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Abstract: 
The Complex Impedance Meter presented in this report is a high precision, low power 
consumption impedance measurement system which provides programmable 
frequency sweep and tuning capability for impedance measurement from 5kΩ to 
1.1MΩ with system accuracy of 2%. The system is built with an AVR microcontroller 
ATmega32, an Analog Devices network analyzer AD5933, two analog multiplexers 
ADG706, a CTS low jitter clock oscillator MXO45HS, two accurate resistor networks 
with designed resistance values and a liquid crystal display RCM2034R. It allows an 
unknown external impedance to be excited with a known frequency. The response 
signal from the impedance is sampled by the on board ADC, and the DFT is 
processed by a DSP engine which returns a real and imaginary data word at each 
excitation frequency. The magnitude of these data words is further scaled by 
calibrated Gain Factor in order to return the actual impedance value. The prototype of 
the system is implemented and system calibration is done to improve the overall 
accuracy. 
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Executive Summary 
A prototype of a Complex Impedance Meter is designed and implemented. The 
system is a microcontroller based, high precision and low power device. Due to the 
simple structure, it can be made as a portable impedance measurement device, which 
is used in a lot of scientific and industrial fields such as electrochemical analysis, 
bioelectrical impedance analysis and material property analysis. The accuracy of 2% 
is realized through the appropriate design and system calibration. This accuracy is 
good enough for most of the biomedical impedance measurement applications. 
 
The system has been designed as an intelligent and friendly device, which does not 
need any adjustment or configuration before a measure. The maximum system 
response time is 0.5 second, which means in the worst case users can read the 
measured impedance on the LCD within half a second. If the impedance being 
measured is out of range, it will also give a message on the display indicating the 
error. The hardware design was implemented on several prototype boards. The values 
of the precision resistance were carefully calculated and chosen so that good linearity 
and measurable range (5kΩ to 1.1MΩ) can be achieved. Operating software was 
designed and implemented to realize the intelligence and easy-to-use features. The 
design trades off the maximum system response time with the intelligence and keeps a 
good balance between these two specs. Finally calibration was carried out and two 
methods were used to further improve the linearity of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
From biological cell analysis to fuel cell tests, from coatings to cement paste quality 
control, Complex Impedance Measurement (CIM) has become a powerful tool in the 
vast environment of those applications. The basic principle of CIM is modeling the 
unit under test (UUT) in a combination of electrical components, applying small 
amplitude of AC voltage or current to the ends of UUT, over the frequency band of 
interest. For each frequency in the range, the measured impedance is a complex ratio 
between the input and output signal. 
 

 
Fig.1 Top Level Diagram 

 
In the design presented in this report, this principle is adopted into the architecture of 
the system. As Figure 2 shows, the on board frequency generator generates stimulus 
signal with known frequencies. The external unknown impedance is connected 
between the input and output ports. The response current from the impedance is 
converted into voltage by a trans-impedance amplifier. The output voltage of this 
amplifier is sampled by an on board ADC and the DFT is processed by a DSP engine 
at each excitation frequency. The real and imaginary results from the DSP are further 
processed by the microcontroller. They are compared with the results obtained from a 
known precise resistance using the same configuration on the signal path. The actual 
impedance value can be calculated from the known resistance together with the above 
measured results. 
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Fig.2 System Block Diagram 

 

The Principle of Measurement 
The basic measurement method of AD5933 is comparing the two measured results 
from the unknown impedance and the calibrated (known) resistance. And then the 
value of the unknown impedance is obtained through calculation. As the signal path 
shown in Figure 3, VOUT, the output of the signal generator, can be modeled as a 
voltage source. The unknown impedance is connected between VOUT and VIN. VIN is 
biased at VDD/2 causing the AC current through Zunknown and RFB to be equal to 
VOUT/ Zunknown. If VOUT, RFB and the gain along the signal path is known, the unknown 
impedance can be calculated by sampling and processing the voltage at the output of 
low pass filter. 
 

 
      Fig. 3 AD5933 Signal Path 
 
For accurate measure of the impedance, it is important that the receive stage is 
operating in its linear region. This requires careful selection of the excitation signal 
range, current-to-voltage gain resistor, and PGA gain. The gain through the system 
shown in Figure 3 is given by 
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There are two issues related to the signal saturation problem. First, current from the 
external unknown impedance flows through the VIN pin and into a trans-impedance 
amplifier which has a user determined external resistor across its feedback path. The 
output voltage of the trans-impedance amplifier is determined by the closed loop gain 
-RFB/Zunknown and VOUT. The positive node of the amplifier is biased at a fixed value of 
VDD/2, large difference between the positive and negative nodes can saturate the 
output the amplifier. The RFB and the VOUT should be chosen so that this voltage 
remains in the linear region. Second, the gain of the PGA should be properly set to 
make best use of the dynamic range of the ADC but not to saturate the following 
stages. Both of these issues rely on an approximation of the Zunknown and proper 
selection on the feedback resistor. 
 
