Quiz Lockout, Scoreboard, and Timer System Using Microcontollers

A Design Project Report
Presented to the Engineering Division of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical and Computer Engineering

by
Richard J. D. West ’05
2006 Master of Engineering Candidate
Electrical and Computer Engineering

Project Advisor: Bruce R. Land

Degree Date: May, 2006

Richard J. D. West ’05 MEng Design Project

Abstract

The goal of this Master of Engineering design project was to build a control and scoring system for high school
quiz bowls. The system consists of a moderator unit and player units which ensures that only one of eight
players may buzz-in to answer a question. A scoreboard and timer unit design is discussed which is flexible
enough for any style of competition. Since the printed circuit boards are being fabricated as this report
goes to print, no field tests of the complete system have been conducted. However, individual components
have been tested, and additional work on the project will continue after this report is printed. Please
visit http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPR0OJ/2005t02006/rw88/

for complete and uptodate documentation, source code, schematics, and layouts in full color.

Dedication

This design project is dedicated to the members of the Colchester High School Scholars’ Bowl team past,
present, and future. May we continue to compete strong and have fun doing it. Mr. Devino and Mr.
Desrosiers, thank you for a great four years of competition. Hopefully this system will last longer than the
old one did.

— Richard J. D. West, Colchester High School Class of 2002

Report Approved by:
Project Advisor: Date:

Richard J. D. West ’05 MEng Design Project

Executive Summary

High school quiz bowls are common around the nation. In the state of Vermont, the quiz bowl equivalent
is the Vermont-NEA Scholars’ Bowl. While the heart of any Scholars’ Bowl match is the students, the
technological heart is the control/lockout system. The lockout system ensures that only one student is able
to buzz-in to answer a question but there exists an equal opportunity for all the students. Several commercial
lockout systems exist, but they are fairly expensive.

The goal of this Master of Engineering design project is to design a complete lockout system and score-
board/timer system suitable for use in a Scholars’ Bowl match. This system will be donated to the Colchester
High School Scholars’ Bowl team for use in their practices and matches. While the design aspects of the
project are complete, delays fabricating the printed circuit boards mean that the project will not be com-
plete by the time this report goes to print. Field tests of the complete system have not be conducted, but
individual components have been successfully tested. Full testing and finishing touches will continue af-
ter this report is printed. Please visit http://instructl.cit.cornell.edu/courses/eceprojectsland/
STUDENTPR0J/2005t02006/rw88/ for complete and uptodate documentation, source code, schematics, and

layouts in full color.

Richard J. D. West 05

MEng Design Project

Contents

Abstract

Dedication

Executive Summary

1 Introduction
2 Moderator and Player Units
2.1 High-level Design e e e e e e e
2.2 Software Design e e e e e e e
2.3 Hardware Design e
3 Scoreboard and Timer Unit with Remote Control
3.1 High-level Design e e
3.2 Software Design L e
3.2.1 Binary Coded Decimal (BCD) Arithmetic
3.2.2 RC5 Infrared Remote Control Protocol
3.2.3 Inter-Microcontroller Communication
3.3 Hardware Design e e e e
4 Testing
5 Conclusion
6 Acknowledgements
References

A Complete Source Code

A.1 ATmega32 Source for the Moderator & Player Units
A.2 ATtiny28(L) Assembly for the Remote Control Unit
A.3 ATmega32 Source for the Scoreboard & Timer Unit
A4 ATtiny26(L) Source for the Scoreboard & Timer Unit

Schematics

B.1 Moderator and Player Units L

B.2 Remote Control for Scoreboard and Timer Unit

B.3 Scoreboard and Timer Unit 0 e e e e e
B.3.1 Revisions e e e e e e e e e e e e

Printed Circuit Board (PCB) Layouts
C.1 Moderator and Player Units and the Remote Control
C.2 Scoreboard and Timer Unit L e

List of Figures

A commercially available lockout system kit from qkits.com.
High level view of the moderator and player units.
Hardware setups for (a) an active-low pushbutton and (b) an active-low LED.
The RC5 infrared protocol frame. From [7, 8].. L.
Photos of the first version of the scoreboard and timer unit.
The author surrounded by equipment for testing purposes. Photo courtesy of Bruce Land. . .

O Ul W N =

14

15

15

Richard J. D. West ’05 MEng Design Project

List of Tables

1

2

Equivalent means to encode decimal values using binary, unpacked BCD, and packed BCD.

All the non-decimal values are expressed in hexadecimal for convenience. Adapted from [5]. . 10
Decimal equivalence of unsigned, sign-magnitude, and tens-complement packed BCD and their
ranges. Adapted from [5]. Lo 11

List of Source Code Listings

=W N =

Psuedocode for handling players buzzing-in. oo 0 0oL 7
Psuedocode for handling moderator’s buttons. oo oL 7
Psuedocode for BCD arithmetic. Adapted from [5,6]. 10

Pseudocode for Twos- and Tens-complement. Tens-complement pseudocode adapted from [6] 11

Richard J. D. West ’05 MEng Design Project

1 Introduction

High school quiz bowls are common around the nation. In the state of Vermont, the quiz bowl equivalent
is the Vermont-NEA Scholars’” Bowl. Scholars’ Bowl has grown over its twenty-two years of competition to
include thirty-three teams from across Vermont and parts of New Hampshire [1]. While some of these teams
are traditional powerhouses, every year presents a completely new competition with a completely new set of
strong teams.

While the heart of any Scholars’ Bowl match are the students, the technological heart is the lockout
system. The lockout system ensures that only one student is able to buzz-in to answer a questions but there
exists an equal opportunity for all the students. Several commercial lockout systems exist, but they are fairly
expensive. An inexpensive alternative is the minikit shown in figure 1. This minikit is an analogue lockout
system for four players and a moderator gathered around a table. Of course, this inexpensive alternative is

not suitable for competition on the scale of Scholars’ Bowl.

(a) The minikit. (b) The finished product.

Figure 1: A commercially available lockout system kit from gkits.com.

The goal of this Master of Engineering design project is to design a lockout system capable of meeting
the demands of a Scholars’ Bowl match. The lockout system consists of the moderator and player units
which is presented in section 2. In addition to the moderator and player units, a scoreboard and timer unit
design is presented in section 3. While neither of these units have been completed due to fabrication delays,
many aspects of the hardware and software have successfully been tested as discussed in section 4.

2 Moderator and Player Units

In a Scholars’ Bowl match, there are two teams of four players each [1]. Each player has a buzzer with which
they may communicate their desire to answer a question to the moderator’s unit. The moderator’s unit
must ensure that only the first player to buzz-in is granted the right to answer the question. This right is
indicated by illuminating the player’s buzzer, locking-out the other players, and sounding an audible tone.
Once the player has been recognized by the moderator, the player has five seconds in which to answer the
question [1]. When the five seconds has elapsed, another audible tone is produced. The moderator then

resets the lockout and proceeds to allow other players to buzz-in or onto another question.

2.1 High-level Design

The high-level structure of the moderator and player units can be seen in figure 2. Each player has a button
(buzzer) which is connected to a player unit shared by two players. There are four player units in total which

Richard J. D. West ’05 MEng Design Project

are connected to the moderator unit. Typically, each player would have their own unit, but an eight unit
arrangement takes more time to setup and has more cords to trip over. By grouping two players together,

the number of cords is halved with little impact on the players themselves.

red tea m green team _l
. 0 ®

T AN S/

A%%
T

moderator unit

Figure 2: High level view of the moderator and player units.

Both the players and the moderator must be able to ascertain the state-of-play at all times during a
match. Therefore, the moderator and player units must efficiently convey as much information as possible.
Information such as the amount of time remaining to answer a question, the state of the lockout, and who has
buzzed-in are especially important. As a result, both the moderator unit and the player units illuminate to
indicate someone has buzzed in. The time remaining to answer a question is displayed both on the moderator

unit and on a peripheral board for the benefit of the players.

2.2 Software Design

Atmel’s ATmegaXX4 series of microcontrollers’ were originally going to be used as the heart of the modera-
tor’s unit. The ATmegaXX4 series has configurable external interrupts on every I/O pin making it ideal [2].
Enabling external interrupts on the pins connected to the players’ buzzer would ensure only one player can
be granted the right to answer the question. Unfortunately, the ATmegaXX4 series of microcontrollers had
some production problems which delayed distribution [3]. As a result of this delay, the planned ATmegaXX4
had to be replaced by an ATmega322.

Since the ATmega32 does not have external interrupt support on every pin [4], the pins connected to the
players’ buzzer have to be polled in a tight loop. The polling loop must be as tight as possible to minimize the
probability that two players can buzz-in during the same iteration through the loop. During each iteration,

IThe ATmegaXX4 series consists of the ATmegal64, ATmega324, and the ATmega644. At the time of writing this report,
only the ATmega644 is in production [3].

2The pin configurations for the ATmegal6, ATmega32, ATmega64, ATmegal64, ATmega324, and ATmega644 are identical
except for the ”alternative functions” available on each pin [3].

Richard J. D. West ’05 MEng Design Project

the polling loop must check the players’ buzzers only if the players are not locked-out, but the moderator’s
buttons must be checked regardless of the state of the lockout.

Whenever a button/buzzer is detected as pushed, appropriate action is taken. If the unit is not locked-out
and a player buzzes-in, the unit locks-out and illuminates the player’s light. Since the pins for the lights
alternate with the pins for the buzzers, a light can be illuminated by simply shifting the value of PINx
left by one and assigning the resulting value to PORTx (where x is either A or B). In order to attract the
moderator’s attention, a tone is sounded corresponding to which team the player is on. Since the player
must wait to be recognized by the moderator before answering the question, the moderator’s timer is cleared
to prevent a mistaken timeout. The pseudocode for this action is presented in listing 1.

if not locked-out
if a player buzzed-in
lockout unit
illuminate light
make sound
clear moderator’s timer

S T W N

Listing 1: Psuedocode for handling players buzzing-in.

The moderator may reset the lockout or the timer at any time. The timer can be set to either five or ten
seconds. Five seconds is the traditional amount of time to answer a question in Scholars’ Bowl, but a recent
addition to the rules allows for an additional five seconds (ten total) for mathematics questions requiring
calculations [1]. Whenever the timer expires, the unit locks-out and sounds an audible tone. To unlock the
unit, the reset button must be pressed, but the timer can be zeroed without locking-out the unit with the

zero seconds button. The pseudocode code for these actions is presented in listing 2.

if moderator has pressed a button
if reset
unlock unit
clear players’ lights
clear moderator’s timer
else if O seconds
clear moderator’s timer
else if 5 seconds
set moderator’s timer for 5 seconds
10 enable timeout audio
11 else if 10 seconds
12 set moderator’s timer for 10 seconds
13 enable timeout audio

© 00~ O U kW N

Listing 2: Psuedocode for handling moderator’s buttons.

The moderator’s timer is interrupt driven to ensure its accuracy is at least as accurate as the 16MHz
crystal oscillator. The crystal oscillator drives a 16-bit hardware timer (timerl) with a prescalar of sixty-
four. With this prescalar, each clock cycle takes one two-hundred-and-fifty-thousandths of a second or four
microseconds. A four microsecond clock cycle allows for many convenient interrupt periods using timerl1’s
Clear Timer on Compare Match (CTC) Mode and setting the Output Compare Register (OCR1A) [4].
Equation 2 shows how to compute the OCR1A value for a desired interrupt period. This interrupt period
needed to be small enough to allow for accurate timing but long enough to maintain a tight polling loop.

Richard J. D. West ’05 MEng Design Project

After some testing, an interrupt period of fifty milliseconds was chosen as a good balance.

focria etk (1)
2% Prex(1+ OCR1A)
1
Tocrma = H—— (2)
focria

All audio is produced using timer2’s waveform generator. Since timer2 can handle waveform generation
entirely in hardware, there is no additional interrupts required to control the waveform. This has the benefit
that the software only needs to enable and disable timer2 to toggle the audio on and off. The frequency of

the audio can be set using equation 2.

2.3 Hardware Design

The key to the hardware design for the moderator and player units is simplicity. For the moderator unit,
there are four main functions the hardware must serve: connecting to the player units, interacting with the
moderator, displaying the timer, and sounding audible tones. Since the tones are produced using a simple
piesoelectric buzzer, the only special connection required to the microcontroller is to one pin. The timer
needs to be two digits long since both five and ten seconds are valid amounts of time to answer questions.
Outputting both digits directly to a seven-segment display would require fourteen pins. The pin count for
the display can be reduced to only eight if two 4511 integrated circuits were used to drive the seven-segment
displays.

Interactions with both the moderator and the players require the largest number of pins. Each of the
eight players has a button input and a light output for a total of sixteen pins. The moderator only requires
four buttons: one to reset the lockout, one to zero the timer, one to set the timer for five seconds, and
one to set the timer for ten seconds. All of the lights and buttons are active-low devices (see figure 3).
The buttons would require pull-up resistors if the microcontroller does not have software-controlled internal
pull-up resistors. Resistors are required for the LEDs to limit the current to below their maximum operating
current.

The player units are connected to the moderator unit via RJ11-6 crossover cables. Each cable provides
power and ground to the player units as well as two lines for the buttons and two lines for the LEDs.
The LEDs are mounted on the player units whereas the buttons are connected to player unit via a small
miniboard. This miniboard is placed inside a piece of PVC piping that serves as a player’s buzzer and

contains a small capacitor to reduce mechanical switch bounce.

