
SHEET MUSIC GENERATOR: MIDI-PC INTERFACE

A Design Project Report

Presented to the Engineering Division of the Graduate School

Of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

By

Meg Walraed-Sullivan

Project Advisor: Dr. Bruce Land

Degree Date: August, 2004

 2

Abstract

Master of Electrical Engineering Program

Cornell University

Design Project Report

Project Title: Sheet Music Generator: MIDI-PC Interface

Author: Meg Walraed-Sullivan

Abstract:

This project entails a fully functional interface between a standard Musical

Instrument Digital Interface (MIDI) device and a personal computer, including

a software application for processing and display of MIDI data. The hardware

interface uses an Atmel Mega32 microcontroller to facilitate communications

between a MIDI device and computer. The microcontroller receives MIDI

data through a standard MIDI cable, filters and encodes the data, then sends

packets to the PC via a serial UART connection. Educational aspects of this

project include the mastery of a programming language and corresponding

package for graphics rendering, the design of a functional and intuitive

software application, the creation of appropriate hardware to implement the

interface between two devices, and the design of efficient firmware to manage

all hardware.

Report Approved by

Project Advisor: ___Date:___________

 3

Executive Summary

The goal of this project is to construct a fully functional interface between a standard

MIDI device and a personal computer operating with Windows XP. The solution to

such a problem can be divided into several sub-goals, including the design of a

hardware circuit to interface with both the MIDI device and PC, the creation of

appropriate firmware to process, filter, and encode MIDI output and forward

information to the PC, and the design and generation of a software application to

receive, manage, process, and display MIDI data in a convenient and intuitive manner.

The hardware consists of an Atmel Mega32 microcontroller for manipulation and

forwarding of MIDI data, a simple circuit to isolate the MIDI connection from other

hardware, and an RS232 interface to the personal computer. The MIDI processing

firmware for the Mega32 microcontroller is written in AVR Code Vision C, and

encodes information received from the MIDI device into packets to be sent to the PC.

The software application for the display and user manipulation of MIDI data is written

in C++ using Microsoft Foundation Classes for graphical output and receives data from

the hardware through a serial UART interface.

 4

Design Problem and Requirements

The tedium of creating a software representation (sheet music) of a musical composition

remains a large problem for musicians today. Two primary alternatives for this task

exist. A musician can choose to enter notation manually, using a computer keyboard

and mouse. However, this choice requires that the user purchase the appropriate

software for this task, and the use of such software is often tiresome and time-

consuming. This option also removes part of the musical aspect of the creative process

of music composition by eliminating the possibility of using a musical instrument for

composition. A preferred alternative would allow for the entry of musical notation via a

musical instrument. Since the composition is to be stored and manipulated on a

computer, a digital musical device is a natural choice for a musical instrument to use.

Solutions which facilitate the entry of musical notation via standard Musical Instrument

Digital Interface (MIDI) devices do exist, but they prove to be as tedious, expensive,

and difficult to use as do solutions involving solely the use of a computer. The

difficulty inherent in using such a tool stems primarily from the expense and time

required in order to begin using such a product. A user must purchase the appropriate

software, sometimes at costs which range in the hundreds of dollars, and must own a

compatible MIDI device and have a compatible sound card installed in his or her

personal computer. Not surprisingly, this feat is not easily accomplished. It is often

quite costly and extremely time-consuming to set up such a configuration, if one can be

found. However, many musicians endure these trials, as alternative methods are few

 5

and far between. It is therefore desirable to create a package which accomplishes this

task without enforcing such expensive and unattainable requirements. The solution

created must include adequate software for the manipulation and display of the musical

notation, must be able to interface with any standard MIDI device, and must also

interface seamlessly with most personal computers.

It is clear that the use of a microcontroller would be applicable to this problem; such a

solution would delegate management of the interface between the PC and MIDI device

to the microcontroller and surrounding hardware, thus greatly reducing compatibly

requirements. This solution would also allow for the creation of more generic software

for data display and manipulation, thus decreasing the cost of the system as a whole.

This project sets out to address the task of employing an inexpensive microcontroller in

an interface between a personal computer and standard MIDI device. The tasks relevant

to this process include:

• The design and implementation of a software application for graphic rendering,

to be used to display a musical composition as it evolves.

• The design and implementation of a software application capable of receiving

and processing serial data originally sent from a MIDI device.

• The design and construction of hardware capable of physically connecting the

MIDI device to the personal computer.

 6

• The design and implementation of firmware to control and manage the interface

hardware.

The following discussion documents the design processes of all aspects of the goals

mentioned above.

 7

Design and Implementation

Details of the design and creation of this system can be separated into three distinct sub-

categories: hardware, firmware, and software. Each of these is discussed in turn below.

Hardware

The high- level design of the hardware used in this project consists of a multi-step

connection between a standard MIDI keyboard and a serial UART-16550 port on a

personal computer. MIDI packets travel from a standard MIDI device to a

microcontroller where they are received, processed, and filtered. The newly encoded

packets then travel through a simple RS232 serial interface and standard serial cable to

a COM port on a personal computer. A software application receives this serial data

and processes it, displaying results onscreen to the user.

The hardware used for this project was originally constructed using an AVR SDK 500

development board. The development board provides conveniences such as push

buttons, LED's, and an RS232 interface, with only the connection of a set of jumpers.

As the project progressed, it was moved to a breadboard and components previously

supplied by the development board were replaced with those discussed below. A

straightforward following step would be to construct a printed circuit board for the

entirety of the hardware, thus allowing for mass production. However, the expense and

time required for completion of this step forces the creation of a printed circuit board

outside of the scope of this project.

 8

The crucial element of this hardware configuration is the Atmel Mega32

microcontroller, shown adjacent. This processor runs at 16MHz and offers four

Input/Output ports and an on-chip UART, among many other convenient and valuable

features. The processor runs at 5 volts, powered by a 9 volt battery (or other DC power

source) connected through a voltage regulator. The battery is connected to the voltage

regulator through a switch so as to minimize

power consumption when the device is not in

use. The Mega32 is driven by a 16MHz

external oscillator; however, it should be noted

that it is also feasible to use a simple crystal to

drive the chip. This solution was not employed

as the capacitance of the breadboard used can

interfere with proper oscillation of a crystal.

Packets from the MIDI keyboard are received

via the on-chip UART of the Mega32 and are

then forwarded on with a software UART, detailed below in the section entitled

“Firmware.”

The MIDI device is connected to the microcontroller through an optoisolator, so as to

minimize the effects of ground loops on the circuit. The output of this optoisolator runs

to pin 0 of PORT D, one of the microcontroller’s four Input/Output ports, where it is

handled by the on-chip UART.

 9

Upon passing through the microcontroller, encoded MIDI data must be forwarded on to

the PC for processing and display. This is accomplished through a serial connection

using a software UART written for the microcontroller and a standard COM port on the

PC. The software UART is implemented in firmware and communicates through an

external interrupt (PORT D, pin 2) and a generic port pin (PORT D, pin 3). A Max233

voltage level shifter converts values generated by the UART into those appropriate for

serial UART communication and sends the resulting data through a 9 pin female D-Sub

connector. A full schematic of the hardware configuration is shown below.

Figure 2: Hardware Schematic

The microcontroller proves to be an inexpensive and convenient solution to the problem

of interfacing two hardware devices. The cost of the chip and surrounding hardware is

relatively low and would be less still if mass production were to be explored. Another

cost under consideration is that of labor. Since this particular microcontroller is

 10

generally straightforward and intuitive to interface with, it remains true that the Mega32

allows for the creation of an inexpensive but efficient solution. The following listing of

all hardware used details the cost of this portion of the project.

Part Description Part Number Cost/Item Quantity Total Cost

Optoisolator HP 6N138 $1.08 1 $1.08

Voltage Regulator LM340T-5.0 $0.99 1 $0.99

Switch EG1903 $0.71 1 $0.71

Battery Strap 2240k $0.49 1 $0.49

Battery P145 $2.13 1 $2.13

Capacitors (.1µF) 399-2054 $0.157 3 $0.471

Resistors (100 ?) BC100YCT $0.19 6 $1.14

Oscillator SE1711 $2.94 1 $2.94

Voltage Level Shifter Max233 $7.54 1 $7.54

9-Pin DSUB Receptacle 89909-8000 $4.42 1 $4.42

LED (blue) L14006 $1.89 5 $9.45

Diode Varies ~$0.00 1 $0.00

Resistor (330 ?) OF331J $0.54 1 $0.54

Resistor (220 ?) OD221J $0.42 1 $0.42

Capacitor (8.2 µF) C1210C825K4PACTU $0.396 1 $0.396

Microcontroller Atmel Mega32 $8.00 1 $8.00

 Total: $40.72

 11

A glance at the above listing immediately shows that the cost of this system is quite low

relative to those of alternative methods of creating musical annotation with standard

MIDI devices. Thus the hardware portion of this project fulfills the goal of creating a

fully functional and relatively inexpensive interface between a personal computer and

MIDI device.

Firmware

Firmware for this system includes all code written for the Atmel Mega32

microcontroller. This code is written in AVR Code Vision C, compiled with the AVR

Code Vision compiler, and manages the hardware interface between the MIDI device

and the personal computer. The firmware is separated into three sub-sections, the first

controls the software UART and serial interface, the second receives and filters MIDI

data, and the third synchronizes events between the MIDI and serial interfaces.

Software UART

As the Mega32 offers only one on-chip UART, it is necessary to design a software

UART in order to simultaneously maintain two serial connections. The serial interface

to the PC operates using a half-duplex interrupt-driven UART created in software. This

UART consists of send and receive buffers and a status byte which indicates whether

the UART is busy, transmitting, and receiving. An RS232 line idles at logic high and

then falls to indicate the start of a data transmission, so an external interrupt triggered

on the falling edge of a port pin is a natural choice for implementation of the receive

portion of the UART. When this external interrupt is triggered, a timer is started

 12

according to the baud rate of the connection and the individual bits of a data byte are

masked and shifted into the receive buffer. When the receive operation completes, the

timer turns off and the UART idles. It should be noted that send operations are disabled

during the full course of a receive operation, and the external interrupt which triggers a

receive operation is disabled during receipt of a data byte, thus removing the possibility

of concurrent receipt attempts. The send operation functions in a manner which is quite

similar to that of the receive operation. When transmission of data is requested, a timer

is again started in order to schedule the masking and shifting of individual bits.

Requests for transmission are ignored during a transmit operation and the external

interrupt which triggers a receive operation is disabled.

Timer0, an 8-bit timer and counter on the Mega32 is used for data manipulation. The

microcontroller’s clock runs at 16 MHz, and the timer used to schedule transmission

and receipt of data is pre-scaled by 8, thus running at 2 MHz. The timer is preloaded

with a value of 48 and is scheduled to interrupt upon overflow. The 8-bit register

overflows at a value of 256. Therefore, an overflow interrupt occurs ever 212 ticks, or

roughly every .106 milliseconds. This corresponds to a baud rate of almost exactly

9600 bits per second. At the start of a receive operation, the timer is set to interrupt

after .159 milliseconds. This is because the external interrupt catches the falling edge of

the port pin and thus the beginning of the data byte’s start bit. Data values are best

sampled towards the middle of a given bit and therefore it is necessary to wait for1.5

bits to pass upon receiving the external interrupt. It should also be noted that the initial

preloaded timer values for the send and receive operations differ. This is to compensate

 13

for the difference in the nature of the two operations. When a send operation is

requested, the send algorithm simply begins to transmit data. However, a receive

operation requires entry into and reentry from an external interrupt, a task which takes

over 150 cycles when written in C. Clever use of assembly language could be

employed to circumvent this difference; however, the implementation in C functions

correctly and therefore is sufficient.

Several LED’s indicate the status of the UART for the user. Specifically, LED0 is lit

when a UART receive error is encountered, generally due to a mismatched baud rate.

