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ABSTRACT 
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Abstract:  

This project aimed to develop a wireless, inexpensive system to detect and monitor 

vital signs of animals. The system was based on Radio Frequency Identification 

(RFID) technology and consists of a passive RFID tag implanted underneath the skin 

of the animal and a base station connected to a computer. The passive micro-

transponder tag collects power from the 125 kHz magnetic field generated by the 

base station, gathers information about the animal such as its temperature and heart 

rate and sends this information to the base station. The base station receives, decodes 

and makes the information available to the user for further analysis. Manchester code 

was used to send the information wirelessly. The system performed as desired only 

with a 10cm diameter antenna attached to the transponder.  
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EXECUTIVE SUMMARY 

 

The purpose of this project was to design and implement a device to collect and monitor 

real-time biological information of a small animal. The project had two main 

requirements. The first one was to develop a system that would not alter the natural vital 

signs of the animals while collecting them. The second requirement asked for a low cost 

system. A RFID model was chosen to comply with these two requirements. The RFID 

systems consist of a tag implanted underneath the skin of the animal and a base station 

connected to a computer. A passive RFID tag, capable of generating power from a 

magnetic field, was chosen to eliminate the need for a periodic change of batteries inside 

the animal. A low power consumption microcontroller was added to the tag to collect and 

send the animal vital signs to the base station. The base station generates the 125 kHz 

magnetic field that powers the tag, receives the information and presents it to the user 

through a computer interface GUI.  

The system performed as desired only when the tag was attached to a 10cm diameter 

antenna. When the antenna was reduce to a size that would fit inside the animal, the 

transponder failed to generate enough energy to power the microcontroller.  

Alternatives to further explore this problem are discussed, including adding a battery to 

power the low power consumption microcontroller only. This battery would only be on 

when the base station is collecting information from the base station, and would be off 

when the base station is not close to animal. This would make the battery last a long time, 

preventing periodic changes.   
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1. INTRODUCTION 

 Temperature, breathing rate, heart rate and blood pressure are all examples of vital signs. 

They are physical signals that assess the quality of the performance of a body. These 

signs change depending on the age of the body, its gender, its weight, how the body 

reacts to exercise, etc. (normal ranges for the average healthy adult are temperature: 97.8-

99.1 F, breathing: 12-13 respirations per minute and heart rate: 60 -80 beats per minute at 

rest). However in animals limited information is drawn from a single measurement of any 

of these signs; only several measurements over an extended period of time give 

significant data.   

For instance, when the temperature of an animal alternates from high to low values, what 

is known as a cycle, may represent the onset of pain or release of bacteria into the blood. 

These cycles are also important determining when to take some laboratory tests and when 

medications should be given. Detecting and monitoring vital signals in animals can 

provide useful information to assess the level of performance of their body, their behavior 

and health status. Therefore devices that can provide accurately vital signs in real-time 

are highly valued in veterinary clinics and animal researches.   

This project aims to use new technologies to develop and implement an inexpensive 

device to detect and monitor animal vital signs.      
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2. DESIGN PROBLEM AND REQUIREMENTS    

2.1. ALTERNATIVES IN THE MARKET RIGHT NOW  

A company called Vetronics [1], part of Bioanalytical Systems, Inc was the first company 

to develop a device to monitor animal vital signs for a price that made it affordable for a 

wide range of users (~$5000.00). Currently Vertronics offers a wide variety of products 

to veterinarians and researchers. They include the ECG Analyzer to monitors the heart 

rate and heart rhythm and the VitalScan Monitor [2] (see figure1) to monitor temperature 

and blood pressure among other things. However while using these devices the animals 

have to be sedated or firmly hold down. To measure the temperature for example, a probe 

is inserted into the rectum of the animal.     

 

Figure1. VitalScan  

Devices that collect vital signs when the animal is not directly connected to it are more 

practical for research. For example, a research where the main objective is to obtain real-

time data from animals reacting to different environments would be highly limited if the 

animals can not move freely.  

Presently, there is an alternative device to collect vital signs when the animal is not 

directly connected to it. Battery powered telemetry transmitters are devices that can be 
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implanted inside the animal and can collect and send the required vital signs wirelessly to 

a base station.    

 

2.2. PROJECT REQUIREMENTS   

To allow the monitored animal to move without restraints an important requirement for 

this project would be to make the device wireless. Devices that require cables from the 

animal to the base station are likely to affect movements of the animal during 

experiments. One of the major trade offs between a wireless device and a wired device is 

the amount of information per second that can be transmitted. The wireless device has a 

lower data transmission rate. An adequate rate is important specially to successfully 

transmit the heart rate of the animal. Designing the transmitting scheme of the wireless 

system this rate should be taken into account.   

A wireless system requires two separate devices: a transmitter and a receiver. The 

transmitter is implanted inside the animal, collecting and sending data to the receiver. 

The receiver is placed close to a restricted area where the animal is located, receiving and 

decoding the data from the transmitter. The entire system has three major constrains. It 

should work within a specific area, the collected data should be accurate, and the overall 

cost including any future maintenance, should be low. Needless to say, the entire system 

must guarantee the safety of the research and the animals interacting with it.  

In order to fulfill those requirements the design of the project has the following 

constrains. The transmitter to be implanted in the animal should be small enough to not 

harm the animal nor perturb the normal behavior and movements of it in any way. A 

second constrain is the cost of the transmitter. Implanting the device into the animal is a 
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delicate process that requires time and a lot of work. Given the device will not harm the 

animal in any way the idea is to implant the device into the animal once and leave it there 

for an extensive period of time. However, the goal is to monitor several animals at the 

same time, creating a need for a large number of transmitters. Hence the device to 

implant should be low-cost.  

In addition, the transmitter should not require a periodic change of batteries. Changing 

the batteries would also involve removing the transmitter from the animal and as 

previously stated this complex procedure should not take place on a regular basis. This 

implies that the transponder should have a different way to obtain power. Designing the 

wireless system this must be taken into account. The receiver should generate a powerful 

magnetic field capable of powering the transmitter, as well as the transmitter should be 

sensitive enough to obtain power from the receiver’s magnetic field.   

One way the transmitter can accomplish this is through its antenna. However the size of 

the transmitter antenna limits its capacity to collect power from the reader’s magnetic 

field. As the size of the antenna increases the transmitter’s capability to collect power 

increase, however the bigger the antenna the more invasive the device is likely to be, 

creating a direct conflict with the size of the transmitter. This design problem requires 

finding common ground to comply with both requirements. 

 

2.3. DESIGN SPECIFICATIONS   

2.3.1. WIRELESS TRANSMITTER 

• Collects animal vital signs   

• Transmits animal vital signs in real time 
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• Fits beneath the skin of the animal 

• Collects enough power from a magnetic field created by the base station to 

power itself  

• Low power consumption 

• Low cost 

2.3.2. BASE STATION/READER 

• Generates a powerful magnetic field capable of powering the transmitter 

• Detects and decodes the information send by the transmitter  

• Presents the information to the user  
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3. DESIGN AND IMPLEMENTATION  

Implanted chip technology is currently applied to develop life-enhancing and personal 

safeguard systems that can be powered by miniaturized sources. An early attempt to 

develop an implanted medical/tracking system intended for people is known as Digital 

Angel. This device, developed by Applied Digital System ADS [3], was initially 

developed to be implanted beneath the skin to monitor vital signs such as heartbeats and 

blood pressure. In addition the device provided a global satellite position system for 

people that suffer from brain disorders such as Alzheimer’s disease. However, the system 

was modified to be worn externally and combines two pieces, a watch and a small beeper 

that clips onto a waist band.  This device currently sells for $400 and has a $30 per month 

service fee.  

 

Figure2. Digital Angel.  

Nevertheless, the implanted chip concept was not lost; soon after ADS developed the 

Verichip [4]. A Radio Frequency Identification Device RFID the size of a grain of rice, 

(see Figure3) that is implanted under the skin. This small device consists of a microchip 

attached to an antenna and it is also known as a RFID tag. The tag contains a unique 

serial number that can be scanned by a base station, also known as a reader. In addition, 

the tag gets its entire power from the field generated by the reader therefore it does not 

need a battery. Although, this device does not collect any information, it contains a 
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unique verification number that can be used in a range of applications. These applications 

include identifying personal information in a medical database and security access 

applications.                    