3 Scoreboard and Timer Unit with Remote Control

The thrill of competition comes from competing against your opponents and the clock. As the final seconds
of the match tick away, you look up at the scoreboard and reflect on the large deficit you just overcame.
You now hope your slim lead will not disappear with the next question. The battle continues until the final

buzzer sounds, and that is why you compete.

Richard J. D. West ’05 MEng Design Project

=
o —
c -
)
C1 2 o
O c |« LED =
7 | £
:L =] % =
— T b—
L]
(a) Active-low pushbutton. (b) Active-low LED.

Figure 3: Hardware setups for (a) an active-low pushbutton and (b) an active-low LED.

3.1 High-level Design

Scores in Scholars’ Bowl matches typically range between just under zero up to about four hundred points.
As a result, each team’s score needs to be represented by three digits. Each digit needs to be visible over a
wide variety of viewing angles and distances. The viewing distance increases as the digit size increases, so
the digits have to be fairly large to be seen over a reasonable distance. The hundreds digit doubles as the
negative since should a team’s score drops below zero during the course of a match.

A match consists of several rounds of varying lengths. The first round lasts ten minutes, and the second
round lasts nine minutes. Between the first and second rounds there is a quick rapid-fire round which last
sixty seconds for the receiving team and forty-five seconds for the opposing team [1]. Practice matches,
however, have an arbitrary time limit, so it is necessary to allow the round timer to be set to any arbitrary

time. Once this time expires, an audio tone sounds to signal the end of the round.

3.2 Software Design

Compared with the software design for the moderator and player units, the software design for the scoreboard
and timer unit is more complex. This complexity stems from the scale of the unit with its ten digits. It is
necessary to encode these ten digits efficiently using tens-complement, packed binary coded decimal (BCD;
see 3.2.1). Even using packed BCD, multiple microcontrollers are needed to produce all ten digits. These
microcontrollers need to communicate between each other (see 3.2.3). Further communication is needed

between the scorekeeper (see 3.2.2).

3.2.1 Binary Coded Decimal (BCD) Arithmetic

Binary Coded Decimal (BCD) is an alternative means to encode decimal values within a computer. Instead
of expressing decimal values as a sum of powers of two, BCD expresses each decimal digit separately as a

sum of powers of two. Table 1 shows how to equivalently express decimal digits in binary, unpacked BCD,

=W N =

Richard J. D. West ’05 MEng Design Project

and packed BCD. Packed BCD is more space efficient than unpacked BCD since two decimal digits are
represented per byte in packed BCD [5].

decimal | binary | unpacked BCD | packed BCD

0 0x00 0x0000 0x00
1 0x01 0x0001 0x01
2 0x02 0x0002 0x02
1 1 1 1

9 0x09 0x0009 0x09
10 0x0A 0x0100 0x10
11 0x0B 0x0101 0x11
1 1 1 1

15 0x0F 0x0105 0x15
16 0x10 0x0106 0x16
17 0x11 0x0107 0x17
. 1 . .

97 0x61 0x0907 0x97
98 0x62 0x0908 0x98
99 0x63 0x0909 0x99

Table 1: Equivalent means to encode decimal values using binary, unpacked BCD, and packed BCD. All the
non-decimal values are expressed in hexadecimal for convenience. Adapted from [5].

While packed BCD is space efficient, it is not necessarily computationally efficient since arithmetic has
to be performed per nibble as opposed to per byte. However, performing arithmetic per nibble has the
advantage that normalizing an invalid BCD digit also forces a carry. A BCD digit is invalid if its value is
between ten and fifteen as a result of binary arithmetic. If the arithmetic operation is addition, a BCD
digit is normalized by adding six. If the arithmetic operation is subtraction, a BCD digit is normalized by

subtracting six [6]. This process is summarized in Listing 3.

peform binary arithmetic on score
foreach bcd_digit in score
if bcd_digit is invalid
adjust bcd_digit by +/- 6 to normalize and force carry;

Listing 3: Psuedocode for BCD arithmetic. Adapted from [5, 6].

Through repeated subtractions, it is possible for a team’s score to become negative. Negative numbers
can be expressed in several ways using packed BCD just as in binary. In binary, negative numbers can be
expressed in sign-magnitude encoding or twos-complement encoding. Likewise, in packed BCD, negative
numbers can be expressed in sign-magnitude encoding or tens-complement encoding (see table 2). In sign-
magnitude encoding, the upper nibble is used as a sign-digit to encode if the number is positive (zero) or
negative (nine). This zero/nine sign encoding dramatically reduces the range of packed BCD values as well
as introduces the problem of a double zero-one positive, the other negative [5].

Both of these problems are addressed by tens-complement encoding which recenters the range of packed
BCD values around a single zero. Tens-complement arithmetic is completely analogous to twos-complement
arithmetic [5, 6]. In twos-complement arithmetic, negating a number is performed by subtracting it from the
largest unsigned binary value and adding one to the result. Since the largest unsigned binary value represents

negative one when signed, the negating process can be expressed as subtract the value from negative one and

10

© 00~ O U W N

Richard J. D. West 05

MEng Design Project

(a) Unsigned BCD

(b) Sign-magitude BCD

(c¢) Tens-complement BCD

packed BCD | decimal packed BCD | decimal packed BCD | decimal
00 0 00 0 00 0
01 1 01 1 01 1
02 2 02 2 02 2
! ! ! ! ! !
09 9 07 7 47 47
10 10 08 8 48 48
11 11 09 9 49 49
12 12 90 -0 50 -50
{ { 91 -1 ol -49
97 97 92 9 52 -48
98 98 1 1 + 4
99 99 97 7 97 -3
98 -8 98 -2
99 -9 99 -1
(d) Packed BCD ranges
Unsigned | Sign-magnitude | Tens-complement
. ., Min 0 -9 -50
2diglt \re | 99 9 49
. ., Min 0 -99 -500
S-diglt v | 999 99 499
A-digit Min 0 -999 -5000
Max 9999 999 4999

Table 2: Decimal equivalence of unsigned, sign-magnitude, and tens-complement packed BCD and their

ranges. Adapted from [5].

add one Thanks to a convenient, property of binary, two-complement simplifies to a single logic operation

and a single arithmetic operation. Similarly, in tens-complement arithmetic, negating a number is performed

by subtracting it from the largest unsigned BCD value (a nine in every digit position) and adding one to the

result. Unfortunately, there is no quick manner in which to compute the tens-complement of a BCD value.

Listing 4 shows the pseudocode for twos-complement and tens-complement.

twos-complement:

subtract from largest unsigned binary value and 1
i.e. y = ((0OxF..F - x) + 1);
or equivalently, invert bits and add 1

ie. y = ((Cx) + 1)
tens-complement:

subtract from largest unsigned BCD value and add 1

for 2-digits, 0x99; for 3-digits, 0x999; etc.
i.e. y = ((0x9..9 - x) + 1);

Listing 4: Pseudocode for Twos- and Tens-complement. Tens-complement pseudocode adapted from [6]

11

Richard J. D. West ’05 MEng Design Project

3.2.2 RCS5 Infrared Remote Control Protocol

To avoid running a large bundle of cable to the scoreboard and timer unit, control for the unit is by remote
control using Philips’ RC5 infrared remote control protocol. The RC5 protocol uses a bi-phase Manchester
code. In a Manchester code, a logical bit is split into two phases where the two phases are complements of
eachother. These complemented phases produce a falling edge for a logic zero and a rising edge for a logical
one. When transmitting a high phase, the RC5 protocol modulates the signal at 36kHz to distinguish it
from background infrared noise [7, 8, 9].

An RC5 command frame is fourteen bits long as shown in figure 4. The first two bits are start bits which
are always logical one. The third bit is a control bit which toggles each time a button is pressed. After the
control bit comes five system bits and six command bits. The address bits are used to distinguish commands
intended for different devices. The command bits contain one of sixty-four commands which vary by device
[7, 8, 9].

ISt1 |St2|C”|| S4| S3| S, | 5 |

I
H

wn

ol S5] 54 S4[S, 8 [S, |

|
o'

=

Figure 4: The RC5 infrared protocol frame. From [7, 8].

The software for both transmitting and receiving commands using an RC5 frame is derived from Atmel
AVR Application Note 415 [8] and 410 [7], respectively. As in [7], the project requires a 38 kHz modulated
signal to be decoded by the demodulator. The demodulated signal is read by the master ATmega32 which

forwards commands to two slave ATtiny26(L)s.

3.2.3 Inter-Microcontroller Communication

Communication between the ATmega32 and the two ATtiny26(L)s is very simple. The ATtiny26(L)s poll
the current command from the ATmega32. If the new command is different from the previous command,
a new command has been received and is executed. If not, a new command has not been received. This
polling scheme has the advantage that the inter-microcontroller communication is simply one-way without
any need for an acknowledgment. A disadvantage of this polling scheme is that a command that needs to be
executed more than once must be issued with an intervening null command. This null command can only
be issued by the ATmega32 if it receives two distinct commands from the remote control. Therefore, the

scorekeeper must press the same button multiple times for multiple responses.

3.3 Hardware Design

The first incarnation of the scoreboard and timer unit (figure 5) has several problems. The greatest of these
problems is power consumption. Each of the two-hundred-and-thirteen LEDs requires twenty milliamps of
current for a total current requirement of 4.26 amps. Neither the power supply nor the regulator were rated
to supply this much current. To supply the necessary current, a stand-alone, self-regulated power supply
was purchased which can source upto six amps at five volts.

In addition to the supply problems, long power and ground traces caused the supply voltages to drift
towards eachother due to resistive losses. These losses were significant enough that ICs connected to the far
end of the trace would receive only a brownout-level voltage. By rewiring and thickening the supply traces,

12

Richard J. D. West ’05 MEng Design Project

..
"
"
(LY
ALY
L
(LY

"
"
"

(c¢) A closeup of the timer. (d) A closeup of a team score.

Figure 5: Photos of the first version of the scoreboard and timer unit.

the resistivity and the length of the traces should decrease. Currently, the revised scoreboard and timer unit
is being fabricated, but the completed printed circuit board (PCB) will not arrive back from the fab until
after this report goes to printing.

While much of the hardware for the scoreboard and timer unit is pretty self-explanatory, generating a
negative sign for the scores requires some additional hardware. Each digit of the score is driven using a 4511.
The 4511 has an input (_BI.) which blanks the display when driven low by an inverted control signal from
the ATtiny26L. When the control signal (neg) is high, the 4511 blanks the display, and the control signal
drives the g-segment of the hundreds digit. The logic for both these operations can be found in equations 3
and 4.

_BI. = neg®neg (3)
Jout = Gin D ney (4)
Jout = Gin Dneyg

Jout = m (5)

This logic can easily be implemented using a 4001 Quad-NOR integrated circuit. Since NOR is an
inverting logic operation, equation 4 has to be modified slightly. The modified logic is shown in equation
5 and requires two NOR gate. The first NOR gate performs the inverted logic, and the second NOR gate

13

Richard J. D. West ’05 MEng Design Project

is wired as an inverter to produced the desired g,.¢ from equation 4. In total, only three of the four NOR

gates on the 4001 are actually used.

4 Testing

Since the printed circuit boards are still being fabricated, there has been no field testing of the complete
system. However, individual components have been tested using several ATSTK500 development boards
as seen in figure 6. Working with the ATSTK500 development boards allowed for software debugging and
tuning. Most aspects of the software were able to be tested in this manner. The notable exception was the

remote control code due to the poor signal quality of a 38kHz through a standard breadboard.

Figure 6: The author surrounded by equipment for testing purposes. Photo courtesy of Bruce Land.

Several aspects of the hardware design had to be constructed on a breadboard for testing purposes if
they could not be tested using the ATSTK500. The ATSTK500 has eight LEDs and eight normally-open
pushbuttons which can substitute for any LED or pushbutton throughout the design, but the ATSTKS500
does not have a piezo speaker or a seven-segment display. A piezo speakers and seven-segment displays
had to be wired on a breadboard in order to test both the audio and the functionality of the 4511 BCD to

seven-segment decoder.

14

Richard J. D. West ’05 MEng Design Project

5 Conclusion

While the project is currently incomplete as this report goes to printing, it will be completed before gradu-
ation 29 May 20063. The completed project will be fully packaged and field tested prior to being donated
to Colchester High School’s Scholars’ Bowl team. The Scholars’ Bowl season is over for the year, but this
project should be beneficial for the team for both competition and practices. Since practices are typically
attended by more than eight people (alumni and faculty love to join in), expanding the moderator unit to
allow for additional moderator and/or player units to be daisychained would allow for more players to have

a real buzzer when attending practices.

6 Acknowledgements
The author would like to acknowledge the following people and companies for their support with this project:

e Bruce Land for his support as advisor, boss, and friend.

e Advance Circuits for providing low cost, good quality PCB fabrication to students without massive
limitations to their designs. Please visit the Advance Circuits website at http://www.4pcb.com.

e Stanislav Ruev of Novarm for his technical support and for generously donating a full version of Dip-
Trace Professional PCB-Design Tool. Please visit the DipTrace website at http://www.diptrace.com.

