
CELL PHONE SECURITY SYSTEM

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

by

Jason Chiang

Project Advisor: Bruce Land

Degree Date: May 2006

 1

Abstract

Master of Electrical Engineering Program

Cornell University

Design Project Report

Project Title: Cell Phone Security System

Author: Jason Chiang

Abstract: Keyless entry has been a luxury whose availability is confined primarily to

vehicles. The cell phone security system takes this idea of keyless entry and transforms it

into a convenient, versatile security system that utilizes cell phone technology and the

landline telephone network. By taking advantage of caller identification and dual-tone

multi-frequency signaling, the security system has the ability to introduce two-levels of

security. The first level will be decoding the calling party’s identification information

while the second level would consist of the user attempting a password entry over the

phone. The system also has the ability to provide feedback to the user regarding the state

of the system through a special user mode. By combining the mobility of this

telecommunication medium with microcontrollers, the system achieves a secure,

convenient, and automated form of security for a place of residence.

Report Approved by

Project Advisor: __Date: ___________

 2

Executive Summary
 The cell phone security system was able to achieve its goals of introducing an

automated and versatile security system using the telephone network through principles

of caller identification and DTMF signaling. It successfully interfaced with both the

caller ID and DTMF protocols. By utilizing the HT9032C Caller ID Receiver, the system

is able to successfully decode the caller ID data packets sent on the phone line. This

decoded caller ID information is then used to verify that the user is part of the preset

access list. If the user is not on the access list, they are denied access immediately and

disconnected. In the event that the caller is on the access list, the caller is then allowed to

attempt a password entry.

The HT9170B DTMF Receiver allowed the system to decode the DTMF signals

sent by the user. These decoded DTMF signals had two purposes. They served as entries

towards a password attempt as well as input from the user to control the system. User

passwords were allowed to be of arbitrary length, however for testing purposes, I hard-

coded it to be simply ‘12345678.’ The terminator button was set to be the ‘#’ button. So

the user would enter the password in the following sequence: 1-2-3-4-5-6-7-8-#. The

system also gave the caller the option of entering and special user mode where they had

the ability to control the security system by pressing buttons 1 – 3. The caller would have

the ability to check the status of the system, lock the door, or unlock the door.

Pushbuttons were implemented to allow the user to automatically lock or unlock

the door at the push of a button.

In an effort to have complete control over my testing environment, I designed a

simulation of a phone network to perform my testing on. I decided to implement my own

phone network rather than interface with a real phone line to gain a level of control as

well as a completely isolated, dedicated phone system. This simulated phone system

proved to be an exact replica of a real phone line, conforming to all applicable telephony

standards used in the project. My simulated phone line added safety and control to the

development of the cell phone security system. The result was a successful cell phone

security system I had envisioned.

 3

Table of Contents

Abstract ... 1
Executive Summary .. 2
1. Introduction... 4
2. Design Problem & Requirements ... 5

2.1. Design Constraints:... 5
3. Telephony Background... 6

3.1. United States Phone Line Interface... 6
3.2. Caller ID.. 6
3.3. Dual-Tone Multi Frequency (DTMF)... 8

4. Range of Solutions.. 9
4.1. Physical Locking Mechanism... 9
4.2. Locking the Door (when not using a cell phone).. 10
4.3. Idle Behavior... 10

5. Design & Implementation... 11
5.1. Simulated Phone Line ... 11

5.1.1. Caller ID Simulation: ... 11
5.1.2. DTMF Simulation ... 12
5.1.3. Not Simulated.. 15

5.2. Hardware... 16
5.2.1. Mega32 Microcontroller... 16
5.2.2. Switching Circuitry ... 17
5.2.3. Caller ID Decoding... 18
5.2.4. DTMF Decoding ... 19

5.3. Software .. 21
5.3.1. Timing ... 21
5.3.2. Serial Interface.. 22
5.3.3. Caller ID Decoding... 22
5.3.4. DTMF Decoding ... 23
5.3.5. Pushbuttons... 24

6. Packaging.. 25
7. Results... 26
8. Conclusions... 27
9. Appendix A – Glossary of terms .. 29
10. Appendix B – Complete DTMF Signal Catalog... 30
11. Appendix C – DTMF Generator Code (dtmf.c).. 32
12. Appendix D – Security System Code (security.c) .. 36

 4

1. Introduction
 The cell phone security system is the result of a fusion of a creative idea with an

attempt to motivate change. Even though modern technology has allowed for the

automation of many aspects of domestic lifestyles, from automatic motion sensing lights

to automatic garage door openers, home security has not seen much benefit from this

revolution. Household entry has long been a very manual routine with little effort to

automate the process. Entry into a residence is still primarily limited to a manual process

which involves inserting a key into a bolt and physically moving the locking mechanism.

 The cell phone security system aims to change this. The system takes advantage

of the widespread acceptance of cell phones in today’s society in conjunction with the

deep-rooted standards of the landline telephone network to introduce automation and

convenience. The system will allow a user to use their cell phone to place a call into their

home security system. Once the system verifies the caller, the caller is then allowed to

attempt a password entry. Upon successfully entering a password, the system will

automatically unlock the door and grant entrance. The caller also has the option of

entering a user mode where they will be able to check the status of the system (locked or

unlocked), lock the door automatically, or unlock the door automatically. This

automation introduces a form of secure, keyless entry into a residence along with the

convenience of a fully responsive security system monitor.

 The system will primarily interface with telephony protocols which include dual-

tone multi frequency (DTMF), caller identification (CID), and some applicable telephony

circuit standards. Caller identification will be used in the first level of security to verify

the caller and DTMF will be used in the second level to decode the button presses that

form the password. The telephony standards are necessary for implementing a correct

interface that will allow the phone line to go on/off-hook. Properly understanding and

interfacing with these standards is of utmost importance due to federal regulations as well

as successful operation.

 5

2. Design Problem & Requirements
 The fundamental requirements for the cell phone security system remained fixed

throughout the design process. My goal was to design a system which would allow the

user automated and convenient access to their home security system through a telephone

network. The fundamental objectives of the system include:

1. Correctly decode DTMF signals from the user
2. Correctly decode caller identification information from the phone line
3. Allow the user to automatically lock the entryway
4. Allow the user to automatically unlock the entryway
5. Allow the user to check the status of the entryway
6. Conform to all telephone standards (section 3.)

2.1. Design Constraints:
In addition to meeting these goals, I also intended to create a design that would

come as close to a real-world product as possible. This meant creating an interface with a

live telephone line that a user could just take the design and plug it into a phone line and

the system would be ready to go. This interface would have to conform to the federal

communication commission’s (FCC) standards for use of their telephone networks.

During the design and implementation of the system, certain constraints arose that limited

my ability to successfully meet this desire to implement a real-world interface.

Specifically, limitation on resources available would not allow me to test my design using

a real telephone line. In addition, safety is a big issue when testing a design on a live

phone line. Since the phone network can transmit signals exceeding 100V, safety is a

major consideration.

