msg void CMainWin::OnPaint(void){

/lobtain device context for this window
CPaintDC DC(this);

/Icopy the virtual window on to the window
DC.BitBIt(0, O, screen_width, screen_height, &m_memDC, 0, 0, SRCCOPY);

}/OnPaint
afx_msg void CMainWin::OnDestroy(void) {
/ldestroy the current scoreif necessary
if (curr_score)
delete curr_score;
}//OnDestroy
void CMainWin::ClearScoreScreen(void)X{

m_memDC.PatBIt(0, 0, screen_width, screen_height, PATCOPY);
InvalidateRect(NULL);

}HICMainWin::ClearScoreScreen

/*
File Mainpulation Routines

* |
void CMainWin::CheckSave(void){

/lif thereis a score currently open
if (curr_score!=NULL) {

//if this score has been edited
if (curr_score >IsEdited()) {

/Iprompt user that score should be saved
if(MessageBox(" Save current score?', "Exit", MB_Y ESNO)==IDYES)
OnFileSave();
YIif (curr_score>IsEdited())

//destroy the object that held the current score
DestroyCurrentScore();

Hiif (curr_score!=NULL)
HICMainWin::CheckSave
void CMainWin::DestroyCurrentScore(void){

//destroy the current score and free all memory
delete curr_score;

[/set reference to null
curr_score=NULL;

}HICMainWin::DestroyCurrentScore

/*
Drawing Routines

>/

void CMainWin::DrawBlankScore(voidy{

int screen_bottom=screen_height-20*BOTTOM_BORDER,;
int screen_right=screen_width-2* RIGHT_BORDER,;

int screen_left = LEFT_BORDER,;

int screen_top=TOP_BORDER;

int cur_y = TOP_BORDER,;

int num_lines=0;

/Iselect drawing tools
m_memDC.SelectObject(&m_ScorePen);
m_memDC.SelectObject(&m_ScoreBrush);

/Idraw outline

m_memDC.MoveTo(screen_|eft, screen_top);
m_memDC.LineTo(screen |eft, screen_bottom);
m_memDC.LineTo(screen _right, screen_bottom);
m_memDC.LineTo(screen _right, screen_top);
m_memDC.LineTo(screen_left, screen_top);

/Imove down to first staff start
cur_y=SCORE_START_Y;

/ldraw staffs
while(cur_y+STAFF_HEIGHT+BETWEEN_STAFFS<screen_bottom){

/ldraw 4 lines
for(num_lines=0;num_lines<4;num_lines++) {

//moveto beginning of line

55

m_memDC.MoveTo(screen_|eft+INNER_BORDER, cur_y);

/ldraw line
m_memDC.LineTo(screen_right-INNER_BORDER, cur_y);

/Imoveto next line
cur_y+=BETWEEN_LINES,

}ifor(num_lines=0;num_lines<4;num_lines++)

[ldraw the last line
m_memDC.MoveTo(screen_left+INNER_BORDER, cur_y);
m_memDC.LineTo(screen_right-INNER_BORDER, cur_y);

//draw the clef
DrawClef(cur_y);

/Imove to next staff
cur_y+=BETWEEN_STAFFS;

[//draw line
}iwhile(cur_y+STAFF_HEIGHT+BETWEEN_STAFFS<screen_bottom)

/lcause window to be repainted
InvalidateRect(NULL);

}//DrawBlankScore

void CMainWin::DrawClef(int y_pos){

RECTT;
CBrush HollowBrush;
CBrush* oldBrush;

llcreate and select a brush that won't fill shapesin
HollowBrush.CreateStockObject(HOLLOW_BRUSH);
oldBrush=m_memDC.Sel ectObject(& HollowBrush);

//move to bottom of clef and draw vertica line
m_memDC.MoveTo(CLEF X, y_postCLEF BOTTOM_OVERHANG);
m_memDC.LineTo(CLEF_X,y_pos STAFF HEIGHT -CLEF_TOP_OVERHANG);