3Please visit http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/2005t02006/rw88/ for complete
and uptodate documentation, source code, schematics, and layouts in full color.

15

Richard J. D. West ’05 MEng Design Project

References

[1] Vermont-NEA Scholars’ Bowl. http://members.aol.com/kcommo/vtsbowl/index.htm. Maintained by K.
Commo. Last updated 30 April 2006. Accessed 1 May 2006.

[2] Atmel Corporation. Atmel Megal64/324/644 Advance Information. 2953A-AVR-06/05.

[3] Atmel Corporation. http://www.atmel.com/. Maintained by Atmel Corporation. Last updated 26 April
2006. Accessed 1 May 2006.

[4] Atmel Corporation. Atmel Mega32(L) datasheet. 2503H-AVR-03/05.

[5] DIY Calculator: BCD Instructions. Available from http://www.diycalculator.com/docs/dload-bcd-
instructions.pdf. Accessed 1 May 2005.

[6] Jones on BCD Arithmetic. http://www.cs.uiowa.edu/ jones/bcd/bed.html. Maintained by D. W. Jones.
Last updated 2002. Accessed 1 May 2006.

[7] Atmel Corporation. AVR410: RC5 IR Remote Control Receiver. Rev. 1473B-AVR-05/02.
[8] Atmel Corporation. AVR415: RC5 IR Remote Control Transmitter. Rev. 2534A-AVR-05/03.

[9] SB-Projects: IR remote control: Philips RC-5. http://www.xs4all.nl/ sbp/knowledge/ir/rc5.htm. Main-
tained by S. Bergmans. Last updated 14 October 2005. Accessed 1 May 2006.

[10] Atmel Corporation. Atmel Tiny26(L) datasheet. Rev. 1477G-AVR~03/05.
[11] Atmel Corportaion. Atmel Tiny28(L) datasheet. Rev. 1062G-AVR-01/06.

16

OO0 U W =

Richard J. D. West 05

A Complete Source Code

Complete source code is available for download from http://instructl.cit.cornell.edu/courses/eceprojectsland/
STUDENTPR0J/2005t02006/rw88/code/ and is written using CodeVisionAVR. All of the source code is pub-
lished under the GNU General Public License. Please consult the above URL for any changes to the source

code since its publication in early May, 2006.

A.1 ATmega32 Source for the Moderator & Player Units

This source code is located at http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/

2005t02006/rw88/code/mod m32. c.

~
*

Richard West ’05

Master of Engine

From http://www.

This program is
modify it under
as published by
of the License,

This program is
but WITHOUT ANY
MERCHANTABILITY

You should have
along with this
Foundation, Inc.
02110-1301, USA.

DESCRIPTION:

EE R R S B R R BT N T R I R R R R R R R T RN R

*
~

#include <mega32.h>

2006 Master of Engineering Candidate
Electrical and Computer Engineering

ering Design Project

COPYRIGHT & LICENSE:
Copyright (C) 2006 Richard West

gnu.org/copyleft/gpl.html:

free software; you can redistribute it and/or
the terms of the GNU General Public License
the Free Software Foundation; either version 2
or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

received a copy of the GNU General Public License
program; if not, write to the Free Software
, 51 Franklin Street, Fifth Floor, Boston, MA

// audio definitions
#define NONE 0x00
#define TIME 0x01
#define TEAMA 0x02
#define TEAMB 0x03
#define PWM_OFF 0x00 // turn off pwm

#define PWM_ON Ox1
#define F_TIME Ox1

C // CTC with toggle on match
8 // 0x18 = 5000 Hz

#define F_TEAMA 0x31 // 0x31 = 2500 Hz
#define F_TEAMB 0x7C // 0x7C = 1000 Hz

// time definitions
#define STOP 0x00
#define RUN 0x01

signed char i, j;

unsigned char wait,
unsigned char locko
unsigned char audio

time, time_status;
ut;

3

interrupt [TIM1_COMPA] timl_compa_isr(void) {

if (0 < wait) wai

o=

17

MEng Design Project

Richard J. D. West 05

MEng Design Project

else if (RUN == time_status) {
// reset wait for another second and update time
wait = 20;
time--;
PORTC = time;
}
}

void main(void) {

// initialize timerl

TIMSK = 0x10; // enable timerl compareA interrupt
TCCR1B = 0x0B; // clear on match A, set prescalar to 64
OCR1A = 12500; // interrupt every 1/20 seconds

// initialize timer2 as HW PWM
TCCR2 = PWM_OFF;
OCR2 = F_TEAMA;

// initialize I/0

DDRA = 0x55; // buzzers on odds, lights on evens

PORTA = OxFF; // set pull-ups for buzzers and turn off lights
DDRB = 0x55; // buzzers on odds, lights on evens

PORTB = OxFF; // set pull-ups for buzzers and turn off lights
DDRC = OxFF; // all outputs for timer

PORTC = 0x00; // set time display to 00

DDRD = 0x80; // moderator buttons on 3..0, audio on 7
PORTD = OxOF; // pull-ups for buttons

// initialize variables

wait = 0x00;

time = 0x00;

time_status = STOP;

lockout = 0x00;

audio = NONE;

// enable interrupts
#asm("sei");

// start-up test

// cycle through team A
TCCR2 = PWM_ON;

0CR2 = F_TEAMA;

j = 0xBF;

PORTA = j;

for (i = 0; i < 4; i++) {
// wait 0.2 second
wait = 4;
while(0 '= wait);
TCCR2 = PWM_OFF;
j o o>>=2;
PORTA = j;
T
PORTA = OxFF;

// cycle through team B
TCCR2 = PWM_ON;
0CR2 F_TEAMB;
j 0xBF;
PORTB = j;
for (i = 0; i < 4; i++) {
// wait 0.2 second
wait = 4;
while(0 !'= wait);
TCCR2 = PWM_OFF;
] >>= 2;
PORTB = j;

}
PORTB = OxFF;

18

Richard J. D. West 05

MEng Design Project

// test time expired audio for 0.2 seconds
TCCR2 = PWM_ON;

0CR2 F_TIME;

wait 4;

while(0 !'= wait);

TCCR2 = PWM_OFF;
// done start-up test

while(1) {
// check timer
if ((0x00 == time) && (RUN == time_status)) {
time_status STOP;
lockout 0x01;
audio TIME;
}

// if not locked out, check the buzzers
if ('lockout) {
if (OxFF !'= PINA) {

// turn on light, lock out,
// and enable the audio
PORTA = PINA >> 1;
PORTC = 0x00;

time = 0x00;
time_status = STOP;

lockout = 0x01;

audio = TEAMA;

}
else if (OxFF != PINB) {

// turn on light, lock out,
// and enable the audio
PORTB = PINB >> 1;
PORTC = 0x00;

time = 0x00;
time_status = STOP;

lockout = 0x01;

audio = TEAMB;

}
}

// check moderator’s buttons
if (OxFF !'= PIND) {

if (0 == PIND.O) {
// reset lockout system
PORTA = OxFF;
PORTB = OxFF;
PORTC = 0x00;
lockout = 0x00;
time = 0x00;
time_status = STOP;
audio = NONE;

}

else if (0 == PIND.1) {
// zero timer
PORTC = 0x00;
wait = 0x00;
time = 0x00;
time_status = STOP;
audio = NONE;

}

else if (0 == PIND.2) {
// set timer for five seconds
PORTC = 0x05;
wait = 0x00;
time = 5;
time_status = RUN;

19

OOk WN -

Richard J. D. West 05

MEng Design Project

A.2 ATtiny28(L) Assembly for the

}

else if (0 == PIND.3) {

// set timer for ten seconds

0.2 seconds and turn audio off

PORTC = 0x10;
wait = 0x00;
time = 10;
time_status = RUN;
T
¥
// enable audio if needed
if (NONE !'= audio) {
if (TIME == audio) {
TCCR2 = PWM_ON;
0CR2 = F_TIME;
¥
else if (TEAMA == audio) {
TCCR2 = PWM_ON;
0CR2 = F_TEAMA;
}
else if (TEAMB == audio) {
TCCR2 = PWM_ON;
0CR2 = F_TEAMB;
T
audio = NONE;
// wait
wait = 4;
while(0 !'= wait);
TCCR2 = PWM_OFF;

.include <tn28def.inc>
5 3ok ok sk ok sk ok ok ok sk ok sk sk ok ok sk ok sk s ok sk s ok ok sk sk sk ok s ok sk sk sk s s ok sk ok sk s o sk s ok ok sk sk ok sk ok s ok sk o sk sk s ok sk sk ok sk sk ok sk sk ok ok sk sk ok sk ok s ok sk ok sk ok sk ok ok

3 ¥

i C
3k

onstants

Remote Control Unit

This source code is located at http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/code/remote.asm and is adapted from Atmel’s application note AVR415: RC5 IR Re-
mote Control Transmitter.

5 okokokokookook ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok

.equ
.equ

.equ
.equ
.equ

.equ
.equ
.equ
.equ
.equ
.equ

.equ

pulses = 266 - 32
numberofbits = 30
invPA2ovE = (1<<3)
activePA2ovf = (2<<3)
inactivePA2ovf = (3<<3)
noM0D =0
F38KHz_D25 = (2<<3) | 3
F38KHz_D33 = (3<<3) | 2
F38KHz_D50 = (5<<3) | 1
F38KHz_D67 = (3<<3) | 4
F38KHz_D75 = (2<<3) | 5
FAULT = OxFF

256 - pulses per bit half

2 * number of bits to transfer + 1

N

MODCR
MODCR
MODCR
MODCR
MODCR
MODCR

value
value
value
value
value
value

for
for
for
for
for
for

no output

38KHz
38KHz
38KHz
38KHz
38KHz

output,
output,
output,
output,
output,

25%
33%
50%
67%
75%

dutycycle
dutycycle
dutycycle
dutycycle
dutycycle

5 okokokokookosk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok

e

;* Register definitions

20

Richard J. D. West 05

e

5 okokokokookosk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok

.def select = RO ; Register to hold MSB of transmission
.def command = R1 ; Register to hold LSB of transmission
.def zero = R2 ; Register preset to zero

; - This line will generate a warning that R27 is already
; —— defined as XH. The warning can be ignored.
.def allhigh = R27 ; Register preset to OxFF

.def temp = R16 ; Temporary register

.def toggle = R17 ; Register to contain toggle bit value

.def toggle_mask = R18 ; Register to contain toggle mask

.def row_scan = R19 ; Scan value Row

.def row_saved = R20 ; Saved value Row

.def col_scan = R21 ; Scan value Col

.def col_saved = R22 ; Saved value Col

.def ptr = R23 ; Pointer value used with the lookup table

.def old_ptr = R24 ; Last lookup table pointer value (needed to calculate toggle bit)
.def keys = R25 ; Value used to count number of pressed keys

; -— This line will generate a warning that R26 is already
; —— defined as XL. The warning can be ignored.
.def bitnumb = R26 ; Register which contains the number of bits to be transfered

3 3K KoK ok o R ok ok ok ok ok o ok ok o K ok o o ok o o K ok o o K ok o ok ok o ok ok o ok o o ok ok ok o ok o o ok o o ok ok sk o ok ok o ok sk o sk ok o ok ok ok o ok o o o ok ok o k ok ok ok ok ok o k sk o ok ok ok ok
;%

;* Interrupt Vectors

;%

5 3ok ok sk ok sk ok ok ok sk ok sk sk ok ok sk ok sk s ok sk s ok ok sk sk sk ok s ok sk sk sk s s ok sk ok sk s o sk s ok ok sk sk ok sk ok s ok sk o sk sk s ok sk sk ok sk sk ok sk sk ok ok sk sk ok sk ok s ok sk ok sk ok sk ok ok

; .cseg
.org 0x0000
rjmp reset ; Reset vector

.org LLINTaddr ; Low level Interrupt Vector Address
rjmp send

.org O0VFOaddr
rjmp bitfinished

;*%kk*% RC5 Lookup Table;

e

;% Format of data should be in binary

;* 11XSSSSSCCCCCC11

;% Here the command word is shown as 0xC003 | (SYSCODE << 8) | (command << 2)

e

3 3Kk oK ok o koK ok ok ok ok o ok ok o K ok o o ok ok o ok o o K ok o ok o o ok ok o o ok ok o ok ok o o ok o ok ok ok o o 3k ok ok o ok o ok ok ok ok o K ok ok ok ok o ok ok ok ok ok ok ok ok ok K ok

.equ SCORE = 21 ; The system code for Scoreboard

lookup:

; Column O

.dw 0xC003 | (SCORE << 8) | (2 << 2) ; Start timer
.dw 0xC003 | (SCORE << 8) | (3 << 2) ; Stop timer

.dw 0xC003 | (SCORE << 8) | (4 << 2) ; Add 10 minutes
.dw 0xC003 | (SCORE << 8) | (5 << 2) ; Sub 10 minutes
.dw 0xC003 | (SCORE << 8) | (6 << 2) ; Add 1 minute
.dw 0xC003 | (SCORE << 8) | (7 << 2) ; Sub 1 minute
.dw 0xC003 | (SCORE << 8) | (1 << 2) ; Reset timer
.dw 0xC003 | (SCORE << 8) | (8 << 2) ; Add 10 seconds
; Column 1