As a result, an added level of complexity was added to my project, which was to

simulate a phone line. Telephone networks are vastly complex, so I only simulated to

applicable components, which included DTMF and CID. The details of these simulations

will be covered in the design section (5).

 6

3. Telephony Background
The telephone lines in the United States are a federally regulated network that

includes countless protocols and standards. These protocols define every aspect of their

telephone lines from the impedance of the interface to the signals allowed on the lines.

The following is a brief overview of some of the protocols that are applicable to this

project.

3.1. United States Phone Line Interface

 In an effort to protect the phone networks, FCC has places several regulations on

all efforts to interface and interact with phone lines. These regulations range from

impedance matching to hearing aid compatibility. Since this project will not require

much telecommunication over the phone networks, many of the standards do not apply.

Therefore, discussion of only the standards and regulations that do apply will follow:

• Isolation – FCC regulations state that any circuitry connected to their phone lines

must be isolated from their network. This is primarily an effort to keep

potentially hazardous circuits from damaging their infrastructure. In order to

comply with this regulation, a 600:600 ohm telephone coupling transformer can

be used to isolate circuitry from the phone line.

• On-hook Impedance – The DC on-hook impedance of any connected device must

be greater than 5 mega ohms. To comply with this rule, a simple switch can be

used to toggle between the on-hook high impedance circuit and the off hook

circuit.

• Off-hook impedance – The DC off hook impedance of any connected device must

be 200 ohms while the AC off-hook impedance must be matched to 600 ohms.

To comply with this rule, a simple switch will be used to toggle between the on-

hook circuit and the off hook matched 600 ohm circuit.

3.2. Caller ID

 Calling Number Delivery (CND), better known as Caller ID, has several

standards. Each standard utilizes different technology and is used in different countries.

These different standards include Bellcore, DTMF, and CCA. Bellcore is the standard

 7

used in the United States, so discussion of caller ID will revolve around the Bellcore

standard.

The Bellcore standard specifies the timing of data transmission as well as the data

packet information itself (including headers and stop bits). The caller ID information is

transmitted between ring bursts. The diagram for the required data transmission for caller

ID specified by Bellcore standards is as follows:

Figure 1. Caller ID Data Transmission

 The details of the transmission are as follows:

• Channel Seizure – 30 continuous bytes of 0x55 (01010101).
• Mark – Consists of 130 +/- 25 ms of mark data to prepare the receiver for data

transmission.
• Message Type – Indicates the type of service and capability of the system. For

caller ID, this will be 0x04.
• Message Length – The number of bytes that will follow (excluding the

checksum).
• Parameter (Data) – Encoded in ASCII

 8

o First two bytes – Month
o Next two bytes – Day of month
o Next two bytes – Local military time (hour)
o Next two bytes – Local military time (minutes after the hour)
o Remaining words – Calling party’s directory number

• Checksum – The checksum is the modulo-256 sum of the received words. This
can be used to detect errors in transmission. If there was an error in transmission,
caller ID does not support re-transmission. So the system would need to wait for
the transmission between the second and third ring bursts.

3.3. Dual-Tone Multi Frequency (DTMF)

 DTMF has become the standard for sending signals over the telephone line. Prior

to DTMF, telephone networks used a technique called pulse dialing or loop disconnect.

Pulse dialing was a method which worked by rapidly connecting and disconnecting the

phone line to form the desired signals. This technique had several limitations including

signal degradation over long transmissions. In an effort to improve upon pulse dialing’s

flaws, Bell Labs created dual-tone multi frequency. DTMF proved to be a much more

versatile and effective method at transmitting signals over the telephone networks.

 A DTMF signal is generated by the real-time linear combination of two sine

waves; one low frequency and one high frequency. The DTMF protocol gives the

frequency definitions for the standard 4 x 4 keypad. The frequencies for these 16 keys

are:

 1209 Hz 1336 Hz 1447 Hz 1633 Hz
697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D
Table 1. DTMF Frequency Values for 4 x 4 Keypad

For example, pressing ‘1’ would produce a 1209 Hz sine wave linearly added

with a 697 Hz sine wave. The frequencies were chosen such that it would be very

difficult to reproduce by a human voice, thereby avoiding potential complications during

speech. The following are the specifications for the frequencies that correspond to

aspects of the phone line other than the key-presses:

Event Low Frequency High Frequency
Busy Signal 480 Hz 620 Hz
Dial Tone 350 Hz 440 Hz

 9

Ringback Tone 440 Hz 480 Hz
Table 2. DTMF Frequency Values for Other Aspects

4. Range of Solutions
In every design, there is always a range of alternatives that could be utilized in

arriving at a solution. These alternatives can be in the form of components, approaches,

or algorithms. Some design alternatives for the cell phone security system include the

following:

4.1. Physical Locking Mechanism

Actual Implementation – A simple interface using LEDs was used to inform the user

whether the system was in the locked state or unlocked state. I chose the most

intuitive colors to represent each state, red for locked and green for unlocked. The

following is a picture of this interface:

Figure 2. Locked & Unlocked LEDs

Alternatives - There exists a wide variety of choices for the actual locking mechanism.

These options range from magnetic, solenoid, or motor driven locks. There are many

advantages and drawbacks to each choice. However, the deciding factor is both price

and importance. I decided against using electric or magnetic driven locks after doing

research and discovering they cost in the hundreds of dollars. However, if this was a

real product to be released (and we had funding) an electric or magnetic lock would

be very nice and look something like:

 10

Electrical bolt Magnetic lock
Figure 3. Locking Mechanism Alternatives

4.2. Locking the Door (when not using a cell phone)

Actual Implementation – I decided to implement pushbuttons that would allow the user to

either lock the door or unlock the door at the push of a button. I also chose to color

the buttons such that it would be intuitive which button did what; red locks the door,

green unlocks it. (note: the first button is unimplemented):

Figure 4. Lock/Unlock Pushbuttons

Alternatives – Alternatively, the system could allow the user to lock the door by moving

a lever or some sort of bolt. This alternative would require sensors to detect the

position of the bolt in order to inform the system control so it always knows the state

of the lock. This alternative is just as effective, but was ultimately decided against

because of the nature of the rest of the system. Since the project’s goal is to deliver

convenience and automation, an automatic locking mechanism was favored.

4.3. Idle Behavior

 11

Actual Implementation – No idle behavior was implemented. In the event that they

system was in either locked or unlocked state, it would stay in that state until an

external event triggered a change, such as pushing a button or a caller activating the

system to lock or unlock the door. I decided not to incorporate any idle behavior

because of the possibility of accidental lock-out. An idle mode action would make

sense in a more professional setting, such as an business office where a lab room

would lock after inactivity. But my intent was to have this deployed in the residential

setting. Locking the user out of their house may get frustrating.

Alternative – The system could have the ability to turn on and off this idle mode behavior.

