
Wireless Retrieval of a Mouse’s Vital Signs
via RFID

Daniel Golden

Cornell University

Abstract – Currently, there exists no simple,
inexpensive, reliable method of non-
invasively obtaining a mouse’s vital signs.
Most methods involve poking and/or
prodding, which tend to excite the mouse,
thereby altering pulse and respiration rates
from their quiescent values. A novel system is
proposed that uses radio frequency
identification (RFID) to non-invasively study
a mouse’s vital signs. The system consists of
a base station and a transponder. The
transponder is implanted in a mouse, and
communicates wirelessly with the base
station. The transponder is powered by the
low frequency electric field transmitted from
the base station, and requires no internal
power supply of its own. Code was written in
C for the transponder and base station
microcontrollers and a Matlab graphical user
interface was written for communication from
the base station to a PC. Wireless data is
transmitted with a Manchester encoding
scheme, for which a novel method of software
clock recovery is used. The system is not
specific to a mouse (though it is designed
with one in mind) and can be applied to any
small mammal. Currently, the system is not
complete, and requires more work to be done
before an experimental trial. Electrical,
dimensional, and programming design
considerations are discussed, with the actual
physical effects of the system on the animal
left as an exercise for the reader.

I. INTRODUCTION

Nobody likes getting shots. The concept of
piercing the skin with a long metal tube and
injecting fluid directly into the bloodstream tends
to give us the willies. There are some who say that

they don’t mind shots, but they are lying.
Everyone minds shots. Even you do.

Often, the mere sight of a needle is enough to
make us nervous. Our heart and respiration rates
increase, our blood pressure rises, and the hair on
the back of our neck stands on end. Ironically, the
shot itself ends up being a real let down; it’s more
the concept that we fear.

Imagine that the same procedure, involving an
intravenous needle, was necessary to obtain our
vital signs: heart rate, respiration rate, blood
pressure and body temperature. The stress of the
procedure would drive our vital signs up, which
would cause them to be always read as unusually
high. The results would be meaningless.

This description is likely a good
approximation of how a mouse feels when its
vitals are being measured. The mouse doesn’t
know what the experimenter is up to; it could end
up being something incredibly painful. As such,
mice tend to respond stressfully to any sort of
handling that could lead to discomfort. In short,
any method of invasively measuring a mouse’s
vital signs – whether the actual procedure is
uncomfortable or not – is, through stressing the
subject, prone to distort the very measurements it
is intended to obtain.

Clearly, to study mouse behavior, this
fundamental problem, hereinafter referred to as
the “prod paradox,” must be solved. There are
two ways to reduce the mouse’s stress while
measurements are being taken. The first is by
sedating the mouse. Though this method is an
effective way of mitigating the prod paradox, it
still has the undesired effect of altering the
mouse’s vital signs, this time in the opposite
(more sedate) direction. Clearly, as the desired
vitals cannot be measured if the mouse is sedated,
this method proves rather useless.

 1

The second, more obvious, but more
challenging method of circumventing the prod
paradox is to measure the mouse’s vital signs non-
invasively. This involves somehow obtaining the
desired quantities without the mouse being aware
that measurements are being taken. Traditionally,
this task has been unfeasible. However, with the
advent of miniaturized electronics and wireless
data communication, non-invasive measurements
have finally become possible. By implanting a
wireless communication-enabled electronic device
into the animal, measurements can be taken and
sent to a data collection unit, all without the
mouse’s conscious awareness. This method is
usually easier to implement in larger animals,
because size constraints are not as severe.
However, the very small working space within a
mouse necessitates extreme miniaturization. Enter
radio frequency identification.

Radio frequency identification (RFID)
systems generally consist of two components: a
powered base station, and one or more
unpowered transponders. By tuning the
transponder antennas to the same frequency as
the base station antenna, power transmitted by
the base station can be captured by the
transponder, in essentially the same way that
power is transferred in a transformer (Figure 1).
This eliminates the need to have a separate power
source for the transponder, which in turn allows
for miniaturization.

Figure 1. Mutually coupled base station (reader) and
transponder (tag) antennas, forming a transformer.
Image courtesy [1].