LED1 lights to signal that the UART is busy and that too many transmit or receive

operations have been attempted simultaneously. LED2 lights at the beginning of a send

operation and turns off when the operation completes, and LED3 behaves similarly for

receive operations. The transmit pin for the UART is defined to be pin 3 of PORT D,

and the receive pin is located at pin 2 of PORT D, the location of the Mega32’s external

interrupt 0. These LED’s are connected to pins 0 through 3 of PORT B.

 MIDI Interface

The protocol for interaction with a MIDI device is straightforward. MIDI data is sent

asynchronously at a rate of 31.25kbaud. MIDI devices interact via “MIDI messages”

which are multiple-byte packets conveying information about musical events. Although

a MIDI device may generate hundreds of packets at a time, it is often the case that many

of these packets contain superfluous information and can be ignored. For the purposes

of this project, the microcontroller discards all messages expect those which fall within

 14

a particular category of MIDI messages, the status messages. As a note is sounded on a

MIDI device, a message is sent through the device’s MIDI output port, indicating the

occurrence of the event. This group of bytes has a fixed length and adheres to the

following protocol: The first byte is always a status byte. This type of byte is the only

MIDI message byte with the eighth bit set, and therefore values for this byte can range

from 0x80 to 0xFF. The upper nibble of the byte determines the type of status byte:

Value Meaning

8 Note Off

9 Note On

A Aftertouch

B Control

Change

C Program

Change

D Channel

Pressure

E Pitch Wheel

The values of interest for this project are 8 and 9, Note Off and Note On, respectively.

These bytes indicate the start and stop of a note being sounded by a user. The lower

nibble of the status byte indicates the channel of the event, which for this project is

always channel 0. The first byte to follow a Note On or

Note Off status byte indicates the note number of the key being pressed or released.

 15

MIDI devices number notes within a range of 0 to 127, with “middle C” on a piano

holding the place of number 60. The second byte to follow a Note On or Note Off status

byte is a velocity byte. This byte contains information regarding the pressure on the

particular key being depressed and is relevant only for devices with touch sensitivity

support. The keyboard used to demonstrate this system is a Casio CTK-491 5-octave

keyboard and does not support touch sensitive keys; therefore the velocity byte is not

generally processed in the case of a Note On message. This byte was however used for

Note Off messages. Certain keyboards substitute a Note On message with a velocity of

0 in lieu of a Note Off message (with an arbitrary velocity), and thus a Note On message

must be checked in case it truly indicates a Note Off event.

The MIDI device is connected to the Mega32 microcontroller via the on-chip UART.

The UART is set to interrupt upon receipt of a byte, and all processing code for MIDI

data occurs within the corresponding interrupt service routine. The code to process

MIDI data is sufficiently short and does not interfere with proper timing operation of

the interrupt. A simple state machine processes each byte as it arrives, storing the note

number of each note played. A timer runs in the background, interrupting once per

millisecond. This is accomplished by pre-scaling timer1 by 64, creating a .4

microsecond time base. The timer is set to interrupt upon a compare match with the

value 250, and thus a timer1 overflows interrupt is generated every 1 millisecond. This

timer serves two purposes. It creates a time base with which to determine the duration

of the sounding of a particular note, and it allows for the generation of a “heartbeat”

LED. The timer inverts the voltage applied to pin 7 on PORT B every 500 ticks, thus

 16

creating a heartbeat effect with the LED connected to this pin. This is useful for

debugging purposes, especially when the microcontroller is not mounted on a

development board, as it can serve as an indication that the processor is currently

running. When a Note On message is received by the UART, the current value of the

millisecond counter is stored. Upon receipt of the corresponding Note Off message, the

stored start time of the note is subtracted from the current time, yielding the note’s

duration in milliseconds. The variables which store the current millisecond count, note

start time, and note duration are integer types which can reach a maximum value of

65,535. For convenience, when the value of the current millisecond count reaches

65,000, it returns to 0. Because of this, it is possible that the counter may “roll over”

between the depression and release of a key, generating a negative difference between

the start time and end time. However, it is a straightforward procedure to check for this

case and compensate accordingly. It is also possible for overflow to occur, in a

situation where a user depresses a key for longer than 65 seconds. However, this case is

extremely unlikely, and in the interest of saving computing cycles and memory space in

the common case, the solution of using a larger storage structure to maintain a note’s

length was not employed. As MIDI data is received, information pertaining to each

note is stored in a buffer and a count of packets present in the buffer is updated.

However, the forwarding of MIDI data is left to the main loop of the program.

Process Synchronization

The main program loop and entry point in to the application is contained in a file

entitled SheetMusicGenerator.c. This file includes two functions, initialize and

 17

main. The initialize function makes calls to the individual initialization routines for

both the software UART and the MIDI interface, and then globally unmasks interrupts.

The main function calls initialize to set up all components of the firmware, and then

enters an endless processing loop. Within this loop, the count of stored data packets is

continuously checked. Upon discovery of a non-zero value, a note message is

transmitted serially and the buffer of stored packets is updated accordingly. The order

of operations for this sequence is as such in order to reduce possible conflict due to

global variables shared between the main application loop and the MIDI interrupt. This

is done in an effort to mimic the effects of an atomic test-and-set operation on the global

index into the data buffer.

Each note depressed causes a message of 4 bytes to be sent to the personal computer.

The first byte indicates the note’s MIDI number, or pitch. The second two bytes are

used to convey information about the duration of the note. Two bytes are necessary for

this information as the software UART operates on 8-bit values and the note length

value is stored in a 16-bit variable. Finally, a comma separator is sent to indicate the

completion of one note message.

Code Organization

The code for the project firmware is organized into several files. UART.h contains the

type definitions, function prototypes, and constant declarations for UART.c which

implements the software UART for the RS232 serial interface to the personal computer.

Similarly, MIDI.h contains definitions for MIDI.c which implements the interface to

 18

the MIDI device. Finally, SheetMusicGenerator.h incorporates the MIDI and

UART definitions into the file responsible for coordinating all events,

SheetMusicGenerator.c. A full listing of the firmware code can be found in

Appendix C.

Software

The software segment of this application is written in Microsoft Visual C++ using

Microsoft Foundation Classes to implement a graphical user interface. A primary task

for this part of the project was the selection of an appropriate language and an

accompanying graphics design tool, followed by the mastery of the chosen language.

Consideration was given to a variety of methods for creating a graphical user interface

and MFC proved to be the most appropriate. Other possibilities included the use of C in

conjunction with OpenGL or Java with Swing. A quick survey of OpenGL revealed

that the tool is quite powerful and would allow for an interesting learning experience.

However, the graphics rendering capabilities of OpenGL far exceed what is necessary

for the construction of a simple graphical user interface. Because the tool is more suited

for extensive, in-depth graphics rendering, it became apparent that the complexities

which naturally accompany such a powerful tool could potentially hinder the learning

and use of this product. The second language to be considered, Java, provided a much

more appropriate set of graphics tools, the Java Swing package from Sun Microsystems.

A significant portion of time was devoted to the study of both Java and Swing,

providing a useful first insight into the field of object oriented programming. Finally,

the notion of Java was dismissed in favor of a language with programmer controlled

 19

memory management, C++. The time spent on the study of Java proved to be time well

spent, as intuition about object oriented programming is an invaluable boost to the C++

learning curve. Extensive consideration and research determined that the C++ language

with the enhancement of Microsoft Foundation Classes was perfectly suited to the needs

of this project.

The primary purpose of the software component of this system is to display the results

of interactions with a MIDI device, a task which is twofold. A connection must be

established with the hardware via a COM port and any data transmitted along this

connection must be displayed graphically to the user. With the introduction of a user

interface comes the need for file manipulation. It can be assumed that a user will need

to save the data he or she collects from the MIDI device for viewing and editing at a

later date. Each of these tasks, along with the relevant sections of code, will be

discussed in turn.

As discussed above, the Microsoft Foundation Classes are used to display all graphics

for this application. The application’s user interface is intuitive to use and conforms to

the standards set forth by the Microsoft Developers Network, MSDN, for windows

applications. The program consists of a single window, which is used to display any

musical notation recorded, and to hold a set of menus through which the user interacts

with the application. A screen capture of the running application follows.

 20

Figure 3: Software Application

The menus and other display items are contained in a text-editable resource file, which

specifies names and locations for all controls. This file is entitled

AppResources.rc and can be found in Appendix D. Corresponding definitions for

constants used in this file appear in ResourceIds.h. The remainder of the

implementation lies in the use of the classes provided by MFC.

An MFC program consists of two main parts, a main window object derived from the

class CFrameWnd, and a single application object, derived from the class CWinApp.

An instantiation of the application object begins the execution of the MFC program,

prompting the application object’s overloaded function, InitInstance, to create the main

 21

window object and prepare the window to exchange messages with the Microsoft

Windows operating system. The main window definition includes a section of code

defining a message map. This map determines which messages sent to the application

by the operating system are handled and which messages are ignored. It matches a

handling function to each type of message specified by the programmer, thus allowing

the programmer to create event driven code for each control in the application. The

messages handled in this application are primarily those generated by user clicks on the

various menu items. The program includes a File menu, with full support for opening,

closing, and saving files. Interaction with the keyboard or other MIDI device is

accomplished with the MIDI menu. This menu allows for the opening and closing of a

connection to the MIDI device. Finally, the Help menu choice is used to display

information about the application itself. The implementations for the main window and

application objects are located in the file Implementation.cpp, and relevant class

definitions can be found in the C++ header file ClassSkeletons.h.

As the user captures input from the MIDI device, results are displayed onscreen in the

form of traditional sheet music. MFC provides an extensive list of classes for drawing

directly to the screen, outside of the confines of control objects such as a buttons or

textboxes. These classes and routines are used to render musical notes onscreen and

thereby generate sheet music for the user. A musical score is an object oriented

representation of one piece of sheet music, or one file. A score object contains a private

linked list of note objects as well as a flag which indicates whether the score has been

edited since it was last saved. The object also contains public routines for saving a

 22

score, loading a previously saved score, drawing a score in the main window, adding a

note object to a score, and determining whether a score has been edited (and therefore

whether the user should be prompted to save before exiting). The most important

members of the score object are its notes. A musical composition consists of a series of

notes, each with a different pitch and length, and this concept is encapsulated in the

application within the note object. The note object’s private members include the note

length and pitch, a pointer to the next note in a linked list, and routines for drawing

specific pieces of a given note, such as its tail. A note’s public methods allow other

objects to retrieve or set the pointer to the next note in a linked list, determine

parameters such as the note pitch and length, and draw the note onscreen. The final

public member of the note object is a routine for drawing a musical sharp symbol before

a note when appropriate. All objects within the program interact with the score object

currently loaded onscreen, and the score object interacts with its individual note

members. User input in the form of menu clicks prompts the main window to set or

change the current score and the serial input connection updates the current score upon

receipt of messages from a connected MIDI device.

A simple class for serial interaction obtained from www.codeguru.com is used for the

low-level manipulation of the serial UART16550 port. The class includes functions to

open and close a specific port with a given baud rate, and includes routines to read and

write data to and from an opened port. The class is written in C++ and can be found in

the files entitled serial.h and serial.cpp in Appendix D. The functions which

 23

make use of the serial library are located in the file entitled Implementation.cpp.

These functions manage the creation and use of a serial port object.

Oftentimes, a user will choose to open a connection with a MIDI device for data

collection, but will expect to be able to simultaneously interact with other menu options

within the application. Since MIDI data arrives asynchronously and may possibly

arrive in clusters of packets, it is clear that the serial port must either be interrupt-driven

or be read periodically until the user specifies that he or she has finished collecting data.