 

Figure3. Verichip1 

 

3.1. WHY RFID? 

RFID technology is a great choice to apply to this project. As the Verichip, it can be 

implanted underneath the skin. It can get power from the field generated by the reader 

and it is fairly inexpensive. Tag cost from 20U.S cents to $6 and low-frequency readers, 

ideal for this project, can be under $100. In addition, to the tag and the reader, a low 

power consumption microcontroller and some sensors are needed to detect vital signs 

from the animal.  In fact, RFID tags with sensors to detect temperature, movement, and 

even radiation are already being implemented. [5]   

 

3.2. BACKGROUND 

RFID is a term given to identification systems that use radio waves to communicate. The 

system consists of a microchip attached to an antenna know as a transponder or tag, and a 

                                                 
1 In October 13, 2004 the Food and Drug Administration FDA approved the Verichip for health care. 
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reader or base station also attached to an antenna. RFID tags are divided into active and 

passive tags, where the main difference between them is the way they communicate with 

the reader.   

The communication starts when the reader creates a RF field around the tag. When the 

tag detects this field it sends a signal back to the reader. Active tags broadcast their signal 

to the reader using low-power radios. To that end active tags require a battery. In the 

other hand, passive tags use either inductive coupling or backscatter. These 

communication systems and the fact that passive tags have a very simple circuit allow 

them to acquire their power completely from the field. As a result, passive tags could 

have a battery as a backup but they do not require one. 

As mentioned before, one of the requirements of the system is a transmitter that does not 

require a periodic change of batteries. Therefore, the system to implement should have a 

passive tag. 

The downside of passive tags is their communication range. Because of their power 

source, active tags have a longer range than passive tags. Active tags typically have a 

range of 60 to 300 meters, while the range for passive tags goes from few inches to 30 

feet. For passive tags this range is influenced by the power output of the reader, the 

method used to power the tag and the operating frequency of the system.           

Passive tags can work at different frequencies. These frequencies are divided into Low-

Frequency, High-Frequency and Ultra-High Frequency. LF is defined from 30 to 300 

kHz, tags usually operate at 125 kHz and134kHz. HF is defined from 3 to 30MHz. UHF 

is defined from 300 to 3GHz.  UHF read range, 10 feet or more, is longer than LF and HF 
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read range, up to 3 feet. This is due to the method use to transmit data at different 

frequencies.   

Passive UHF tags adjust the amount of energy reflected to the reader generating a signal; 

this method is known as Backscatter.  Passive LF and HF tags use Inductive Coupling.   

When the coil of the reader antenna and the coil of the tag antenna form a magnetic field, 

energy is transferred from the reader to the tag. The tag uses this energy to change the 

electrical load on the tag antenna, changes that the reader can sense and convert into a 

signal. However to form a magnetic field the coils have to be rather close limiting the 

read range [6]. 

On the other hand, radio waves behave differently at each of these frequencies making 

some frequencies appropriate for some applications and inappropriate for other. As the 

frequency increases radio waves start to lose their ability to penetrate some materials. LF 

and HF systems work better than UHF systems around metal and water. In particular 

UHF radio waves are absorbed by water. As a result, passive UHF can send information 

farther and faster but they are not appropriate for applications with materials that high 

water content, such as skin. 

As previously mention in the project requirements, the tag should be fully functional 

underneath the skin of the animal. Therefore, the passive tag should be either LF or HF.  

Due to the availability of the tags, a Passive Low-Frequency was chosen to be 

implemented in the project. The operating frequency of the system is 125 kHz.             
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3.3. HARDWARE 

3.3.1. MICRO-TRANSPONDER 

The micro-transponder in charge of collecting the data and sending it to the reader 

includes three elements. The transponder interface for microcontroller Atmel U3280M, a 

low power microcontroller Atmel Tiny 13v, and the antenna: a parallel LC resonant 

circuit. Block diagram: 

 

Figure4. Block diagram for Transponder and microcontroller. [7] 

 

3.3.1.1. TRANSPONDER INTERFACE: ATMEL U3280M 

The main reasons to utilize the U3280M in this project are: it can interact with a 

microcontroller, it is able to communicate wireless with a reader and it is capable of 

generating a DC power from the reader’s electromagnetic field.   

The U3280M is capable of wireless communicating with a reader. It contains a damping 

stage for transmitting and a gap-detection circuit for receiving data (see Firgure4).  

However, for this project the device is only going to be utilized to transmit data to the 

reader. To transmit the damping stage adjusts the coil voltage by varying its load 
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modulating the magnetic field as a result. The damping state can be controlled via the 

MOD pin or by the Two-Wire Serial Interface, also known as I2C Interface, which in 

addition provides Bi-phase or Manchester coding.   

In an initial attempt to use the U3280M to transmit data to the receiver, the I2C was 

connected to an Atmel Mega32 microcontroller. The purpose of this trial was to 

determine how the I2C interacts with microcontrollers and having used the Mega32 

previously made it a good choice before attempting to use the Tiny13. As its name 

indicates, the I2C contains two wires that connect the IC to the microcontroller (see 

Figure4); the SCL and the SDA lines. The SCL line is used to clock the data in and out of 

the device. The SDA line is a bi-directional line and it is used to transfer data in and out 

of the device. 

Unfortunately this attempt was not successful. Although the U3280M I2C was designed 

to interact with other Atmel devices that have the same Serial Interface, during the 

modulation stage this device has a slightly different serial protocol. The regular I2C 

protocol includes an acknowledge cycle in the SDA line after 8 bits. However, when the 

Serial Interface is controlling the modulator stage the SCL and the SDA lines are used for 

continuous bit transfers and an acknowledge cycle after 8 bits must not be generated. 

Atmel response to this discrepancy was that the I2C interface is only recommended if an 

Atmel Marc4 microcontroller is used. In any other standard microcontroller, an 

acknowledge bit is always sent at the end of the transmission disturbing the modulation 

data stream. Atmel Marc4 microcontrollers are a great choice for wireless devices. 

However, they do not offer an Analog to Digital Converter (ADC), a part needed to 

collect the animal vital signs. Therefore, the MOD pin was chosen to control the damping 
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stage. The main disadvantage of using the MOD pin is that the Bi-phase/Manchester 

coding circuit offered by the U3280M can not be used. For this reason the data coding 

must be done by the microcontroller. A description of the data coding scheme and the 

algorithm to control the MOD pin can be found in the Tiny13’s software part of the 

report.           

As previously discussed the final wireless system should not require a battery inside the 

animal.  The U3280M can be power by a battery but it can also generate a DC power 

from the reader’s electromagnetic field.  An internal rectifier stage (see Figure4) rectifies 

the AC from the LC-resonant circuit at the coil inputs and supplies the device and the 

Tiny13v with power. This rectified supply voltage from the coil is typically 2.9v. For 

normal operation it should be some where between 2.6v and 3.2v. In addition to having 

an ADC, the Tiny13v’s operating voltage is between 1.8 and 5.5v making it a perfect 

candidate for the project. 

To smooth and buffer the supply voltage a capacitor must be connected at the Voltage out 

pin (VDD). This buffer capacitor (CB) is also required to buffer the supply voltage 

during communication stages (damping and gaps). The size of the capacitor must 

guarantee that during modulation and gaps the ripple on the supply voltage is in the range 

between 100mv and 300mv. During communication stages the capacitor supplies voltage 

to the device, so its size depends on the length of these cycles. Starting from the value 

suggested in [7] an optimal value for CB was found. For a 350uA supply current, a 

200mv voltage ripple and a no field supply length of 250us a value of 470nF was 

suggested, and for a no field supply length of 500us a value of 1000nF was suggested.  A 

successful power supply was reached with a CB value of 1000nF. 
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In addition, the transponder offers a field clock (FC). This is a square wave from 0v to 

VDD at125kHz. The field clock is available to the microcontroller and in this project it is 

used to supply timer input to the Tiny13v to synchronize the algorithm to control the 

MOD pin. 

See Appendix A for a complete diagram of the final micro-transponder circuit.     

 

3.3.1.2. LOW POWER MICROCONTROLLER: ATMEL TINY13V 

The main reasons to utilize the Tiny13v in this project are: it can process instructions 

efficiently at low power conditions, it offers an 8-bit Timer/Counter that can use an 

external clock source and it has an Analog to Digital Converter to gather the vital signs of 

the animal.   

 Atmel Tiny13v is a low power microcontroller based in the AVR RISC (Reduce 

Instruction Set Computing) architecture. This allows the microcontroller to approach a 

speed of 1 MIPS per MHz, allowing optimizing speed versus power consumption. In 

active mode, its lowest power consumption is 1.8v:240µA at 1MHz. It can go as fast as 

4MHz at 1.8-5.5v, and 10MHz at 2.7-5.5v. For this project the main objective is to limit 

the power consumption of the micro-transponder to a minimum to increase its range of 

transmission. For that reason the processing speed of the Tiny13v was selected to be 1 

MHz.   