/set up objectsfor arc

r.top=y_pos STAFF_HEIGHT -CLEF_TOP_OVERHANG;
r.bottom=y_pos2*BETWEEN_LINES 1,
rleft=CLEF_X-CLEF_TOP_ARC_WIDTH,;
rright=CLEF_X+CLEF_TOP_ARC_WIDTH;

/ldraw top arc;
m_memDC.Arc(r.l€eft, r.top,r.right,r.bottom,CLEF_Xr.bottom,CLEF_X,r.top);

/Imove boundng rectangle down for lower arc,widen
r.top=y_pos2*BETWEEN_LINES;

r.bottom=y_pos;

rleft-=3;

r.right+=3;

/ldraw next arc
m_memDC.Arc(r.left, r.top,r.right,r.bottom,CLEF_X r.top,r.right,(r.top+BETWEEN_LINES));

/ladjust rectangle for inner curve
r.bottom-=2;

r.left+=5;

r.top+=4;

/ldraw inner arc
m_memDC.Arc(r.left, r.top,r.right,r.bottom,r.right,(r.top+tBETWEEN_LINES4), r.left, (r.top+tBETWEEN_LINES 4));

56

/ladjust rectangle again for inner inner arc
r.bottom-=2;

/ldraw inner inner arc
m_memDC.Arc(r.l€ft, r.top,r.right,r.bottom,r.lft,(r.top+BETWEEN_LINES4), CLEF_X, r.bottom);

/Ireselect old brush
m_memDC.SelectObject(oldBrush);

}//DrawBlankScore

/*

class CAboutDialog: About Box
*/

/lall implementation is default!

/*

class CManApp: Main and Only Application Object
*/

BOOL CMainApp::Initinstance() {
CBrush bkbrush;

/lcreate a standard background brush
bkbrush.CreateStockObject(WHITE_BRUSH);

/Iregister window style class

LPCSTR cname = AfxRegisterWndClass(0,
LoadStandardCursor(IDC_ARROW),
bkbrush,
Loadlcon("Mainlcon"));

/lcreate amain window object, store pointer
m_pManWnd = new CManWin(cname);

/Ishow the window object
m_pMainWnd->ShowWindow(m_nCmdShow|SW_SHOWMAXIMIZED);

[lupdate the window object
m_pMainWnd->UpdateWindow();

/Ireturn succesfullly
return TRUE;

HICM anApp::Initinstance

/*

class CNote: Note Object
*/

CNote::CNote() {
/lassign default values for length and pitch
note_length = quarter_note;
note_num=60;

/Inext note not set until list created
next_note=NULL;

}//ICNote::CNote

CNote::CNote(int num,note_length_t length) {

57

/linitialize pitch and length to given values
note_length = length;
note_num=num;

/Inext note not set until list created
next_note=NULL,;

}ICNote::CNote(int num,int length)

void CNote::SetNext(CNote* next_n)X{

next_note=next_n;

}//ICNote::SetNext

CNote* CNote::GetNext(void){

return next_note;

}//ICNote::SetNext

void CNote::DrawNote(int cur_x, int staff_base, CDC* memDC) {

CBrush noteBrush;
CBrush* oldBrush;
CPen stemPen;
CPen* oldPen;

int cur_y=gtaff base;
intnote_y_middle;
RECTT;

switch(note_num){

case60:
cur_y+=BETWEEN_LINES,

/Idraw line
memDC->MoveTo(cur_x-C_LINE_OVERHANG,cur_y);
memDC->LineTo(cur_x+NOTE_WIDTH+C_LINE_OVERHANG,cur_y);

break;
case61:

cur_y+=BETWEEN_LINES;

/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES4);

/ldraw line
memDC->MoveTo(cur_x-C_LINE_OVERHANG,cur_y);
memDC->LineTo(cur_x+NOTE_WIDTH+C_LINE_OVERHANG,cur_y);

break;

case62:
cur_y+=(int)(BETWEEN_LINES/2);
break;

case63:

cur_y+=(int)(BETWEEN_LINES/2);