The base station in our RFID system consists
of an Atmel U2270B base station integrated
circuit (IC), an Atmel Mega32 microcontroller, an
inductive coil antenna, and associated circuitry.
An RS-232 serial cable is provided to interface the
base station with a standard Windows PC running
Matlab. Our transponder consists of an Atmel
U3280M transponder IC, an Atmel Tiny13
microcontroller, an inductive coil antenna, and
associated circuitry. The system operates at a
transmission frequency of 125 kHz.

Both the base station and transponder are
capable of transmitting and receiving data. The
base station transmits data by modulating the
magnitude of the electric field sent through its
coil. The transponder can detect the modulated
field through its own coil to recover the data. In
contrast, the transponder does not “transmit”
data per se; instead, it systematically damps its
own coil’s load, which modulates the signal that is
reflected back to the base station (Figure 2). This
is effectively a passive method of transmitting
data. In practice, our system is unidirectional, and
only makes use of data transmission from the
transponder to the base station.

Figure 2. Transponder coil load modulation for data
transmission. Image courtesy [3].

This paper describes in detail the complete

system, including hardware and software
considerations. Sufficient detail is provided so
that the user, given commercially available
hardware, could reconstruct the entire system for
his or herself. As time constraints prevented a
final, polished system from being developed, a
future work section describes progress that must
be made before the system is ready for an actual
experimental trial.

II. THE TRANSPONDER

 2

Our prior experience with Atmel
microcontrollers, and the knowledge that Atmel
has developed several well-documented RFID
ICs, led to the realization of this project.
Traditional transponders are made to simply
broadcast a serial number, which is useful for
identifying a single transponder-tagged object out
of many (hence the ID in RFID), but not for
much else. As our transponder was required to
collect data as well as transmit it – capabilities that
are easily realized with a microcontroller – we
needed a transponder with a microcontroller
interface. Of Atmel’s transponder offerings, only
the U3280M provided an interface for a
microcontroller, making it an obvious choice.

The beauty of RFID is that the transponder
needs no power supply of its own; it is powered
from the current induced in its coil from the base
station’s signal. Therefore, the transponder does
not need a battery, which is advantageous for two
reasons. First, batteries with any reasonable
lifespan are often relatively large, and would add
significantly to the bulk of our circuit. Second,
even a large battery has a limited life span.
Replacing a battery after it has been implanted
into a living creature is no picnic, neither for the
researcher, nor for the animal.

The U3280M is designed such that the power
that it collects from its antenna is regulated at
approximately 2.7 volts, and can therefore be used
to power a low-voltage microcontroller, along
with a small amount of associated circuitry. Our
low-voltage microcontroller of choice was the
Atmel Tiny13V, chosen because of its low voltage
requirement (1.8 V minimum) and small form
factor (5 x 6 x 1.5 mm). The Tiny13V’s internal
clock runs at 9.6 MHz. It also has a 10-bit ADC,
which is essential for vital-sign acquisition with
analog sensors. In our testing, the Tiny13V was
operated from an Atmel STK 500 development
board, which offered programming capability,
convenient access to pins, and a regulated power
supply.

The antenna that is used consists of thin
insulated wire wound into a coil. The coil is air-
cored, and consists of approximately 67 tightly-
wound turns in a diameter of about 3.5 inches.
For testing purposes, the coil’s diameter and

number of turns are relatively arbitrary; the
quantity of interest is the inductance of the coil,
and can be found roughly with the following
formula [5]:

 ()
2 2

µH
18 40
d nL
d

=
+

 (1)

where L(µH) is the inductance of the coil in
microhenries, d is the diameter of the coil in
inches, n is the number of turns in the coil, and ℓ
is the coil length (in the direction of the axis
around which the coil is wound) in inches. For
our coil, if we assume a small (0.25 inch) average
length, equation (1) provides an estimate for the
coil’s inductance of about 750 uH, which is
similar to the measured value of 737 uH.