The Tiny13v provides an 8-bit Timer/Counter that can use an external clock source. The 

8-bit Timer/Counter includes a programmable bi-directional counter unit that can be 

cleared, incremented or decremented at each timer clock (clkT0). The timer clock can be 

either an internal or external clock source. The transponder field clock (FC) is utilized as 
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the external clock source. This way the field clock can be captured. In addition, the 

Timer/Counter also contains an Output Compare Unit. An 8-bit comparator continuously 

compares the value of the counter with the value of an Output Compare Register. A 

match can generate a hardware interrupt. This synchronized hardware interrupt is then 

used to control the MOD pin. More details of the algorithm are discussed in the 

Tiny13v’s software discussion.                   

An important feature of the Tiny13v for this project is its ADC. The ADC converts an 

analog input voltage to a 10-bit value through successive approximation. The minimum 

value represents GND and the maximum value represents either Vcc or an internal 1.1v 

reference voltage provided by the Tiny13v. In this case 10-bit precision is not required 

and only the 8 most significant bits of the ADC conversion result are used. Also, the 

internal reference voltage (Vref) was selected as the maximum value of the conversion. 

The ADC circuit requires an input clock between 50 kHz and 200 kHz to get maximum 

resolution. If a lower resolution is needed a faster input clock can be implemented to get 

higher sample rate. In this case only 8-bit resolution is needed so the input clock 

frequency can be a higher than 200 kHz. The clock frequency is controlled by the ADC 

prescaler that scales the clock of the microcontroller. The prescaler was set to 4 to obtain 

a 250 kHz input clock for the ADC. That is the processing speed of the microcontroller 

(1MHz) divided by 4. 

The result of a single conversion is: 

Vref

Vin
ADC

n2•
=                              (1) 

Where Vin is analog voltage to convert, n is the number of bit resolution needed in this 

case 8 and Vref is the internal reference voltage 1.1v. This value is then coded and sent to 
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the reader using the modulation stage in the transponder controlled by the 

microcontroller. Once the reader receives the ADC value it converts it back to Vin using 

equation (1).    

The ADC absolute accuracy described as the maximum deviation of an actual ADC value 

to the ideal ADC value due to offset error, gain error, differential error, and other errors 

described in [8] is the ideal value ± 0.5 LSB.  Since only 8-bit precision is required the 

two LSB are not used and this error can be ignored.            

To calculate the Hear Rate of the animal the voltage in the muscles is measured. This can 

be accomplished by using the Tiny13v’s ADC directly. However, to calculate the 

temperature a temperature sensor is needed. 

 

3.3.1.3. TEMPERATURE SENSOR LM61 

A low operating voltage temperature sensor from National Semiconductor, it can operate 

at 2.7v.  It can sense a -30°C to +100°C temperature range.  Its output (Vo) is linearly 

proportional to +10mV/°C and has an offset of +600mV.  That is: 

mVT
mV

Vo 600 C
 C

10
+







°+

°

+
=           (2) 

Where Vo is the input of the ADC converter and T is the actual temperature of the animal 

in centigrades. Equation (2) is also used in the receiver to calculate the actual 

temperature. At 25°C the accuracy of the sensor is ±2.0 or ±3.0°C.  

In addition, a low-pass filter was added to Vo before applying the signal to the ADC to 

avoid distortion from high frequency components. A simple RC low pass filter was build 

with a 1.5 kΩ resistor and a 0.1uF capacitor. The final circuit layout can be found in 

Appendix A. 
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3.3.1.4. TRANSPONDER ANTENNA 

The antenna for the interface must be a coil. In addition, the coil must be connected with 

a capacitor in parallel to form a LC parallel resonant circuit, see Figure4. The resonance 

frequency of this LC circuit should be in the range from 100 kHz to 150 kHz.  For this 

project the exact operating frequency of the system is 125 kHz.  Hence the LC circuit 

should resonate at 125 kHz.  The correct LC combination can be calculated using the 

following formula: 

2)**2(*

1

foC
L

π
=                               (3) 

Where fo is 125 kHz, the operating frequency.    

When the micro-transponder is working without a battery, the operational working 

distance can be represented as the minimum coupling factor of the antenna for proper 

operation. The coupling factor depends on the power consumption of the micro-

transponder and on the size of the antennas of the micro-transponder and the reader. If the 

power consumption is less or equal to a current of 150µA at the operating voltage, a 

minimum magnetic coupling factor below 0.5% is within reach. For applications with 

higher power consumption the coupling factor must be increase. The transponder has 

typical operating current during field supply of 40µA, the Tiny13v has a minimum 

operating current of 240µA and the temperature sensor has a minimum operating current 

of 10µA.  Therefore, the coupling factor must be increase to provide enough power for 

the micro-transponder.   

The reader’s antenna should be a large size antenna to cover a significant area where the 

animal can move freely. The transponder’s antenna design approach was to find the 

necessary inductance to obtain a high coupling factor between the antennas and then use 
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equation (3) to find the corresponding capacitor. First a rather large air-cored coil was 

built for the transponder, a coil of the same size of the reader’s coil, to obtain a high 

coupling factor. Once the transponder was generating enough power to send data to the 

reader and the reader was receiving it correctly, the next step was to design a smaller coil 

with the same inductance capacity of the first one.    

The inductance of the coil is controlled by four different factors and can be described by 

the following equation: 

)000,000,10*(

)**^**4( 2

coilLength

mucoilAreaNoTurns
H

π
=              (4) 

Where NoTurns is the total number of turns wrap around the core, coilArea is the cross-

sectional area of the coil, mu is the permeability of the core of the coil, and the 

coilLength is the final length of the coil. 

Building a smaller coil requires to decrease its cross-sectional area, decreasing its 

inductance. To maintain the same inductance in the smaller coil either the total number of 

turns of the coil or the permeability of the core should be increased. Since the objective is 

to minimize the size of the antenna increasing the permeability of the coil is a better 

option than increasing the number of turns. Ferrite is a ceramic material that offers a great 

core choice. The permeability of ferrite ranges from 20 to more than 15,000 depending on 

the material it is made from and operating conditions such as temperature, field strength 

and frequency. Giving that the operating frequency is 125 kHz, the best choice for this 

application is to use a ferrite core made from manganese-zinc that offers a high 

permeability factor for the 1 kHz to 1 MHz frequency range. This material has a 

permeability of 800, while air has a permeability of 1.   
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An initial attempt to build a ferrite cored coil was made. Using equation (4) to find the 

exact number of turns for a given inductance, cross-sectional area, permeability and coil 

length was found, and then the insulated wire was manually wound into the ferrite core.  

Although, when attached to the transponder this coil proved to have almost enough 

inductance to power the micro-transponder, this significantly smaller coil (see Appendix 

A for picture) was still not small enough to fit inside an animal. Several attempts to 

decrease the size of this coil were made, but they all turn out to be unsuccessful.      

After looking more closely at the different options for antennas in the RFID industry, 

Coilcraft, a company that manufactures coils, transformers and other magnetic products, 

turned out to produce the better coil for this application. 

The Coilcraft 4308RV Series [10] of RFID Transponder coil for applications at 125 kHz 

is a very small coil that provides the needed inductance. In addition, its ceramic/ferrite 

laminate construction is more even than pure ferrite coils allowing longer read ranges.   

 

3.3.2. READER 

The reader in charge of generating a RF magnetic field and to receive and decode the data 

from the micro-transponder includes three devices:  A read/write base station Atmel 

U2270B, a powerful microcontroller Atmel Mega32, and the receiver’s antenna.   Block 

diagram:   
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Figure5. Block diagram for the base station and microcontroller. [11] 

 

3.3.2.1. READ/WRITE BASE STATION: ATMEL U2270B 

The U2270B is an IC for read/write base stations in contact-less identification devices.  

For this application the base station is not going to write data to the transponder, it is only 

going to read from it. The main reasons to utilize the U2270B in this project are: it has 

the energy-transfer circuit to generate the magnetic field to supply power to the micro-

transponder and it includes it includes all signal-processing circuits necessary to 

transform the small data signal from the transponder into a microcontroller-compatible 

signal.    