.dw 0xC003 | (SCORE << 8) | (9 << 2) ; Sub 10 seconds
.dw 0xC003 | (SCORE << 8) | (10 << 2) ; Add 1 second

21

MEng Design Project

Richard J. D. West ’05 MEng Design Project

96 .dw 0xC003
97 .dw 0xC003
98 .dw 0xC003
99 .dw 0xC003
100 .dw 0xC003
101 .dw 0xC003

(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)

(11 << 2) ; Sub 1 second
(12 << 2) ; Save 0

(13 << 2) ; Load 0

(14 << 2) ; Save 1

(15 << 2) ; Load 1

(63 << 2) ; Test unit

103 ; Column 2
104 .dw 0xC003
105 .dw 0xC003
106 .dw 0xC003
107 .dw 0xC003
108 .dw 0xC003
109 .dw 0xC003
110 .dw 0xC003
111 .dw 0xC003

(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)
(SCORE << 8)

(20 << 2) ; Add 5 to A
(21 << 2) ; Sub 5 from A
(16 << 2) ; Zero A

(17 << 2) ; Add 1 to A
(18 << 2) ; Sub 1 from A
(36 << 2) ; Add 5 to B
(37 << 2) ; Sub 5 from B
(32 << 2) ; Zero B

113 ; Column 3
114 .dw 0xC003
115 .dw 0xC003

(SCORE << 8)
(SCORE << 8)

(33 << 2) ; Add 1 to B
(34 << 2) ; Sub 1 from B

I I
I I
116 .dw 0xC003 | (SCORE << 8) | (0 << 2) ; Ext 1
117 .dw 0xC003 | (SCORE << 8) | (0 << 2) ; Ext 2
118 .dw 0xC003 | (SCORE << 8) | (0 << 2) ; Ext 3
119 .dw 0xC003 | (SCORE << 8) | (0 << 2) ; Ext 4
120 .dw 0xC003 | (SCORE << 8) | (0 << 2) ; Ext b
121 .dw 0xC003 | (SCORE << 8) | (0 << 2) ; Ext 6
122
123
124 ;#%% Reset handler skkkkskskskskskskskokskokskokskokkokkkkihdhkkkkkkkokookdokdokdok ok kkk
125+
126 ;* Executed on reset
127+
128 jssksokskoksokskskkokokkok kbR koo ok ok sk kKK koo ok ko ko K kK
129
130 reset:
131
132 ;kx% Must set up Stack to be able to run in emulator..
133 ; 1di r16,0x5F+3*2 ; set up a three level deep stack
134 ; out 0x3d,r16
135
136 clr zero ; Initialize "zero" register
137 ser allhigh ; Initialize "allhigh" register
138 clr bitnumb ; Initialize bitcounter register
139
140 out DDRD,allhigh ; Set Port D as output
141
142 out PORTA,allhigh ; No IR output, all other PORTA pins pulled high
143 sbi PACR,PA2HC ; Enable high current driver
144
145 sbi ICR,TOIEO ; Enable Timer Overflow
146
147 1di temp,F38KHz_D50 ; Set up hardware modulator
148 out MODCR,temp
149
150 1di toggle_mask, Ob00100000 ; Bit 5 is the toggle bit
151
152
153 ;##% Main loop kbbb kkkohokkk Kook ok Kok
154 s *
155 ;* Code executed after each interrupt
156 ;*
TBT jssksskskkkdkk ok kR AR A A A K F KA A AAAAAAAAFA K KKK KK KK FHF KK
158
159 main_loop:
160 cli ; Disable interrrupts
161 tst bitnumb ; Is transmission finished
162 breq Pwdn_mode ; Transmission not complete
163 1di temp, (1<<PLUPB) | (1<<SE) ; Enable IDLE mode

22

Richard J. D. West ’05 MEng Design Project

164

165 rjmp pwdn_enable ; Enter IDLE mode

166

167 Pwdn_mode:

168 sbi ICR,LLIE ; Enable low level interrupt when transmission complete
169 1di temp, (1<<PLUPB) | (1<<SE)|(1<<SM) ; Enable PowerDown mode

170

171 pwdn_enable:

172 out MCUCS,temp

173

174 sei ; Enable interrupts

175 sleep ; Enter powerdown

176

177 rjmp main_loop ; Loop to top of main loop each interrupt

178

179

180 ;#%% Low level interrupt handler skikskskkkskiokkskkokskkokskkohskkiodok ok kodokkokk
181 ;=

182 ;% Executed on low level interrupt (key pressed, no transmission)

183 ;*

T84 jkskarskkokokskorkookdkokok ok ok ok ok kb ook sk ok ook ok kb ok o ook sk ok ook ok sk ko ook kb ook ok ko
185

186

187 send:

188 cbi ICR,LLIE ; Disable low level interrupt during transmission

189

190 ;#%% find_command kkskskkskkskskokskskokkok dokkok ok koo ko okokok dok ok k ok k kK
191 ;#

192 ;* Scans keyboard and stores the correct word to transfer in the

193 ;% R1:RO register pair.

194 =«

195 ;* Registers used : temp, row_scan, col_scan

196 ;* Flags used : C

197+

198 ;% Format:

199 ;= R1 RO

200 ;=

201 sk St St TO S4 S3 S2 S1 SO - C5 C4 C3 C2 C1 CO x1 x0

202 ;¢ == - -

203 H | | ISystem code | Command |Unused

204 ;% |

205 ;= | +- Toggle Bit

206 s * +o—m—- Start Bits

207 ;%

208 ;kkskoksokokotok ok ko sk sk ok ok sk ok ok sk ok ko sk ok ko sk kot ko ok ok o ko ok ok ook
209 1di keys,193 ; Set keys to 193, add (8*8-1) | OxFF = 0 for valid input
210 1di col_scan,l ; Initialize scan of first Column

211

212 cont_col_scan:

213 out DDRD,col_scan ; Set One Column to output, the rest tristated.
214 out PORTD,zero ; Write "0" to the output, tristate all other lines
215 nop

216 nop

217 in row_scan,PINB ; Read response from input pins

218

219 cpi row_scan,0xff ; Any key pressed?

220 brne key_pressed ; If yes then branch to count routine

221

222 subi keys,-8 ; if no keys pressed, add 8 to keys

223

224 ret_key_pressed:

225

226 out PORTD,allhigh ; Pull all input pins high

227 out DDRD,allhigh

228

229 1sl col_scan ; Check next line on the keyboard

230 brcc cont_col_scan ; If bit is not shifted through, continue scan
231

23

Richard J. D. West 05

MEng Design Project

1di ptr,fault ; Initialize to error value.

tst keys ; One, and only one zero should have been found in row scan.

brne ch_end ; If number of ones found != 63 then return with faulty ptr
£12:

inc ptr

lsr row_saved
brcs f12 ; until: ptr contains binary value of "row"

£13:
sbrc col_saved,0 ; test if 1lsb is one -> current column contains the pressed button
rjmp fcont ; If correct column, value calculated
subi ptr, -8 ; If not correct column, add 8 to pointer value
lsr col_saved ; Test next column
rjmp f13
fcont:

1di ZL,low(lookup)*2

1di ZH,high(lookup)*2

1sl ptr ; Adjust pointer value to compensate for byte/word wide addressing
add ZL,ptr ; Add pointer value to lookup table base address

adc ZH,zero

lpm ; Load low byte in transmission (last byte to transfer)
mov command,r0 ; Move low byte to correct storage position

inc ZL ; Select next byte in lookup table

lpm ; Load high byte in transmission (first byte to transfer)
cp old_ptr,ptr ; is it a new command?

breq same_ptr ; Do not invert togglebit if same command

eor toggle,toggle_mask ; Invert toggle bit

same_ptr:
bst toggle,5 ; Copy Toggle bit to T-flag
bld select,5 ; Insert Toggle bit into syscode byte from T-flag

5 kRt sk sk ok sk ko stk sk ok ko sk sk ok sk ko sk sk kok ko sk sk ok sk skokskskkok ko sk sk ok sk ko sk sk kb ki sk kb ko sk sk ok ok ko sk sk ok

s *

;¥ Code to start a transmit sequence

;% Transmits 14 bits, bit 1 in input command must be 1 to ensure

;% glitch free operation

;%

5 kRt sk sk ok sk ko stk sk ok ko sk sk ok sk ko sk sk kok ko sk sk ok sk skokskskkok ko sk sk ok sk ko sk sk kb ki sk kb ko sk sk ok ok ko sk sk ok
1di temp,inactivePA2ovf ; Ensure no output at start of transmission
out TCCRO,temp ; Inserts a dummy inactive period of 288*38KHz

; cycles at start of each transmission

1di bitnumb,numberofbits ; Initialize bitcounter

ch_end:
out DDRD,allhigh ; Set keyboard in "detect" mode
out PORTD,zero ; Restore passive scan pattern on keyboard

mov old_ptr,ptr ; Save ptr value,
ret ; Return from interrupt

5 skt sk ok ok ok sk ok ko ks ok ok sk ko sk sk ok sk s sk ok sk sk o sk sk sk sk s ok sk sk sk sk ok sk sk sk ok sk sk sk s ks sk sk sk sk ok sk sk o ok ok
e

;% Code to store away keypad data and find number of pressed keys in this column

3%

5 kRt sk sk ok sk ko stk sk ok ko sk sk ok sk ko sk sk kok ko sk sk ok sk skokskskkok ko sk sk ok sk ko sk sk kb ki sk kb ko sk sk ok ok ko sk sk ok

key_pressed:
mov col_saved,col_scan ; Store Column value

mov row_saved,row_scan ; Store Row value

cont_row_scan:

24

Richard J. D. West 05

sbrc row_scan,0 ; Bit 0 =1

inc keys ; Increase for each logical one found

lsr row_scan ; Rotate row value one plase to the left
brne cont_row_scan ; Continue until all one’s in row is gone

rjmp ret_key_pressed

sRkR GTAnSIMIT kokokkokok ok ok sk s ok ok ok ok sk ok s ok sk sk sk ok s ok sk ok o sk sk o sk s ke ok sk sk ok sk ok o ok sk o sk ok o ok ok
3%

;% Sends the complete syscode and command stored in the register pair
;* select:command.

e

5 3okt sk ok sk koo ok koo ok o ok sk s ok sk sk s ok sk sk koo s ks o sk o sk s ok o sk sk ok s ok sk s sk ok o ok

bitfinished:

dec Dbitnumb ; Decrease bitcounter
breq finished ; If all bits have been transmitted, end transmission

1di temp,pulses ; Reload timer
out TCNTO,temp

sbrc bitnumb,0 ; Is this the second half of this bit transfer?
rjmp firsthalf

1di temp,invPA2ovf ; If second half, Load Invert PA2 On Next Compare
rjmp intfin

finished:

sbic TCCRO,CS02 ; Was last interrupt longwait?
rjmp end_longwait ; Signal end of transmit

1di bitnumb,1 ; Load bitcounter to ensure correct operation

1di temp,207 ; Preload counter to give 50176 cycles delay

out TCNTO,temp ; The sending of the next byte will give an extra delay
; of 34566 cycles, giving a minimum of 53632 cycles between
; transmissions

1di temp,5 ; Set prescaler to CK/1024

rjmp intfin

end_longwait:

out TCCRO,zero ; Disable timer after command and longwait
; finished
in temp,PINB ; Check keybord for to ensure correct operation of toggle bit
cpi temp,OxFF
brne NotSetFault ; If keys pressed, proceed

1di old_ptr,fault ; If no keys pressed, load pointer with error value to ensure correct
; operation of the toggle bit

NotSetFault:

ret ; Return from interrupt, transmission complete

firsthalf:

1sl command ; Move output bit to carry
rol select

brcc outlow ; Next bit is a low value

1di temp,inactivePA2ovf ; Set next interval to output signal
rjmp intfin

outlow:

1di temp,activePA2ovf ; Set next interval to output no signal

intfin: ; Return from interrupt, not finished transmission

out TCCRO,temp ; Set moulator options/timer prescaler
ret

25

MEng Design Project

OO0 Utk W =

Richard J. D. West ’05 MEng Design Project

A.3 ATmega32 Source for the Scoreboard & Timer Unit

This source code is located at http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/code/sbm32.c. A portion of this source code is adapted from Atmel’s application note
AVR410: RC5 IR Remote Control Receiver.

~
*

Richard West ’05
2006 Master of Engineering Candidate
Electrical and Computer Engineering

Master of Engineering Design Project

COPYRIGHT & LICENSE:
Copyright (C) 2006 Richard West

From http://www.gnu.org/copyleft/gpl.html:

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

DESCRIPTION:

Source code for the ATmega32 used to control the timer and two
ATtiny26(L) ICs as part of the larger scoreboard and timer unit.
The time is maintained in packed BCD format in the following
order: 10 minutes digit in the upper nibble of PORTA, 1 minute
digit in the lower nibble of PORTA, 10 seconds digit in the
upper nibble of PORTB, and 1 second digit in the lower nibble of
PORTB. Each digit serves as the input to a 4511 BCD to Seven
Segment IC (see schematics).

PORTC is used to control the rest of the scoreboard and timer

unit by issuing commands to the two ATtiny26(L) ICs (see schematic).
The control for the piezo siren is also operated by a control signal
on PORTC. All user control input is received by the 38kHz infrared
demodulator on PIND.O.