It cannot simply be read once and then ignored. The serial class used is designed to

work with the second of these methods, polling. Once the user indicates that he or she

is ready to receive MIDI data, it is necessary that the serial port be polled periodically

until further instruction from the user. This presents an interesting problem: code to

read the serial port must run continuously, in effect monopolizing the computer’s

processor, but certain instructions from the user must be able to disrupt this polling

procedure. Because user actions such as menu clicks are not interrupt driven in MFC, it

is necessary that two separate threads of execution exist, one thread for polling the

serial port and another for accepting user input. Therefore, when a user selects the

Capture option from the menu, a serial connection is created and a new thread is

spawned to retrieve and process data for this connection. When the user selects the

Close Connection option, a flag is set by the main thread, notifying the serial thread of

this action. The serial thread finishes its current operation and then closes cleanly.

 24

Two global routines in the user interface remain to be discussed. The first routine,

SetTempo, accepts an integer value of a desired tempo in beats per minute and

calculates the length in milliseconds of each type of note present in musical notation.

For instance, a setting of 120 beats per minute would imply that a quarter note receives

.5 seconds; an eighth note receives .25 seconds, and so forth. As discussed above, the

hardware sends to the software application a record of the length of time for which a

particular note has been held. The second global function, FindNoteLength uses this

value to determine which type of note to display. The implementations and class

definitions for all note and score objects, as well as for the drawing of these objects, can

be found in Appendix D, in the files entitled Implementation.cpp and

ClassSkeletons.h.

The final aspect of the application to discuss is the implementation of file input/output

routines. This program provides support for saving musical scores and for loading

previously saved files. Interaction with the user for these tasks occurs through menu

selections. Standard Microsoft Windows directory browsing is implemented using the

common dialog objects provided by MFC. This allows the program to have a similar

“look and feel” to that of most Microsoft Windows applications.

 25

Results

This system succeeds in its goal to implement a fully functional interface between a

MIDI device and a personal computer, and to graphically display MIDI data received on

the computer. There are, however, certain limitations inherent in the design. One

shortcoming is the possibility of overflow in the firmware variable which keeps track of

the number of milliseconds for which a keyboard note is held down. Since the range of

values for this variable is from 0 to 65,000, a user could cause overflow by holding a

key down for longer than 65 seconds. This could clearly be fixed with the introduction

of a larger storage container for the applicable variables, but such a solution necessitates

the use of more memory and potentially more CPU cycles per operation. Therefore, the

motto “make the common case fast” was followed in this design. Another drawback

arises due to the conservative design of the software UART. In order to exclude the

possibility of overlapping transmit operations, the firmware includes a delay after

sending each serial byte. This then limits the speed at which data may be transported

from the MIDI device to the computer, thus increasing the latency in the display when a

user chooses to play notes quickly in succession. Again, the effects of this situation

could be reduced if the duration of the delay were to be minimized, but such a change

could cause the transmission of MIIDI data to become less reliable. Finally, it is

possible that synchronization problems could appear due to the fact that the main

firmware loop shares an index into a buffer with another routine. This is because the

requests to read and subsequently update this variable are not guaranteed to operate

 26

atomically. However, this situation is highly unlikely to arise and has not been

encountered during a demonstration thus forth.

Despite these few drawbacks, the system performs quite well overall. Data is reliably

transported from the MIDI device to the personal computer, and is processed by

firmware in such a manner that it can be used efficiently by the software part of the

system. The graphical user interface is functional, intuitive, and includes all of the

expected and necessary features for MIDI data collection.

 27

Conclusions

This project set out to address the task of allowing a musician to create musical scores

on a personal computer using a digital musical instrument. This task is accomplished

successfully by the system presented here. The system created relies on the use of a

microcontroller, thus significantly reducing compatibility issues. Such a reliance on

firmware also has the effect of dramatically reducing the cost of such a solution.

Therefore, the system presented fully satisfies the goals specified at the start of this

project.

Additionally, the project provided an equally important benefit in the area of education.

Completion of this project mandated the mastery of several computer languages and

called for extensive research and work in the areas of firmware and hardware. Serial

communication protocols were explored from the point of view of both a personal

computer and a small microcontroller. Finally, this project necessitated a thorough

study into the creation of graphical user interfaces with the various tools available to

developers today.

 28

References

Azelson, Jan. Serial Port Complete. Madison, WIL Lake View Research, 2000.

Barnett, Cox, and O’Cull. Embedded C Programming and the Atmel AVR. Clifton

Park, NY: Delmar Learning, 2003.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second

Ed. Marry Hill, NJ: AT&T Bell Laboratories 1988.

Schildt, Herbert. MFC programming from the ground up. Berkeley, CA:

 Osborne/McGraw-Hill, 1998.

Land, Dr. Bruce. ECE 476 Lecture Notes, Spring 2003,2004. Ithaca, NY: Dr. Bruce

 Land, 2003,2004.

http://www.borg.com/~jglatt/tech/midispec/intro.htm (Midi specification)

http://www.cplusplus.com/doc/tutorial/ (C++)

http://www.intap.net/~drw/cpp/ (C++)

http://www.codeguru.com/Cpp/I-N/network/serialcommunications/article.php/c2503/

 (Serial Library)

http://msdn.microsoft.com/ (MFC and Visual C++ reference)

http://www.nbb.cornell.edu/neurobio/land/ (Serial reference)

DataSheets

• http://www.national.com/ds/LM/LM340.pdf (Voltage Regulator)

• http://www.toshiba.com/taec/components/Datasheet/6N138DS.pdf

(Optoisolator)

 29

• http://rocky.digikey.com/WebLib/E-Switch/Web%20Data/EG1201-

1302%20Slide%20Switches.pdf (Switch)

• http://www.keyelco.com/kec/pdfs/p23.pdf (Battery Strap)

• http://rocky.digikey.com/WebLib/Panasonic/Web%20data/Panasonic_Alkaline_

Hdbk_03-04_v1.pdf (Battery)

• http://rocky.digikey.com/WebLib/Kemet%20Caps/Web%20Data/Ceramic%20C

onformally%20Coated%20-%20Radial%20Series.pdf (.1µF Capacitor)

• http://rocky.digikey.com/WebLib/BC%20Components/Web%20Data/5033E,50

43E,5053H%20Metal%20Film%20Res.pdf (100 ? Resistor)

• http://rocky.digikey.com/WebLib/YAGEO/Web%20Data/MFR%20Series.pdf

(100 k? Resistor)

• :http://rocky.digikey.com/WebLib/Epson/Web%20Data/SG-

51,531%20Series.pdf (Oscillator)

• http://rocky.digikey.com/WebLib/Chicago%20Miniature/Web%20Data/Blue%2

0LED%20Lamps.pdf (Led)

• http://instruct1.cit.cornell.edu/courses/ee476/AtmelStuff/full32.pdf (Mega32)

• http://rocky.digikey.com/WebLib/3M/Web%20Data/899%20Series.pdf (D-SUB

9)

• http://rocky.digikey.com/scripts/ProductInfo.dll?Site=US&V=175&M=MAX23

3CPP (MAX233)

 30

Appendices

Appendix A: Software User’s Manual

Appendix B: Pictures and Schematics of Hardware

Appendix C: Firmware Code Listing

Appendix D: Software Code Listing

 31

Appendix A: Software User’s Manual

Use of the software application accompanying this system is quite straightforward. The

user interface components of the application conform to the standards presented by the

Microsoft Developer Network for Microsoft Windows applications. A view of the

running application is depicted below.

Figure 1: Software Application

File interaction is accomplished via the File menu. The New option creates a new

score, the Save option saves the current score, if applicable, the Open option opens an

existing score, and the Close option closes the current score. If the user attempts to

close the current score, either by selecting Close from the File menu or by exiting the

 32

program, creating a new score, or opening a different score, the application determines

whether the current score needs to be save and prompts the

user accordingly. The user may exit the application by

selecting Exit from the File menu or by clicking the button

in the top right corner of the window.

Figure 2: ‘File’ Menu

Interaction with the MIDI device is accomplished via the MIDI menu. The MIDI

device must be attached to the system hardware using the MIDI cable provided. The

serial cable extending from the hardware should be attached to the COM1 port of the

personal computer. Finally, the power switch for the hardware should be moved to the

‘on’ position. When ready to collect data from the MIDI device, the user may select the

Capture option from the MIDI menu in order to open a

serial connection. When finished, the user may select the

Close Connection option from the same menu.

 Figure 3: ‘MIDI’ Menu

Finally, the user may view information about the

application by selecting the About option if the Help menu.

Figure 4: ‘About’ Menu

 33

Appendix B: Pictures and Schematics of Hardware

 34

 35

Appendix C: Firmware Code Listing

/**
Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

This file contains the prototypes and definitions for the entire project
**/

/*---
Includes
---*/

#include <Mega32.h> //microcontroller defines, etc
#include "uart.h" //software UART stuff
#include "MIDI.h" //MIDI interface

/*---
Defines
---*/

/*---
Prototypes
---*/
void initialize(void); //initialize all components

/**
Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

This file contains the implementation for a half-duplex interrupt-driven software UART
**/

/*---
Includes
---*/

#include "SheetMusicGen.h" //prototypes, defines, etc
#include "delay.h"

/*---
Globals
---*/

/*---
Implementation
---*/

/**
function: main
description: entry point and task loop for program
args: none
returns: none
**/

 36

void main(void){

 char low_byte;
 char high_byte;

initialize(); //initialize all components

 while(1){

 if (new_data_packets>0){ //if there is MIDI data

 begin_xmit(midi_in[first_packet_index]); //send first packet
 delay_ms(100);

 low_byte = (char) (0x00FF & len_in[first_packet_index]);
 high_byte = (char)((len_in[first_packet_index]&0xFF00)>>8);

 begin_xmit(high_byte); //send second packet
 delay_ms(100);

 begin_xmit(low_byte); //send third packet
 delay_ms(100);

 begin_xmit(','); //send separator
 delay_ms(100);

 first_packet_index++; //move to next packet

 if (first_packet_index==max_MIDI_packets) //rollover index if necessary
 first_packet_index++;

 new_data_packets--; //decrement the number of packets

 }//if (new_data_packets>0)

 }//while

 }//main

 /**
function: initialize
description: initializes all components and then starts interrupts
args: none
returns: none
**/
void initialize(void){

 UART_initialize(); //initialize the UART component
 MIDI_initialize(); //initialize the MIDI interface

 #asm("sei"); //turn on interrupts

 }//initialize

/**
Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

This file contains the prototypes and definitions for a half-duplex interrupt-driven software UART
**/

/*---
Includes
---*/

#include <Mega32.h> //microcontroller defines, etc

 37

#include "general.h" //software UART stuff

/*---
Defines
---*/
#define UART_busy_mask 0b00000001 //masks for UART status byte, indicate
#define UART_xmit_mask 0b00000010 //whether UART is busy, transmitting
#define UART_data_mask 0b00000100 //or has data to receive
#define UART_busy_mask_inverse 0b11111110
#define UART_xmit_mask_inverse 0b11111101
#define UART_data_mask_inverse 0b11111011

#define UART_xmit PORTD.3 //define PORT pins used for UART
#define UART_rcv PIND.2
#define UART_error_led PORTB.0
#define UART_busy_led PORTB.1
#define UART_send_led PORTB.2
#define UART_rcv_led PORTB.3

/*---
Prototypes
---*/
void UART_initialize(void); //initialize everything necessary
void begin_xmit(char byte_to_send); //sets up UART for sending
void begin_rcv(void); //sets up UART for receiving
void finish_xmit(void); //cleans up after a send
void finish_rcv(void); //cleans up after a receive
void enable_UART_timer_send(void); //turns on timer for UART send
void enable_UART_timer_rcv(void); //turns on timer for UART receive

/**
Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

This file contains the implementation for a half-duplex interrupt-driven software UART
**/

/*---
Includes
---*/

#include "UART.h" //prototypes, defines, etc

/*---
Globals
---*/

char UART_status_byte; //status byte for software UART
char UART_send_buffer; //holds byte to send on UART
char UART_rcv_buffer; /holds byte received on UART

char UART_bits_done; //number bits xmitted/received
char UART_bits_done_mask; //mask for sending individual bits

/*---
Implementation
---*/

 38

/**
function: timer0 overflow interrupt
description: resets the timer to interrupt again in 52 us
args: none
returns: none
**/
interrupt [TIM0_OVF] void timer0_overflow(void){