The energy-transfer circuit consists of an internal power supply, an oscillator and a coil 

driver. The frequency of the oscillator is controlled by a current fed into the RF input (pin 

15).  The internal power supply ensures an independent frequency that can be selected by 

a fix resistor between the RF pin input and the VS pin, the internal power supply pin. For 

125 kHz a resistor value of 110 kΩ is defined. The coil driver supplies the antenna coil 

with the appropriate energy to generate the magnetic field. It consists of two independent 

outputs Coil 1 (pin 9) and Coil 2 (pin 8). The coil driver can be operated in two different 

modes, common mode and differential mode. In common mode the Coil 1 and Coil 2 are 
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in phase to achieve a high-current output capability, while in differential mode Coil 1 and 

Coil 2 are in anti-phase to obtain a higher voltage. In differential mode the antenna coil 

impedance is higher resulting in better sensitivity. Hence the Differential was the mode 

implemented in the base station.  

The signal-processing circuitry includes a low pass filter LPF, a differential amplifier and 

a Schmitt Trigger. The LPF is a fully-integrated 4th order Butterworth low pass filter that 

removes the remaining carrier signal and high-frequency disturbances after 

demodulation. Its cut-off frequency depends on the operating oscillator frequency. In this 

case the oscillating frequency is 125 kHz and the cut off frequency is 6.9 kHz. The 

differential amplifier has a typical fixed gain of 30. It also has an HIPASS input (pin 16) 

that can be used to decouple the dc signal. For the 6.9 kHz cut off frequency a 220nF 

capacitor should be place between the HIPASS input and ground. Lastly, the Schmitt 

Trigger suppresses possible noise and makes the signal compatible with the 

microcontroller. 

An amplifier circuit was added to increase the power of the magnetic field to provide 

more power to the transponder and to increase the range of the system. 

See Appendix A for a complete diagram of the final base station circuit.       

 

 

3.3.2.2. MICROCONTROLLER: ATMEL MEGA32 

The Mega32 was chosen as the base station microcontroller because its speed and its 

numerous peripheral features that offer many tools to recover and successfully decode the 

information send by the transponder. 
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Atmel Mega32 is a high-performance, low power AVR 8-bit microcontroller that uses 

advance RISC architecture, same architecture mentioned in the Tiny13v description. It is 

operating voltage is 4.5 to 5.5v and its speed grades go from 0 to 16 MHz. For this 

application 5v was selected as its operating voltage and 16MHz its speed.   

The most useful tools provided by the Mega32 to decode the data in the receiver are two 

Timer/ Counters and a programmable serial interface (USART). These counters work in 

the same way that the Tiny13v counter works. Here one of them uses an 8-bit register and 

the other a 16-bit register. Both timers are synchronized to detect the clock of the signal 

coming from the micro-transponder. Once the clock has been detected the next step is to 

sample the signal, decode it and output it through the interface. 

The serial interface used to output the signal is the Universal Synchronous and 

Asynchronous serial Receiver and Transmitter (USART). The USART is a very flexible 

communication device. For this application the data is transmitted to a computer through 

the USART via the RS232 communications standard. More details of how the Mega32 

samples and decodes the data coming from the receiver along with the algorithm are 

discussed in the Mega32’s software discussion.                   

 

3.3.2.3. BASE STATION ANTENNA 

For the base station the antenna is also a coil, and as well as in the transponder’s antenna 

the coil must be connected with a capacitor in parallel to form a LC parallel resonant 

circuit.  The resonance frequency of this LC circuit should also be the operating 

frequency of the system 125 kHz.    
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As previously mentioned the reader’s antenna should be a large size coil to cover a 

significant area where the animal can move freely. The designing approach for the base 

station antenna was to first design an antenna with a large coil and then increase or 

decreases its size to maximize the power generated by the transmitter.   

The first antenna provided enough power to the transmitter when the transmitter had an 

antenna of the same size. However, when the coil of the transmitter was minimized the 

magnetic field provided by the first coil was not enough to power the micro-transmitter.  

To increase the effect of the magnetic field in the transponder’s coil with less turns was 

build for the base station. Decreasing the number of turns of the coil increases the current 

in the coil providing a stronger magnetic field to the transponder.   

All the coils designed for the base station were air-cored and consisted of hand wound 

insulated wire.  See Appendix A for exact coil sizes, number of turns and pictures.  

 

3.3.2.4. DEVELOPMENT BOARD: ATMEL STK500 

The STK500 is a complete starter development system for AVR Flash Microcontrollers 

from Atmel Corporation. Both microcontrollers, the Tiny13v and the Mega32, were 

programmed and tested in the STK 500. In addition the STK 500 is compatible with 

CodeVisionAVR, software use to program the algorithms in the microcontrollers. 
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3.4. SOFTWARE 

3.4.1. CODEVISIONAVR 

CodeVisionAVR was used to edit, assemble, compile and program the microcontrollers.  

CodeVisionAVR is a C cross-compiler, Integrated Development Environment and 

Automatic Program Generator designed for the Atmel AVR family of microcontrollers.   

 

3.4.2. MANCHESTER CODE 

 

Figure6. Manchester and Bi-Phase Code [13] 

Once the data is collected by the microcontroller, it is coded transmitted through the air, 

received by the reader and decoded. The Base Station is equipped to receive two different 

codes, Manchester Code and Bi-Phase Code. These two codes have the ability to transmit 

both the clock and the information at the same time. As shown in Figure6, both codes use 

two bits to represent one bit of data. The Manchester code represents a zero data bit as a 

one follow by a zero, and a one data bit as a zero followed by a one. The Bi-phase code 

represents a zero data bit as two identical bits, either two zeros or two ones. And a one 

data bit as two different bits, either a one follow by a zero or a zero follow by a one.  

Both codes have advantages and disadvantages. Since Manchester code requires a 

transition either from high to low or from low to high for every data bit it makes the clock 



 29 

recovery an easier process than the Bi-phase code. In the other hand, once the clock has 

been recovered, Bi-phase code makes a better distinction between logic zeros and ones 

making the final part of the decoding process more efficient and effective than 

Manchester code. 

For this project the timing in the decoder code is affected by various elements such as 

modulation effects and channel noise. Therefore, Manchester code was chosen since it 

makes simpler the clock recovering process. 

  

3.4.3. TRANSPONDER CODE 

The transponder code was designed for the ATiny13v microcontroller. When the 

microcontroller is powered, it detects the field clock signal generated by the transponder 

interface. This 125 kHz square wave was used to synchronize microcontroller and code 

the data collected by the temperature sensor. The code detects the field clock, collects the 

data, codes it and controls the MOD pin in the transponder interface to send the data to 

the base station. 

The data is sent from the transponder to the base station repeating the following sequence 

over and over again: three sync bytes follow by one hundred data bytes. The three sync 

bytes are one byte of logic zeros (0), and two bytes of logic ones (255). The sync bytes 

help the base station recover the clock. To increase the accuracy of the clock recovery 

process a data byte composed entirely of ones (255) is not allowed.   

The program flow chart is shown in Figure7.  When the field clock is in the rising edge 

an ISR starts. The sub-routine increases a counter, and checks if the program has finish 

sending a byte. Then the program codes and sends the data one bit at a time. Since 
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Manchester code requires two bits per data bit, sending one data bit requires accessing 

the interrupts twice. A byte has eight bits, therefore when the counter reaches 16, the 

entire byte has been sent and a new measurement can be collected.    

 

Figure7. Transponder code flow chart 

 

3.4.4. BASE STATION CODE 

The base station code was designed for the ATMega32 microcontroller. The 

microcontroller receives the data coming from the transponder through the Atmel 

U2270B. The output of the Atmel U2270B is a 2 kHz square wave from 5v to 0v. The 

code recovers the clock, finds the data, decodes it and displays it in Matlab through the 

USART interface and Matlab GUI.  

The square wave is connected to the microcontroller external interrupt. At the edge of the 

wave an interrupt is triggered and a physical counter in the microcontroller is set to count 
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the time that goes by until the next edge. When the time between edges equals a full 

original clock cycle, about 513us, the clock is recovered. Once the clock has been 

recovered the code takes samples of the square wave and looks for the sequence 

described in the transponder code section; one byte of 0s followed by two bytes of 1s. 

Once this sequence is found the next one hundred bytes are considered data and sent to 

the interface.  

This program and the Matlab GUI were developed by Dan Golden [12]. 

An attempt to modify the code to add a Digital Phase-Locked Loop PLL to increase the 

quality of the data was made. The goal was to use the DPLL to regenerate or recover the 

clock and lock to it. This modification would eliminate the need for the sync bytes every 

one hundred data sets. However, this effort was not successful due to the complexity of 

the code.         