See the scoreboard and timer schematics and the ATmega32 source
for more information.

¥R ¥ X ¥ ¥ K K K K X K X K K K K R K K K K K K K K K K K K K X K O K O K K K X ¥ ¥ *

*
~

#include <mega32.h>

// remote control address
#define IR_ADDRESS 0b10101

// remote control commands
#define NO_COMMAND 0b000000
// timer commands

#define RESET_TIME 0b000001
#define START_TIME 0b000010
#define PAUSE_TIME 0b000011
#define ADD10_MIN 0b000100
#define SUB10_MIN 0b000101
#define ADDO1_MIN 0b000110
#define SUBO1_MIN 0b000111
#define ADD10_SEC 0b001000

26

Richard J. D. West 05

MEng Design Project

#define
#define
#define
#define
#define
#define
#define
// team
#define
#define
#define
#define
#define
// team
#define
#define
#define
#define
#define
// test
#define

SUB10_S
ADDO1_S
SUBO1_S

EC 0b001001
EC 0v001010
EC 0b001011

SAVE_TIMEO 0b001100

RECALL_

TIMEO 0b001101

SAVE_TIME1 0b001110

RECALL_TIME1 0b001111
A commands

A_RESET 0b010000
A_ADD1 0b010001
A_SUB1 0b010010
A_ADDS 0b010100
A_SUBbS 0b010101
B commands

B_RESET 0b100000
B_ADD1 0b100001
B_SUB1 0b100010
B_ADD5 0b100100
B_SUBbS 0b100101
unit

TEST_UNIT Ob111111

// command definitions

#define
#define
#define
#define
#define
#define
#define
#define

RESET
ADD1
SUB1
ADD5
SUBS
TEST_NE!
TEST_PO
NO_CMD

0b000
0b001
0b010
0b011
0b100
G 0b101
S 0b110
Obi11

// timer_status definitions
#define PAUSE 0x00

#define

START O

x01

#pragma regalloc-
field definitions

// Time
typedef

unsigned char sec; // Port B
unsigned char min;

struct

} time_struct;

union {

{

unsigned int full;
time_struct parts;

} time;

unsigned char wait;

unsigned char timer_status, dec_timer;

#pragma regalloc+

// IR Demodulator Definitions

// note: the 38 kHz demodulator is inverting

#define
#define

Low 1
HIGH 0

/*#pragma regalloc-
// RC5 field definitions

typedef

struct

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

} frame_

union {

struct;

{

command : 6
address : 5
control : 1;
start 2
junk 2

// Port A

27

Richard J. D. West 05

MEng Design Project

unsigned int full;
frame_struct bits;
} frame;

unsigned char cmd_wait;

unsigned char cmd_bit_done, cmd_bit_value, cmd_bit_count;

unsigned char cmd_frame_done;
#pragma regalloc+x*/

#pragma regalloc-
// Command bitfield definitions
typedef struct {

unsigned char cmdA : 3; // 2..0
unsigned char cmdB : 3; // 5..3
unsigned char buzz : 1; // 6

unsigned char junk : 1; // 7 (not used)

} cmd_struct;

union {
unsigned char full;
cmd_struct bits;

} cmd;

unsigned char cmd_received, new_cmd;
#pragma regalloc+

// eeprom entries for saved times
// saved_time[0] = 09:00
// saved_time[1] = 00:45

eeprom int saved_time[2] = {0x0900, 0x0045};

//#define DEBUG
#ifdef DEBUG
unsigned char ij;
#endif

// Timerl Compare Interrupt Service Routine
interrupt [TIM1_COMPA] timil_compa_isr() {
if (0 < wait) wait--;

else if (timer_status == START) {
// reset wait for another second
wait = 20;
dec_timer = 0x01;

}

/*if (cmd_wait > 0) cmd_wait--;
else {
// read next bit from PIND.O

// state machine here
Ix/
T

void main(void) {
// initialize timeril

TIMSK = 0x10; // enable timerl compareA interrupt

TCCR1B
OCR1A

12500; // interrupt every 1/20 seconds

// initialize I/0

DDRA = OxFF; // all output

DDRB = OxFF; // all output

DDRC = OxFF; // all output (C.7 not used)

DDRD = 0x00; // D.0 is input (D.6-1 not used)
PORTA = 0x00;
PORTB = 0x00;
PORTC = OxFF;

0x0B; // clear on match A, set prescalar to 64

28

Richard J. D. West 05

MEng Design Project

// initialize variables
time.full = 0x0000;
wait = 0x00;
timer_status = PAUSE;
dec_timer = 0x00;
/*frame.full = 0x0000;
cmd_wait = 0x00;
cmd_bit_done = 0x00;
cmd_bit_value = 0x00;
cmd_bit_count = 0x00;
cmd_frame_done = 0x00;
cmd. full = 0x00;*/
cmd_received = 0x01;
new_cmd = TEST_UNIT;

// enable interrupts
#asm("sei");

while(1) {
/*// check if Manchester-coded bit detected
if (cmd_bit_done) {
// reset flag
cmd_bit_done = 0x00;

// update RC5 frame
frame.full <<= 1;
if (cmd_bit_value) frame.full |= 0x01;

// update bit count
cmd_bit_count++;

if (cmd_bit_count == 14) {
// RC5 frame is now complete
cmd_frame_done = 0x01;
cmd_bit_count = 0x00;
}
}

// check RC5 frame if completed
if (cmd_frame_done) {

// reset flag

cmd_frame_done = 0x00;

// parse frame to see if it is legitimate
if ((frame.bits.start == Obll) && (frame.bits.control == 0b0)) {
// only accept command if intended for this device
if (frame.bits.address == IR_ADDRESS) {
// extract and signal new command
new_cmd frame.bits.command;
cmd_received 0x01;

}

// clear RC5 frame
frame.full = 0x0000;
}
Fx/

// process command if received
if (emd_received) {

// reset flag

cmd_received = 0x00;

// execute command
switch (new_cmd) {
case (NO_COMMAND):
cmd.bits.cmdA = NO_CMD;
cmd.bits.cmdB = NO_CMD;
break;

29

Richard J. D. West 05

MEng Design Project

case (TEST_UNIT):
if (timer_status == PAUSE) {
and scoreboard

// test timer

time.full = 0x8888; // time = 88:88
cmd.bits.cmdA = TEST_P0S; // scoreA = 888
cmd.bits.cmdB = TEST_P0S; // scoreB = 888
cmd.bits.buzz = 0b0;

PORTA = time.parts.min;

PORTB = time.parts.sec;

PORTC = cmd.full;

// wait 0.2 seconds

wait = 4;

while(0 < wait);

cmd.bits.cmdA = TEST_NEG; // scoreA = -88
cmd.bits.cmdB = TEST_NEG; // scoreB = -88
cmd.bits.buzz = 0b0;

PORTC = cmd.full;

// wait 0.2 seconds

wait = 4;

while(0 < wait);

time.full = 0x0000; // time = 00:00
cmd.bits.cmdA = RESET; // scoreA = 000
cmd.bits.cmdB = RESET; // scoreB = 000
cmd.bits.buzz = 0bl; // siren ON
PORTA = time.parts.min;

PORTB = time.parts.sec;

PORTC = cmd.full;

// wait 0.1 seconds
wait = 2;
while(0 < wait);

cmd.bits.cmdA = NO_CMD;
cmd.bits.cmdB = NO_CMD;
cmd.bits.buzz = 0b0;
PORTC = cmd.full;

// siren OFF

// done test of timer and scoreboard

#ifdef DEBUG

for (i = 0; i < 15; i++) {
// wait 0.1 seconds
wait = 2;
while(0 < wait);

cmd.bits.cmdA = ADD1;
cmd.bits.cmdB = ADD1;
PORTC = cmd.full;

// wait 0.4 seconds
wait = 8;
while(0 < wait);

cmd.bits.cmdA = NO_CMD;
cmd.bits.cmdB = NO_CMD;
PORTC = cmd.full;

}

for (i = 0; i < 20; i++) {
// wait 0.1 seconds
wait = 2;
while(0 < wait);

cmd.bits.cmdA = SUB1;
cmd.bits.cmdB = SUB1;
PORTC = cmd.full;

30

Richard J. D. West 05

MEng Design Project

// wait 0.4 seconds
wait = 8;
while(0 < wait);

cmd.bits.cmdA = NO_CMD;

cmd.bits.cmdB = NO_CMD;

PORTC = cmd.full;
}

for (i = 0; i < 5; i++) {
// wait 0.1 seconds
wait = 2;
while(0 < wait);

cmd.bits.cmdA = ADD5;
cmd.bits.cmdB = ADDS;
PORTC = cmd.full;

// wait 0.4 seconds
wait = 8;
while(0 < wait);

cmd.bits.cmdA = NO_CMD;

cmd.bits.cmdB = NO_CMD;

PORTC = cmd.full;
}

for (1 = 0; i < 4; i++) {
// wait 0.1 seconds
wait = 2;
while(0 < wait);

cmd.bits.cmdA = SUBS;
cmd.bits.cmdB = SUB5;
PORTC = cmd.full;

// wait 0.4 seconds
wait = 8;
while(0 < wait);

cmd.bits.cmdA = NO_CMD;
cmd.bits.cmdB = NO_CMD;
PORTC = cmd.full;
}
#endif
}
break;

case (RESET_TIME):
if (timer_status == PAUSE) {
time.full

}

break;

case (START_TIME):

if (timer_status == PAUSE) {
timer_status = START;

T

break;

case (PAUSE_TIME):

if (timer_status == START) {
timer_status = PAUSE;

¥

break;

case (ADD10_MIN):
if (timer_status == PAUSE) {

= 0x0000; // time
cmd.bits.buzz = 0b0; // mute

= 00:00
piezo siren

31

Richard J. D. West 05

MEng Design Project

// increment timer by 10 minutes and wrap
time.parts.min += 0x10;
if ((time.parts.min & O0xFO0) > 0x90) {
time.parts.min &= OxOF;
}
}

break;

case (SUB10_MIN):
if (timer_status == PAUSE) {
// decrement timer by 10 minutes and wrap
time.parts.min -= 0x10;
if ((time.parts.min & O0xFO0) > 0x90) {
time.parts.min &= OxOF;
time.parts.min |= 0x90;
}
¥

break;

case (ADDO1_MIN):
if (timer_status == PAUSE) {
// increment timer by 1 minute and wrap
time.parts.min += 0x01;
if ((time.parts.min & O0xOF) > 0x09) {
time.parts.min &= OxFO;
}
¥

break;

case (SUBO1_MIN):
if (timer_status == PAUSE) {
// decrement timer by 1 minute and wrap
time.parts.min -= 0x01;
if ((time.parts.min & 0xOF) > 0x09) {
time.parts.min &= OxFO;
time.parts.min |= 0x09;
}
¥

break;

case (ADD10_SEC):
if (timer_status == PAUSE) {
// increment timer by 10 seconds and wrap
time.parts.sec += 0x10;
if ((time.parts.sec & 0xF0) > 0x90) {
time.parts.sec &= OxOF;
}
}

break;

case (SUB10_SEC):
if (timer_status == PAUSE) {
// decrement timer by 10 seconds and wrap
time.parts.sec -= 0x10;
if ((time.parts.sec & 0xF0) > 0x90) {
time.parts.sec &= O0xOF;
time.parts.sec |= 0x90;
}
}

break;

case (ADDO1_SEC):
if (timer_status == PAUSE) {
// increment timer by 1 second and wrap
time.parts.sec += 0x01;
if ((time.parts.sec & 0xOF) > 0x09) {
time.parts.sec &= OxFO;

}

32

Richard J. D. West 05

MEng Design Project

}

break;

case (SUBO1_SEC):
if (timer_status == PAUSE) {
// decrement timer by 1 second and wrap
time.parts.sec -= 0x01;
if ((time.parts.sec & 0xOF) > 0x09) {
time.parts.sec &= O0xFO;
time.parts.sec |= 0x09;
}
¥

break;

case (SAVE_TIMEO):

if (timer_status == PAUSE) {
// save current time into EEPROM
saved_time[0] = time.full;

T

break;

case (RECALL_TIMEO):

if (timer_status == PAUSE) {
// restore time from EEPROM
time.full = saved_time[0];

T

break;

case (SAVE_TIME1):

if (timer_status == PAUSE) {
// save current time into EEPROM
saved_time[1] = time.full;

T

break;

case (RECALL_TIME1):

if (timer_status == PAUSE) {
// restore time from EEPROM
time.full = saved_time[1];

T

break;

case (A_RESET):
cmd.bits.cmdA = RESET;
break;

case (A_ADD1):
cmd.bits.cmdA = ADD1;
break;

case (A_SUB1):
cmd.bits.cmdA = SUB1;
break;

case (A_ADD5):
cmd.bits.cmdA = ADD5;
break;

case (A_SUB5):
cmd.bits.cmdA = SUBS;
break;

case (B_RESET):
cmd.bits.cmdB = RESET;
break;

case (B_ADD1):
cmd.bits.cmdB = ADD1;

33

Richard J. D. West 05

MEng Design Project

break;

case (B_SUB1):

cmd.bits.cmdB = SUB1;

break;

case (B_ADD5):

cmd.bits.cmdB = ADD5;

break;

case (B_SUBbB):

cmd.bits.cmdB = SUB5;

break;

default:

cmd.bits.cmdA
cmd.bits.cmdB
cmd.bits.buzz

break;

}
}

// else signal that no command was received

else {

cmd.bits.cmdA
cmd.bits.cmdB

}

NO_CMD;
NO_CMD;
0b0;

NO_CMD;
NO_CMD;

// decrement timer every second

if (dec_timer) {
// reset flag
dec_timer = 0x00;

// perform binary subtraction
time.full -= 0x0001;

// normalize result into packed BCD

// note: resetting seconds occurs before normalizing

if ((time.parts.min & OxFO0) > 0x90) {

time.full -= 0x6000;

}

if ((time.parts.min & O0xOF)

time.full -= 0x0600;

}

if (time.parts.sec == OxFF)

time.parts.sec = 0x59;

}

if ((time.parts.sec & O0xFO)

time.full -= 0x0060;

}

if ((time.parts.sec & 0xOF)

time.full -= 0x0006;

}

// timer has finished

if (time.full = 0x0000) {
cmd.bits.buzz = 0bl;
timer_status = PAUSE; //

}
}

// update display and commands

PORTA
PORTB
PORTC

time.parts.min;
time.parts.sec;
cmd.full;

//

> 0x09) {

{

> 0x90) {

> 0x09) {

sound siren
stop timer

34

Richard J. D. West ’05 MEng Design Project

A.4 ATtiny26(L) Source for the Scoreboard & Timer Unit

This source code is located at http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/

OO0~ Ut W =

2005t02006/rw88/code/mod_t26. c.