 TCNT0=48; //reload to interrupt again in 52us

 if (UART_status_byte & UART_busy_mask) { //UART is xmitting/receiving

 if (UART_status_byte & UART_xmit_mask){ //UART is transmitting

 switch (UART_bits_done){ //see how many bits sent so far

 case 0: //first bit is start bit
 UART_xmit=PORT_lo; //start bit is low
 break;

 case 9: //last bit is stop bit
 UART_xmit=PORT_hi; //stop bit is high
 break;

 case 10: //first idle bit
 UART_xmit=PORT_hi; //idle high
 break;

 case 11: //first idle bit
 UART_xmit=PORT_hi; //idle high
 finish_xmit(); //clean up

 break;

 default: //data bit
 if (UART_send_buffer&UART_bits_done_mask)
 UART_xmit=PORT_hi;
 else
 UART_xmit=PORT_lo ;

 UART_bits_done_mask<<=1; //move mask to next bit

 }//switch (UART_bits_done)

 UART_bits_done++; //increment # bits sent

 }//if (UART_status_byte & UART_xmit_mask)
 else {

 switch (UART_bits_done){ //see how many bits received so far

 case 0: //no bits sampled yet
 if(UART_rcv==PORT_hi) //start bit should be low
 UART_error_led=led_on;
 UART_bits_done++; //middle of first data bit
 break;

 case 9: //last bit should be stop bit
 if (UART_rcv==PORT_lo) //if stop bit is lo, problem
 UART_error_led = led_on;

 finish_rcv(); //clean up
 break;

 default: //data bit

 if(UART_rcv==PORT_hi) //if received a 1, set bit
 UART_rcv_buffer |= UART_bits_done_mask;

 39

 UART_bits_done++; //increment # bits received

 UART_bits_done_mask<<=1; //move mask to next bit

 }//switch (UART_bits_done)

 }//else

 }//if (software_UART_status_byte&software_UART_busy_mask)

}//timer0_overflow

/**
function: external interrupt 0
description: indicates that UART has something to receive
args: none
returns: none
**/
interrupt [EXT_INT0] void external_interrupt0(void){

 if (!(UART_status_byte & UART_data_mask))
 begin_rcv(); //start receiving!

}//external_interrupt0

/**
function: UART_initialize
description: sets up software UART
args: none
returns: none
**/
void UART_initialize(void) {

 MCUCR |= 0b00000010; //external interrupt0 occurs on falling edge
 GICR |= 0b01000000; //unmask external interrupt0

 UART_status_byte = 0b00000000; //no data ready, not busy/transmitting
 UART_send_buffer=0; //no bytes to send yet
 UART_rcv_buffer=0; //no bytes received yet

 UART_bits_done = 0; //no bits to xmit/receive
 UART_bits_done_mask=0b00000001; //start with first bit

 DDRB = 0xFF; //PORTB used as indicator LEDS

 PORTB = 0xFF; //start with all the leds off

 DDRD = 0b00001000; //PORTD inputs except UART xmit
 PORTD = 0xFF; //turn on pullups, idle xmit hi

}//UART_initialize

/**
function: begin_xmit
description: sets up UART for a send
args: (char) data to send with the software UART
returns: none
**/
void begin_xmit(char byte_to_send){

 if (UART_status_byte & UART_busy_mask) //if UART is busy
 UART_busy_led = led_on; //report an error to user

 else{ //if UART not busy

 40

 UART_send_led = led_on; //report send action to user

 GICR &= 0b10111111; //turn off external interrupt0

 UART_status_byte |= UART_busy_mask; //set busy bit
 UART_status_byte |= UART_xmit_mask; //set transmitting bit

 UART_send_buffer=byte_to_send; //set byte to send

 UART_bits_done = 0; //no bits sent yet
 UART_bits_done_mask=0b00000001; //start with first bit

 enable_UART_timer_send(); //start the UART timer

 }//else

}//begin_xmit

/**
function: begin_rcv
description: sets up UART for a receive
args: none
returns: none
**/
void begin_rcv(void){

 if (UART_st atus_byte & UART_busy_mask) //if UART is busy
 UART_busy_led = led_on; //report an error to user

 else{ //if UART not busy

 UART_rcv_led = led_on; //report receive action to user

 GICR &= 0b10111111; //turn off external interrupt0

 UART_status_byte |= UART_busy_mask; //set busy bit
 UART_status_byte &= UART_xmit_mask_inverse; //clear transmit bit

 UART_bits_done = 0; //no bits received yet
 UART_bits_done_mask=0b00000001; //start with first bit

 UART_rcv_buffer=0; //start with all 0 in receive buffer

 enable_UART_timer_rcv(); //start the UART timer

 }//else

}//begin_rcv

/**
function: finish_xmit
description: resets UART after a send
args: none
returns: none
**/
void finish_xmit(void){

 TIMSK &= 0b11111110; //stop the UART timer

 UART_status_byte &= UART_busy_mask_inverse; //clear busy bit
 UART_status_byte &= UART_xmit_mask_inverse; //clear transmitting bit

 UART_bits_done = 0; //reset bits sent

 UART_send_led = led_off; //turn off the send led

 GICR |= 0b01000000; //turn external interrupt0 back on

 41

}//finish_xmit

/**
function: finish_rcv
description: resets UART after a receive
args: none
returns: none
**/
void finish_rcv(void){

 TIMSK &= 0b11111110; //stop the UART timer

 UART_status_byte &= UART_busy_mask_inverse; //clear busy bit
 UART_status_byte |= UART_data_mask; //set data ready bit

 UART_bits_done = 0; //reset bits received

 PORTD.2=1;

 GICR |= 0b01000000; //turn external interrupt0 back on

 UART_rcv_led = led_off; //turn off the receive led

}//finish_rcv

/**
function: enable_UART_timer_send
description: sets up and starts the UART timer for sending
args: none
returns: none
**/
void enable_UART_timer_send(void){

 TCNT0 = 48; //reload timer0 with 48
 TCCR0 = 0b00000010; //set timer0 prescalar to 8
 TIMSK |= 0b00000001; //unmask timer0 overflow interrupt

}//enable_UART_timer_send

/**
function: enable_UART_timer_rcv
description: sets up and starts the UART timer for receiving
args: none
returns: none
**/
void enable_UART_timer_rcv(void){

 TCNT0 = 180; //reload timer0 with 48
 TCCR0 = 0b00000010; //set timer0 prescalar to 8
 TIMSK |= 0b00000001; //unmask timer0 overflow interrupt

}//enable_UART_timer_rcv

/**
Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

This file contains the prototypes and definitions for an interface to a MIDI controller
**/

/*---
Includes
---*/
#include <Mega32.h> //microcontroller defines, etc
#include "general.h" //software UART stuff

 42

/*---
Defines
---*/

#define MIDI_error_led PORTB.7 //user interface to MIDI device
#define max_MIDI_packets 100 //maximum number of pending packets
#define MIDI_status_mask 128 //mask to check for status byte

/*---
Prototypes
---*/
void MIDI_initialize(void); //initialize everything necessary

/**
Meg Walraed-Sullivan
Cornell University M.Eng Project
Submitted: August, 2004

This file contains the implementation for an interface to a MIDI controller
**/

/*---
Includes
---*/

#include "MIDI.h" //prototypes, defines, etc

/*---
Globals
---*/
char midi_in[max_MIDI_packets]; //storage for midi data received
unsigned int len_in[max_MIDI_packets]; //storage for midi lengths calculated
char new_data_packets; //number of packets to send to pc
char packet_array_index; //index to array of data received
char first_packet_index; //index of first packet in array

char state; //state of MIDI receiver
enum { status_state,
 note_num_state,
 velocity_state,
 end_status_state,
 end_note_num_state,
 end_velocity_state};

unsigned int cur_note_start_ms; //records start time of notes
unsigned int ms_count; //number of milliseconds that have passed

char curr_note_num; //current note's number
unsigned int curr_note_ms_dff; //current note's length in ms

/*---
Implementation
---*/

/**
function: UART receive interrupt
description: reads and handles data received from the UART
args: none

 43

returns: none
**/
interrupt [USART_RXC] void MIDI_data_received(void){

 char temp_UDR_storage;

 if (new_data_packets<=max_MIDI_packets){ //if there is room in temp storage

 temp_UDR_storage = UDR; //grab packet

 switch (state) { //run state machine (inlined for speed)

 //waiting for first status byte
 case status_state:
 curr_note_ms_dff=0;
 if (!(temp_UDR_storage&MIDI_status_mask)) //if didn't receive status byte
 MIDI_error_led = led_on; //should've gotten status byte
 state=note_num_state; //wait for note number
 break;

 case note_num_state:

 curr_note_num = temp_UDR_storage; //record note number

 cur_note_start_ms = ms_count; //record current time

 state=velocity_state;
 break;

 case velocity_state:
 state=end_status_state;
 break;

 case end_status_state:
 //calculate length of note
 if (ms_count-cur_note_start_ms>0) //if clock didn't roll during note
 curr_note_ms_dff = ms_count-cur_note_start_ms;
 else //if clock rolled, compensate
 curr_note_ms_dff = (65000-cur_note_start_ms) + ms_count;

 state=end_note_num_state;
 break;

 case end_note_num_state:

 midi_in[packet_array_index]=curr_note_num; //save note number for transmitting
 len_in[packet_array_index]=curr_note_ms_dff; //save note number for transmitting
 packet_array_index++; //move to next storage space
 if (packet_array_index==max_MIDI_packets) //roll over index if necessary
 packet_array_index=0;
 new_data_packets++;

 state=end_velocity_state;
 break;

 case end_velocity_state:
 state=status_state;
 break;
 }//switch

 }//if (new_data_packets<=max_MIDI_packets)

 else //if temp storage is full
 MIDI_error_led = led_on; //alert user

}//MIDI_data_received

/**
function: tim1_cmpA

 44

description: occurs every 1ms, updates time
args: none
returns: none
**/
interrupt [TIM1_COMPA] void tim1_cmpA(void){

 if (ms_count++%500==0) //increment the # of ms passed
 PORTB.7=~PORTB.7; //blink LED every 1/2 second

 if (ms_count==65000) //if a second has passed
 ms_count=0; //reset ms count

}//tim1_cmpA

/**
function: MIDI_initialize
description: sets up interface to MIDI device
args: none
returns: none
**/
void MIDI_initialize(void) {

 UBRRL = 31; //UBRR = f_osc/16BAUD -1
 UCSRB = 0b10010000; //enable receive and receive interrupt
 UCSRC = 0b00000000; //asynchronous, no parity, 1 stop bit

 new_data_packets=0; //nothing received yet
 packet_array_index=0; //start at beginning of the array
 first_packet_index=0; //first packet will be in beg. of array

 ms_count=0; //start at time 0

 OCR1A = 250; //250 ticks * 4us/tick = 1ms/interrupt
 TCCR1B = 0b00001011; //clear compare, prescale by 64
 TCCR1A = 0x00;
 TIMSK = 0b00010000; //unmask timer1 compare interrupt

 state=status_state;

}//MIDI_initialize

 45

Appendix D: Software Code Listing

/**

 Meg Walraed-Sullivan
 Cornell University School of Electrical Engineering
 Masters of Engineering Project: Sheet Music Generator

 Resources.RC

 This file includes all graphical resources used in the application

**/

#include <ResourceIds.h> //ids of all resources used in app
#include <afxres.h> //dialogs, controls

/*---
Menu
---*/
MainMenu MENU {

 POPUP "&File" {

 MENUITEM "&New\tCntl-N", IDM_FILE_NEW
 MENUITEM "&Save\tCntl-S", IDM_FILE_SAVE
 MENUITEM "&Open\tCntl-O", IDM_FILE_OPEN
 MENUITEM "&Close", IDM_FILE_CLOSE
 MENUITEM "&Exit", IDM_FILE_EXIT