A National Semiconductor LM61 2.7 V
temperature sensor is used to simulate the
biological information that one would expect to
get from a mouse. To reduce noise in the
temperature sensor’s output, a simple RC lowpass
filter with a 0.1 µF capacitor and 1 kΩ resistor is
incorporated. This filter can be altered or
removed depending on the type of data being
acquired. With the filter in place, temperature can
be measured with a random error of less than
2°C.

The complete testing circuit is shown in
schematically in Figure 3 and pictorially in Figure
4. It is important to note that, in its current form,
the transponder is not ready to implantation in a
mouse. See the Future Work section for further
details.

 3

Figure 3. Transponder circuit schematic. Note that
there is no separate power source for this circuit; power
and ground are provided by the U3280M (though a
separate source was used during testing).

Figure 4. Transponder circuit used for testing. In this
incarnation, it clearly would not fit in a mouse.

III. THE BASE STATION

The U2270B seems to be Atmel’s only

commercially available 125 kHz RFID base
station, so that made the choice of base station IC
rather simple. The U2270B is paired with an
Atmel Mega32 microcontroller, a robust device
that we have a lot of experience with. The
Mega32 operates at 16 MHz with a 5 V power
supply, and has a slew of features. Of particular
use is the Mega32’s USART, which facilitates
communicating with a PC through a standard
serial port. As with the Tiny13V, the Mega32 is
operated from an STK 500. Here, the STK 500
offers the additional advantage of automatically
converting signal voltages from the
microcontroller’s USART to make them
compatible with a PC.

Because the base station is doing most of the
complex processing in an RFID system, and
because it can be larger, its circuitry ends up being
more complicated than that of the transponder.
Luckily, Atmel includes several functional circuit
designs in the U2270B’s data sheet. To save time
during the initial phase of the project, we
implemented the simplest circuit. Figure 5 shows
the circuit schematically, and Figure 6 and Figure
7 show images of the circuit and microcontroller.

Figure 5. Base station circuit schematic. To achieve a
data rate of 1.95 kbps, Cin = 1.2 nF, CHP = 220 nF, and
R = 100 Ω. Image modified slightly from [2].

The base station coil is wound with the same

diameter coil as the transponder, though, to
achieve its higher inductance of 1.35 mH, it has

Tiny13V

U3280M

LM61

Coil

 4

more turns. The trial and error inherent in its
design precluded an exact measurement for the
number of turns in the coil, but it is estimated to
be around 90.

Figure 6. Base station circuit used for testing.

Figure 7. Base station microcontroller and STK 500.

In order to read received data from the base

station, data is transmitted serially, via the RS-232
communications standard, to a PC running
Matlab on Windows XP. Matlab is used because
of our extensive experience with it, in addition to
its ease of use and ubiquity in academic
institutions. A Matlab GUI was also written to

facilitate data reception. Data is transmitted as fast
as it is received, at 1.95 kbps, or about 240 bytes
per second.

IV. THE MATLAB GUI

The Matlab GUI (Figure 8) was written in

order to provide a user friendly means of
acquiring data from the base station
microcontroller. The GUI was made using
Matlab’s GUIDE feature, which offers an
intuitive graphical approach to GUI construction.

Coil

Figure 8. The Matlab GUI.

Via the GUI, the user can choose to acquire

data for a certain amount of time, or to acquire a
certain number of points. The graph is updated
continuously as data is acquired, and data
acquisition can be stopped at any time. The
program informs the user if there is a problem
with serial communication.

If the user is not satisfied with the small
graphing window included in the GUI, the Pop
Up Axis button plots the data on a traditional
Matlab graphing axis, which allows the user to
zoom, manipulate the plotting style, etc. The
Show Non-Data Points checkbox enables the
viewing of acquired data points that do not
correspond to valid data; this includes
synchronization bytes and invalid data. After the
data has been acquired, the data vectors are
dumped to the current Matlab workstation, to
allow for any additional analyses that the user
desires. The Matlab GUI is simple, and it allows
for data manipulation in a straightforward and
occasionally amusing style.