Allowing the user to enable or disable this feature would give the flexibility to

prevent this lockout while giving users who desire this feature to utilize it. Either

way, an ‘always-on’ lockout feature was ultimately not a good idea so I decided to

scrap the entire idea and go with simplicity.

5. Design & Implementation
5.1. Simulated Phone Line

 Due to constraints on resources available to me, I did not have access to a live

telephone line that I could test my design on. As a result, the requirements for my project

evolved to include the need to design and simulate a telephone line that would be as close

to a real phone line as possible. This simulated phone system would have to provide

identical signals to a real phone line in order to be convincing of an accurate simulation.

As already discussed, the telephone networks are extremely complex and as a result, I

only simulated the components that were applicable to this project. In specific, it was

necessary for me to simulate the caller identification as well as the DTMF dialing.

5.1.1. Caller ID Simulation:

 As discussed in the telephony background section (3), caller identification

information is transmitted over the phone line as an ASCII encoded data packet sent

between ring bursts. The information contained within this data packet varies depending

on the service provider. However the calling party’s phone number is the most important

field and is always transmitted. It is rather simple to simulate the caller ID data packet

 12

sent by the telephone provider. By simply using an ASCII encoding scheme, it is

possible to encode all the information pertaining to the user such as calling number,

month, day, year, etc.

 My implementation of this simulation is somewhat simplified, however. Since I

know that the caller ID information is simply a stream of binary bits which represents the

ASCII encoded information, I simplified this in an effort to make testing easier. Since

encoding the data packet to include all that information could render the data packet

illegible by humans, I simplified the data packet to simply be the phone number of the

calling party. For example, the phone number (555) 123-4567 would be encoded as

‘5551234567’ in my simulation. This simulation, while simplified, is still a valid

representation of the caller ID protocol used on real telephone networks. As long as it is

understood that there is some more information within the packet, it seems acceptable to

simulate CID in this fashion. Discussion of the interaction between this data and the

hardware/software will be discussed in the Hardware and Software sections.

5.1.2. DTMF Simulation

 The next component of the telephone line that I was required to simulate was the

DTMF signals transmitted over the phone line that represented the keys pressed by the

user. I accomplished this simulation using the PWM on the Mega32 MCU. As we know,

DTMF signals are comprised of a low frequency sine wave component linearly added

with a high frequency sine wave component. To generate these sine waves, I used an

algorithm which uses an increment value that is added to an accumulator which in turn is

used to index into a sine table to calculate an overflow value (OCR0) for the timer 0

interrupt. The accumulator was a 32-bit long value which was calculated by the

following:

 accumulator = accumulator + increment

The increment was also a 32-bit long value and was calculated using:

 increment =
CLK

Nf x ⋅⋅ 2

• f = desired sine wave frequency (in hertz)

• x = number of bits in accumulator (32 bits)

 13

• N = number of CPU clocks per PWM cycle (256 = 28)

• CLK = system clock (16 MHz)

The high byte of this ‘accumulator + increment’ value was taken as the index into

the sine table which held values of coefficients for 256 discrete values of sine between 0

and 2π. The sine table was calculated at initialization and utilizes the math library’s sin()

function to compute coefficients. The following code segment computes these 256

discrete sine table entries (coefficients):
for(i = 0; i < 256; i++)

 begin
 sineTable[i] = (char)(63.5 * sin(6.283*((float)i)/256.0));
 end

As we saw before, the DTMF table for the standard keypad assigns frequencies to

every row and column. In the simulated phone model, I used a 3 x 4 keypad rather than a

complete 4 x 4 keypad. The reason behind this decision was because a 3 x 4 keypad is

closer to a real phone keypad that consists of the digits 0 – 9 and the characters “*” and

“#.” Therefore, the increment values for the applicable frequencies were:

Frequency (Hz) Increment
697 47,897,475
770 52,913,997
852 58,548,994
941 64,665,028
1209 83,081,847
1336 91,809,221
1447 99,437,083

Table 3. Increment values for DTMF frequencies

Using these values to generate the signals, I was able to obtain a very clean,

precise sine wave. Here are two screen shots of the sine waves I produced for button 1,

which include a 697 Hz sine wave + 1209 Hz sine wave:

 14

697 Hz 1209 Hz

Figure 5. Sine Waves Generated

 It can be seen from the oscilloscope readout, the (ideally) 697 Hz signal produced

is f697 = 116.3 * 6 = 697.8 Hz (an error of 100*
697

6978.697 − = 0.115 %) and the (ideally)

1209 Hz signal produced is f1209 = 120.8 * 10 = 1208 Hz (an error of 100*
1209

12091208 − =

0.0827%). These error ranges are well within the acceptable deviations from the ideals,

which is 1.5%. However, it is important to note that these errors present on the signals

are not necessarily a result of inaccurate generation. Rather, the errors are most likely a

result of the oscilloscope’s error range. The timer-driven, hardware generation of the

DTMF signals are highly precise.

Linearly adding these two sine components generates the complete DTMF signal

for “1,” which is as follows:

Figure 6. DTMF signal for “1”

 15

 (A complete catalog of all DTMF signals is included in the appendix)

 This DTMF generator was packaged within an old telephone receiver. I was able

to utilize the speaker as an audio output for the DTMF signals. As a result, the simulated

phone system acted exactly like a real telephone. A status LED was used to indicate

when the phone was turned on/off. The output from the DTMF generator was sent

through a standard RJ-11 output connector at the bottom of the phone. The following is

an image of this connector on the simulated phone:

Figure 7. RJ-11 Connector

 My final result was a completely self-contained simulated phone system that

acted exactly as a real phone would. Audio output simulated real dialing feedback and

the RJ-11 connector acted as a real-life interface with the system (tip and ring lines).

Figure 8. Simulated Phone

5.1.3. Not Simulated

 In creating a simulated phone system, I decided that some aspects of the telephone

network were not necessarily important to simulate. One component that was not

simulated was the on-hook/off-hook impedance requirements. The reason this aspect of

the phone line was not simulated was because of it would be impossible to create an

artificial network that would react like a real-world phone system. As discussed in the

telephony background, the telephone network detects whether a line is on-hook or off-

hook by detecting changes in the effective impedance on the specific line. This detection

of impedance and current draw is accomplished using a complex series of sensor circuits

 16

that can monitor sections of the phone line to detect these changes. This is not to say that

my circuit does not comply with these specifications. My circuits take this into account

and the necessary hardware to achieve isolation is available. In order to achieve isolation,

I obtained a matched 600:600 ohm transformer. This transformer would be attached

between my circuitry and the tip and ring lines.

Figure 9. Transformer

5.2. Hardware

5.2.1. Mega32 Microcontroller

 The Atmel Mega32 microcontroller was used as the main component in this lab.

The mcu was set up and soldered onto the standard PCB layout offered by Professor

Land for ECE 476. Using the dremel, excess parts of the PCB board were cut off in an

effort to allow packaging (discussed in packaging section 6). A serial connector and a

MAX233 serial interface controller were also attached to allow for caller ID transmission.