 }//POPUP "&File

 POPUP "&MIDI" {

 MENUITEM "&Capture", IDM_SCORE_KEY
 MENUITEM "&Close Connection", IDM_SCORE_STOP

 }//POPUP "&Score"

 POPUP "&Help" {

 MENUITEM "About", IDM_HELP_ABOUT

 }//POPUP "&Help"

}//MainMenu MENU

MainMenu ACCELERATORS {

 "^N", IDM_FILE_NEW
 "^S", IDM_FILE_SAVE
 "^O", IDM_FILE_OPEN

}//MainMenu ACCELERATORS

/*---
About Box
---*/

AboutDialog DIALOG 200, 100, 142, 92

CAPTION "About: Sheet Music Generator"

 46

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION {

 CTEXT "Sheet Music Generator\n\tVersion 1.0\n\nMeg Walraed-Sullivan", IDD_ABOUTTEXT, 20, 10, 100, 40

 PUSHBUTTON "Ok", IDOK, 52, 65, 37, 14,WS_CHILD | WS_VISIBLE | WS_TABSTOP

}//AboutDialog

/*---
Icon/Cursor
---*/
MainIcon ICON MUSIC.ICO

/**

 Meg Walraed-Sullivan
 Cornell University School of Electrical Engineering
 Masters of Engineering Project: Sheet Music Generator

 ClassSkeleton.h

 This file includes all class definitions used in the application

**/

#include "serial.h" //serial interface

//note sizes
typedef enum{sixteenth_note,eighth_note,quarter_note,half_note,whole_note} note_length_t;

/*---
class CMainWin:
 Main Window of Application
---*/
class CMainWin :public CFrameWnd{

 CBitmap m_bmp; //virtual window bitmap
 CBrush m_bkbrush; //brush for virtual window

 CPen m_ScorePen; //pen used to draw score
 CBrush m_ScoreBrush; //brush used for score background

public:

 CWinThread *serial_thread; //thread for serial interaction
 CSerial serial_conn; //serial connection object

 bool serial_thread_running; //indicates whether the serial thread exists
 bool serial_thread_stop_flag; //flag used to kill the serial thread

 CDC m_memDC; //virtual window device context

 CMainWin(LPCSTR ClassName); //const ructor (includes style class)

 afx_msg void OnPaint(); //for displaying the window

 afx_msg void OnDestroy(); //respond to closing the window

 afx_msg void OnFileNew(); //respond to menu clicks
 afx_msg void OnFileSave();
 afx_msg void OnFileOpen();
 afx_msg void OnFileClose();
 afx_msg void OnFileExit();

 afx_msg void OnScoreKey();
 afx_msg void OnScoreStop();

 47

 afx_msg void OnHelpAbout();

 void DrawBlankScore(); //draws a new blank score
 void DrawClef(int y_pos); //draws a clef at given height
 void ClearScoreScreen(); //clears the drawing area
 void CheckSave(); //check for a score to save
 void DestroyCurrentScore(); //destroys object holding the current score

 DECLARE_MESSAGE_MAP() //message map

};//class CMainWin

/*---
class CSerialThread:
 Thred which controls serial access
---*/
class CSerialThread :public CWinThread{

public:

 CSerialThread(); //use default constructor

 DECLARE_MESSAGE_MAP() //message map

};//CSerialThread

/*---
class CAboutDialog:
 "About" Dialog Box
---*/

class CAboutDialog: public CDialog{

public:

 CAboutDialog(char *DialogName, CWnd *Owner) : //constructor
 CDialog(DialogName, Owner) {} //use parent's constructor

};//class CAboutDialog

/*---
class CMainApp:
 Main Application Object
---*/
class CMainApp:public CWinApp {

public:
 BOOL InitInstance(); //override InitInstance from CWinApp

};//class CMainApp

/*---
class Note:
 Note Object
---*/
class CNote{

 int note_num; //pitch of note
 note_length_t note_length; //length of note

 CNote* next_note; //pointer to the next note in list

 void DrawTail(int x_start, int y_start, CDC*); //adds the tail(s) onto a note
 void DrawUpsideDownTail(int x_start, int y_start, CDC*); //adds the tail(s) onto a note

public:
 CNote(); //empty constructor
 CNote(int num,note_length_t length); //parameter constructor

 48

 void DrawNote(int cur_x, int staff_bottom,CDC*); //draws the note onscreen
 void DrawSharp(int start_x, int start_y, CDC*); //draws a sharp sign

 void SetNext(CNote* next_n); //sets next note in list
 CNote* GetNext(void); //returns the next note
 int GetNoteNum(); //returns the pitch value
 note_length_t GetNoteLength(); //returns the length

};//class Note

/*---
class CScore:
 Score Object
---*/
class CScore{

 bool edited;
 //whether score has been edited since loaded
 CNote* note_list; //linked list of notes
 CNote* last_note; //last note in linked list

public:
 CScore(); //constructor
 ~CScore(); //destructor

 void AddNote (int num,note_length_t len); //adds a note to the score
 bool IsEdited(); //returns whether score has been edited
 bool SaveScore (); //saves the current score to a file
 void LoadScore (); //loads a score from a file

 void DrawScore(CMainWin*); //displays the score onscreen

};//class CScore

/**

 Meg Walraed-Sullivan
 Cornell University School of Electrical Engineering
 Masters of Engineering Project: Sheet Music Generator

 DrawingConstants.h

 This file includes all constants used for drawing.

**/

//score borders
#define LEFT_BORDER 5
#define RIGHT_BORDER 5
#define TOP_BORDER 5
#define BOTTOM_BORDER 5
#define INNER_BORDER 15

#define SCORE_START_Y 2*BETWEEN_STAFFS+TOP_BORDER
#define SCORE_START_X LEFT_BORDER + INNER_BORDER + 40

//staff constants
#define BETWEEN_STAFFS 30
#define BETWEEN_LINES 10
#define STAFF_HEIGHT 4*BETWEEN_LINES

//clef constants
#define CLEF_TOP_OVERHANG 5
#define CLEF_BOTTOM_OVERHANG 10
#define CLEF_INDENT 10
#define CLEF_X CLEF_INDENT+RIGHT_BORDER+INNER_BORDER
#define CLEF_TOP_ARC_WIDTH 6

 49

//note constants
#define NOTE_WIDTH 15
#define NOTE_HEIGHT BETWEEN_LINES
#define NOTE_STEM BETWEEN_LINES*3
#define BETWEEN_NOTES NOTE_WIDTH*4
#define TAIL_HEIGHT BETWEEN_LINES
#define TAIL_WIDTH TAIL_HEIGHT*3/4
#define TAIL_SPACING TAIL_HEIGHT/2
#define C_LINE_OVERHANG 4

//sharp/flat symbols
#define SHARP_WIDTH NOTE_WIDTH
#define SHARP_SKEW 3
#define SHARP_HEIGHT NOTE_HEIGHT+1
#define SHARP_OFF_LINE 3

//individual staff lines
#define LINE_LENGTH 900

/**

 Meg Walraed-Sullivan
 Cornell University School of Electrical Engineering
 Masters of Engineering Project: Sheet Music Generator

 FileConstants.h

 This file includes all constants used for file IO.

**/

#define FILE_BUFFER_LEN 100

#define FILE_DEFAULT_NAME "my_music.txt"

/**

 Meg Walraed-Sullivan
 Cornell University School of Electrical Engineering
 Masters of Engineering Project: Sheet Music Generator

 ResourceIds.h

 This file includes all ids of all resources used in the application.

**/

/*---
Menu:1000
---*/

//File Menu: 000
#define IDM_FILE_NEW 1000
#define IDM_FILE_SAVE 1001
#define IDM_FILE_OPEN 1002
#define IDM_FILE_CLOSE 1003
#define IDM_FILE_EXIT 1005

//Score Menu:100
#define IDM_SCORE_KEY 1100
#define IDM_SCORE_STOP 1101

//Help Menu:200
#define IDM_HELP_ABOUT 1200

/*---
Dialogs:2000
---*/

 50

//About Box: 000
#define IDD_ABOUTTEXT 2000

// Serial.h

#ifndef __SERIAL_H__
#define __SERIAL_H__

#define FC_DTRDSR 0x01
#define FC_RTSCTS 0x02
#define FC_XONXOFF 0x04
#define ASCII_BEL 0x07
#define ASCII_BS 0x08
#define ASCII_LF 0x0A
#define ASCII_CR 0x0D
#define ASCII_XON 0x11
#define ASCII_XOFF 0x13

class CSerial
{

public:
 CSerial();
 ~CSerial();

 BOOL Open(int nPort = 2, int nBaud = 9600);
 BOOL Close(void);

 int ReadData(void *, int);
 int SendData(const char *, int);
 int ReadDataWaiting(void);

 BOOL IsOpened(void){ return(m_bOpened); }

protected:
 BOOL WriteCommByte(unsigned char);

 HANDLE m_hIDComDev;
 OVERLAPPED m_OverlappedRead, m_OverlappedWrite;
 BOOL m_bOpened;

};

#endif

/**

 Meg Walraed-Sullivan
 Cornell University School of Electrical Engineering
 Masters of Engineering Project: Sheet Music Generator

 Implementation.cpp

 This file includes the implementations for each class in the application

**/

/*__

Includes
__*/

#include <afxwin.h> //all MFC headers, classes, etc
#include <afxdlgs.h> //common dialogs
#include <fstream.h> //file IO
#include <afxmt.h> //threads

 51

#include "ClassSkeleton.h" //class definitions
#include "ResourceIds.h" //ids of all resources
#include "DrawingConstants.h" //constants used to draw score
#include "FileConstants.h" //constants used to do File IO
//#include "serial.h" included in class skeleton

/*__

Globals
__*/

int screen_width=0; //width of entire window whem maximize
int screen_height=0; //height of entire window whem maximize

CScore* curr_score=NULL; //reference to the current score object

int quarter_note_ms; //information about current tempo
int eighth_note_ms;
int sixteenth_note_ms;
int half_note_ms;
int whole_note_ms;

/*__

Prototypes
__*/

UINT SerialThreadFunction(LPVOID TFParam); //serial thread function
void SetTempo(int beats_per_minute); //function to set the current tempo
note_length_t FindNoteLength(int note_time_ms); //function to determine a note length

/*__

class CMainWin: Main Window of Application
__*/

CMainWin::CMainWin(LPCSTR ClassName) {

 //create a window with defined class style and no parent
 Create(ClassName,

"Sheet Music Generator",
WS_OVERLAPPEDWINDOW|WS_MAXIMIZE ,
rectDefault,NULL,
 "MainMenu");

 //DC for main window
 CClientDC DC(this);

 //get screen dimensions
 screen_width = GetSystemMetrics(SM_CXSCREEN);
 screen_height = GetSystemMetrics(SM_CYSCREEN);

 //create a memory DC compatible with this window
 m_memDC.CreateCompatibleDC(&DC);

 //create and select a bitmap to store the screen
 m_bmp.CreateCompatibleBitmap(&DC, screen_width, screen_height);
 m_memDC.SelectObject(&m_bmp);

 //create a standard brush background and use in virtaul window
 m_bkbrush.CreateStockObject(WHITE_BRUSH);
 m_memDC.SelectObject(&m_bkbrush);

 //paint background of virtual window
 m_memDC.PatBlt(0, 0, screen_width, screen_height, PATCOPY);

 //load menu accelerators
 if(!LoadAccelTable("MainMenu"))

 52

 //alert user upon error
 MessageBox("Cannot Load Accelerators", "Error");

 //create pen and brush to draw score with
 m_ScorePen.CreateStockObject(BLACK_PEN);
 m_ScoreBrush.CreateStockObject(WHITE_BRUSH);

 //initialize serial stuff
 serial_thread = NULL;
 serial_thread_running=FALSE;
 serial_thread_stop_flag=FALSE;

}//constructor CMainWin

BEGIN_MESSAGE_MAP(CMainWin, CFrameWnd)