~
O K K K X K ¥ X ¥ K K K K K X K K K K X K K K K K K K O K K X K F K K X K K K O K X K X ¥ ¥ *

*
~

Richard West ’05
2006 Master of Engineering Candidate
Electrical and Computer Engineering

Master of Engineering Design Project

COPYRIGHT & LICENSE:
Copyright (C) 2006 Richard West

From http://www.gnu.org/copyleft/gpl.html:

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

DESCRIPTION:

Source code for the ATtiny26(L) used to control an individual
team’s score as part of the larger scoreboard and timer unit.
The score is maintained in packed BCD format in the following
order: 100s digit in the lower nibble of PORTA, 10s digit in
the upper nibble of PORTB, and 1s digit in the lower nibble of
PORTB. Each digit serves as the input to a 4511 BCD to Seven
Segment IC (see schematics). While an accurate score is
maintained, the output is limited between -99 and 999 since
those are the limits for the three digit displays. The negative
sign is controlled by a single bit (PORTA.4) which is an input
to a 4001 Quad 2-Input NOR IC.

There is no direct user input to this ATtiny26(L). There are
only three bits of input (upper three bits of PINA) which
originate from a "master" ATmega32. See the scoreboard and
timer schematics and the ATmega32 source for more information.

FUSE BITS:

CLSEL3..0 = 0100 -> 8 MHz calibrated internal RC clock
RSTDISBL = 0 -> Disable reset and use B.7 as an I/0 pin
(note: parallel programming required if reset is diabled)

#include <tiny26.h>

// command definitions
#define RESET 0b000
#define ADD1 0b001
#define SUB1 0b010
#define ADDS 0b011
#define SUBS 0b100

#define TEST_NEG Ob101
#define TEST_POS Ob110
#define NO_CMD Obilill

unsigned char old_cmd, new_cmd;

35

Richard J. D. West 05

MEng Design Project

unsigned char do_add, do_sub;
unsigned int score, temp_score;

unsigned int increment;

void main(void) {
// initalize I/0

DDRA =

DDRB = OxFF; // all outputs
PORTA = 0x00;

PORTB = 0x00;

// initialize variscoreles

old_cmd = NO_CMD;
do_add = 0x00;
do_sub = 0x00;
score = 0x0000;
temp_score = 0x0000;
increment = 0x0000;
while (1) {

// get command from upper 3 bits of PINA

new_cmd = ((unsigned)(PINA >> 5));

// process command if changed

if (new_cmd !'= old_cmd)
// record command
old_cmd = new_cmd;

// execute command

switch (new_cmd) {
case NO_CMD:
break;

case RESET:
score = 0x0000;
break;

case ADD1:
increment = 0x0001;
do_add = 0x01;
break;

case SUB1:
increment
do_sub
break;

0x0001;
0x01;

case ADD5:
increment = 0x0005;
do_add = 0x01;
break;

case SUB5S:
increment = 0x0005;
do_sub = 0x01;
break;

case TEST_NEG:
score = 0x9912;
break;

case TEST_POS:
score = 0x0888;
break;

default:
break;

{

0x1F; // A.7-5 inputs, A.4-0 outputs

// score = 000

// score

// score

-88

888

36

Richard J. D. West 05

MEng Design Project

}

// perform packed BCD addition if required
if (do_add) {

// reset flag

do_add = 0;

// perform binary addition of increment
score += increment;

// normalize result into packed BCD

if ((score & 0x000F) > 0x0009) {
score += 0x0006;

}

if ((score & 0x00F0) > 0x0090) {
score += 0x0060;

T

if ((score & 0xOF00) > 0x0900) {
score += 0x0600;

}

if ((score & 0xF000) > 0x9000) {
score += 0x6000;

}

}

// perform packed BCD subtraction if required
if (do_sub) {

// reset flag

do_sub = 0;

// perform binary subtraction of increment
score -= increment;

// normalize result into packed BCD

if ((score & 0x000F) > 0x0009) {
score -= 0x0006;

}

if ((score & 0x00F0) > 0x0090) {
score -= 0x0060;

T

if ((score & 0xOF00) > 0x0900) {
score -= 0x0600;

}

if ((score & 0xF000) > 0x9000) {
score -= 0x6000;

}

}

// update displayed score

if (score > 0x4999) {
// maintain score but keep display within limits
if (score < 0x9901) temp_score = 0x9901; // temp_score = -99
else temp_score = score;

// compute 10s complement
temp_score = ((0x9999 - temp_score) + 1);

// assert negative sign flag
PORTA |= 0x10;

// note: 100s digit will always be 0 if the score is negative,
// but the 100s digit is never displayed. Therefore, updating
// the 100s digit is unnecessary.

// update 10s and 1s digits
PORTB = (unsigned char)(temp_score & OxOO0FF);
if ((PORTB & OxOF) > 0x09) {

PORTB += 0x06;

37

200
201
202
203
204
205

207
208
209
210
211
212

Richard J. D. West 05

MEng Design Project

¥
}
else {
// maintain score but keep display within limits
if (score > 0x0999) temp_score = 0x0999; // temp_score = 999
else temp_score = score;

// update all digits
PORTA = (unsigned char)(temp_score >> 8);
PORTB (unsigned char) (temp_score & O0xOOFF);

38

Richard J. D. West ’05 MEng Design Project

B Schematics

The schematics are attached. They are available from http://instructl.cit.cornell.edu/courses/
eceprojectsland/STUDENTPR0OJ/2005t02006/rw88/schematics/ in both PDF and DCH format for Dip-
Trace. DipTrace is available from http://www.diptrace.com.

B.1 Moderator and Player Units

This schematic is available from http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/schematics/moderator.pdf (PDF format) or http://instructl.cit.cornell.edu/
courses/eceprojectsland/STUDENTPROJ/2005t02006/rw88/schematics/moderator.dch (DipTrace DCH
format).

39

J1ojeIapop I7V0S ano —
2 |
. . Zolyod oon 2 { [Ziioa !
A3d ON 5Ma ON INOS4 | 3ZIS &—F—— e
10bMod ava
SJ0]edIpu| pue 18zzng T8 I o |
! ozmg — | s'prrod
vyiod
1lun J01eISPOIN ——
. o T B
. — | €v310d
ZvHod
>
sjun Jake|d pue Jojetspol -
¢ 1 |
L'piod
ano [|
1 |
i €'g1od e 8l |
N AVAVAV 8'edod
R —t==] 6y | |
m > > eL— €8 I —
g o LU o L” Tsod MO| UBALIP 8Q p|noys VAVAV, a [Zevioa
*F) s} 16p ouy uo 37 | N i
|
ano VV 7 saa1 e <] _
3 { €340
AN, o w ; sonewayos |e 404 | | .. o =] sewea
VAL f _ AAA p vowea
201 vzy sn 1"sH0d ? Vou V" ' 88 I I
vaz £
Addng Jjemod s1anLA Aeidsi - AVAVAY . e [eevioa
€ suoL I _ Qg Aejasig . =Y 4 z'gHod
Zsual r oo ano \(cAVAVAVS caa1 >
6L b (1]
- e _ > o ool | v)\4\(b S== swun Jafeld o]
o 1 62 7 v
- 7t | &"tared ano | T £ »an._ 00A
. |
£7sou0 Lyiyiod | SONTd sogon | o-suor . aNDS | AVAVAY: S [|
Z oo N Toriama o) o= T [2Y 5 L'gHod
sou “Li30, o 5] ¢ s (e anNo
“sou0 Sii30d | _ 3 suoL . m 201 5
) I T Q suey 6 =" ano aNe 8'z3od
=1 [113104 onozn._o wosonz [oomr o m N ano “ |
. £°1130d : z o - . v T e
q af— > > 9l Lzued
3 vosus| et 9 2 susL "Z340,
Zhived 1 = ° o fr—oomt] (41103u09QN) HUN INOXO0T L 9 | vTod _
s ZONad a9 —— o = ey I =
o Do ' 0 suer | _an® | s'z310d
> O Oz 5| aA ViIz ot Pvzyod
g suonng pue Aeidsiq Jawi | | aN© aev _
. . €n el _
oon _ S Al ol = ano VIVIX ano N ezioa
. = ZWIX
T T ared | ® ° E] mw v aT 2y T ZZ1od
23
o =1 ang) ano | e o = oonv won | 0=
N
- , ano [oon 5 00A 1383 [+ NN\~ B
= 7T = [2Y
o0 + 2da 1da |5 — “ MHM ! Nt won T (20801 £0d (200)2ad | 8 oo I
- . 1
Jseuo ¥ ,\/\/\/ B 7| ¢° W El \/\/\/\ Viswol | a seuo 5 ° 85 aND j :ommv.: 90d (do1)79ad [z i }2yiod
</\l}\/m zr] ¢ H e m\/\{/\< o] P Nrs 77| (194) 894 (v100) 50d [
RN ATA za 13 ADU\ e 2 ° o (oavvod (8100 ¥ad fzr= N S
v E] S b El Y [9¢ 8l 8
ETRAAAA cd +a AN\ e e a a2 =0 (swueod =2 8’104
5 seuo ¥ E] 9 4 a Vo sua) | v seuo et 9 2 seup | 2 seuo S¢ _ Lt oageny | AND
VAT TN 20 k) AW\ e o (401)720d |]
T sou0 v g 7 T g Vg suol el T & ' ¢0d Iy A ;
eV - 28 18— NN\ o 8 o | (Vas tod (ax1)71ad |y — - | Z1310a
VA g ev IV o7 \MW\~ s aan v f———J————= (10s)00d (axs)i 0ad |5 a 9'130d
Ly vn oLy zn g — - ava | v <} |
— =] (Loav) zvd (10S)"28d [S 1 | 5713104
G (90av) 9vd (osin)"ogad s v"LMod
N ¢ ¢ |
- 5| (§0Qv) Svd (ison)"s8d |5 =) _ T]
M (0av) vvd ssived g = — | €1310d
N (€0av) evd (000/INIV) " €8d |5 - Z'1od
T (2oav) evd (SLNI/ONIV) 2ad [o >
[, (10av)"tvd () ved |7 - 8=
[N (00av) ovd (01/30x)"08d [i
a3anodddv 31va NOILdI4OS3a A3d | ANOZ 20n I |
n " iea
SNOISIAIY

siafe|d v wes | ERLSNS]
A3Y "ON DMd "ONWOS4 | 3zIs
suun Jehe|d v wea |
slun ¥®>m_n_ pue J10jelspo|N
1QQeziQus
SN 8PN Y pv pue gy siaked
00AZYd
WYd
o - aNO2Yd
m@N mw m@N mm T avea
8 N n <
AL
20N2Vd omu.
evd 9'23lod
arvd arvd I _
B!
G LMod
s &
> @ (9
813 3
2 %
ro Om AND2Yd evd «“ _
H v'Lyod
80ONEad gevd | gevd I _
CZ A.wc aNO2Yd
> < (5
b3 3
o o H H Qazyd
H L*Lyiod
LONSEd
a3AOYdddY 31va NOILdI"2S3a A3d | aNOz

SNOISIAZH

61a3a1

LaIa

“VV\s

gV pue |y siefe|d

OOAYd

evd

ANOLYd

o
[P [2
m m B
§QESEQES
NI
Tevd mH_
D0ALVd 9
9°93i0d
1hvd
gevd ||_8evd I
1]
S'9yiod
v v
o o
> ¢ <
S—4—2 =
a7]
o B »
o o
anoivd | ivd [
el O 7L |
H v 9¥iod
90Ndd aivd | _aivd I I
Tl
£'9310d
v v
S &b ANDIVd
> ¢ <
QL= =
e T~ L]
o N =
I H
Q9DIVd
TO O
H L'93i10d
SONEad

slofeld g wea| 3IvOS
A3d ‘ON DMa "ON WOSd | 3zIS
suun Jeheld g wesa |
suun Jeke|d pue J01BISPOIN
IR I
SN LY NS yg pue gg siakeld
00A28d
ad
o - anoged
Qi
EN /N‘ < /U» 9
Wwad
20AZEd 9 mH_e.av.am
ead
arad arad I _
B!
S'6340od
5 &
> & [N
o l"s =
e N
© o a
2
ro Om aNoged ead «“ _
H v 631od
ZLONEad gead | gead I]
CZ A.wc anoged
> & [
o "2 =
ST 3
@ B w
o 0% H H 09DEEd
H L"63od
LLONEd
a3anodddv 31vdad NOILdIHOS3a A3d | INOZ