The ports were set up as follows:

PORT PIN Direction Purpose

0 Input Pushbutton Input (Lock)
1 Input Pushbutton Input (Unlock) A

2…7 - Not used
0 - Not used
1 Output Status LED for locked state

2…6 - Not used B

7 Output Status LED for unlocked state
0…3 Input 4 bit decoded DTMF value from HT9170B

4 - Not used
5 Output Power-down output to DTMF decoder
6 - Not used

C

7 Input Valid bit from DTMF decoder
D 0…7 - Only D.0 & D.1 used for serial jumper

Table 4. Port Setup

 17

 LEDs were connected to their appropriate ports to show the state of the system.

330-ohm resistors were used to limit the current to the LEDs to about 20 mA. A power

LED was also implemented to indicate when the system is on/off. The following is the

final PCB with the mcu, status LEDs, power switch, power adaptor, and serial controller

and connector:

Figure 10. PCB Board with MCU and Components

5.2.2. Switching Circuitry

 In order to switch the phone line from the caller ID circuit to the DTMF circuit, a

switch can be used. I decided to use a single-pole double-throw (SPDT) switch, as this

would satisfy the needs of my circuit. A single-pole double-throw type of switch would

connect one line to either of two other lines. I obtained the ADG636 from analog devices

which is a “Dual SPDT Switch.” A schematic of a SPDT switch is as follows:

Figure 11. ADG636 SPDT Switch

 D1 would be connected to the Tip line and D2 would be connected to the Ring

line. S1A and S2A would be connected to the caller ID circuit and S1B and S2B would

 18

be connected to the DTMF decoding circuit. The enable pin was always high (enabling

the outputs) and the logic table is as follows:

A0 A1 Circuit
0 0 Caller ID
0 1 Not Used
1 0 Not Used
1 1 DTMF
Table 5. Switch Logic Table

 This switch successfully allowed the tip and ring signals to be switched from the

caller ID circuit to the DTMF circuit. In the end, I took the switch out of the circuit and

wired the tip and ring lines directly to the DTMF decoder. Since I was interfacing with a

simulated telephone system, the caller ID decoder component did not directly interface

with the tip and ring lines. Instead they interfaced with a serial connection to a PC to

simulate the caller ID. As a result, only the DTMF decoder would directly interface with

the tip and ring lines. I decided to remove the switch since the second pole would not be

connected to anything. However, I was able to verify that this switch was functional and

worked as I wanted in the circuit.

5.2.3. Caller ID Decoding

 In order to decode the caller ID information, I used the HT9032C. The HT9032 is

a Calling Line Identification Receiver, which extracts the caller ID data packet from in

between the ring bursts and sends it as an output serially to an MCU. The following is a

pin out of the HT9032C IC:

Figure 12. HT9032C Pin out

The serial data is transmitted at a rate of 1200 baud on the output pin 14. Pin 7 is

a power-down pin that could be used to save some power. In this system, it would not

make sense to power down the caller ID unit since it must monitor for incoming calls at

 19

all times; the system cannot miss any calls. The only time this power-down functionality

can be used is when a user is verified and control is passed along to the DTMF circuitry.

In this case, the caller ID decoder is no longer needed for that period of time and can be

powered down. After the DTMF component completes, control is handed back to the

caller ID unit and the power-down is disabled. The circuit to decode caller ID

information was as follows:

Figure 13. Caller ID Circuit

As previously mentioned, the caller ID information was simulated. However,

fully simulating caller ID proved to be very difficult. Primarily because of the need to

generate correct ring bursts signals as well as encode the information for transmission

between bursts on a simulated telephone line. As a result, I was not able to use this

circuit in its entirety. Instead, I took advantage of the output of the HT9032C and

simulated the caller ID information from there. Since I knew this circuit would simply

extract the caller information from the phone line and transmit it serially, I simply

encoded the caller information on hyper term and transmitted the data to the mcu through

the serial connection at the specified baud rate of the HT9032C IC. This is exactly the

same as using this IC since the same information would be transmitted at the same rate

using the same transmission medium. Testing at 1200 baud was successful, but slow so I

ultimately increased the rate to 9600 baud to make testing faster. However, the system

works fine at 1200 baud.

5.2.4. DTMF Decoding

To decode the DTMF signals, I was able to obtain an HT9170B IC. The

HT9170B is a DTMF decoder which takes the DTMF signal as an input and outputs a 4-

 20

bit binary representation of the key that was pressed. The following is a pin out for the

HT9170B:

Figure 14. HT9170B Pin Out

This is a very versatile component and also offers many additional useful features.

One such feature is a data valid bit, which indicates when a valid DTMF signal is being

transmitted and has been successfully decoded. This was useful to distinguish between

consecutive button presses (which will be discussed in the software section). Another

useful feature of this component was the power down capability. Since the caller ID

circuit must remain on and constantly ready to decode a caller’s information, I was not

able to take advantage of the caller ID’s power down feature. With the DTMF decoder

on the other hand, I did take advantage of the power down available on the HT9170B.

Since the DTMF decoder only has to be active once a caller passes the caller ID check, I

was able to place the HT9170B in power down mode until it was needed.

 The DTMF decoder IC has an internal op amp which needs to be biased and fed

with the input DTMF signal. It also must be in non-inverting mode. This is the resulting

schematic of the circuit:

Figure 15. DTMF Decoder Circuit

 21

I utilized a resistor pack in an effort to obtain matched resistor values for accuracy.

D3…D0 represent the 4 bit binary representation of the decoded DTMF signals and DV

is the data valid bit. These 5 outputs (4 bit binary + 1 bit valid) are fed to the appropriate

ports of the Mega32. The representation of the standard 3 x 4 keypad is as follows:

Key D3…D0
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
* 1010
0 1011
1100

Table 6. DTMF Decoder Output

5.3. Software

I utilized the Atmel Mega32 microcontroller for this design. I took advantage of

the 8-bit timer 0, 3 data ports, and serial USART (universal synchronous and

asynchronous serial receiver and transmitter).

5.3.1. Timing

I set up timer 0 to produce an output compare match interrupt at 1ms intervals by

setting the clock prescalar to 64 and output compare register (OCR0) to 249. This

interrupt was used to decrement three time variables (t1, t2, t3) which kept a reference

time within the system for polling various components.

Variable Value Poll
t1 100 ms Caller ID
t2 20 ms DTMF Decoder
t3 30 ms Pushbuttons

Table 7. Timing Values

Every iteration through the main loop, the mcu is put into the idle state until an

internal interrupt occurs. This output compare match interrupt for timer 0 acts as the

interrupt that wakes the mcu up. Therefore, the mcu will go idle for approximately 1 ms

 22

every cycle through the loop, then execute some code, then return to idle state. This is

an effort to conserve processing power when it is not needed.