 //keyboard
 ON_WM_CHAR ()

 //window
 ON_WM_DESTROY()
 ON_WM_PAINT ()

 //menu
 ON_COMMAND(IDM_FILE_NEW, OnFileNew)
 ON_COMMAND(IDM_FILE_SAVE, OnFileSave)
 ON_COMMAND(IDM_FILE_OPEN, OnFileOpen)
 ON_COMMAND(IDM_FILE_CLOSE, OnFileClose)
 ON_COMMAND(IDM_FILE_EXIT, OnFileExit)

 ON_COMMAND(IDM_SCORE_KEY, OnScoreKey)
 ON_COMMAND(IDM_SCORE_STOP, OnScoreStop)

 ON_COMMAND(IDM_HELP_ABOUT, OnHelpAbout)

END_MESSAGE_MAP()

/*--
Menu Implementation
--*/
afx_msg void CMainWin::OnHelpAbout() {

 //create dialog box
 CAboutDialog diagObject("AboutDialog", this);

 //show dialog modally
 diagObject.DoModal();

}//OnHelpAbout

afx_msg void CMainWin::OnFileExit() {

 int response;

 //prompt user to exit
 response = MessageBox("Quit the Program?", "Exit", MB_YESNO);

 //if user opted to exit
 if(response == IDYES) {

 //close the current score if applicable
 OnFileClose();

 //send windows a message to close
 SendMessage(WM_CLOSE);

 53

 }//if(response == IDYES)

}//OnFileExit

afx_msg void CMainWin::OnFileNew() {

 //close the current score if applicable
 OnFileClose();

 //draw a new score
 DrawBlankScore();

 //set up a new score object
 curr_score=new CScore;

}//OnFileNew

afx_msg void CMainWin::OnFileSave() {

 //attemp to save score, if user cancels, don't care
 curr_score->SaveScore();

}//OnFileSave

afx_msg void CMainWin::OnFileOpen() {

 //close the current score if applicable
 OnFileClose();

 //first draw background
 DrawBlankScore();

 //create a new score object
 curr_score = new CScore;

 //load the score from the file
 curr_score->LoadScore();

 curr_score->DrawScore(this);

}//OnFileOpen

afx_msg void CMainWin::OnFileClose() {

 //check for saving current score
 CheckSave();

 //clear screen
 ClearScoreScreen();

}//OnFileClose

afx_msg void CMainWin::OnScoreKey() {

 //check to see that we are not already capturing
 if (serial_thread_running) {

 MessageBox("Already capturing!!!", "Invalid Action", MB_OK|MB_ICONEXCLAMATION);
 return;

 }//if (serial_thread_running)

 //start a new score
 OnFileNew();

 //attempt to open a connection on COM1 at 9600 baud
 if (serial_conn.Open(1, 9600)) {

 //create a new thread to handle the serial interaction

 54

 serial_thread=AfxBeginThread(SerialThreadFunction, //AFX_THREADPROC
 this //LPVOID Param
 THREAD_PRIORITY_NORMAL, //int InitPriority =
THREAD_PRIORITY_NORMAL
 0,
 //UINT StackSize = 0
 0,
 //DWORD dwFlags = 0
 NULL);
 //LPSECURITY_ATTRIBUTES Security = NULL

 //set flag to indicate thread exists
 serial_thread_running=TRUE;

 //clear the flag used for stopping the thread
 serial_thread_stop_flag=FALSE;

 //set tempo
 SetTempo(120);

 }//if (serial_conn.Open(1, 9600))

 else
 AfxMessageBox("Failed to open port!");

}//OnScoreKey

afx_msg void CMainWin::OnScoreStop() {

 //check to see if we are capturing
 if (!serial_thread_running) {

 MessageBox("No capture to stop!!!", "Invalid Action", MB_OK|MB_ICONEXCLAMATION);
 return;

 }//if (!serial_thread_running)

 //set the flag to thread the stop
 serial_thread_stop_flag=TRUE;

}//OnScoreStop

/*--
Window Implementation
--*/
afx_msg void CMainWin::OnPaint(void){

 //obtain device context for this window
 CPaintDC DC(this);

 //copy the virtual window on to the window
 DC.BitBlt(0, 0, screen_width, screen_height, &m_memDC, 0, 0, SRCCOPY);

}//OnPaint

afx_msg void CMainWin::OnDestroy(void) {

 //destroy the current score if necessary
 if (curr_score)
 delete curr_score;

}//OnDestroy

void CMainWin::ClearScoreScreen(void){

 m_memDC.PatBlt(0, 0, screen_width, screen_height, PATCOPY);
 InvalidateRect(NULL);

 55

}//CMainWin::ClearScoreScreen

/*--
File Mainpulation Routines
--*/
void CMainWin::CheckSave(void){

 //if there is a score currently open
 if (curr_score!=NULL) {

 //if this score has been edited
 if (curr_score->IsEdited()) {

 //prompt user that score should be saved
 if(MessageBox("Save current score?", "Exit", MB_YESNO)==IDYES)
 OnFileSave();

 }//if (curr_score->IsEdited())

 //destroy the object that held the current score
 DestroyCurrentScore();

 }//if (curr_score!=NULL)

}//CMainWin::CheckSave

void CMainWin::DestroyCurrentScore(void){

 //destroy the current score and free all memory
 delete curr_score;

 //set reference to null
 curr_score=NULL;

}//CMainWin::DestroyCurrentScore

/*--
Drawing Routines
--*/
void CMainWin::DrawBlankScore(void){

 int screen_bottom=screen_height-20*BOTTOM_BORDER;
 int screen_right=screen_width-2*RIGHT_BORDER;
 int screen_left = LEFT_BORDER;
 int screen_top=TOP_BORDER;
 int cur_y = TOP_BORDER;
 int num_lines=0;

 //select drawing tools
 m_memDC.SelectObject(&m_ScorePen);
 m_memDC.SelectObject(&m_ScoreBrush);

 //draw outline
 m_memDC.MoveTo(screen_left, screen_top);
 m_memDC.LineTo(screen_left, screen_bottom);
 m_memDC.LineTo(screen_right, screen_bottom);
 m_memDC.LineTo(screen_right, screen_top);
 m_memDC.LineTo(screen_left, screen_top);

 //move down to first staff start
 cur_y=SCORE_START_Y;

 //draw staffs
 while(cur_y+STAFF_HEIGHT+BETWEEN_STAFFS<screen_bottom){

 //draw 4 lines
 for(num_lines=0;num_lines<4;num_lines++) {

 //move to beginning of line

 56

 m_memDC.MoveTo(screen_left+INNER_BORDER, cur_y);

 //draw line
 m_memDC.LineTo(screen_right-INNER_BORDER, cur_y);

 //move to next line
 cur_y+=BETWEEN_LINES;

 }//for(num_lines=0;num_lines<4;num_lines++)

 //draw the last line
 m_memDC.MoveTo(screen_left+INNER_BORDER, cur_y);
 m_memDC.LineTo(screen_right-INNER_BORDER, cur_y);

 //draw the clef
 DrawClef(cur_y);

 //move to next staff
 cur_y+=BETWEEN_STAFFS;

 //draw line

 }//while(cur_y+STAFF_HEIGHT+BETWEEN_STAFFS<screen_bottom)

 //cause window to be repainted
 InvalidateRect(NULL);

}//DrawBlankScore

void CMainWin::DrawClef(int y_pos){

 RECT r;
 CBrush HollowBrush;
 CBrush* oldBrush;

 //create and select a brush that won't fill shapes in
 HollowBrush.CreateStockObject(HOLLOW_BRUSH);
 oldBrush=m_memDC.SelectObject(&HollowBrush);

 //move to bottom of clef and draw vertical line
 m_memDC.MoveTo(CLEF_X, y_pos+CLEF_BOTTOM_OVERHANG);
 m_memDC.LineTo(CLEF_X, y_pos-STAFF_HEIGHT -CLEF_TOP_OVERHANG);

 //set up objects for arc
 r.top=y_pos-STAFF_HEIGHT -CLEF_TOP_OVERHANG;
 r.bottom=y_pos-2*BETWEEN_LINES-1;
 r.left=CLEF_X-CLEF_TOP_ARC_WIDTH;
 r.right=CLEF_X+CLEF_TOP_ARC_WIDTH;

 //draw top arc;
 m_memDC.Arc(r.left, r.top,r.right,r.bottom,CLEF_X,r.bottom,CLEF_X,r.top);

 //move bounding rectangle down for lower arc,widen
 r.top=y_pos-2*BETWEEN_LINES;
 r.bottom=y_pos;
 r.left -=3;
 r.right+=3;

 //draw next arc
 m_memDC.Arc(r.left, r.top,r.right,r.bottom,CLEF_X,r.top,r.right,(r.top+BETWEEN_LINES));

 //adjust rectangle for inner curve
 r.bottom-=2;
 r.left+=5;
 r.top+=4;

 //draw inner arc
 m_memDC.Arc(r.left, r.top,r.right,r.bottom,r.right,(r.top+BETWEEN_LINES-4), r.left, (r.top+BETWEEN_LINES-4));

 57

 //adjust rectangle again for inner inner arc
 r.bottom-=2;

 //draw inner inner arc
 m_memDC.Arc(r.left, r.top,r.right,r.bottom,r.left,(r.top+BETWEEN_LINES-4), CLEF_X, r.bottom);

 //reselect old brush
 m_memDC.SelectObject(oldBrush);

}//DrawBlankScore

/*__

class CAboutDialog: About Box
__*/

//all implementation is default!

/*__

class CMainApp: Main and Only Application Object
__*/

BOOL CMainApp::InitInstance() {

 CBrush bkbrush;

 //create a standard background brush
 bkbrush.CreateStockObject(WHITE_BRUSH);

 //register window style class
 LPCSTR cname = AfxRegisterWndClass(0,
 LoadStandardCursor(IDC_ARROW),
 bkbrush,
 LoadIcon("MainIcon"));

 //create a main window object, store pointer
 m_pMainWnd = new CMainWin(cname);

 //show the window object
 m_pMainWnd->ShowWindow(m_nCmdShow|SW_SHOWMAXIMIZED);

 //update the window object
 m_pMainWnd->UpdateWindow();

 //return succesfullly
 return TRUE;

}//CMainApp::InitInstance

/*__

class CNote: Note Object
__*/

CNote::CNote() {

 //assign default values for length and pitch
 note_length = quarter_note;
 note_num=60;

 //next note not set until list created
 next_note=NULL;

}//CNote::CNote

CNote::CNote(int num,note_length_t length) {

 58

 //initialize pitch and length to given values
 note_length = length;
 note_num=num;

 //next note not set until list created
 next_note=NULL;

}//CNote::CNote(int num,int length)

void CNote::SetNext(CNote* next_n){

 next_note=next_n;

}//CNote::SetNext

CNote* CNote::GetNext(void){

 return next_note;

}//CNote::SetNext

void CNote::DrawNote(int cur_x, int staff_base,CDC* memDC) {

 CBrush noteBrush;
 CBrush* oldBrush;
 CPen stemPen;
 CPen* oldPen;
 int cur_y=staff_base;
 int note_y_middle;
 RECT r;

 switch(note_num){

 case 60:
 cur_y+=BETWEEN_LINES;

 //draw line
 memDC->MoveTo(cur_x-C_LINE_OVERHANG,cur_y);
 memDC->LineTo(cur_x+NOTE_WIDTH+C_LINE_OVERHANG,cur_y);

 break;
 case 61:

 cur_y+=BETWEEN_LINES;

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 //draw line
 memDC->MoveTo(cur_x-C_LINE_OVERHANG,cur_y);
 memDC->LineTo(cur_x+NOTE_WIDTH+C_LINE_OVERHANG,cur_y);

 break;
 case 62:
 cur_y+=(int)(BETWEEN_LINES/2);
 break;
 case 63:

 cur_y+=(int)(BETWEEN_LINES/2);

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;
 case 64:
 break;