SNOISIAZH

€zaan

siaa

“VV\s

24 pue | g siefed

O0AL8d

7128d

aNO1ad

&
- = [2
m m B
m@N mwm@N am Tevea
N N » \)
/ > / >
Te8d mH_
Q0ALEd 9
iad 9'gied
g2ad ||_gead I
!]
S'gyod
oo
[N
> & &
oL =
o T~2 2
CR-—
o O
anoiad | Tiad I
el O 7L |
H v'8iiod
0LON"d giad [giad I]
Tl
£°8yod
oo
S o aNolad
> & o
o_| = H]
RT3 3
= o
I H
aonled
TO O
H L'giiod
60Nad

sjesayduad ERLSNS]

A3d ‘ON OMa ‘ON WOSH | 3zIS

lazzng pue Ae|dsiq eseyduad

sjun Jeke|d pue Jojeispol

) =1 |
__N Z'€1310d

3 1 | _
L
L'€liod
Zioyeads
Y| Y|
) T
61D 812
ANOHd ANOHd
aNo [aNo [
O SUBLHd 6 9 SOUOHd 6
4 SUaLHd v , I 4 SeUOHd v , I
3 sWLHd S 8 £ 00AHd |3 seuoHd IS 8 £ D0AHd | _£7SUoLHd L |
0 SWaLHd 6 el I ONDHd |0 SeUOHd 5 el I ONDHd ort
p ENl p I olL-zlyiod
0 SUSLHd Ok 5 S 0 S8UOHd ol 5 S 2 SWlHd L
§ SUoLHd " £7suoLHd f|_g SeuoHd I £7S0UOHd ol |
- a ats = d A 6'ZLMod
v SUSLHd 2 suaLHd ||V SeUOHd 2 S0UOHd |} SUoLHd I
€l e ol < €l e o < 8L _
| suaLHd | "s0UOHd
oons o —Ty o — G ened
El aaa v L El aan v L Al _
) Zn £7SOUOH pLebhiod
51 |
~sou 9°Zlyiod
2 SeUOHd [|
!
" O,
ANSHd ‘ ‘ ANOHd | S8UOHd [Sziyiod
€l Ano NS i ! _
~sou v'Ziiiod
0 SeUOHd [|
B!
O SUOHd 5] ¢dd A 1 o aNaHd €£ZiHod
|
Tsevona VVV g 7] %° W ZVV\7 Teweing z1 |
VATLTA 2 [AV, z'Z1H0d
B v g T T] vV Tewind
Tssuond <<{I\ e 5] ¢2 S m)\{((Tl o [0
S seuond WVEN g 312 Mz \iR\ v S sweLnd 3=
o
P VAL A 7| 20 Re =\l \v P
V souona VAT A ar| %8 e g =\ v e — .
WA g | e W et =\t \v Tt
8y on (32} L"2iyod
a3anodddv 31vd NOILdIHOS3A A3d | INOZ

Richard J. D. West ’05 MEng Design Project

B.2 Remote Control for Scoreboard and Timer Unit

This schematic is available from http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/schematics/remote.pdf (PDF format) or http://instructl.cit.cornell.edu/courses/
eceprojectsland/STUDENTPR0J/2005t02006/rw88/schematics/moderator.dch (DipTrace DCH format).

The remote control schematic is part of the moderator and player units schematic since they were fabricated

on the same PCB.

44

_QQQGXQ‘_OQW MI_<om ANONS ANONS
. . (AN (AN
A3d ON O5Md ON INOS4 | 3zIS 4] 4]
5 3
RN _ oy RN _ oy
R A AVAVAYS: 2 A VV\/~v
& [:12Y 7.\ 95y
o o
IN JaWi| pue pJeoqalooS 8y 10} |0J1uU0)) dloway 2ZS 8ZS
> >
A A
a o o o
« -
& = - m
O0ANS O0ANS
ANOXS _ _ I
i |
£'vi3iod . oy | 200 oy | 1o oy | 000 moy
= ﬂ/ ~— 0 Oz 7O Oz O Oz O Oz
8 aIW o I~ Z'viMod |I_\|
© 8= . LA~
o o o YVONEd | ., 9€ONEd) 8¢ONEd | O0ZONEd
1
ano —"r0 (e o) o3 me) (e o o3
VV\~] 1NO NI 1]
oomis 09d oin 1'vl310d
£idd o CvONEd | SEONmd | ~ fzOoNmd | = 6lONEd
1
[adnS Jamod 2 o o) o5) o o o=
\| ANDYS
El _ v
822 ZPONEad YEONEd 9ZONad 8LONEad
> >
(1] 0 €100 Moy 2100 YMOY 110D Moy 0100 YMOY
8~ N~ ~—TO O% O O= O Oz TO Oz
- 71 O0A AaND [— © i
&1 00N anoe |5
ON {8 | | o WONB4 | €EONEd | = szoNad | = LllONEd
¢ i 3 0 (o, 2 3 O o c 3 O o 2 3 O o c
5 £ad FIVIX f5 veyskiy
s 9ad 2WVIX |57
5 5ad ovONad ZEONad vZONad 9LON"d
O0ANS €100 Zgmoy 2100 Moy 0O Zgmoy 0100 Moy
o &—{ vad 1353 | AVAVAV:" —0 o= -0 o3 -0 Oz me) O%
E —- ssy oy
~——————zad 18d 53
HoO 9moy
o0 *| ‘4 98d Iz o] coo OEONEd Lo tEONEd L EEONEd Lo, SYONEd
—— —oad A V\mmn_ = e ° o= -0 o8 -0 (< -0 o3
FINDvEd fa7
— (0LNe8d | i
noy| \—. \—. 2gmoy
M () 2vd (01)728d |47 o] oo fEONEd 1, ocoNmd)., (ZeoNad | . PvONad
s—] Ivd (INIV)18d o o ° o= el o= O O me) O
i s L 1 s s
o LEONEd 6ZONgd 1ZONEd €LONEd
a3anodddv 31vd NOILdIHOS3A A3d | INOZ
SNOISIAZY

Richard J. D. West ’05 MEng Design Project

B.3 Scoreboard and Timer Unit

This schematic is available from http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/schematics/schematic.pdf (PDF format) or http://instructl.cit.cornell.edu/
courses/eceprojectsland/STUDENTPR0J/2005t02006/rw88/schematics/schematic.dch (DipTrace DCH
format).

B.3.1 Revisions

Due to a disagreement between the schematic and the datasheet for the 4511, the latch enable pin was
mistakenly wired to VCC and not GND. Latch enable (LE) needs to be wired to GND for the displays
to update as the digits change. Different manufacturers’ datasheets describe the latch enable pin as either
active high or active low, but the functionality of the pin is identical for all 4511s. This error was corrected
for the Moderator and Player Units before that board was fabricated.

Due to the large power requirements, a separate self-regulated power supply had to be purchased to
supply five volts at six amps. To support this extra current load, the power and ground traces had to be
widened and rewired. This rewiring could not be accomplished entirely within the confines of the PCB, so
some external wiring of components is necessary to complete the power and ground supplies.

Another minor revision made to the printed circuit board was to increase the hole size for the piezo siren’s
mounting holes. In the originally fabricated printed circuit board, the external diameter of the mounting
holes was the correct size, but the interior diameter was not. Also, the control for the piezo siren has been
changed from active low to active high to simplify the code.

As a cosmetic detail, the through-holes for the IR demodulator have been moved to allow the demodulator
to lay flat against the printed circuit board without bending over the ATMega32.

46

SpaJpuny v 3IvOS
A3d ‘'ON ©5Ma ‘'ONINOS4 | 3ZIS
16IQ spalpuny - ¥ wea|
MO| USALIP 89 PINOYS S| LGY
8y}l Uo 37 ‘sonewayos ey |je 104
Jawl] ¥ pJe0gal09S
ano _ ano
NS NS NN NS NS NN
g @Wm_ &W.ﬂ___ B (AR (A
~ © © B a o
AND
> > > > > gh R== ubis annebeu
ww “M ww 2 “w ww ol "
D0\
OHY
aHY \\\
42 6Ly
6Laa
&
[12] ozy
oza3al
/o
oLy [34.]
teaa
JHY
i
o o o o o T R nk
aHY 5 ° 85
OHY o w EE
Q) 8 i QIR e .
&N NG SR 3 03 e A 1 al B
ano w m ano or| 99A vz
Ln
a3anodddv 31va NOILdI4OS3a A3d | ANOZ
SNOISIAIY

41V

ENJ

aLy

OLY

aLv

V.1V

sua| vy 31VvOS
A3d ‘'ON DMd ‘'ON NOS4 | 37IS
ubiq sus] - v wes]
Jowl| ¥ pJe0gaI00S
aNo _ aNo
TN TN
2 (AR (N8 2 (AR (AR
© © o a o ~
SR SR
8 B B P D
oLV aLv
alvy \\
€ey oy
ovraai
%
cey 32
waa
7y
3] [42-]
cvaan
EI)
SRR T K
8g &2 & 8g 8§
i
QI {MEMEw
NEOE S A
AaND m m AND
a3anodddv 31vd NOILdIHOS3A A3d | INOZ
SNOISIAIY

€1V

[

L LY

0 1V

A\l
)y
€2
AaNo |5
7] ©
57 ¢ O
6 ® _m v
or] P ERl
™ °
zr| 9 g
T © Oz
a7
57| dAA \A v
£n

sauQ v 31VvOS
A3d ‘'ON DMd ‘'ON NOS4 | 37IS
161g sauQ - v wea|
lawl] ¥ pJe0Qgal09g
EAVE AV AN AAVE AV NN
g AMW“ AMW“ 2 (NF (%
S SR
20V g0v
&
[%:2-]
roaai
&
[4:2]
29a3al
/o
€9y
€903
SR SR
ER) 8 QIR
N NGNS & N =\E KGNS NN
AaND W m AND
a3anodddv 31vd NOILdIHOS3A A3d | INOZ
SNOISIAIY

£ oV

2 ov

I oY

0 OV

A\l
)y
o
AaNo |5
7] ©
57 ¢ O
6 ® _m v
or] P ERl
™ °
zr| 9 g
T © Oz
a7
57| dAA \A v
rn

SpaJpunH g

ERVAOR)

A3d

‘ON OMa ‘ON NOSH

EVAR

161 spalpunH - g wea|

JaWl] 9 PJ/e0Q8I00S

osaal
E§%§:’
Lzaan
IEEEC’
cLaa
&

oLy
VvV
NV
A%

3HE

8.4
ZVV\rv
Ly
cAVAVAVS
9Ly

8.a31
AN
N
“
a3

N
N
9Laa1

s

\

N
5

AND

29031

18aa

2:2]

89031

2

69031

894
NV

&

ano |5
QaA 57

an

ubis anneboau

)

© 0 0T OO

aaa

)

€ HE

¢ Ha

(]

0 HE

SN

~] o o

a3nodddy

31va

NOILdI90S3d

A3d

3INOZ

SNOISIAZH

sua| g 31VvOS
A3d ‘'ON DMd ‘'ON NOS4 | 37IS
ubiq sus] - g wes]
JaWI]| 3 PIR0gaI00S
aNo _ aNo
EAVE AV AN AAVE AV NN
o =3 o [~ =3 o
g AMWVm Amwvm - AVAY RVAV:;
S SR
- N X © © o
018 a.18
alg \\
96y €01y
€oraan
>
S6Y oLy
vora3an
7
ved SOy
soraan
318
z 2] 2 2 e
SR iR
i
§5 EVES)
NERGEI RS AR
AaND m m AND
a3anodddv 31vd NOILdIHOS3A A3d | INOZ
SNOISIAIY

€18

218

L 19

0 189

A\l
)y
L9
AaNo |5
7] ©
57 ¢ O
6 ® _m v
or] P ERl
™ °
zr| 9 g
T © Oz
a7
57| dAA \A v
n

sauQ g 31VvOS

A3d ‘ON OMa ‘ON WOSH | 3zIS

ub1q seuQ - g wes |

JaWl] 9 PJ/e0Q8I00S

viiaan
&
60Laal
&
oLiaa
s
Laan
&

ciaan
g S
¢
€raan
S
- (@»—

ziy
A%
€11y
NV
viiy
NV
601y
A4
oLy
NV
Ly
NV

ano_ 9 AN

MQ ¢ L1y vZiy
4 vZziaal
Zivaan r

:
@

vﬂ\ L1320 142]
9iLLaa

sziaan

2
4
\\

9ZLy
9zia31 e
\|
El _ v
> > > > > > wu
z 2 2 z z z
3 2 3 8 N & 6 more
408 i
= = o o = o = = s
aos 6 ° _m 12
Y or] P ERl
m@N 5D\ & 5D\ 5D\ & EEE M o
(PR ¢ QIR e - =
R ANCE AN 8 SN RN oon af —
ano g g ano 57| daA M
8sn
a3anodddv 31vdad NOILdIHOS3a A3d | INOZ
SNOISIATY