5.3.2. Serial Interface

As discussed earlier, the serial interface was used to simulate the caller ID data

transmission in the simulated phone network. Since the HT9032 caller identification

receiver IC serially transmits the CID data at 1200 baud, the serial interface on the

Mega32 was set up to reflect this baud speed by setting the UBRRH and UBRRL

registers. The formula to calculate the value for this control register is: 1
16

fosc −
⋅ Baud

.

Plugging in the correct values (fosc = 16 MHz, Baud = 1200), I obtained UBRRX = 832

(0x340). Splitting this value into the high and low control registers, I set up the USART

as follows:
UBRRL = 0x40; // Set baud rate to 1200 baud
UBRRH = 0x03;

 In the end, 1200 baud proved to be a little slow for testing purposes so I

ultimately set the baud rate to 9600 baud (UBRRL = 103). I thoroughly tested at both

speeds however.

 I set up the serial transmit and receive as interrupt driven routines in an effort to

avoid blocking. Because of the nature of this project, a transmit routine was not actually

necessary. In a real implementation without a simulated phone network, the serial

interface would only need a receive routine to receive the caller ID information.

However, in this simulated environment, I utilized the transmit routine to provide detailed

feedback to the user.

5.3.3. Caller ID Decoding

The serial receive interrupt routine would constantly poll the serial USART for

caller ID transmission. In the event that data is transmitted, a flag is set to signal the

successful receipt of a calling party’s information. The function get_CID() would

check for the successful receipt of caller data every 100 ms. Once received, the calling

party’s phone number is compared, digit by digit, to the preset access list. I decided to

store the access list in RAM rather than EEPROM because of the combination of two

 23

factors. First, the EEPROM has a limited write cycle lifetime and second, this is a

development environment. Since I was actively designing the system, I knew the

benefits of a non-volatile memory were not vital to testing. Also, since I would be

writing to the EEPROM over and over during development, this would diminish its

lifetime unnecessarily. In a production environment, writing this access-list to EEPROM

would make sense due to its non-volatile nature.

The access list is setup such that there are 5 possible authorized callers. The

caller’s phone number is compared to every possibility and once an error is encountered

in the current comparison, the check moves directly to the next authorized caller. This

checking method is a little more efficient and saves a little time, compared to comparing

through even after an error is detected. If the calling party fails authorization check, the

caller is automatically disconnected (by picking up the line and hanging up). In the event

that the caller is authorized, the line will go off-hook (pick up the call) and the DTMF

decoder is powered up and control is handed over to the decoder.

In the event that another caller tries calling in after a caller has already been

verified and the call is off-hook, a busy signal will be sent to the other caller. This is

reflected in the simulated system by transmitting the appropriate feedback to the user

over the serial interface.

5.3.4. DTMF Decoding

Once the caller passes the first level of security, the system would call the

function check_dtmf() every 20 ms to poll for button presses by the user. This

function would only be called once the caller is authorized, in an effort to optimize

processing power.

The following is a flow diagram of the system once the caller is verified:

 24

Figure 16. Flow Diagram

The output from the HT9170B DTMF decoder is used in this stage. As you can

see, there are three paths that the user can take in operating the system.

1. Pressing ‘*’ at any time automatically ends the call and disconnects the user,

returning primary control to the caller ID decoder and shutting down the DTMF

decoder.

2. If the user presses any digit 0 – 9, the password checker begins parsing the

password and comparing it against the accepted password. The user must press

‘#’ to terminate the password entry sequence. Once the user terminates the

password entry, the system will either unlock the door if the password is correct,

or disconnect the user if the password is incorrect. It is important to note that this

system does not allow another password attempt. The user must call back in to

attempt another password.

3. If the user presses ‘#’ without pressing any digits, they will enter user mode,

where they must first enter their password. After successfully entering the

password, the user can then choose to check the status of the system, lock the

door, or unlock the door.

5.3.5. Pushbuttons

 25

Since one of the goals of this project was automation, I incorporated pushbuttons

to allow the user to lock and unlock the door. Pressing the rightmost, red button locks the

system and the middle, green button unlocks the system. These pushbuttons are polled

every 30 ms and are independent of the rest of the system. This means that the system

operates fully simultaneously. A user can be connected checking the state of the system

while another user presses the lock button. The changes will be reflected to both users

and is fully concurrent.

6. Packaging
When I thought of this project, I wanted to design the system such that I would be

able to enclose it in a well-made package instead of on a circuit board with components

everywhere. I obtained an old corded phone and took out all the parts inside. With a

little help from the dremel, I was able to cut the casing perfectly to allow all of my

components including LEDs, power adaptor, power switch, PCB boards, speaker, and all

ICs necessary in the design.

The simulated phone system is completely enclosed within the receiver as shown

below. It contains the following components:

1. 3 x 4 keypad
2. Complete DTMF generator system
3. Speaker
4. RJ-11 connector

Figure 17. Packaged Simulated Phone System

The security system is completely enclosed in the accompanying base enclosure.

The package contains:

1. RJ-11 connector
2. Mega32 MCU
3. DTMF decoder circuit

 26

4. Power LED
5. System state LED (Locked/Unlocked)
6. Power adaptor
7. Power switch
8. Serial connector
9. Pushbuttons

The complete system is shown below:

Figure 18. Enclosed System

Figure 19. The Cell Phone Security System

7. Results
I was very satisfied with the results I obtained. I set out to design a system that

would decode caller ID information as well as DTMF signals from a phone line, and I

accomplished just that.

Despite the fact that I was not able to test on a real phone line, I was very

confident in the fact that my simulations mirrored a real phone line exactly. The DTMF

signals I generated were clean and virtually free of noise. I verified this by using the

oscilloscope to capture the signal generated and checking for noise spikes. Also, the

DTMF decoder circuit verified that the signals were genuine DTMF signals since they

 27

were able to be decoded. To be completely satisfied with the caller ID simulation, I ran

the serial communication at the rate of the HT9032 and encoded the information in the

way that a real phone line would. I ultimately changed that data packet to allow for

readability; however I did parse the data packet successfully at one point in the

simulation.

 The other aspect I was extremely pleased with was the packaging of the entire

system. I initially purchased the old phones with the intention of salvaging parts within it.

I ended up scrapping all of the parts inside the phone and using its casing as an enclosure

for my entire system. As you can see from figure 19, the complete system is enclosed

within the old phone with no loose components or wires needing connections. Even the

serial connector is part of the enclosure.

8. Conclusions
My cell phone security system was successful in meeting the goals I intended for

it. It allowed for a more convenient and automated form of security for a residential

setting. The user mode with system feedback proved to be a very useful feature that I

was very happy with.

The telephone system within the United States is a very complicated network.

Before this project, I was not aware of all the restrictions and FCC regulations placed on

interfacing with the phone line. They place a lot of effort into isolating their lines from

any users in order to protect their infrastructure. It is an understandable measure and they

go to great lengths to enforce these rules.