 59

 case 65:
 cur_y-=(int)(BETWEEN_LINES/2);
 break;
 case 66:

 cur_y-=(int)(BETWEEN_LINES/2);

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;
 case 67:
 cur_y-=BETWEEN_LINES;
 break;
 case 68:

 cur_y-=BETWEEN_LINES;

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;
 case 69:
 cur_y-=(int)(BETWEEN_LINES*3/2);
 break;
 case 70:

 cur_y-=(int)(BETWEEN_LINES*3/2);

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;
 case 71:
 cur_y-=2*BETWEEN_LINES;
 break;
 case 72:
 cur_y-=BETWEEN_LINES*5/2;
 break;
 case 73:
 cur_y-=BETWEEN_LINES*5/2;

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;
 case 74:
 cur_y-=BETWEEN_LINES*3;
 break;
 case 75:
 cur_y-=BETWEEN_LINES*3;

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;

 case 76:
 cur_y-=BETWEEN_LINES*7/2;

 break;

 case 77:
 cur_y-=BETWEEN_LINES*4;

 60

 break;

 case 78:

 cur_y-=BETWEEN_LINES*4;

 //draw sharp sign and move over
 DrawSharp(cur_x, cur_y,memDC);
 cur_x+=(int)(BETWEEN_NOTES/4);

 break;

 }//switch(note_num)

 //make pen thicker for tail
 stemPen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

 //set new pen, save old pen
 oldPen=memDC->SelectObject(&stemPen);

 //if note is to be filled in, create a black brush
 if (note_length<=quarter_note)
 noteBrush.CreateStockObject(BLACK_BRUSH);
 //otherwise create a hollow brush
 else
 noteBrush.CreateSt ockObject(HOLLOW_BRUSH);

 //save the old brush
 oldBrush=memDC->SelectObject(¬eBrush);

 //calculate note middle from staff bottom and note num
 note_y_middle = cur_y;

 //set up rectangle for note body
 r.top=(int)note_y_middle-NOTE_HEIGHT/2;
 r.bottom=(int)note_y_middle+NOTE_HEIGHT/2;
 r.left=cur_x;
 r.right=r.left+NOTE_WIDTH;

 //draw oval for note body
 memDC->Ellipse(&r);

 //if note is not a whole note, it needs a stem
 if (note_length<whole_note){

 //move to stem starting point
 memDC->MoveTo(r.right, note_y_middle);

 //draw stem up for lower notes
 if (note_num<=70) {

 memDC->LineTo(r.right, (int)(note_y_middle-NOTE_STEM));

 //if note is less than a quarter note, it needs a tail
 if (note_length<quarter_note)
 DrawTail(r.right,(int)(note_y_middle-NOTE_STEM-1),memDC);

 //if note is less than an eighth note, it needs a second tail
 if (note_length<eighth_note)
 DrawTail(r.right,(int)(note_y_middle-NOTE_STEM+TAIL_SPACING),memDC);

 }//if (note_num<=70)

 //draw stem down for higher notes
 else {

 //move to stem starting point
 memDC->MoveTo(r.left, note_y_middle);

 memDC->LineTo(r.left, (int)(note_y_middle+NOTE_STEM));

 61

 //if note is less than a quarter note, it needs a tail
 if (note_length<quarter_note)
 DrawUpsideDownTail(r.left,(int)(note_y_middle+NOTE_STEM),memDC);

 //if note is less than an eighth note, it needs a second tail
 if (note_length<eighth_note)
 DrawUpsideDownTail(r.left,(int)(note_y_middle+NOTE_STEM-
TAIL_SPACING),memDC);

 }//ekse

 }//if (note_length<whole_note)

 //set pen back to what it was
 memDC->SelectObject(oldPen);

 //reselect the old brush before returning
 memDC->SelectObject(oldBrush);

}//CNote::DrawNote

void CNote::DrawTail(int x_start, int y_start, CDC* memDC) {

 CBrush tailBrush;
 CBrush* oldBrush;
 CPen tailPen;
 CPen* oldPen;

 RECT r;

 //make brush that won't fill background
 tailBrush.CreateStockObject(HOLLOW_BRUSH);

 //set new brush, save old brush
 oldBrush = memDC->SelectObject(&tailBrush);

 //make pen thicker for tail
 tailPen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

 //set new pen, save old pen
 oldPen=memDC->SelectObject(&tailPen);

 //set up rectangle for first arc
 r.top = y_start;
 r.bottom=y_start+TAIL_HEIGHT;
 r.left=x_start;
 r.right = x_start+TAIL_WIDTH;

 //draw first arc
 memDC->Arc(r.left,r.top,r.right,r.bottom, r.right,(int)(r.top+TAIL_HEIGHT/2),r.left,r.top);

 //adjust rectangle for second arc
 r.left=r.right;
 r.right+=TAIL_WIDTH;

 //draw second arc
 memDC->Arc(r.left,r.top,r.right,r.bottom, r.left,(int)(r.top+TAIL_HEIGHT/2),(int)(r.left+TAIL_WIDTH/2),r.bottom);

 //set brush back to what it was
 memDC->SelectObject(oldBrush);

 //set pen back to what it was
 memDC->SelectObject(oldPen);

}//CNote::DrawTail

void CNote::DrawUpsideDownTail(int x_start, int y_start, CDC* memDC) {

 62

 CBrush tailBrush;
 CBrush* oldBrush;
 CPen tailPen;
 CPen* oldPen;

 RECT r;

 //make brush that won't fill background
 tailBrush.CreateStockObject(HOLLOW_BRUSH);

 //set new brush, save old brush
 oldBrush = memDC->SelectObject(&tailBrush);

 //make pen thicker for tail
 tailPen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

 //set new pen, save old pen
 oldPen=memDC->SelectObject(&tailPen);

 //set up rectangle for first arc
 r.bottom = y_start;
 r.top=y_start-TAIL_HEIGHT;
 r.left=x_start;
 r.right = x_start+TAIL_WIDTH;

 //draw first arc
 memDC->Arc(r.left,r.top,r.right,r.bottom, r.left,r.bottom, r.right,(int)(r.top+TAIL_HEIGHT/2));

 //adjust rectangle for second arc
 r.left=r.right;
 r.right+=TAIL_WIDTH;

 //draw second arc
 memDC->Arc(r.left,r.top,r.right,r.bottom, (int)(r.left+TAIL_WIDTH/2),r.top,r.left,(int)(r.top+TAIL_HEIGHT/2));

 //set brush back to what it was
 memDC->SelectObject(oldBrush);

 //set pen back to what it was
 memDC->SelectObject(oldPen);

}//CNote::DrawUpsideDownTail

void CNote::DrawSharp(int start_x, int start_y, CDC* memDC){

 CPen sharpPen;
 CPen* oldPen;

 RECT r;

 //make pen thicker for tail
 sharpPen.CreatePen(PS_SOLID, 2, RGB(0,0,0));

 //set new pen, save old pen
 oldPen=memDC->Select Object(&sharpPen);

 //set up base rectagle
 r.bottom=(int)(start_y+SHARP_HEIGHT/2);
 r.top=(int)(start_y-SHARP_HEIGHT/2);
 r.left=start_x;
 r.right=r.left+SHARP_WIDTH;

 //draw vertical lines
 memDC->MoveTo(r.left,r.bottom);
 memDC->LineTo(r.left+SHARP_SKEW,r.top);
 memDC->MoveTo(r.left+(int)(SHARP_WIDTH/2), r.bottom);
 memDC->LineTo(r.left+SHARP_WIDTH/2+SHARP_SKEW,r.top);

 //draw horizontal lines

 63

 memDC->MoveTo(r.left-3,start_y+SHARP_OFF_LINE);
 memDC->LineTo(r.left -3+SHARP_WIDTH, start_y+SHARP_OFF_LINE);
 memDC->MoveTo(r.left-3,start_y-SHARP_OFF_LINE);
 memDC->LineTo(r.left -3+SHARP_WIDTH, start_y-SHARP_OFF_LINE);

 //set pen back to what it was
 memDC->SelectObject(oldPen);

}//CNote::DrawSharp

int CNote::GetNoteNum(){

 return note_num;

}//CNote::GetNoteNum

note_length_t CNote::GetNoteLength(){

 return note_length;

}//CNote::GetNoteLength

 /*__

class CScore: Score Object
__*/

CScore::CScore() {

 //a new score has no notes yet
 note_list=NULL;
 last_note=NULL;

 //a new score has yet to be edited
 edited=false;

}//CScore::CScore

CScore::~CScore() {

 CNote* curr_note=note_list;
 CNote* next_note;

 //destroy all notes
 while(curr_note!=NULL){

 next_note = curr_note->GetNext();
 delete curr_note;
 curr_note=next_note;

 }//while(curr_note!=NULL)

}//CScore::~CScore

void CScore::AddNote (int num,note_length_t len){

 //create a new note
 CNote* new_note = new CNote(num,len);

 //if the list is empty, simply put in list
 if (last_note==NULL){

 note_list = new_note;
 last_note=note_list;

 }//if (last_note==NULL)

 //otherwise, make it the last note ande make old last point to it
 else {

 64

 last_note->SetNext(new_note);
 last_note=new_note;

 }//else

 //mark that the score was edited
 edited=true;

}//CScore::AddNote

void CScore::DrawScore(CMainWin* main_window){

 int cur_x=SCORE_START_X;
 int cur_y=SCORE_START_Y+STAFF_HEIGHT;

 CNote* curr_note=note_list;

 //while there are notes to draw
 while(curr_note!=NULL){

 //draw the current note
 curr_note->DrawNote(cur_x,cur_y, &(main_window->m_memDC));

 //if note still fits on this line
 if (cur_x<LINE_LENGTH-2*NOTE_WIDTH) {

 //move over one note width plus one space
 cur_x+=NOTE_WIDTH;
 cur_x+=BETWEEN_NOTES;

 }//if (cur_x<LINE_LENGTH-2*NOTE_WIDTH)

 //otherwise move to next line
 else {

 cur_x = SCORE_START_X;
 cur_y+=STAFF_HEIGHT+BETWEEN_ST AFFS;

 }//else

 //move to next note
 curr_note = curr_note->GetNext();

 }//while

 //cause the window to be repainted
 main_window->InvalidateRect(NULL);

}//CScore::DrawScore

bool CScore::SaveScore(void){

 if (curr_score==NULL)
 return FALSE;

 CNote* curr_note=note_list;

 CFileDialog SaveDialog(FALSE, //BOOL bOpenFileDialog

".txt", //LPCTSTR lpszDefExt =NULL
FILE_DEFAULT_NAME, //LPCTSTR lpszFileName

 OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, //DWORD dwFlags
 "Text Files (*.txt))|*.txt|", //LPCTSTR lpszFilter
 NULL); //CWnd* pParentWnd

 bool saved_succesfully=FALSE;
 int result;

 //show file save common dialog

 65

 result = SaveDialog.DoModal() ;

 //if user cancelled, return without saving
 if (result==IDCANCEL)
 return saved_succesfully;

 //if file was selected correctly
 else if (result== IDOK){

 //open a stream for the file name selected
 ofstream SaveFile(SaveDialog.GetFileName());

 //write first line
 SaveFile << "File Created By Sheet Music Generator: Version 1.0\n";

 //while there are notes to save
 while(curr_note!=NULL){

 //save the current note
 SaveFile << curr_note->GetNoteNum() << "," << curr_note->GetNoteLength() << "\n";

 //move to next note
 curr_note = curr_note->GetNext();

 }//while

 //mark the end of the file
 SaveFile << "end";

 //close the file
 SaveFile.close();

 //mark score as not edited
 curr_score->edited=FALSE;

 //save now successful
 saved_succesfully=true;

 }//else if (result== IDOK)

 return saved_succesfully;

}//CScore::SaveScore

void CScore::LoadScore(void){

 CNote* curr_note=note_list;