To Mega32 U2270B

Mega32

To U2270B

 5

V. DATA ENCODING AND DECODING

Serial transmission in wired systems generally

consists of at least two transmission lines: one
carrying the data, and the other the clock to which
the data is synchronized. Wireless transmission,
however, is an entirely different animal. Wireless
data has only one medium to travel through – the
air – and as such, cannot support separate
transmission of data and clock. As such,
traditional non-return-to-zero (NRZ) data, in
which a logic one is a high signal for one clock
period, and a logic zero is a low signal for one
clock period, cannot be used. A data stream, in
general, can contain long strings of ones or zeros;
these would be represented in an NRZ stream by
very long DC values, during which the receiving
system may lose synchronization with the
transmitter’s clock.

To combat this, Manchester code (Figure 9) is
used. Manchester code incorporates a transition in
the middle of every transmitted bit. A logic one is
represented by a transition from low to high, and
a logic zero is represented by a transition from
high to low. As the transmitted signal must
change at least once for every bit transmitted, the
problem of transmitting long DC values is
eliminated.

Figure 9. Example of Manchester encoding. Image
courtesy [4].

Unlike NRZ data with a separate clock signal,

the clock is not provided explicitly to the device
receiving Manchester encoded data; instead, it is
given, encoded, in the transmitted data. As such,
the clock must be recovered from the data.
Traditionally, this is accomplished via a phase-
locked loop (PLL), a separate hardware
component that, via some complicated hardware
processes, takes in the received data stream and
outputs the transmitter’s clock. However, phase-
locked loops are expensive, and are unnecessary

for this application, especially considering that we
have all the power of the Mega32 at our disposal.
Therefore, clock recovery is implemented in
software on the Mega32.

The software scheme used for clock recovery
is relatively simple. At the base station’s
microcontroller, any data edge triggers a software
interrupt, which starts a hardware timer. When
the next edge is received, the value of the timer is
examined. If the timer’s value is equal to one half
of a clock period (about 256 µs at a transmission
frequency of 1.95 kbps), then the clock remains
ambiguous, because an edge may occur either in
the middle of a bit, or between two bits.
However, if the timer has counted one full clock
period (about 513 µs), which can only occur
between two bit centers, the clock is recovered,
and the current edge is determined to be on the
falling edge of the clock (Figure 10). Using this
technique, as soon as the first transition between
two different-valued bits (which results in a long
data edge) is encountered, the clock is recovered.

Figure 10. The principle behind clock recovery. A short
period between data edges occurs with one edge on a
rising clock edge and the other on a falling clock edge
– but the determination of which data edge
corresponds to which clock edge is ambiguous. A long
period between data edges always occurs with both
data edges on the falling edge of the clock.

Recovery of the transmitted clock leads

directly to the determination of bit boundaries,
i.e., determining which edges of the data are
between bits and which are in the middle of bits.
More complicated is the problem of recovering
the boundaries between bytes. Because data is
continuously transmitted in this RFID system,

Long edges on
falling CLK edge
ONLY

Short edges on
either CLK edge

CLK

DATA

100 1 0 0

 6

there are no pauses or other signifying boundaries
between bytes. For example, the stream 00110001
may be one eight-bit data byte, or it may be the
trailing four bits of one data byte and the leading
four bits of the next data byte (or some other
combination). Therefore, an unambiguous
method of recovering byte boundaries is required.

The most straightforward method of
recovering byte boundaries is through
synchronization. Along with the data, a
synchronization stream, which consists of a
predetermined, unambiguous sequence of bytes, is
sent. Immediately after detecting the sync stream,
the receiver knows that the next received bit
constitutes the leading bit of a data byte, and
interprets the data accordingly.

The synchronization process used in this
project consists three sync bytes, followed by 100
data bytes, repeated indefinitely. To permit
synchronization, the value 0xff (255) is not
allowed as legitimate data; it appears only in the
sync stream. Data resolution is thereby reduced
from 255 bytes to 254, a negligible difference. The
synchronization stream consists of the following
three bytes, transmitted LSB first: 0xff ff 00. As
far as we can tell, under Manchester encoding,
this sync byte can’t be “faked” by legitimate data.