The principles that were utilized in this project were also very interesting. DTMF

is a very clever algorithm of transmitting data across the telephone line without much

signal degradation. The frequencies chosen for the DTMF system are also clever since

they prevent accidental generation from human voice. Caller ID is a relatively new

feature on phone systems. It was interesting to learn how well the data transmission

worked with the existing infrastructure. By transmitting the data between ring bursts, no

extra hardware or changes to the phone network had to be made, saving them the cost of

new hardware and gaining a valuable feature.

 28

The security system will hopefully fulfill its other primary goal which is to

influence a change within the market - a change towards a more convenient, responsive,

automated security system such as the cell phone security system.

 29

9. Appendix A – Glossary of terms
On-hook – When the phone line is not in use (idle) and any attached circuitry is draining

(ideally) no current.

Off-hook – When the phone line is actively in use (data being transmitted) and attached

devices are draining a non-zero amount of current.

DTMF – Dual tone multi-frequency. A standard for encoding data used for transmission

of messages over telephone networks.

Tip/Ring – The telephone network consists of two primary wires names “tip” and “ring.”

Conventionally, the positive (+) terminal is the tip side, while the negative (-)

terminal is the ring side. They are also colored green and red respectively.

FCC – Federal Communications Commission. The government agency that regulates

interstate and international communications either by radio, television, wire, satellite,

and cable.

 30

10. Appendix B – Complete DTMF Signal Catalog

1, 2

3, 4

5, 6

7, 8

 31

9, *

0, #

 32

11. Appendix C – DTMF Generator Code (dtmf.c)
#include <Mega32.h>
#include <delay.h>
#include <math.h> // for sine

#define begin {
#define end }
#define countMS 62 //ticks/mSec
#define maxkeys 12
//State machine state names
#define NoPush 1
#define MaybePush 2
#define Pushed 3
#define MaybeNoPush 4

unsigned long accumulator1 @0x2f0;
unsigned char highbyte1 @0x2f3; //the HIGH byte of accumulator1
unsigned long accumulator2 @0x2f4;
unsigned char highbyte2 @0x2f7; //the HIGH byte of accumulator2
unsigned long increment1; //increment for acc1 & acc2
unsigned long increment2;
char sineTable[256] @0x300; //need loc to avoid glitch
unsigned char butnum, flag;
unsigned int ref_time; // System Reference Time
unsigned char PushFlag; // Debounce Flag
unsigned char PushState; // For Debounce State Machine

// Increments corresponding to the DTMF frequencies:
// 697, 770, 852, 941, 1209, 1336, 1447 Hz
flash unsigned long inc[7] = {47897475, 52913997, 58548994, 64665028,
83081847, 91809221, 99437083};

/*key pad scan table - 'key' values (3x4 keypad)
1-0xee 2-0xed 3-0xeb
4-0xde 5-0xdd 6-0xdb
7-0xbe 8-0xbd 9-0xbb
*-0x7e 0-0x7d #-ox7b */
flash unsigned char keytbl[maxkeys]={0xee, 0xed, 0xeb, 0xde, 0xdd, 0xdb,
0xbe, 0xbd, 0xbb, 0x7e, 0x7d, 0x7b};

interrupt [TIM0_OVF] void sgen(void)
begin
 accumulator1 += increment1;
 accumulator2 += increment2;
 OCR0 = 128 + sineTable[highbyte1] + sineTable[highbyte2];
end

// Timer 1 Compare Interrupt - 1ms
interrupt [TIM1_COMPA] void timer1_comp_isr(void)
begin
 ref_time++;
end

void debounce(void)
begin
 unsigned char key;

 33

//get lower nibble

 DDRC = 0x0F;
 PORTC = 0xF0;
 delay_us(5);
 key = PINC;

 //get upper nibble
 DDRC = 0xF0;
 PORTC = 0x0F;
 delay_us(5);
 key = key | PINC;

 switch(PushState)
 begin
 case NoPush:
 if (key != 0xFF) PushState = MaybePush;
 else PushState = NoPush;
 break;
 case MaybePush:
 if (key != 0xFF)
 begin
 for (butnum = 0; butnum < maxkeys; butnum++)
 begin
 if (keytbl[butnum] == key) break;
 end
 if (butnum == maxkeys) butnum = 0;
 else butnum++; //adjust by one

 PushState = Pushed;
 PushFlag = 1;
 end
 else PushState = NoPush;
 break;
 case Pushed:
 PORTD = ~butnum;

 if(flag == 0)
 begin
 flag = 1;
 //phase lock the sine gen and timer
 accumulator1 = 0;
 accumulator2 = 0;

 // Setup increment values by row/column
 if((butnum == 1) || (butnum == 2) || (butnum == 3))
 increment1 = inc[0]; // 697 Hz row
 else if((butnum == 4) || (butnum == 5) || (butnum
== 6))
 increment1 = inc[1]; // 770 Hz row
 else if((butnum == 7) || (butnum == 8) || (butnum
== 9))
 increment1 = inc[2]; // 852 Hz row
 else
 increment1 = inc[3]; // 941 Hz row

 34

 if((butnum == 1) || (butnum == 4) || (butnum == 7)
|| (butnum == 10))
 increment2 = inc[4]; // 1209 Hz column
 else if((butnum == 2) || (butnum == 5) || (butnum
== 8) || (butnum == 11))
 increment2 = inc[5]; // 1336 Hz column
 else
 increment2 = inc[6]; // 1477 Hz column

 TCNT0 = 0;
 OCR0 = 0;
 // turn on fast pwm
 // clear on compare match
 // CLK sel - CLK (no prescalar)
 TCCR0 = 0b01101001;
 end

 if (key != 0xFF) PushState = Pushed;
 else PushState = MaybeNoPush;
 break;
 case MaybeNoPush:
 PORTD = 0xFF;
 TCCR0 = 0b00000001;
 flag = 0;
 if (key != 0xFF) PushState = Pushed;
 else
 begin
 PushState = NoPush;
 PushFlag = 0;
 end
 break;
 end
end

void initialize(void)
begin
 // Setup Port(s)
 DDRD = 0xFF;
 DDRB = 0xFF;
 DDRA = 0x00;

 // Turn off ADC
 ADCSRA = 0x00;

 // Timer 0 Control Register - CLK (no prescaling)
 TCCR0 = 0b00000001;

 // Timer 1 Control Registers
 TCCR1A = 0x00; // Normal Operation
 TCCR1B = 0b00001011; // CLK / 64
 OCR1A = 249; // 250 * (64/16e6) = 1 sec
 TCNT1 = 0; // Initialize counter to 0

 // Turn on Timer0 Overflow & Timer1 Compare on Match Interrupt
 TIMSK = 0b00010001;