/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES4);

break;
case 64:
break;

58

case 65:

case 66:

case67:

case 68:

case69:

case 70:

case71:

case72:

case73:

case74:

case75:

case 76:

case77:

cur_y-=(int)(BETWEEN_LINES/2);
break;
cur_y-=(int)(BETWEEN_LINES/2);
/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES4);
break;

cur_y-=BETWEEN_LINES,

break;

cur_y-=BETWEEN_LINES,

//draw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES/4);
break;
cur_y-=(int)(BETWEEN_LINES*3/2);
break;
cur_y-=(int)(BETWEEN_LINES* 3/2);
/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES4);
break;

cur_y-=2*BETWEEN_LINES;
break;

cur_y-=BETWEEN_LINES*5/2;
break;

cur_y-=BETWEEN_LINES*5/2;
/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES4);
break;

cur_y-=BETWEEN_LINES*3;
break;

cur_y-=BETWEEN_LINES*3;
/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES/4);

break;

cur_y-=BETWEEN_LINES*7/2,

break;

cur_y-=BETWEEN_LINES*4;

59

break;
case78:
cur_y-=BETWEEN_LINES*4;

/ldraw sharp sign and move over
DrawSharp(cur_x, cur_y,memDC);
cur_x+=(int)(BETWEEN_NOTES/4);

break;
}H/switch(note_num)

/Imake pen thicker for tail
stemPen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

//set new pen, save old pen
oldPen=memDG->Sel ectObject(& stemPen);

//if noteisto befilled in, create ablack brush
if (note_length<=quarter_note)
noteBrush.CreateStockObject(BLACK_BRUSH);
/lotherwise create a hollow brush
dse
noteBrush.CreateSt ockObject(HOLLOW_BRUSH);

/Isave the old brush
oldBrush=memD C->Sel ectObj ect(& noteBrush);

/lcalculate note middle from staff bottom and note num
note y _middle = cur_y;

/lset up rectangle for note body
r.top=(int)note_y_middle-NOTE_HEIGHT/2;
r.bottom=(int)note_y _middle+tNOTE_HEIGHT/2;
r.left=cur_x;

r.right=r.left+NOTE_WIDTH,;

/ldraw oval for note body
memDC->Ellipse(&r);

//if noteis not awhole note, it needs astem
if (note_length<whole_note){

/Imoveto stem starting point
memDC->MoveT o(r.right, note_y_middle);

/ldraw stem up for lower notes
if (note_num<=70) {

memDC->LineTo(r.right, (int)(note_y_middle-NOTE_STEM));

/lif note is lessthan a quarter note, it needs atall

if (note_length<quarter_note)
DrawTail(r.right,(int)(note_y _middle-NOTE_STEM -1),memDC);

/lif noteisless than an eighth note, it needs a second tail

if (note_length<eighth_note)
DrawTail(r.right,(int)(note_y_middle-NOTE_STEM+TAIL_SPACING),memDC);

YIiif (note_num<=70)

/ldraw stem down for higher notes
else{

/Imove to stem starting point
memDC->MoveTo(r.left, note y_middle);

memDC->LineTo(r.left, (int)(note_y_middietNOTE_STEM));

/lif noteislessthan aquarter note, it needs atail
if (note_length<quarter_note)
DrawUpsideDownTail(r.l€ft,(int)(note_y_middletNOTE_STEM),memDC);
/lif noteislessthan an eighth note, it needs a second tail
if (note_length<eighth_note)
DrawUpsideDownTail(r.left,(int)(note_y_middle+tNOTE_STEM -
TAIL_SPACING),memDC);

}lekse

HIiif (note_length<whole_note)

/lset pen back to what it was
memDC->Sel ectObject(oldPen);

/Ireselect the old brush before returning
memDC->SelectObject(oldBrush);

}/ICNote::DrawNote
void CNote::DrawTail(int x_start, inty_start, CDC* memDC) {
CBrushtailBrush;
CBrush* oldBrush;
CPentail Pen;
CPen* oldPen;
RECTT;