     

3.4.2. MATLAB GUI 

A Matlab GUI was written to make the data collecting simpler for the user. The GUI was 

developed using Matlab’s GUIDE feature and to run properly it requires Windows XP 

and works best with Matlab 7.0 or above. The GUI allows the user to interact with the 

device to collect data. The user can select between collecting a number of consecutive 

samples and letting the device collect as many samples as possible for a given period of 

time. In addition, the GUI displays the data points as they are acquired in real time, it 

allows the user to start and stop the acquisition process at any time, and the data points 

can be saved easily as data sequences in Matlab for further manipulation. A screen shot 

of the GUI can be found in Appendix A. 
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4. RESULTS  

The system was first tested using antennas with the same diameter (Figure14 antenna as 

the Base Station antenna and Figure15 antenna as the transponder antenna, see Figures in 

Appendix A). This first test was successful. The transponder was able to power the 

microcontroller, collect and send information to the base station. Also, the base station 

successfully received, decoded and displayed the data in the GUI. Then the range of the 

system was determined by moving the antennas away from each other while monitoring 

the performance of the system. The system performed well until the antennas were about 

half foot away. 

The next step was to determine the performance of the system using the small Ferrite 

Cored antenna (Figure17) in the transponder. This test was not as successful as the first 

one. This time the transponder could not power the microcontroller. In an attempt to 

increase the power of the base station’s magnetic field, the antenna in the base station 

was replaced by an antenna with less turns and the same diameter, antenna shown in 

Figure15. Decreasing the number of turns in the coil increases the current going through 

the coil making the magnetic field more intense. This increased the voltage at the 

transponder from 1v to about 1.6v. However, this was still no enough since the Tiny13v 

microcontroller requires at least 1.8v to function. The transponder was then taken apart 

and the transponder interface responsible of generating the power was tested alone.  

When tested independently the transponder interfaced performed better. A voltage of 

2.8v was registered along with a 125 kHz field clock as shown in Figure8. But, when the 

interface was connected back to the microcontroller the voltage dropped to 1.6v. It was 

concluded that when using the small ferrite cored antenna the transponder interface does 
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not generate enough power for the entire micro-transponder. A way to deal with this 

problem would be to add a small battery to the microcontroller that would only be used 

when the transponder interface reaches a 2.8v. That way the battery will last a long time, 

preventing a periodic replacement.   

 

Figure8. Voltage and Field Clock at the Transponder Interface using the small 
Coilcraft’s RFID Antenna 

 
The final cost of the base station was $18.56 and the final cost of the transponder was 

$6.65, adding up to a grand total of $25.21. The final cost break downs for both devices 

can be found in Table1 and 2 in Appendix B.  

The final size of the transponder is determined by the size of the transponder interface 

and the microcontroller. The transponder interface is a 5x5mm square with 1.7mm wide.  

The Tiny13 microcontroller can be found in two different packages. The smallest 

package is called S8S1 and it is a 4.95x 3.81mm rectangle with 0.25mm wide. The other 

two main components of the transponder, the antenna and the temperature sensor, do not 

affect the size of the device since they are significantly smaller than the interface and the 

microcontroller.   
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5. CONCLUSIONS  

The objective of this project was to use RFID technology to develop a device to monitor 

animal vital signs. The device was required to be wireless, inexpensive, small enough to 

fit underneath the skin of the animal and the transponder should not require a periodic 

change of batteries. RFID technology provided a great alternative to monitor animal vital 

signs.  

The first requirement was for a wireless device. Although the final transponder could not 

generate enough power to collect and send data to the base station, the results found in 

this project do encourage the further exploration of RFID technology in this area and 

other contact-less applications. The initial results proved that when the transponder 

generates enough power data is collected and successfully sent to the base station. 

Therefore, further work on this area should include looking for a more effective antenna 

for the transponder or ways to build a more powerful magnetic field at the base station.  

Another approach would be to the addition of a battery to supply power to the 

microcontroller when the base station is collecting data from transponder. Since the 

battery would only be on when the base station is actually collecting data from the 

transponder it will not require periodic changes. 

The second requirement was to design an inexpensive device. The total cost of the device 

was very low, $25.21, giving it a great advantage against other similar products such as 

the VitalScal from Vetronics that as previously discussed cost about $500.00. In addition, 

the cost of the transponder alone is $6.65, and since the base station can communicate 

with many transponders having one base station and many transponders can be a very 

inexpensive way to monitor several animal for a very low price.   
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The last requirement was to design the transponder small enough to fit underneath the 

skin of the animal. Once it has been soldered and package into a whole, from the 

dimensions of the main parts of the transponder it is fair to say that the final transponder 

should be very small, smaller than 1cm cube, and should fit underneath the skin of a 

small animal such a mouse.    
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8. APPENDICES  

8.1. APPENDIX A: SCHEMATICS AND PICTURES 
 
8.1.1. BASE STATION 

 
Figure9. Base Station Schematic 
 

 
Figure10. Preamplifier added to the Base Station  
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Figure11. Base Station  
 
 
8.1.2. TRANSPONDER  

 
Figure12. Transponder Schematic 
 

 
Figure13. Transponder  
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8.1.3. ANTENNAS 
 

 
Figure14.  Initial Base Station Coil  
Resonates at ~125 kHz with a 1.1 nF capacitor    
Diameter: 10cm or 3.9 inches  
Wire Size: 0.333mm or 0.39 inches 
No of Turns: 125   
Estimated Inductance: 1.625 mH  

 

 
Figure15. Initial Transponder Coil and Final Base Station Coil  
Resonates at ~125 kHz with a 2.35 nF capacitor    
Diameter: 10cm or 2.3 inches  
Wire Size: 0.333mm or 0.39 inches 
No of Turns: 67  
Estimated Inductance: 689 uH  
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Figure16. Attempts to build a Ferrite Cored Coil for the Transponder  
 

 
Figure17. Final Ferrite Cored Coil for the Transponder from Coilcraft [10] 
Resonates at ~125 kHz with a 294 nF capacitor  
 
8.1.4. MATLAB GUI 

 

 
Figure18. GUI screen shot [12] 
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 8.2. APPENDIX B: COST 
 

Part Number Description Cost/Item Quantity Total Cost 

U2270B Base Station  $2.58  1 $2.58  

ATMega32 Microcontroller $8.00  1 $8.00  

1N4148 Diode $0.30  1 $0.30  

LF353 Dual Operational Amp $0.45 1 $0.45 

P10980-ND Capacitor (1.2nF) $0.78  2 $1.56  

495-1630-ND Capacitor (1.5nF) $0.50  2 $1.00  

P4500A-ND Capacitor (4.7nF) $0.38  1 $0.38  

399-1945-ND Capacitor (47nF) $0.48  2 $0.96  

478-2265-ND Capacitor (0.22uF) $0.14  1 $0.14  

495-1636-ND Capacitor (10uF) $0.65  3 $1.95  

BC100YCT Resistor (100Ω) $0.19  1 $0.19  

BC10.0YTR Resistor (10KΩ) $0.15  4 $0.60  

100XBK-ND Resistor (100kΩ) $0.10  2 $0.20  

110KXBK-ND Resistor (110kΩ) $0.10  1 $0.10  

B0207C1M000F5T-ND Resistor (1M) $0.15  1 $0.15  

Total: $18.56  

 Table1. Base Station Total Cost 
 

Part Number Description Cost/Item Quantity 

Total 

Cost 

U3280M Transponder $2.10  1 $2.10  

ATTiny13v Microcontroller $1.40  1 $1.40  

LM61 Temperature Sensor $1.04  1 $1.04  

4308RV RFID Coil $1.13  1 $1.13  

B32922A2104M Capacitor (0.1uF) $0.29  2 $0.58  

478-2038-ND Capacitor (294nF) $0.11  1 $0.11  

BC100YCT Resistor (100Ω) $0.19  1 $0.19  

1.5KETR-ND Resistor (1.5kΩ) $0.10  1 $0.10  

Total: $6.65  

Table2. Transponder Total Cost 
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8.3. APPENDIX C: SOURCE CODES  
 
8.3.1. BASE STATION CODE 
/************************************************************** 

 *****          Mouse-Implanted RFID Project            ******* 

 *****               Base Station Code                  ******* 

 *****                                                  ******* 

 *****                 By Dan Golden                    ******* 

 *****                  09/11/2004                      ******* 

 **************************************************************/ 

 

 

/* This code is for the Atmel Mega32 Microcontroller */ 

 

/************************************ 

 *****    Port Description    ******* 

 ************************************ 

 

Inputs: 

D[2]   Base Station Data Output 

 

Outputs: 

C[0:7]   LEDs (for testing) 

 

 

/************************************ 

 *****    Encoding Notes      ******* 

 ************************************ 

 

Manchester encoding is used to communicate from the transponder to the 

base station. Traditionally, in manchester encoding, the data ALWAYS 

contains an edge on the clock's falling edge; a logic 1 is a rising 

edge, a logic 0 is a falling edge. However, this base station INVERTS 

the received data; hence, logic 1 is a falling edge on the falling 

clock edge, and logic 0 is a rising edge on the falling clock edge. 