Synchronization works as follows. Initially,
the base station is in a non-synced state. Once the
clock is recovered, the received bits are
continuously shifted through a three-byte
software register. After each new bit is shifted in,
the register is compared against the known sync
stream (Figure 11). As soon as they match, sync is
found, and the base station begins to receive data.
Once 100 data bytes have been received, the
receiver is forced out of sync, and waits to receive
the next sync stream. Forcing the receiver out of
sync increases the transmission’s robustness; if for
some reason, the receiver gets unwittingly
desynchronized while receiving data, the problem
is corrected at the next sync stream, and no more
than 100 data bytes (less than one-half second of
data) are lost.

Figure 11. 8-bit example of how the incoming data
register is compared with a preset sync stream. The
actual sync stream utilized in this project is 24-bits.

We found that, in practice, the received

signal’s pulse widths often deviate from their
expected values, likely due to imperfect signal
recovery between the base station’s antenna and
the U2270B. Occasionally, the pulse widths can
vary by as much as 50%. Although this undesired
pulse width modulation tends not to confuse long
and short pulses, it does leave the data integrity in
question. In particular, when the antennas are
moved far apart, close to their maximum range,
received data consists of garbage with pulse
widths that are much narrower than usual.

To combat this, measured pulse widths are
compared to expected values using a hardware
timer. If the pulse widths are far enough from the
expected width of a long pulse (513 µs) or a short
pulse (256 µs), the current byte is labeled as junk.
If three junk bytes are received in a row, which
may signal a transmission problem, the receiver is
forced out of sync.

To ensure consistent timing at the PC, data is
sent to the PC from the base station at the same
rate that it is received. Legitimate data bytes are
transmitted unadulterated as soon as they are
received. A value of 0xff is transmitted whenever
a junk byte is received. While the base station is
syncing, it transmits 0xff bytes at the data rate
(about 240 bytes per second), controlled by a
hardware timer. This constant data rate ensures
that timing remains consistent, without any
complicated procedures on the PC. Additionally,
the Matlab GUI keeps track of all received non-
data bytes (values of 0xff), and can plot them at
their received times. That way, transmission
problems can be clearly determined and resolved.

Incoming bit

11 1 0 0 0 0 01

11 1 0 0 0 0 1

Preset sync stream

(comparison)

Shift Register

 7

The robustness of data transmission was
tested in several ways. First, the transmitting and
receiving antennas were placed close to one
another and data was transmitted. Then,
transmission was started, and the transponder’s
antenna was periodically moved out of range of
the base station (Figure 12). It was anticipated
that the received data would show an absence of
data points when the antennas were out of range,
and rapidly reacquire the signal when they were
brought back together. As expected, no data
integrity problems or synchronization errors
manifested themselves. We therefore conclude
that data transmission is quite robust, and should
easily meet the experimenter’s needs.

Figure 12. Stair-stepping data received at base station
while transponder antenna was moved. The two gaps
in the data are from when the antennas were out of
range. Note the lack of corruption in the legitimate
data.

VI. CONCLUSIONS AND FUTURE WORK

A great amount of work has been

accomplished in the pursuit of this mouse
implanted RFID system. Data transmission works
well, and the maximum antenna range, which is
around one-half of a foot, is acceptable. The
system is quite usable, and requires minimal
knowledge of its inner workings.

Nevertheless, in their current forms, neither
the transponder, nor the base station, is ready for
actual experimental use. Currently, the base
station makes use of a simple circuit that does not

provide maximal transmission distance. A more
complicated circuit is suggested by Atmel that
increases transmission distance, but contains
many more circuit elements (Figure 13). This
circuit was constructed, but not fully debugged.
To increase the final system’s transmission
distance, this more completed base station circuit
should be perfected.

Figure 13. More complex base station circuit for
increased transmission distance. Image courtesy [2].

The base station was developed with

supporting circuitry on a relatively bulky
protoboard, and the Mega32 was used within an
STK 500 development environment. Before the
base station can be used in actual experiments, all
of its components should be soldered to a single
solder board or printed circuit board, and
packaged within a somewhat sturdy container.
This procedure, though potentially time-
consuming, requires little additional research and
would be simple to perform in the future.