/Imake brush that won't fill background
tailBrush.CreateStockObject(HOLL OW_BRUSH);

/Iset new brush, save old brush
oldBrush = memDG->Sel ectObject(& tail Brushy;

/Imake pen thicker for tail
tail Pen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

/et new pen, save old pen
oldPen=memDG->Sel ectObj ect(& tail Pen);

/lset up rectanglefor first arc

rtop =y_start;
r.bottom=y_start+TAIL_HEIGHT;
r.left=x_start;

r.right = x_start+TAIL_WIDTH,;

[ldraw first arc
memDC->Arc(r.left,r.top,r.right,r.bottom, r.right,(int)(r.top+TAIL_HEIGHT/2),r.I€ft,r.top);

/ladjust rectangle for second arc
r.left=r.right;
rright+=TAIL_WIDTH;

/ldraw second arc
memDC->Arc(r.left,r.top,r.rightr.bottom, r.left,(int)(r.top+ TAIL_HEIGHT/2),(int)(r.|eft+ TAIL_WIDTH/2),r .bottom);

//set brush back to what it was
memDC->Sel ectObject(oldBrush);

/Iset pen back to what it was
memDC->Sel ectObject(oldPen);

}/ICNote::DrawTail

void CNote::DrawUpsideDownTail(int x_start, inty_start, CDC* memDC) {

61

CBrushtailBrush;
CBrush* oldBrush;
CPentailPen;
CPen* oldPen;

RECTT;

/Imake brush that won't fill background
tail Brush.CreateStockObject(HOLLOW_BRUSH);

/Iset new brush, save old brush
oldBrush = memDG->Sel ectObject(& tail Brush);

/Imake pen thicker for tail
tail Pen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

//set new pen, save old pen
oldPen=memDG->Sel ectObj ect(& tail Pen);

//set up rectanglefor first arc
r.bottom=y_start;
rtop=y_start-TAIL_HEIGHT;
rleft=x_start;

rright =x_start+TAIL_WIDTH;

/ldraw first arc
memDC->Arc(r.lft,r.top,r.right,r.bottom, r.left,r.bottom, r.right,(int)(r.top+ TAIL_HEIGHT/2));

/ladjust rectangle for second arc
r.left=r.right;
r.right+=TAIL_WIDTH,;

/ldraw second arc
memDC->Arc(r.|ft,r.top,r.right,r.bottom, (int)(r.left+TAIL_WIDTH/2),r.top,r.l€ft,(int)(r.top+ TAIL_HEIGHT/2));

/lset brush back to what it was
memDC->Sel ectObject(oldBrush);

/Iset pen back to what it was
memDC->Sel ectObject(oldPen);

}//CNote::DrawUpsideDownTail
void CNote::DrawSharp(int start_x, int start_y, CDC* memDC){

CPen sharpPen,;
CPen* oldPen;

RECTT;

//make pen thicker for tail
sharpPen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

/et new pen, save old pen
oldPen=memDG->Sd ect Object(& sharpPen);

/et up base rectagle
r.bottom=(int)(start_y+SHARP_HEIGHT/2);
rtop=(int)(start_y-SHARP_HEIGHT/2);
r.left=start_x;
r.right=r.left+SHARP_WIDTH,;

/ldraw vertical lines

memDC->MoveTo(r.|ft,r.bottom);
memDC->LineTo(r.left+SHARP_SK EW,r.top);
memDC->MoveTo(r.left+(int)(SHARP_WIDTH/2), r.bottom);
memDC->LineTo(r.left+SHARP_WIDTH/2+SHARP_SKEW.,r.top);

//draw horizonta lines

62

memDC->MoveTo(r.|eft-3,start_y+SHARP_OFF_LINE);

memDC->LineTo(r.left -3+SHARP_WIDTH, start_y+SHARP_OFF_LINE);

memDC->MoveTo(r.|eft-3,start_y-SHARP_OFF_LINE);

memDC->LineTo(r.left -3+SHARP_WIDTH, start_y-SHARP_OFF_LINE);