 

Ex. 

            _   _   _   _   _   _   _   _ 

CLK          |_| |_| |_| |_| |_| |_| |_| |_ 

            _   _     _   ___     ___   _ 

DATA Sent    |_| |___| |_|   |___|   |_| |_ 

              _   ___   _     ___     _   _ 

DATA Rec'd  _| |_|   |_| |___|   |___| |_| 

 

           | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 

            

Obviously, the received data is what is parsed. 

 

Clock Periods of Note: 

Width of one half clock period:  256 us = 64 CLK/64 cycles 

Width of one full clock period:  513 us = 128 CLK/64 cycles 

Width of four clock periods (1/2 byte):2.05 ms = 512 CLK/64 cycles 

*/ 
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/************************************ 

 *****  Includes     ******* 

 ************************************/ 

 

#include <Mega32.h> 

#include <stdio.h> 

#include <stdlib.h>      

#include <string.h>   

 

/************************************ 

 *****        Definitions     ******* 

 ************************************/ 

 

#define dataInput PIND.2 

#define debugOut PORTA.0 

#define LEDs PORTC 

 

/************************************ 

 *****     Global Variables   ******* 

 ************************************/ 

 

unsigned char count;  // General indexing variable 

 

unsigned char bitStream[3]; // Used to parse input data 

unsigned char bitNumber, byteNumber; 

unsigned char lastEdge, thisEdge, CLKedge, getData; 

 

unsigned char data; // The data byte received at the Base 

// Station from the transponder 

unsigned char dataReady; // True when the data is ready 

unsigned char junkByte;  // True if the current byte is invalid 

unsigned char junkCounter;   //#ofsuccessive junk bytes since last sync 

char sync;     // Sync level 

     // 0: not syncing (receiving data) 

     // -1: not synced (waiting for sync pulse) 

 

/************************************ 

 *****   Function Prototypes  ******* 

 ************************************/ 

 

void initialize(void); 

 

/************************************ 

 *****       Interrupts       ******* 

 ************************************/ 

 

/* This interrupt is used only for FINDING the clock from the initial 

clock sync byte. Parsing DATA is done separately. */ 

interrupt [EXT_INT0] void data_edge(void) 

{ 

 thisEdge = dataInput; 

  

 // If the detected period is too low (T < 200 us), then label  

 // this byte as junk. 

 if(TCNT1 < 50) 

  junkByte = 1;  // Label the byte as junk. 
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// 200 us < T < 384 us. This period occurs after a clock edge or 

a same-bit 

 // boundary (e.g., 1-1 or 0-0). 

 else if (TCNT1 < 96) 

 { 

  // If we're at a clock edge... 

  if (CLKedge) 

  { 

   CLKedge = 0; 

   getData = 1; 

        } 

  else 

   CLKedge = 1; 

 } 

 // 384 us < T < 600 us. 

 // This period occurs after an opposing-bit boundary ONLY. 

 else if (TCNT1 < 150) 

 { 

  CLKedge = 0; 

  getData = 1; 

 } 

// If the pulse period is too different from any legal values, 

the byte is junk. 

 else 

 { 

  junkByte = 1; 

 } 

  

 // Reset timer1 

 TCNT1 = 0; 

  

 // If we're on a rising clock edge, it's time to get the data 

 if (getData) 

 { 

  getData = 0; 

   

  // Shift bitstream down 

  bitStream[0] >>= 1; 

  bitStream[0] |= (bitStream[1] << 7); 

  bitStream[1] >>= 1; 

  bitStream[1] |= (bitStream[2] << 7); 

  bitStream[2] >>= 1; 

   

  // Insert the most recent bit into bitStream 

  bitStream[2] |= ((!dataInput) << 7); 

 

  bitNumber++; 

 } 

   

// If we have sync, and we've just updated bitStream and 

bitStream has 

 // all 8 bits of data, then read the data. If the data has been 

 // marked as junk for any reason, then set it to 0xff. 

 if ((~CLKedge) && (sync != -1) && (bitNumber == 8)) 

 {    

  // If the data is junk, make it 0xff. 

  if (junkByte) 
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  { 

   data = 0xff; 

   junkCounter++; 

  } 

  else 

  { 

   data = bitStream[2]; 

   junkCounter = 0; 

  } 

    

  byteNumber++; 

 

// Force a sync every 100 data bytes, or if we get three 

junk 

  // bytes in a row. 

  if ((byteNumber == 100) || (junkCounter > 2)) 

  { 

   sync = -1; 

   TCNT0 = 0; 

   TIMSK |= 0b00000010; // Send 0xff's while syncing 

  } 

   

  dataReady = 1; 

  bitNumber = 0; 

  junkByte = 0; 

 } 

 // If we're searching for the sync stream... 

 else if ((~CLKedge) && (sync == -1)) 

 { 

// If we've found the sync, stop searching and get ready 

for data. 

  if ((bitStream[0] == 0x00) && (bitStream[1] == 0xff) && 

   (bitStream[2] == 0xff)) 

  { 

   sync = 0; 

   TIMSK &= 0b11111101; // Stop sending 0xff's 

   bitNumber = 0; 

   byteNumber = 0; 

  } 

 } 

} 

 

interrupt [TIM0_COMP] void timer0_compare(void) 

{ 

 data = 0xff; 

 dataReady = 1; 

} 
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/************************************ 

 *****         Main           ******* 

 ************************************/ 

 

void main(void) 

{ 

 initialize(); 

  

 while(1) 

 { 

  if (dataReady)   // If we have received 

data... 

  { 

   LEDs = ~data; 

   dataReady = 0;  // Prepare for new data 

   printf("%c", data); // send data to USART 

  } 

 

 

  if (TIFR & 0x04)  // If timer 1 has overflowed (T = 

0.26 sec)... 

  { 

   TIFR = TIFR | 0x04; // Clear TOV1. 

   sync = -1;   // Start syncing. 

   TCNT0 = 0; 

   TIMSK |= 0b00000010; // Send 0xff's while syncing. 

  } 

 

 } 

} 

 

 

/************************************ 

 *****     Initialization     ******* 

 ************************************/ 

 

void initialize(void) 

{ 

 /**** Port initialization ****/ 

 DDRD = 0x00; // D.2 is data input 

 DDRA = 0x01; // A.0 is debug output 

 DDRC = 0xff; // Port C is LED output 

 LEDs = 0xff; // All off initially 

  

 /**** Interrupt initialization ****/ 

 MCUCR = 0b00000001; // Any edge on INT0 triggers interrupt 

 GICR = 0b01000000; // Enable INT0 

  

/* Timer 1 is used for synchronizing with the transponder's data 

clock, which should run at around (125e3/64) = 1.95 KHz, which 

means that edges appear at 3.91 KHz (no opposing bit boundary) or 

1.95KHz (at opposing bit boundaries). */ 

 TCCR1B = 0b00000011; // CLK/64 (250 KHz) 

     

/* Timer 0 is used to output 0xff data points at the same 

frequency as the usual data rate when the base is searching for 

the sync stream. */ 
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     TCCR0 = 0b00001101;  // CTC on, CLK/1024 (15.6 KHz) 

     OCR0 = 65;  // f = 240 Hz (almost 238.5 Hz, the data rate) 

     TIMSK = 0b00000010;  // Enable OCIE0 

     

 /**** USART initialization ****/ 

 UCSRB = 0b00011000 ; // TXC, RXC enabled 

 UBRRL = 16 ; // 57.6 kbaud @ 16MHz 

 

 /**** Variable initialization ****/ 

 lastEdge = 0; 

 CLKedge = 0; 

 bitNumber = 0;  

 byteNumber = 0; 

 junkByte = 0; 

 for (count = 0; count < 3; count++) 

  bitStream[count] = 0; 

  

 data = 0; 

 dataReady = 0; 

 sync = -1;  // Initially, we don't have sync 

  

 /**** Get this party started (enable interrupts) ****/ 

 #asm("sei"); 

 

} 
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8.3.2. TRANSPONDER CODE 
 
//RFID Application for Biological Telemetry 

//By Diana M. Rodriguez Tobon June, 2005 

//The code detects the field clock and controls the MOD input in the 

//transponder  

// It also reads the temperature of the animal and codes it into 

//manchester code  

//protocol: byte(00000000) byte(11111111) byte(11111111) 100 byte(data)    

/* This code is for the AtmelTiny13 Microcontroller */ 

 

 

/************************************ 

//Port Description    

 

Connect XT1 on PORTE to PB3(XTAL1 on 2323) on PORTB on the STK500 

 

Inputs: 

B.2 = Field Clock Input (T0) 

B.4 = ADC input ADC2 

 

Outputs: 

B.0 = Manchester data output 

B.1 = 2 KHz Clock 

 

 

/************************************ 

//Includes      

#include <Tiny13.h> 

 

 

/************************************ 

//Function Prototypes  

void initialize(void);   //Initialization           

 

 

/************************************ 

//Global Variables   

 

unsigned char voltageD;  //digital voltage from ADC 

unsigned char index;  // byte number from 0 to 103 

unsigned char byte;  //byte to transmit 

unsigned char halfcycle; //,number of half-cycles field clock has gone 

       //through transmission  

 

 

//********************************************************** 

//timer 0 compare Interrupt Sub Routine 

//Enter here every field clock rising edge 

interrupt [TIM0_COMPA] void timer0_com(void) 

{ 

   // Three sync bytes (00-ff-ff), then 100 data bytes. 