The transponder also requires additional
work. During experimentation, the Tiny13V and
LM61 temperature sensor were both powered
from an STK 500 development board. The final
design calls for both components to be powered
from the U3280M, using RF-supplied current
from the base station. We have reason to believe
that both components would function well if
powered from the transponder. The U3280M is
capable of supplying 15mA of current, and in
their current configurations, the Tiny13V and
LM61 together consume only 2.6 mA. However,
time constraints precluded testing this theory.

 8

Separating the transponder from the STK 500
entirely is a major priority for future work.

Additionally, we had a lot of difficulty in
miniaturizing the transponder’s antenna. A
reasonable transponder antenna should have a
diameter of less than one inch (preferably, less
than half an inch) for implantation in a mouse.
The antenna we used for testing was built without
this requirement in mind, and had a diameter of
3.5 inches, with an inductance of about 737 µH.
Because the communication range is determined
by the inductance of the transponder’s coil, the
smaller-size coil needed to have a similar
inductance to achieve comparable performance.
Our attempts at winding a ferrite-cored 0.33”-
diameter coil were unsuccessful. A 73-turn coil
had an inductance of only 73.7 µH, one tenth of
what we needed. Since inductance is proportional
to the square of the number of turns, we
estimated that we’d need about 3.2 times as many
turns (for a total of 230) to achieve an inductance
of 737 µH. With the diameter wire that we were
using, this would have resulted in a rather large
coil, so we decided not to undergo the time-
consuming task of attempting its construction. In
the future, very small diameter wire, and perhaps
some sort of automatic-winding apparatus, could
facilitate the construction of a miniature coil.

Finally, the transponder too needs to be
soldered to a small board and packaged. Again,
this process would require negligible additional
research, and could be accomplished relatively
simply.

Though there is work yet to be done before
the mouse-implanted RFID system is operational,
we have accomplished a great deal this semester.
We look forward to continued work on the
project, and we expect that the day when the
system has an opportunity to prove its mettle
under actual experimental conditions is not far
off.

VII. COST SUMMARY

One major advantage of this design is its very

low cost. A commercial version, including base
station, might retail for far more than the $25 that
we estimate this system to cost (Table 1).

U3280M $2.10
U2270B $2.58
Tiny13V $1.40
Mega32 $8.28
LM61 $1.04
Misc (estimated) $10.00

Total $25.40
Table 1. Cost summary.

These numbers represent Digikey

(www.digikey.com) low volume prices as of
December 14, 2004 (with the exception of the
U3280M, which was not available low volume).
“Misc” represents miscellaneous circuit
components, such as resistors, capacitors, diodes,
antenna wire, solderboards, et cetera.

VIII. WORK DISTRIBUTION

The mouse-implanted RFID system is

currently being developed by Daniel Golden (the
author) and Diana Rodriguez, under the guidance
of Bruce Land at Cornell University. Diana
started the project over the Summer of 2004,
developed the base station and transponder
circuits, wound antennas, coded the transponder,
and performed general testing. Dan joined the
project in Fall, 2004, wound antennas, developed
the data encoding/decoding scheme, wrote the
Matlab GUI, coded the base station, constructed
an unsuccessful version of the more complex base
station circuit, and performed general testing.
Bruce initiated the project, and provided guidance
and support throughout.

IX. REFERENCES

[1] Atmel Corporation, “Tag Tuning,”

accessed December 11, 2004, online at
http://www.atmel.com/dyn/resources/pr
od_documents/DOC2055.PDF

[2] Atmel Corporation, “U2270B Read/Write
Base Station Datasheet,” accessed
December 11, 2004, online at
http://www.atmel.com/dyn/resources/pr
od_documents/doc4684.pdf

 9

[3] Atmel Corporation, “U3280M
Transponder Interface for Microcontroller
Datasheet,” accessed December 11, 2004,
online at
http://www.atmel.com/dyn/resources/pr
od_documents/doc4688.pdf

[4] Atmel Corporation, “Electronic
Immobilizers for the Automotive
Industry,” accessed December 11, 2004,
online at
http://www.atmel.com/dyn/resources/pr
od_documents/doc4661.pdf

[5] “Air Coil Calculation,” accessed
December 11, 2004, online at
http://hem.passagen.se/communication/
aircoil.htm

 10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