/Iset pen back to what it was
memD C->Sel ectObject(oldPen);

}/ICNote::DrawSharp
int CNote:: GetNoteNum(){
return note_num;
}//ICNote::GetNoteNum
note_length_t CNote:: GetNotel ength(){
return note_length;
}/ICNote::GetNotelength

/*

class CScore: Score Object

*/

CScore::CScore() {
/lanew score has no notes yet
note list=NULL;
last_note=NULL;

/lanew score has yet to be edited
edited=false;

}//ICScore::CScore
CScore::~CScore() {

CNote* curr_note=note list;
CNote* next_note;

//destroy all notes
while(curr_note!l=NULL)Y{

next_note = curr_note->GetNext();
delete curr_note;
curr_note=next_note;
}Hiwnhile(curr_note!l=NULL)
}ICScore::~CScore
void CScore::AddNote (int num,note_length_t len){

/lcreate anew note
CNote* new_note = new CNote(num,len);

/lif thelist isempty, smply put in list
if (last_note==NULL){

note_list = new_note;
last_note=note list;

}Iif (last_note==NULL)

[lotherwise, make it thelast note ande make old last point to it
else{

63

last_note >SetNext(new_note);
last_note=new_note;

ielse

/Imark that the score was edited
edited=true;

}/ICScore::AddNote
void CScore::DrawScore(CMainWin* main_window){

int cur_x=SCORE_START_X;
int cur_y=SCORE_START_Y+STAFF_HEIGHT;

CNote* curr_note=note_lit;

/Iwhilethere are notes to draw
while(curr_note!=NULL)Y{

//draw the current note
curr_note>DrawNote(cur_x,cur_y, & (main_window->m_memDC));

/lif note still fitson thisline
if (cur_x<LINE_LENGTH-2*NOTE_WIDTH) {

/Imove over one note width plus one space
cur_x+=NOTE_WIDTH;
cur_x+=BETWEEN_NOTES;

Hiif (cur_x<LINE_LENGTH-2*NOTE_WIDTH)

/lotherwise moveto next line
else {

cur_x = SCORE_START X;
cur_y+=STAFF_HEIGHT+BETWEEN_ST AFFS,

}ielse

/Imoveto next note
curr_note = curr_note >GetNext();

}iwhile

/lcause the window to be repainted
main_window->InvalidateRect(NULL);

}/ICScore::DrawScore
bool CScore::SaveScore(void){

if (curr_score==NULL)
return FALSE;

CNote* curr_note=note list;

CFileDiaog SaveDiaog(FALSE, //BOOL bOpenFileDiaog
"ixt”, /ILPCTSTR |pszDefExt =NULL
FILE_DEFAULT_NAME, /ILPCTSTR IpszFileName
OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, /IDWORD dwHags
"Text Files (*.txt))[*.txt[", /ILPCTSTR IpszFilter
NULL); /ICWnd* pParentWnd

bool saved_succesfully=FALSE;
int result;

/Ishow file save common dialog

result = SaveDialog.DoModal() ;
/lif user cancelled, return without saving
if (result==IDCANCEL)

return saved_succesfully;

/1if file was selected correctly
eseif (result==IDOK){

/lopen a stream for the file name selected
ofstream SaveFile(SaveDia og.GetFileName());

[Iwritefirst line
SaveFile << "File Created By Sheet Music Generator: Verson 1.0\n";

/Iwhile there are notes to save
while(curr_note!l=NULL)Y{

//save the current note
SaveFile << curr_note>GetNoteNum() << "," << curr_note>GetNotel_ength() << "\n";

//move to next note
curr_note = curr_note >GetNext();

}iwhile

/Imark the end of thefile
SaveFile<<"end";

llclosethefile
SaveFile.close();

//mark score as not edited
curr_score->edited=FAL SE;

/Isave now successful
saved_succesfully=true;

Hidseif (result== IDOK)
return saved _succesfully;
}ICScore::SaveScore
void CScore::L oadScore(void){

CNote* curr_note=note_list;