    

 PORTB.1 = ~PORTB.1; //field clock for debugging  
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    // Byte boundary. 

    if (halfcycle == 16)   //if byte has been sent   

    {         //set next byte to transmit  

 

    halfcycle = 0;       

        voltageD=ADCH; 

 if (voltageD == 255) voltageD = 0;  //to make sure 255 is  

           //is not valid data 

 

      //get new analog to digital value 

 ADCSRA.6=1; 

         

     if (index == 0)     byte = 0x00; // set next byte according to  

     else if (index < 3) byte = 0xff; // protocol 

     else byte = voltageD; 

  

     bytenum++; 

     if (index == 103) index = 0; 

       

    } 

     

    // On the falling edge of the clock, the output matches the data 

    if (halfcycle & 1) 

     PORTB.0 = (byte >> (halfcycle >> 1)) & 0x01; 

    // On the rising edge of the clock, the output is the data inverted 

    else 

     PORTB.0 = (~(byte >> (halfcycle >> 1))) & 0x01; 

 

    halfcycle++;  

}                                                            

 

 

//**********************************************************        

//Entry point and infinite loop 

void main(void) 

{   

   initialize(); 

   

   while(1) 

   { 

   }//end while(1) 

}//end main   

 

 

 

//**********************************************************  

//Initialize ports and variables 

void initialize(void) 

{ 

  //set up the ports  

  DDRB.0=1;  // PORT.0 and PORT.1 are outputs  

  DDRB.1=1; 

  PORTB.0=0; 

  PORTB.1=0; 

   

  //Variables 

  index=0;  
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  voltageD=0x00;  

  byte=o; 

  halfcycle=0; 

 

    

   

 

 

  //set up timer 0    

  OCR0A = 32;     //set the compare to 32 periods 

  TCCR0A=0b00000010;  //CTC mode  

  TCCR0B=0b00000111;          //rising edge of external clock  

  TIMSK0=0b00000100;  //enable compare match 

    

  //set ADC registers in ADC noise canceler(Idle mode) 

  ADMUX=0b01100010;           // Vref=1.1v(internalV), select ADCH   

     // select input channel PB4, 

  ADCSRA=0b10000110;  // enable the ADC, single conversion mode 

              // clk prescaler to 64=150kHZ resolution 

// no adc conversion complete interrup  

// enable 

   

   //turn on the interrupts 

   #asm ("sei");    

   

}//end initialize   
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8.3.2. GUI CODE 
 
function varargout = serialcommgui(varargin) 
% SERIALCOMMGUI M-file for serialcommgui.fig 
%      SERIALCOMMGUI, by itself, creates a new SERIALCOMMGUI or raises the 
existing 
%      singleton*. 
% 
%      H = SERIALCOMMGUI returns the handle to a new SERIALCOMMGUI or the 
handle to 
%      the existing singleton*. 
% 
%      SERIALCOMMGUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in SERIALCOMMGUI.M with the given input 
arguments. 
% 
%      SERIALCOMMGUI('Property','Value',...) creates a new SERIALCOMMGUI or 
raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before serialcommgui_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to serialcommgui_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Copyright 2002-2003 The MathWorks, Inc. 
 
% Edit the above text to modify the response to help serialcommgui 
 
% Last Modified by GUIDE v2.5 04-Dec-2004 13:14:01 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @serialcommgui_OpeningFcn, ... 
                   'gui_OutputFcn',  @serialcommgui_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
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if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before serialcommgui is made visible. 
function serialcommgui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to serialcommgui (see VARARGIN) 
 
% Choose default command line output for serialcommgui 
handles.output = hObject; 
handles.num_points = 2500; 
handles.max_time = 15; 
handles.use_time_not_points = 1; 
handles.cancel_data_acq = 0; 
handles.shownondata = 0; 
 
% Update handles structure 
guidata(hObject, handles); 
 
set(handles.timeradio, 'Value', 1); 
set(handles.numpointsbox, 'Enable', 'Off'); 
 
% Set up the axis 
axes(handles.axes1); 
xlabel('time (seconds)'); 
ylabel('data'); 
 
 
global cancel_data_acq; 
cancel_data_acq = 0; 
clear cancel_data_acq; 
 
% UIWAIT makes serialcommgui wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
% --- Outputs from this function are returned to the command line. 
function varargout = serialcommgui_OutputFcn(hObject, eventdata, handles)  
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% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
function numpointsbox_Callback(hObject, eventdata, handles) 
% hObject    handle to numpointsbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of numpointsbox as text 
%        str2double(get(hObject,'String')) returns contents of numpointsbox as a double 
 
val = str2num(get(hObject, 'String')); 
if (length(val) == 1) && (val > 0) && (val <= 1e6) 
    handles.num_points = str2num(get(hObject, 'String')); 
    guidata(hObject, handles); 
else 
    set(hObject, 'String', num2str(handles.num_points)); 
end 
 
% --- Executes during object creation, after setting all properties. 
function numpointsbox_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to numpointsbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
% --- Executes on button press in getdatabutton. 
function getdatabutton_Callback(hObject, eventdata, handles) 
% hObject    handle to getdatabutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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set(handles.getdatabutton, 'Enable', 'off');    % Disable get data button. 
set(handles.stopbutton, 'Enable', 'on');        % Enable stop button. 
set(handles.timeradio, 'Enable', 'inactive');   % Disable time radio 
set(handles.pointsradio, 'Enable', 'inactive'); % Disable time radio 
if strcmp(get(handles.maxtimebox, 'Enable'), 'on')    % Disable time/points boxes 
    set(handles.maxtimebox, 'Enable', 'inactive'); 
else 
    set(handles.numpointsbox, 'Enable', 'inactive'); 
end 
set(handles.popaxisbutton, 'Enable', 'off');    % Disable pop up axis button 
set(handles.ndpointscheckbox, 'Enable', 'off'); % Disable non-data points checkbox 
 
 
% Clear the axis 
axes(handles.axes1); 
cla; 
 
global cancel_data_acq; 
 
% Destroy any open serial port objects on COM1 
s = instrfind('Port', 'COM1'); 
if length(s) ~= 0 
    fclose(s); 
    delete(s); 
end 
 
% A trial serial read to determine whether serial I/O is functioning. 
% If not, 'fread(s)' will time out and data will have length 0. 
s = serial('COM1', 'BaudRate', 57600, 'InputBufferSize', 1); 
fopen(s); 
data = fread(s); 
fclose(s); 
delete(s); 
clear s; 
 
if length(data) ~= 0    % If there was data in the buffer (reads are functioning)... 
 