 // Set up initial Debounce States

 35

 PushFlag = 0; // no button push
 PushState = NoPush; // init the state machine

 ref_time = 0; // Init system reference time
end

void main(void)
begin
 unsigned int i;

 initialize();
 i = 0;
 PORTD = 0xFF;
 flag = 0;

 for (i = 0; i < 256; i++)
 begin
 sineTable[i] = (char)(63.5 * sin(6.283*((float)i)/256.0)) ;
 end

 // Enable Interrupts
 #asm("sei");

 while(1)
 begin
 PORTD = ~PINA;
 // Poll keypad every 20 ms
 if(ref_time == 20)
 begin
 debounce();
 ref_time = 0;
 end
 end
end

 36

12. Appendix D – Security System Code (security.c)
// Cell Phone Security System
// Written by Jason Chiang - 2006
// For Masters of Engineering Design Project 2006
// Project Advisor - Bruce Land

#include <Mega32.h>
#include <stdio.h>

#define begin {
#define end }
#define POLL_USART 100 // How often to poll the USART
#define POLL_DTMF 20 // How often to poll the DTMF
#define POLL_BUTTONS 30
// States for the system
#define UNLOCKED 0
#define LOCKED 1
// States for DTMF button push
#define NOPUSH 2
#define MAYBEPUSH 3
#define PUSHED 4
#define MAYBENOPUSH 5
// Modes of operation
#define REGULAR 6
#define SPECIAL 7

// Global Variables
unsigned char t1, t2, t3; // Time in system (1 ms base)
unsigned char off_hook; // Is phone off-hook?
unsigned char state; // Keeps track of the state of the system
unsigned char p[8] = {1,2,3,4,5,6,7,8};
unsigned char p_index @0x2AD; // Index within the array for traversal
unsigned char terminator; // # (terminator) key was pressed
unsigned char p_error; // Error in password flag
unsigned char PushFlag; // Debounce Flag
unsigned char PushState; // For Debounce State Machine
unsigned char temp @0x2AB; // Temp variable used by some methods
unsigned char mode @0x2AC; // Regular mode or User Mode

// Access List for CID
unsigned char al[5][11]; // Stores the phone numbers of callers
with permission

// RXC ISR variables
unsigned char r_index; // Current index in the string
unsigned char r_buffer[11]; // The input string
unsigned char r_ready; // Flag for receive done
unsigned char r_char; // Current character

//**
// Timer0 Compare on Match ISR
interrupt [TIM0_COMP] void timer0_overflow(void)
begin
 if(t1 > 0) t1--;
 if(t2 > 0) t2--;
 if(t3 > 0) t3--;

 37

end

//**
// UART character-ready ISR
interrupt [USART_RXC] void uart_rec(void)
begin
 r_char = UDR; // get a character from the UDR register
 UDR = r_char; // Echo it back to hyperterm

 // Build the input string, if it's not carriage return
 if (r_char != '\r') r_buffer[r_index++] = r_char;
 else
 begin
 putchar('\n'); // use putchar to avoid overwrite
 r_buffer[r_index] = 0x00; // zero terminate
 r_ready = 1; // signal cmd processor
 UCSRB.7 = 0; // stop rec ISR
 end
end

void initialize(void)
begin
 //--------------Setup Ports-------------------------
 DDRA = 0x00; // Pushbuttons for manual Lock/Unlock
 DDRB = 0xFF; // PORTB Output to LEDs for status
 //DDRC = 0x60; // PORTC I/O from DTMF decoder
 DDRC = 0b01110000;

 //--------------Setup USART Registers---------------
 UCSRB = 0x18; // Enable TX & RX ISRs
 UBRRL = 103; // Set baud rate to 9600 baud
 /*UBRRL = 0x40; // Set baud rate to 1200 baud
 UBRRH = 0x03;*/

 //--------------Setup Timer Registers---------------
 TCCR0 = 0b00001011; // CLK/64 & Clr-On-Match
 OCR0 = 249; // (64/CLK) * 250 = 1 mSec
 TIMSK = 2; // turn on timer 0 cmp-match ISR

 //--------------Set some initial values-------------
 t1 = POLL_USART; // Poll the USART every 100 ms
 t2 = POLL_DTMF; // Set t1 to POLL_DTMF for 20 ms poll
 t3 = POLL_BUTTONS; // Poll the pushbuttons every 30 ms
 off_hook = 0; // Phone line is NOT off hook initially
 state = LOCKED; // Initially locked
 p_index = 0; // Index within password array
 terminator = 0; // Terminator was not pushed initially
 p_error = 0; // No error in password entry, yet
 PushFlag = 0; // No button push
 PushState = NOPUSH; // No button push state
 r_ready = 0; // Recieve not complete
 mode = REGULAR; // Start in regular mode - Cannot query system
 temp = 0; // Initial temp value

 PORTB = 0xFF; // Initially
 PORTC.5 = 1; // Powerdown DTMF decoder initially

 38

 // Init some random callers
 sprintf(al[0],"5163192579");
 sprintf(al[1],"6071234567");
 sprintf(al[2],"5550000000");
 sprintf(al[3],"0000000000");
 sprintf(al[4],"0000000000");

 #asm("sei"); // Fire up those interrupts
end

// Sets the RCX interrupt
void pollUSART(void)
begin
 r_ready = 0; // Receive is not yet complete
 r_index = 0; // Set index of received string to 0
 UCSRB.7 = 1; // Enable the RX Complete Interrupt
end

// Received the CID packet information, decodes it, and verifies user
void get_CID(void)
begin
 unsigned char i, j;
 unsigned char row_error, error;

 row_error = 0; // No errors in the row, yet
 error = 0; // No errors verifying the user, yet
 t1 = POLL_USART; // Reset function timer

 if((r_ready == 1) && (off_hook == 1))
 begin
 putsf("\r<!>Busy Signal<!>\r\n");
 pollUSART();
 end
 else if(r_ready == 1)
 begin
 putsf("\r<SYSTEM> Call Acknowledged, Checking ID...\r");
 // Traverse access list and verify user
 for(i = 0; i < 5; i++) // Up to 5 entries in access list
 begin

// Traverse each digit of phone number or row i
 for(j = 0; j < 11; j++)
 begin

// Once it encounters a mismatch, break
 if(r_buffer[j] != al[i][j])
 begin
 row_error = 1;
 break;
 end
 end
 // No error in row i - verified! So break
 if(row_error == 0)
 begin
 error = 0;
 break;
 end
 else if((row_error == 1) && (i == 4)) error = 1;

 39

 row_error = 0; // Reset the row
 end

 if(error == 1)
 begin
 putsf("\r<SYSTEM> UNAUTHORIZED USER - Caller
Disconnected\r\n\n");
 PORTC.5 = 1;
 end
 else
 begin
 printf("\r<SYSTEM> User Authenticated -
 %s\r\n",al[i]);
 printf("\r<SYSTEM> Turn on DTMF Decoder & wait for
password\r\n\n");
 off_hook = 1;
 PORTC.5 = 0;
 end
 pollUSART();
 end
end