SlNuINuS | 3IvOS
A3d ‘'ON DMd ‘'ON NOS4 | 37IS
161g sewnupy us |
JaWI]| 3 PIR0gaI00S
aNo _ aNo
BN R B R B B R B B
o o o o o o
: () @) RGYAVY-
Ed A A Ed Ed A
SEE 0 mEs
OWL anL
anL \ \
/ /
\\ 8€y [+14% svTaat LZ1y
8€1Laa \v\
\\ e ovid ovia3a sein 8szia3al
Z€1aan \\A \\
9€Ly pAde-]
viaan 621431 viNL
AL
Ed A A Ed Ed A
S| |E s
i
() & 8(0) 80 B(Z
RN 2 3 2 2
RS ERE SR8
AaND m m AND
a3anodddv 31vd NOILdIHOS3A A3d | INOZ
SNOISIAIY

€ WL

2 WL

L NL

0 WL

A\l
)y
62
AaNo |5
7] ©
57 ¢ O
6 ® _m v
or] P ERl
™ °
zr| 9 g
T © Oz
a7
57| dAA \A v
6n

ELIIEe) 3IvOS

A3d ‘ON OMa ‘ON WOSH | 3zIS

16ig senui suQ

JaWl] 9 PJ/e0Q8I00S

9siaa
&
1S1a3a
&
esiaan
s
€siaan
&

vsiaal
gzy
¢
ssiaan
S
- (@»—

vSiy
A%
NV
NV

12+12]
A%

[4:12]
NV
NV

ano_ 9 AN

MQ ¢ 651y 991y
/4 991a3a1
6sia3l r

:
@

vﬂ\ 8sLy pA:12]
85s1aa

Z91a3an

5
3
\\

:1:13]
891aa1 e
)|
)
= = = = = =
4no 7] °
o o o o o o ! 1ty
N0 or] P ERl
m MN = r r = = ano [M a €0
IR E ERER K e
FINERE SR FRE S I =
ano m g ano 57| daA M
oLn
a3nodddyv 31va NOILdI90S3d A3d | INOZ
SNOISIAIY

puodagua | 31VvOS
ATY 'ON ©Ma 'ONWOS4 | 3ZIS
1ub1Qg spuooasg us |
lawl] ¥ pJe0Qgal09g
ano _ ano
AR ESAAES AR ESAAEDS
o o o o o o
3 3 3 E 3 3
Ed A A Ed Ed A
BB SR
OSL asl
ast
&
= x@ m_\/\/\/: (\/\/\/\m «@1
vﬂ\ [11:1%] 81d
Z81a3al
osLaal \V\
vﬂ\ 6.1y :3:12]
881a3a1
6L1aan \“\
[:72%] 681y
68La3a
Ed A A Ed Ed A
iR SR
.
ﬁ@N 5D\ & 5D\ 5D\ &
2 LAEY) 8 3(V) 8(Y) (Y
BTNE R R ERN SN RSN AN
ano m B ano
a3nodddyv 31va NOILdI40S3a A3d | ANOz
SNOISIATY

© 0 0T OO

aaa

)

€ Sl

2 SL

L SL

0 SL

Ln

~] o o

puo29geuUQ 37vOS
A3d ‘'ON DMd ‘'ON NOS4 | 3zIs
1ub1Qg spuooag auQ
Jawl] ¥ pJe0gal09S
ano _ ano
B AN AR AR AR
o o o o o o
Ed A A Ed Ed A
> > > > > > ane 9
250 850 »w\/g m)N_V\z(q
== v i
aNo_ L1 ano L1
4 80zaa 4
Lozaal r 200 Lizaa
60za3an
0ozaal \\A
661 oley
oizaa e
\|
El _ v
> > > > > > NFu
2 2 2 2 2 2 ane
g 8 8 < s & 050 6 s
450 i
o & o w & w = ! s
3S0 5] -
— om_w P MI:_ S
- 2SO 5
m [[[[[850 H £750
I E QIR .
2 TNE RS PR S A SN AN " of
° ® 00A aan v 0°s0
ano 8 B ano o z
zin
a3anodddv 31vdad NOILdIHOS3a A3d | INOZ
SNOISIAZY

|04ju0D ERVAOR) Jojejnpowa Yl ZHM8E
1 00A
[e
£ INaxl
A3d ON 5Ma ON INOS4 | 3ZIS &
qv/\
N—/
° >
BuissedAg eiixg
01607 |j041u0D I _ _
. v _/ E e
29 NGl
It oy
v E >
[2) iNadl
I(
Jawl] @ pleoQol0dS (= uaJig ozald
' 610
ane |/
vI\E
A 00N 812 108
LLLLLLPLHLHLHLHL \| J9)eadg
)y
C ¢ ¢ ¢ & <
ESs5ss5EEEsE5sEg¢8¢€ ¢ = v
T ¥ I I IV Z T TTOYTOYD VY DD
@ P X RN 20 ® @ N O OGSO N =
> > 00A AND
222 RPFRERERERRR e " - =| oonv ano |4
NS Cla =1 00A ano 3
ano 2 pwog €18
T T))) Momog 7] (NIV/90QY) 2vd 13538/0100Y)"/8d [Gr——
~————— (ONIV/50aV) ovd (0L/0LNI/60AY) 98d [
= R = 4 1 a 3
uonnquisig J1smod O O O O e, . 7| (0av) Gvd (21v1380Qv) S8d fr———o
ﬁ T —— | —_— —
ZsPed LsPed 0SPed 6¥Ped ano N = ano VX |y € Ha W M WM«M :._<§mwmwvwmm”__ z £ o8
z e | St —
2= 2y WX 2 7] (e0av)” N<n_ (8100710540) 28 [T
» > R R > B = =l oy ~r———r] (toav) (V100/0T/OSIN18d "N
oon 1 Son v AN 20n ———+{ (00aV) 0 (v+00/v¥as/1a/ISON) 08d |———
8pPed .yPed 9vPed SpPed ppPed £yPed ZvyPed LpPed av o g AN
Bz (€0SOL) 20d vin
1nuos 6¢ —
- B B B B B B - s = (10s01) 90d \|
M7 (lay)sod T
OYPed 6EPed 8EPed LePed 9ePed SEPEd vEREd £8Ped awo N1 (001 +0d €19
a2 R e
S ~ ~ ~ ~ ~ ~ ~ My (M0.1) 20d - ane
OOOOOOOO fE—ut I e oo
a _
Zeped LEPed OEPed 6ZPed 8ZPed .ZPed 92ZPed SZPed ano 7] (108 00d (axa)"0ad 57 5| 90N WD 15
e oav) 2vd SN Sl (INIV/20av) 2vd 13534/010QV) £8d [gr——n
2 NL \—, 2 SL | pwov \—, 2 1V
B = B B B B = B S| (90av) ovd = N (ONIV/50QV)"9vd (0L/0LNI8OAY) 98d [F—— ="
S| (S0av) svd = (¥0av) Gvd (£1v.1X/80QV) S8 [7———=N
vZPed €zPed zzPed LzPed 0ZRed 6iBed 8IPed LIPed oon Nt (vOQv) vvd = 5™ (€0av) wvd (MVLX/20QV) #8d N
77| (€0av) evd — 1= (439v)evd (8100) 88d [F———"N
oo (@oav) 2vd = N (zoav)zvd (@100108/5108) Nmn_ Cam—e—
Q O O O O O O Q oo (H0av) e = G (+oav) " tvd (vV100/0Q/0SIN) "+ N|DO</
(oo a
9lPEd SLPed vLPEd £LPed ZLPed LLPed O0LPed 6PEd o0n o7) (000¥) 0vd 77| (000v) 0vd (v100/¥AS/Q/ISON) 08d [7————
OOOOHOHOHOO
8Ped .Ped 9Ped GSPed pPed €Ped ZPed LPed
1410
a3nodddyv 31va NOILdI90S3d A3d | INOZ
SNOISIAIY

Richard J. D. West ’05 MEng Design Project

C Printed Circuit Board (PCB) Layouts

These PCB layouts are available from http://instructl.cit.cornell.edu/courses/eceprojectsland/
STUDENTPROJ/2005t02006/rw88/layouts/ in both PDF format and DIP format for DipTrace. DipTrace is
available from http://www.diptrace.com.

C.1 Moderator and Player Units and the Remote Control

This PCB layout is available from http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/layouts/moderator.pdf (PDF format), http://instructl.cit.cornell.edu/courses/
eceprojectsland/STUDENTPR0OJ/2005t02006/rw88/layouts/moderator.dip (DipTrace DIP format), or
http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPR0OJ/2005t02006/rw88/layouts/
moderator.zip (zipped Gerber files). The remote control occupies the lower half of the PCB.

98

<< selixg >>

LlOd S
N+

| 198YS 31vOS
A3d ‘'ON D5Ma ‘'ONWOS4 | 3zIS
|0J]JU0D) Bl0WBY pue
suun Jehe|d pue Jojelsapol
a3nodddyvy 31va NOILdIHOS3a A3d | INOZ

SNOISIAZH

} 199YS ERVAOR)

N34 ‘ON O5Ma ‘ON WOSd | 3zIS

|0J]UOD) BloWaY pue

sjun Jeke|d pue Jojeispol

on

oag on
og on
oo oo
,
oo on
oag on
ao go
omno
omno
OJ
S5
omQo
omno
a3n0dddv 31va NOILdIHO0S3a A3d | INOZ
SNOISIATY

Richard J. D. West ’05 MEng Design Project

C.2 Scoreboard and Timer Unit

This PCB layout is available from http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPROJ/
2005t02006/rw88/layouts/scoreboard.pdf (PDF format), http://instructl.cit.cornell.edu/courses/
eceprojectsland/STUDENTPR0OJ/2005t02006/rw88/layouts/scoreboard.dip (DipTrace DIP format), or
http://instructl.cit.cornell.edu/courses/eceprojectsland/STUDENTPR0OJ/2005t02006/rw88/layouts/
scoreboard.zip (zipped Gerber files).

61

I 199US 3vOS
A3d ‘ON DMa 'ON NOS4 | 3zIS
JaWil| @ pJe0gal0oS
T LiQFd 0iQpd 6Qd
T ——— 0 10 00
g B ,,, B -
5 | o ©|o|© ~ ajaa A - o el R 2’
ag 6 6 L S & € 4 13 Eel
J
Q m o < ® | [Nl diflalaa| 1 iffss1s] 1R =4 I [ey o W
,,, | o
8/\ B a/\a /8 _ o
T \ .\ o / w
V\ Nméﬂu V\ Qa2 2 o@pa |2 ol ogpa & o eiQpa (B = QP oty
1 ag| 8 8 & B @ 3
ciQpd N i
ol o (-] o BIBID NININ I
viQpd N N N
[o] g ,,, B /0 o
siQpd O ,,,, \O [e) eXe}
sn' | vn TN 5 M
z 600 Aﬁ O000003Q fooodds/ ©Frdoo0dd0) <0
eI n/ - \ ,, = , i 7 . «0:
D D o pN/DBN/D .\ /DN D\/D o) 2
IO NN/ 2 (NN NEAAY-Y d 'lo R
T SR - e VN
N o N N O
o) 2 ‘“U.\ur‘nﬁuu 0 . {ofcr ﬂuﬁ do| Uur‘ﬂﬁuﬂ _ w o
—J O O
&> ot Jmmtc
a / 0 o o L %
< o
olos tolo o | lo
: 4 A A
ol o= N o= 5 f o
(0 1 (o]
= L/ oMa) |slalal mll \ A S (] e ._ | @
3 R 3 1 R N &l A O
e T @)= o, \\\ o
offe 33O, \Q{ eiQrd 6iQpd 04
1Qd / zQd
a3n0dddv 31va NOILdIHOS3a A3d | ANOZ

SNOISIAZH

| 100US

ERVAOR)

A3d

‘ON OMd

‘ON NOSH

3ZIS

JaWl] 9 PJ/e0Q8I00S

D —)
o

o D o]
o

io
) io
o

iO
|

o o
DU —

Q0000000

o o o
D —C

0000000

a o 400

D —
o

o o
o _O
OEO

0000

\

noo oo

\

iO

io
é i
o

io
o i
o

io
) i
o

o (o] o

De—C—C De—C—C
EOOOOOOO 0000000
f/ [e}e] (oK) $H 000

o (o] o

o o
o o
0_ _0

N aoodgbood
|

o o o
DennC——C

o o o
DenC—

D DemanC——C
o o o [e] o o
o o o o
o o o o
O 0 _O 0_
o o (o] [e] o (o]
D —C D —C
o o [e]
o o o o
O 0 _O O_
o o o o o o
D —) DenC—C

0000000QO0OQOO0000000O0

o0o00O0O0O0OO0OOO

0000000 0000000 0000000 0000000
00 omOP 00 oo 27, go oQ ao oo
a3n0dddv 31va NOILdIHO0S3a A3d | INOZ

SNOISIAZH