    % Create the serial port object. With a buffer size of 512, at a data rate 
    % of 239 bps, it takes about 2 seconds to fill the buffer. 
    s = serial('COM1', 'BaudRate', 57600, 'InputBufferSize', 512); 
    fopen(s); 
 
    data = []; 
 
    badtime = []; % vector listing times where data was 255 (for debugging) 
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    set(handles.messagewindow, 'String', 'Getting data...'); 
     
    % Variable initialization. 
    elaptime = 0; 
    time = []; 
    timelimit = handles.max_time; 
    pointslimit = handles.num_points; 
    percent_complete = 0; 
    tic; 
    while (handles.use_time_not_points && (toc < timelimit)) || ... 
            (~handles.use_time_not_points && (length(data) < pointslimit)), 
 
        % Pause to allow for interrupts, etc. We won't miss data doing 
        % this, because the data buffer gets filled in the background. 
        pause(0.5); 
         
        if cancel_data_acq 
            cancel_data_acq = 0; 
            break; 
        end 
         
        new_data_index = length(data) + 1; 
         
        data = [data fread(s)']; 
        elaptime = toc; 
         
        if handles.use_time_not_points 
            if floor((elaptime / timelimit)*10) > percent_complete 
                percent_complete = floor((elaptime / timelimit)*10); 
                set(handles.messagewindow, 'String', ... 
                    [num2str(min(100, percent_complete*10)) '% complete - ' ... 
                    num2str(max(0,floor((timelimit - elaptime)*10))/10) ' seconds 
remaining...']); 
            end 
             
        else 
            if floor((length(data) / pointslimit)*10) > percent_complete 
                percent_complete = floor((length(data) / pointslimit)*10); 
                set(handles.messagewindow, 'String', ... 
                    [num2str(min(percent_complete*10)) '% complete - ' ... 
                    num2str(max(0,pointslimit - length(data))) ' data points remaining...']); 
            end 
        end 
         
        if length(time) == 0 
            newtime = linspace(0, elaptime, 513); 
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        else 
            newtime = linspace(time(length(time)), elaptime, 513); 
        end 
         
        time = [time newtime(2:length(newtime))]; 
         
        % Clear all values of 255 from data 
        count = new_data_index; 
 
        % Leading 255's: 
        if new_data_index == 1 
            while data(1) == 255, 
                badtime = [badtime time(1)]; 
                data = data(2:length(data)); 
                time = time(2:length(time)); 
            end 
            count = count + 1; 
        end 
        % Middle 255's: 
        while count < length(time), 
            if data(count) == 255 
                badtime = [badtime time(count)]; 
                data = [data(1:count-1) data(count+1:length(data))]; 
                time = [time(1:count-1) time(count+1:length(time))]; 
            else 
                count = count + 1; 
            end 
        end 
        % Trailing 255 
        if data(length(data)) == 255 
            badtime = [badtime time(length(time))]; 
            data = data(1:length(data)-1); 
            time = time(1:length(time)-1); 
        end 
         
        % Plot the data on the GUI's axes. 
        plot(time, data); 
 
         
    end 
     
     
    % If we have received data (i.e., if data acquisition hasn't been immediately 
    % cancelled)... 
    if length(time) > 1 
        % If the data isn't ALL invalid... 
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        if ~(all(data == 255)) 
 
            % Truncate the vectors to the appropriate time if time limit was used. 
            if handles.use_time_not_points 
                count = 1; 
                while (time(count) <= timelimit) && (count < length(time)), 
                    count = count + 1; 
                end 
                data = data(1:count); 
                time = time(1:count); 
 
            else 
                % Truncate the vectors to the appropriate number of points if 
                % points limit was used. 
                data = data(1:min(pointslimit, length(data))); 
                time = time(1:min(pointslimit, length(time))); 
            end 
 
            % Make the bad data well-formed 
            count = 1; 
            while count < length(badtime), 
                if badtime(count) > time(length(time)) 
                    badtime = badtime(1:count - 1); 
                    break; 
                else 
                    count = count + 1; 
                end 
            end 
 
            baddata = []; 
            btcount = 1; 
            while badtime(btcount) <= time(1), 
                baddata = [baddata data(1)]; 
                btcount = btcount + 1; 
            end 
 
            count = 1; 
            while count <= length(time) 
                if time(count) >= badtime(btcount) 
                    baddata = [baddata data(count - 1)]; 
                    btcount = btcount + 1; 
                    if btcount > length(badtime) 
                        break 
                    end 
                else 
                    count = count + 1; 
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                end 
            end 
 
            while btcount <= length(badtime) 
                baddata(btcount) = data(length(data)); 
                btcount = btcount + 1; 
            end 
 
            clear btcount count; 
             
            % Save time and data to the current workspace, so the user can mess 
            % with them. 
            assignin('base', 'baddata', baddata); 
            assignin('base', 'badtime', badtime); 
            assignin('base', 'mouse_data', data); 
            assignin('base', 'mouse_time', time); 
 
            set(handles.messagewindow, 'String', ... 
                'Data vectors created in current workspace.'); 
 
 
            % Plot the data on the GUI's axes. 
            plot(time, data); hold on; 
            if handles.shownondata 
                plot(badtime, baddata, 'r.'); 
            end 
             
        else 
            % If the data IS all invalid... 
            set(handles.messagewindow, 'String', ... 
                'No valid data received.'); 
 
        end 
    end 
     
    fclose(s); 
    delete(s); 
    clear s; 
 
% If we didn't receive any data when clearing the input buffer and testing 
% for I/O timout, then print an error. 
else 
    set(handles.messagewindow, 'String', 'Problem with serial I/O...'); 
end 
 
set(handles.stopbutton, 'Enable', 'off');   % Disable stop button (reads are over). 
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pause(5);   % Wait for 5 seconds so the user can read the message. 
set(handles.messagewindow, 'String', ... 
    'Welcome to the Mouse-Implanted RFID Data Acquisition Tool!'); 
set(handles.getdatabutton, 'Enable', 'on');     % Re-enable get data button. 
set(handles.timeradio, 'Enable', 'on');         % Re-enable time radio 
set(handles.pointsradio, 'Enable', 'on');       % Re-enable time radio 
if strcmp(get(handles.maxtimebox, 'Enable'), 'off')   % Re-enable time/points boxes 
    set(handles.numpointsbox, 'Enable', 'on'); 
else 
    set(handles.maxtimebox, 'Enable', 'on'); 
end 
set(handles.popaxisbutton, 'Enable', 'on');     % Re-enable pop up axis button 
set(handles.ndpointscheckbox, 'Enable', 'on'); % Re-enable non-data points checkbox 
 
 
 
function maxtimebox_Callback(hObject, eventdata, handles) 
% hObject    handle to maxtimebox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of maxtimebox as text 
%        str2double(get(hObject,'String')) returns contents of maxtimebox as a double 
 
val = str2num(get(hObject, 'String')); 
if (length(val) == 1) & (val > 0) & (val <= 6000) 
    handles.max_time = str2num(get(hObject, 'String')); 
    guidata(hObject, handles); 
else 
    set(hObject, 'String', num2str(handles.max_time)); 
end 
 
% --- Executes during object creation, after setting all properties. 
function maxtimebox_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to maxtimebox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
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% --- Executes on button press in timeradio. 
function timeradio_Callback(hObject, eventdata, handles) 
% hObject    handle to timeradio (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of timeradio 
 
 
% --- Executes on button press in pointsradio. 
function pointsradio_Callback(hObject, eventdata, handles) 
% hObject    handle to pointsradio (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of pointsradio 
 
 
function messagewindow_Callback(hObject, eventdata, handles) 
% hObject    handle to messagewindow (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of messagewindow as text 
%        str2double(get(hObject,'String')) returns contents of messagewindow as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function messagewindow_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to messagewindow (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
 
 
function radiopanel_SelectionChangeFcn(hObject, eventdata, handles) 
% hObject    handle to radiopanel (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
 
if strcmp(get(hObject, 'Tag'), 'pointsradio') 
    set(handles.numpointsbox, 'Enable', 'On'); 
    set(handles.maxtimebox, 'Enable', 'Off'); 
    handles.use_time_not_points = 0; 
    guidata(hObject, handles); 
else 
    set(handles.numpointsbox, 'Enable', 'Off'); 
    set(handles.maxtimebox, 'Enable', 'On'); 
    handles.use_time_not_points = 1; 
    guidata(hObject, handles); 
end 
 
 
function radiopanel_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to radiopanel (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
 
% --- Executes on button press in stopbutton. 
function stopbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to stopbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global cancel_data_acq; 
cancel_data_acq = 1; 
set(handles.messagewindow, 'String', 'Cancelling...'); 
 
 
% --- Executes on button press in popaxisbutton. 
function popaxisbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to popaxisbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Pop up an external axis 
figure; 
time = evalin('base', 'mouse_time'); 
data = evalin('base', 'mouse_data'); 
badtime = evalin('base', 'badtime'); 
baddata = evalin('base', 'baddata'); 
 
plot(time, data); 
xlabel('time (seconds)'); 
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ylabel('data'); 
title('Mouse Data'); 
hold on; 
if handles.shownondata 
    plot(badtime, baddata, 'r.'); 
end 
 
 
 
% --- Executes on button press in ndpointscheckbox. 
function ndpointscheckbox_Callback(hObject, eventdata, handles) 
% hObject    handle to ndpointscheckbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of ndpointscheckbox 
 
handles.shownondata = get(hObject, 'Value'); 
% Update handles structure 
guidata(hObject, handles); 

 