CFileDialog OpenDialog(TRUE, //BOOL bOpenFileDiaog
"axt", /ILPCTSTR IpszDefExt = NULL
NULL, /ILPCTSTR lpszFileName
OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, /IDWORD dwHags
"Text Files (*.txt))[* .txt|", /ILPCTSTR IpszFilter
NULL); /ICWnad* pParentWnd
int result;

note_length_t temp_note len;
int temp_note_num;
char file_buffer [FILE_BUFFER_LEN];

/Ishow file open common dialog

result = OpenDialog.DoModal() ;

/1if user cancelled, return without opening anything
if (result==IDCANCEL)

return;

/lif file was selected correctly

65

dseif (result== IDOK){

/lopen astream for the file name selected
ifstream OpenFileStream(OpenDid og.GetFileName());

/lget thefirst line

OpenFileStream.getline(file_buffer,FILE_BUFFER_LEN,\n');

/lif first line incorrect, bad file

if (stremp(file_buffer, "File Created By Sheet Music Generator: Version 1.0")!=0)
return;

/Iwhile we haven't hit the end of thefile
while(! OpenFileStream.eof () {

/lget the first int
OpenFileStream.getline(file_buffer,FILE_BUFFER_LEN,',");

//if we haven't reached the end of thefile
if (stremp(file_buffer, "end")!=0){

temp_note_num = atoi(file_buffer);

/lget second int

OpenFileStream.getline(file_buffer,FILE_ BUFFER_LEN,\n’);
temp_note len = (note_length_t)atoi(file_buffer);

/ladd the note
curr_score->AddNote(temp_note_num, temp_note_|en);

Yiif (stremp(file_buffer, "end")!=0)
}iwhile(! OpenFileStream.eof ()

/Iclosethefile
OpenFileStream.close();

}ieiseif (result== 1DOK)

//score hasyet to be edited
edited=false;

}/ICScore::LoadScore
bool CScore::IsEdited({
return edited;

}ICScore::IsEdited

/*

Main Code Section

*/

CMainApp MyApp;
an application object to start

UINT Serial ThreadFunction(LPVOID TFParam){

int nBytesRead=0;

unsigned int curr_note_num=0;
unsigned int curr_note_|len=0;
int curr_byte=0;

int byte within_note=0;

I[create

66

unsigned char* IpBuffer = new unsigned char[500];
CMainWin* window_obj;

/lcast the parameter into aserial connection object
window_obj = (CMainWin*) TFParam,;

[Icontinuously read the serial input
while(1) {

/Iread any data waiting on the COM port
nBytesRead = window_obj->serial_conn.ReadData(lpBuffer, 500);

//process each byte read
for (curr_byte=0;curr_byte<nBytesRead;curr_byte++){

/Idecide which part of note current byte represents
switch (byte within_note) {

[[first byteis note num
caseO:

//grab and cast note number
curr_note_num=(unsigned int)lpBuffer[curr_byte];

/lif noteis below bottom of range, move up

if ((curr_note_num>=48)& & (curr_note_num<=59))
curr_note_num+=12;

eseif (curr_note_num<48)
curr_note_num-+=24;

elseif ((curr_note_num>=79)& & (curr_note_num<=90))
curr_note_num-=12,

eseif (curr_note_num>90)
curr_note_num-=24,

/Imove to next byte in note
byte within_note++;

break;

/Isecond byte is note length high byte
casel:

//grab and cast note length
curr_note_len=(unsigned int)(IpBuffer[curr_byte]);
/Imove to next byte in note

byte within_notet+;

break;

/Ithird byte is note length low byte
case2:

/lcombine high and low bytes

curr_note_len = (curr_note_len* 256)+(unsigned int)(IpBuffer[curr_byte]);

//grab and cast note length
curr_note_len=FindNotelength(curr_note_len);

//move to next byte in note
byte within_notet+;
break;

[Ithird byte is seperator
case3:

67

/luse thistime to add the note
curr_score->AddNote(curr_note_num,(note_length_t)curr_note_len);