// Sets the state of the security system based on paramter passed in
void setState(char s)
begin
 if(s == LOCKED)
 begin
 state = LOCKED;
 PORTB = 0xFD;
 end
 else
 begin
 state = UNLOCKED;
 PORTB = 0x7F;
 end
end

// Helper method returns the state of the system - Locked/Unlocked
char getState(void)
begin
 return(state);
end

// Checks the DTMF decoder every 'POLL_DTMF' ms
// PINC0..3 = Binary value of digit
// PINC.7 = Valid bit
void check_dtmf(void)
begin
 unsigned char key;

 key = PINC & 0x0F; // Get lower byte (digit that was pushed)

 switch(PushState)
 begin
 case NOPUSH:
 if(PINC.7 == 1) PushState = MAYBEPUSH;
 else PushState = NOPUSH;

 40

 break;
 case MAYBEPUSH:
 if((key != 0x00) && (PINC.7 == 1)) // ... AND valid
 begin

// Increment index in pass array
 if(PushFlag == 0) p_index++;

 // The following is to distinguish between regular and user mode
 // In user mode, the user and query the state of the system
 // User enters User Mode by just pressing # at the password entry
 if((p_index == 1) && (key == 12))
 begin
 terminator = 1;
 mode = SPECIAL;
 end
 else if(key == 12)
 begin
 if((p_index == 9) && (p_error == 0))
putsf("<SYSTEM> Password Verified\r");
 else putsf("<SYSTEM> Password Incorrect -
Caller Disconnect\r\n");
 terminator = 1;
 end

 PushState = PUSHED;
 PushFlag = 1;
 end
 else PushState = NOPUSH;
 break;
 case PUSHED:
 if((key == p[(p_index - 1)]) && (key != 12))

p_error = 0;
 else if(key != 12) p_error = 1;

 if((key != 0x00) && (PINC.7 == 1))

PushState = PUSHED;
 else PushState = MAYBENOPUSH;
 break;
 case MAYBENOPUSH:
 if((key != 0x00) && (PINC.7 == 1))PushState = PUSHED;
 else
 begin
 PushState = NOPUSH;
 PushFlag = 0;
 end
 break;
 end
end

void getKeyPress(void)
begin
 unsigned char key;

 key = PINC & 0x0F; // Get lower byte (digit that was pushed)

 switch(PushState)
 begin

 41

 case NOPUSH:
 if(PINC.7 == 1) PushState = MAYBEPUSH;
 else PushState = NOPUSH;
 break;
 case MAYBEPUSH:
 if((key != 0x00) && (PINC.7 == 1)) // ... AND valid
 begin
 PushState = PUSHED;

 if(key == 0x01)
 begin
 if(getState() == LOCKED) putsf("<SYSTEM>
System is LOCKED\r");
 if(getState() == UNLOCKED)
putsf("<SYSTEM> System is UNLOCKED\r");

 end
 else if(key == 0x02) setState(LOCKED);

 else if(key == 0x03) setState(UNLOCKED);
 else if(key == 0x0B) // Disconnect
 begin
 putsf("<SYSTEM> User Disconnected\r\n");
 p_index = 0; // Reset password index
 p_error = 0;// Reset password error flag

 terminator = 0;// Reset terminator flag
 mode = REGULAR;// Back to regular mode
 off_hook = 0;// End the call - hookswitch
control
 temp = 0; // Reset the temp

 end
 else putsf("<SYSTEM> Unknown Command\r\n");
 end
 else PushState = NOPUSH;
 break;
 case PUSHED:
 if((key != 0x00) && (PINC.7 == 1)) PushState =
PUSHED;
 else PushState = MAYBENOPUSH;
 break;
 case MAYBENOPUSH:
 if((key != 0x00) && (PINC.7 == 1)) PushState =
PUSHED;
 else PushState = NOPUSH;
 break;
 end // end switch
end

void main(void)
begin
 initialize(); // Initialize some stuff

 // Initial "splash-screen"
 putsf("\r\n _________________________________\r");
 putsf("| Welcome to Mobile Security v1.0 |\r");
 putsf("| by Jason Chiang - 2006 |\r");

 42

 putsf(" ---------------------------------\r\n");

 pollUSART(); // Start polling USART
 setState(LOCKED); // System starts out locked

 while(1)
 begin
 MCUCR = 0b10000000; // Enable sleep mode
 #asm("sleep"); // Sleep (idle) - Wakes up every 100 ms
 MCUCR = 0b00000000; // Disable sleep mode

 // Poll CID every POLL_USART ms (100 ms)
 if(t1 == 0) get_CID(); // Poll for the caller ID

 // Poll DTMF Decoder every POLL_DTMF ms (20 ms) only if
off_hook
 if((t2 == 0) && (off_hook == 1))
 begin
 // Caller passed Caller ID check, phone is now off-
hook & active
 t2 = POLL_DTMF;
 if(mode == REGULAR)
 begin
 if((terminator == 0)) check_dtmf();// Not yet hit '#'
 else if(terminator == 1)
 begin
 // In regular mode, the user successfully
unlocked the door
 if((p_error == 0) && (p_index == 9) && (mode ==
REGULAR))
 begin
 setState(UNLOCKED);
 end

 p_index = 0; // Reset password index
 p_error = 0; // Reset password error flag
 terminator = 0; // Reset terminator flag
 mode = REGULAR; // Back to regular mode
 off_hook = 0; // End the call -
hookswitch control
 temp = 0;
 end //end else if(terminator == 1)
 end
 else if(mode == SPECIAL)
 begin
 if(temp == 0)
 begin
 putsf("\r\n<SYSTEM> Special User Mode\r");
 putsf("<SYSTEM> Waiting for password...\r");

 temp = 1; // Disable printing this again
 terminator = 0;// Reset terminator for password
 p_index = 0;// Reset the password index to 0
 p_error = 0;// Reset errors in password entry
 end
 else
 begin

 43

 if((terminator == 0)) check_dtmf(); // Not yet
hit '#'
 else
 begin
 // In special mode, the user successfully
entered the password
 // Now prompt them for what to query/do
 if((p_error == 0) && (p_index == 9))
 begin
 getKeyPress();
 end // end if((p_error == 0) && (p_index
== 9))
 else
 begin
 p_index = 0;// Reset password index
 p_error = 0;// Reset password error
flag
 terminator = 0;// Reset terminator
 mode = REGULAR;// Back to regular
 off_hook = 0;// End the call -
hookswitch control
 temp = 0; // Reset the display
 end
 end // end else
 end // end !if(temp == 0)
 end
 end // end if(t2 == 0)

 // Poll the manual override buttons every POLL_BUTTONS ms
(30 ms)
 if(t3 == 0)
 begin
 t3 = POLL_BUTTONS;
 if(~PINA.0 == 1) setState(LOCKED);
 if(~PINA.1 == 1) setState(UNLOCKED);
 end
 end
end