 CFileDialog OpenDialog(TRUE, //BOOL bOpenFileDialog
 ".txt", //LPCTSTR lpszDefExt = NULL
 NULL, //LPCTSTR lpszFileName
 OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, //DWORD dwFlags
 "Text Files (*.txt))|*.txt|", //LPCTSTR lpszFilter
 NULL); //CWnd* pParentWnd

 int result;
 note_length_t temp_note_len;
 int temp_note_num;
 char file_buffer [FILE_BUFFER_LEN];

 //show file open common dialog
 result = OpenDialog.DoModal() ;

 //if user cancelled, return without opening anything
 if (result==IDCANCEL)
 return;

 //if file was selected correctly

 66

 else if (result== IDOK){

 //open a stream for the file name selected
 ifstream OpenFileStream(OpenDialog.GetFileName());

 //get the first line
 OpenFileStream.getline(file_buffer,FILE_BUFFER_LEN,'\n');

 //if first line incorrect, bad file
 if (strcmp(file_buffer, "File Created By Sheet Music Generator: Version 1.0")!=0)
 return;

 //while we haven't hit the end of the file
 while(!OpenFileStream.eof()){

 //get the first int
 OpenFileStream.getline(file_buffer,FILE_BUFFER_LEN,',');

 //if we haven't reached the end of the file
 if (strcmp(file_buffer, "end")!=0){

 temp_note_num = atoi(file_buffer);

 //get second int
 OpenFileStream.getline(file_buffer,FILE_BUFFER_LEN,'\n');
 temp_note_len = (note_length_t)atoi(file_buffer);

 //add the note
 curr_score->AddNote(temp_note_num, temp_note_len);

 }//if (strcmp(file_buffer, "end")!=0)

 }//while(!OpenFileStream.eof())

 //close the file
 OpenFileStream.close();

 }//else if (result== IDOK)

 //score has yet to be edited
 edited=false;

}//CScore::LoadScore

bool CScore::IsEdited(){

 return edited;

}//CScore::IsEdited

 /*__

Main Code Section
__*/

CMainApp MyApp; //create
an application object to start

UINT SerialThreadFunction(LPVOID TFParam){

 int nBytesRead=0;
 unsigned int curr_note_num=0;
 unsigned int curr_note_len=0;
 int curr_byte=0;
 int byte_within_note=0;

 67

 unsigned char* lpBuffer = new unsigned char[500];

 CMainWin* window_obj;

 //cast the parameter into a serial connection object
 window_obj = (CMainWin*) TFParam;

 //continuously read the serial input
 while(1) {

 //read any data waiting on the COM port
 nBytesRead = window_obj->serial_conn.ReadData(lpBuffer, 500);

 //process each byte read
 for (curr_byte=0;curr_byte<nBytesRead;curr_byte++){

 //decide which part of note current byte represents
 switch (byte_within_note) {

 //first byte is note num
 case 0:

 //grab and cast note number
 curr_note_num=(unsigned int)lpBuffer[curr_byte];

 //if note is below bottom of range, move up
 if ((curr_note_num>=48)&&(curr_note_num<=59))
 curr_note_num+=12;
 else if (curr_note_num<48)
 curr_note_num+=24;
 else if ((curr_note_num>=79)&&(curr_note_num<=90))
 curr_note_num -=12;
 else if (curr_note_num>90)
 curr_note_num -=24;

 //move to next byte in note
 byte_within_note++;

 break;

 //second byte is note length high byte
 case 1:

 //grab and cast note length
 curr_note_len=(unsigned int)(lpBuffer[curr_byte]);

 //move to next byte in note
 byte_within_note++;

 break;

 //third byte is note length low byte
 case 2:

 //combine high and low bytes
 curr_note_len = (curr_note_len*256)+(unsigned int)(lpBuffer[curr_byte]);

 //grab and cast note length
 curr_note_len=FindNoteLength(curr_note_len);

 //move to next byte in note
 byte_within_note++;

 break;

 //third byte is seperator
 case 3:

 68

 //use this time to add the note
 curr_score->AddNote(curr_note_num,(note_length_t)curr_note_len);

 //move to first byte of next note
 byte_within_note=0;

 //draw the changes
 curr_score->DrawScore(window_obj);

 break;

 }//switch

 }//for

 //if we've been asked to stop
 if (window_obj->serial_thread_stop_flag)
 break;

 }//while

 //delete buffer used
 delete []lpBuffer;

 //indicate that connection is no longer running
 window_obj->serial_thread_running=FALSE;

 //close the serial connection
 window_obj->serial_conn.Close();

 return 0;

}//SerialThreadFunction

void SetTempo(int beats_per_minute) {

 float quarter_note_sec;
 float eighth_note_sec;
 float sixteenth_note_sec;
 float half_note_sec;
 float whole_note_sec;

 //use tempo to calculate quarter note value
 quarter_note_sec = 60/(float)beats_per_minute;

 //use quarter note value to calculate other notes' values
 eighth_note_sec = quarter_note_sec/2;
 sixteenth_note_sec = eighth_note_sec/2;
 half_note_sec=quarter_note_sec*2;
 whole_note_sec = half_note_sec * 2;

 //convert values into ms
 quarter_note_ms = (int)(quarter_note_sec*1000);
 eighth_note_ms = (int)(eighth_note_sec*1000);
 sixteenth_note_ms = (int)(sixteenth_note_sec*1000);
 half_note_ms = (int)(half_note_sec*1000);
 whole_note_ms = (int)(whole_note_sec*1000);

}//SetTempo

note_length_t FindNoteLength(int note_time_ms){

 int midway_sixteenth_eighth = (int)((eighth_note_ms-sixteenth_note_ms)/2+sixteenth_note_ms);
 int midway_eight_quarter = (int)((quarter_note_ms-eighth_note_ms)/2+eighth_note_ms);
 int midway_qaurter_half = (int)((half_note_ms-quarter_note_ms)/2+quarter_note_ms);
 int midway_half_whole = (int)((whole_note_ms-half_note_ms)/2+half_note_ms);

 if (note_time_ms<=midway_sixteenth_eighth)
 return sixteenth_note;
 else if((note_time_ms>midway_sixteenth_eighth)&&(note_time_ms<=midway_eight_quarter))

 69

 return eighth_note;
 else if((note_time_ms>midway_eight_quarter)&&(note_time_ms<=midway_qaurter_half))
 return quarter_note;
 else if((note_time_ms>midway_qaurter_half)&&(note_time_ms<=midway_half_whole))
 return half_note;
 else
 return whole_note;

}//FindNoteLength

// Serial.cpp

#include "stdafx.h"
#include "Serial.h"

CSerial::CSerial()
{

 memset(&m_OverlappedRead, 0, sizeof(OVERLAPPED));
 memset(&m_OverlappedWrite, 0, sizeof(OVERLAPPED));
 m_hIDComDev = NULL;
 m_bOpened = FALSE;

}

CSerial::~CSerial()
{

 Close();

}

BOOL CSerial::Open(int nPort, int nBaud)
{

 if(m_bOpened) return(TRUE);

 char szPort[15];
 char szComParams[50];
 DCB dcb;

 wsprintf(szPort, "COM%d", nPort);
 m_hIDComDev = CreateFile(szPort, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL);
 if(m_hIDComDev == NULL) return(FALSE);

 memset(&m_OverlappedRead, 0, sizeof(OVERLAPPED));
 memset(&m_OverlappedWrite, 0, sizeof(OVERLAPPED));

 COMMTIMEOUTS CommTimeOuts;
 CommTimeOuts.ReadIntervalTimeout = 0xFFFFFFFF;
 CommTimeOuts.ReadT otalTimeoutMultiplier = 0;
 CommTimeOuts.ReadTotalTimeoutConstant = 0;
 CommTimeOuts.WriteTotalTimeoutMultiplier = 0;
 CommTimeOuts.WriteTotalTimeoutConstant = 5000;
 SetCommTimeouts(m_hIDComDev, &CommTimeOuts);

 wsprintf(szComParams, "COM%d:%d,n,8,1", nPort, nBaud);

 m_OverlappedRead.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 m_OverlappedWrite.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 dcb.DCBlength = sizeof(DCB);
 GetCommState(m_hIDComDev, &dcb);
 dcb.BaudRate = nBaud;
 dcb.ByteSize = 8;
 unsigned char ucSet;
 ucSet = (unsigned char) ((FC_RTSCTS & FC_DTRDSR) != 0);
 ucSet = (unsigned char) ((FC_RTSCTS & FC_RTSCTS) != 0);
 ucSet = (unsigned char) ((FC_RTSCTS & FC_XONXOFF) != 0);

 70

 if(!SetCommState(m_hIDComDev, &dcb) ||
 !SetupComm(m_hIDComDev, 10000, 10000) ||
 m_OverlappedRead.hEvent == NULL ||
 m_OverlappedWrite.hEvent == NULL){
 DWORD dwError = GetLastError();
 if(m_OverlappedRead.hEvent != NULL) CloseHandle(m_OverlappedRead.hEvent);
 if(m_OverlappedWrite.hEvent != NULL) CloseHandle(m_OverlappedWrite.hEvent);
 CloseHandle(m_hIDComDev);
 return(FALSE);
 }

 m_bOpened = TRUE;

 return(m_bOpened);

}

BOOL CSerial::Close(void)
{

 if(!m_bOpened || m_hIDComDev == NULL) return(TRUE);

 if(m_OverlappedRead.hEvent != NULL) CloseHandle(m_OverlappedRead.hEvent);
 if(m_OverlappedWrite.hEvent != NULL) CloseHandle(m_OverlappedWrite.hEvent);
 CloseHandle(m_hIDComDev);
 m_bOpened = FALSE;
 m_hIDComDev = NULL;

 return(TRUE);

}

BOOL CSerial::WriteCommByte(unsigned char ucByte)
{
 BOOL bWriteStat;
 DWORD dwBytesWritten;

 bWriteStat = WriteFile(m_hIDComDev, (LPSTR) &ucByte, 1, &dwBytesWritten, &m_OverlappedWrite);
 if(!bWriteStat && (GetLastError() == ERROR_IO_PENDING)){
 if(WaitForSingleObject(m_OverlappedWrite.hEvent, 1000)) dwBytesWritten = 0;
 else{
 GetOverlappedResult(m_hIDComDev, &m_OverlappedWrite, &dwBytesWritten, FALSE);
 m_OverlappedWrite.Offset += dwBytesWritten;
 }
 }

 return(TRUE);

}

int CSerial::SendData(const char *buffer, int size)
{

 if(!m_bOpened || m_hIDComDev == NULL) return(0);

 DWORD dwBytesWritten = 0;
 int i;
 for(i=0; i<size; i++){
 WriteCommByte(buffer[i]);
 dwBytesWritten++;
 }

 return((int) dwBytesWritten);

}

int CSerial::ReadDataWaiting(void)
{

 if(!m_bOpened || m_hIDComDev == NULL) return(0);

 71

 DWORD dwErrorFlags;
 COMSTAT ComStat;

 ClearCommError(m_hIDComDev, &dwErrorFlags, &ComStat);

 return((int) ComStat.cbInQue);

}

int CSerial::ReadData(void *buffer, int limit)
{

 if(!m_bOpened || m_hIDComDev == NULL) return(0);

 BOOL bReadStatus;
 DWORD dwBytesRead, dwErrorFlags;
 COMSTAT ComStat;

 ClearCommError(m_hIDComDev, &dwErrorFlags, &ComStat);
 if(!ComStat.cbInQue) return(0);

 dwBytesRead = (DWORD) ComStat.cbInQue;
 if(limit < (int) dwBytesRead) dwBytesRead = (DWORD) limit;

 bReadStatus = ReadFile(m_hIDComDev, buffer, dwBytesRead, &dwBytesRead, &m_OverlappedRead);
 if(!bReadStatus){
 if(GetLastError() == ERROR_IO_PENDING){
 WaitForSingleObject(m_OverlappedRead.hEvent, 2000);
 return((int) dwBytesRead);
 }
 return(0);
 }

 return((int) dwBytesRead);

}