/Imoveto first byte of next note
byte within_note=0;

//draw the changes
curr_score->DrawScore(window_obyj);
break;
}Iswitch
Yifor
/lif we've been asked to stop
if (window_obj->seria_thread stop_flag)
break;
}iwhile
/Idelete buffer used

delete []IpBuffer;

/lindicate that connection is no longer running
window_obj->seria_thread running=FALSE;

//close the serial connection
window_obj->serial_conn.Close();

return0;
}ISeria ThreadFunction
void SetTempo(int beats per_minute) {

float quarter_note_sec;
float eighth_note_sec;
float sixteenth_note_sec;
float half_note_sec;
float whole_note_sec;

/luse tempo to calculate quarter note value
quarter_note_sec = 60/(float)beats per_minute;

/luse quarter note value to calcul ate other notes values
eighth_note_sec = quarter_note_sec/2;
sixteenth_note_sec = eighth_note_sec/2;

half_note sec=quarter_note_sec*2;

whole_note_sec = haf_note sec* 2;

[lconvert valuesinto ms

quarter_note_ms = (int)(quarter_note_sec* 1000);
eighth_note_ms = (int)(eighth_note_sec* 1000);
sixteenth_note_ms = (int)(sixteenth_note_sec* 1000);
half_note_ms = (int)(half_note_sec*1000);
whole_note_ms= (int)(whole_note_sec*1000);

}/SetTempo
note_length_t FindNotelength(int note_time_ms){

int midway_sixteenth_eighth = (int)((eighth_note_ms sixteenth_note_ms)/2+sixteenth_note_ms);
int midway_eight_quarter = (int)((quarter_note_mseighth_note_ms)/2+eighth_note_ms);

int midway_gaurter_half = (int)((half_note_msquarter_note_ms)/2+quarter_note_ms);

int midway_half_whole = (int)((whole_note_mshalf_note_ms)/2+half_note_ms);

if (note_time_ms<=midway_sixteenth_eighth)
return sixteenth_note;
elseif((note_time_ms>midway_sixteenth_eighth)& & (note_time_ms<=midway_eight_quarter))

return eighth_note;

elseif((note_time_ms>midway_eight_quarter)& & (note_time_ms<=midway_qaurter_half))
return quarter_note;

eseif((note_time_ms>midway_qaurter_half)& & (note_time_ms<=midway_haf_whole))
return half_note;

else
return whole_note;

}/IFindNoteL ength
/I Serial.cpp

#include "stdafx.h"
#include "Serid.h"

CSerid::CSerial()

{
memset(& m_OverlappedRead, O, sizeof(OVERLAPPED));
memset(& m_OverlappedWrite, 0, sizeof(OVERLAPPED));
m_hIDComDev = NULL,;
m_bOpened = FALSE;

}

CSerial::~CSeria()

{

Close();
}
BOOL CSerial::Open(int nPort, int nBaud)
{
if(m_bOpened) return(TRUE);
char szPort[15];
char szComParamg50];
DCB dcb;

wsprintf(szPort, "COM%(d", nPort);

m_hIDComDev = CreateFile(szPort, GENERIC_READ | GENERIC_WRITE, O, NULL, OPEN_EXISTING,
FILE_ ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);

if(m_hIDComDev == NULL) return(FALSE);

memset(& m_OverlappedRead, O, sizeof(OVERLAPPED));
memset(& m_OverlappedWrite, 0, sizeof(OVERLAPPED));

COMMTIMEQUTS CommTimeOuts;
CommTimeOuts.Readl nterval Timeout = OxFFFFFFFF;
CommTimeOuts.ReadT otal TimeoutMultiplier = 0;
CommTimeOuts.ReadTota TimeoutConstant = 0;
CommTimeOuts.WriteTotal TimeoutMultiplier = 0;
CommTimeQuts.WriteTotal TimeoutConstant = 5000;
SetCommTimeouts(m_hIDComDev, & CommTimeOuts);

wsprintf(szComParams, "COM%d:%d,n,8,1", nPort, nBaud);

m_OverlappedRead.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
m_OverlgppedWrite.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

dcb.DCBIength = sizeof(DCB);

GetCommState(m_hlDComDev, &dcb);

dcb.BaudRate = nBaud;

dcb.ByteSize = §;

unsigned char ucSet;

ucSet = (unsigned char) ((FC_RTSCTS& FC_DTRDSR) !=0);
ucSet = (unsigned char) ((FC_RTSCTS & FC_RTSCTS) 1=0);
ucSet = (unsigned char) ((FC_RTSCTS & FC_XONXOFF) !=0);

}

if(!SetCommState(m_hiIDComDev, &dcb) ||
1SetupComm(m_hIDComDev, 10000, 10000) ||
m_OverlappedRead.hEvent == NULL ||
m_OverlappedWrite.hEvent == NULL){
DWORD dwError = GetLastError();
if(m_OverlappedRead.hEvent = NULL) CloseHandle{ m_OverlappedRead.hEvent);
if(m_OverlappedWrite hEvent = NULL) CloseHandle(m_OverlappedWrite.hEvent);
CloseHandle(m_hIDCombDev);
return(FALSE);

m_bOpened = TRUE;

return(m_bOpened);

BOOL CSerid::Close(void)

{

}

if(!m_bOpened || m_hIDComDev == NULL) return(TRUE);

if(m_OverlappedRead.hEvent = NULL) CloseHandle{ m_OverlappedRead.hEvent);
if(m_OverlappedWrite hEvent = NULL) CloseHandle(m_OverlappedWrite.hEvent);
CloseHandle(m_hIDCombDev);

m_bOpened = FALSE;

m_hIDComDev = NULL;

return(TRUE);

BOOL CSerid::WriteCommByte(unsigned char ucByte)

{

}

BOOL bWriteStat;
DWORD dwBytesWritten;

bWriteStat = WriteFile(m_hIDComDev, (LPSTR) & ucByte, 1, & dwBytesWritten, &m_OverlappedWrite);
if(|bWriteStat && (GetLastError() == ERROR_IO_PENDING) }
if(WaitForSingleObject(m_OverlappedWrite.hEvent, 1000)) dwBytesWritten = O;

else{
GetOverlappedResult(m_hIDComDev, & m_OverlappedWrite, & dwBytesWritten, FALSE);
m_OverlappedWrite.Offset += dwBytesWritten;
}
}
return(TRUE);

int CSerial::SendData(const char *buffer, int size)

{

}

if(!'m_bOpened || m_hIDComDev == NULL) return(0);

DWORD dwBYytesWritten = 0;

inti;

for(i=0; i<size; i++){
WriteCommByte(buffer[i]);
dwBytesWritten++;
}

return((int) dwBytesWritten);

int CSerial::ReadDataWaiting(void)

{

if(!'m_bOpened || m_hIDComDev == NULL) return(0);

70

DWORD dwErrorFags,
COMSTAT ComStat;

ClearCommError(m_hIDComDev, & dwErrorFlags, & ComStat);
return((int) ComStat.cbinQue);

}

int CSerial::ReadData(void *buffer, int limit)
{

if(!'m_bOpened || m_hIDComDev == NULL) return(0);

BOOL bReadStatus,
DWORD dwBytesRead, dwErrorFags;
COMSTAT ComStat;

ClearCommError(m_hIDComDev, & dwErrorFlags, & ComStat);
if(!ComStat.cblnQue) return(0);

dwBytesRead = (DWORD) ComStat.cblnQue;
if(limit < (int) dwBytesRead) dwBytesRead = (DWORD) limit;

bReadStatus = ReadFile(m_hIDComDev, buffer, dwBytesRead, & dwBytesRead, &m_OverlappedRead);
if(|bReadStatus }{
if(GetLastError() == ERROR_IO_PENDING){
WaitForSingleObject(m_OverlappedRead.hEvent, 2000);
return((int) dwBytesRead);

return(0);
}

return((int) dwBytesRead);

71