As the datasheet of AD5933 suggests, to get best accuracy, the RFB/Zunknown ratio 
should be within 0.066~0.2. The resistance values of the feedback network are 
determined as 4.7k, 10k, 27k, 57k, 200k, 470k, 1M. The measurable impedance range 
is then divided into 7 segments. One of the values is picked after the range of the 
unknown impedance is estimated. The way to estimate the unknown impedance is 
discussed in the software design part. 
 

System Design 
The microcontroller is the control unit and data processor in the system. It controls the 
AD5933 and two analog switches during the measures. After calculation and 
calibration based on the data from AD5933, the microcontroller sends the results to 
the LCD, where users can read the impedance values. 
 
The hardware connections between the microcontroller and the functional chips are 
shown below. 
 
Name Connection Type Line numbers Description 
AD5933 I2C 2 AD5933 control 

and data transfer 
ADG706 (1) Parallel 4 Feedback resistor 

selection 
ADG706 (2) Parallel 4 Calibration resistor 

selection 
RCM2034R Parallel 7 LCD control and 

data transfer 
Table.1 Intrasystem Connection 



The microcontroller used in this project has four 8-bit I/O ports. All I/O pins are 
shared with alternate function pins. By setting the I/O ports to a proper status, they 
can be used as either general digital I/O or I/O pins of functional blocks in 
ATmaga32. 
 
I2C bus 
I2C bus is a Serial Interface Protocol. The AD5933 is connected to this bus as a slave 
device, under the control of a master device, which is the ATmega32 here. The 
AD5933 has a 7-bit serial bus slave address. When the device is powered up, it will 
do so with a default serial bus address, 0001101. 
 
Figure 4 shows the timing diagram for general read and write operations using the I2C 
interface. 
 

 
Fig. 4 General I2C protocol 

 
The master initiates data transfer by establishing a start condition, defined as a high to 
low transition on the serial data line (SDA) while the serial clock line (SCL) remains 
high. This indicates that a data stream follows. The slave responds to the start 
condition and shifts in the next 8 bits, consisting of a 7-bit slave address (MSB first) 
plus an R/W bit, which determines the direction of the data transfer. That is, whether 
data is written to or read from the slave device (0 = write, 1 = read).  
 
The slave responds by pulling the data line low during the low period before the ninth 
clock pulse, known as the acknowledge bit, and holding it low during the high period 
of this clock pulse. All other devices on the bus remain idle while the selected device 
waits for data to be read from or written to it. If the R/W bit is 0, then the master 
writes to the slave device. If the R/W bit is 1, the master reads from the slave device. 
 
Data is sent over the serial bus in sequences of nine clock pulses, 8 bits of data 
followed by an acknowledge bit, which can be from the master or slave device. If the 
operation is a write operation, the first data byte after the slave address is a command 
byte. This tells the slave device what to expect next. It may be an instruction telling 
the slave device to expect a block write, or it may be a register address that tells the 
slave where subsequent data is to be written. Data can flow in only one direction as 
defined by the R/W bit. 
 
When all data bytes have been read or written, stop conditions are established. In 
write mode, the master pulls the data line high during the 10th clock pulse to assert a 
stop condition. In read mode, the master device releases the SDA line during the low 



period before the ninth clock pulse, but the slave device does not pull it low. This is 
known as a no acknowledge (NACK). The master then takes the data line low during 
the low period before the 10th clock pulse, then high during the 10th clock pulse to 
assert a stop condition. 
 
LCD connection and control 
The RCM2034R is a reflective TN type liquid crystal module with a built-in 
controller / driver LSI and a display capacity of 16 characters with 2 lines. It supports 
both 4-bit and 8-bit operations. That is, data transfer with two transmissions of 4 bits 
at a time or one transmission of 8 bits at once. When using 4-bit operation mode, data 
is transferred along DB4 through DB7 buses and DB0 through DB3 buses are not 
used. (DB0-DB7 is the bi-directional data bus on RCM2034R.) Data transfer is 
completed after two transfers of 4 bit data. First the upper nibble (contents of DB4 
through DB7 during 8-bit interfacing) is transferred and then the lower nibble 
(contents of DB0 through DB3 during 8-bit interfacing) is transferred. 
 
The 4-bit operation mode is used in this system so that a single 8-bit port connection 
is enough for this operation mode. Besides 4-bit data bus, three control lines need to 
be connected to complete the hardware connection between the microcontroller and 
the LCD. Table-2 shows the connection details and their functions. 
 
Symbol Input/output Function MCU Connection 
RS Input Register selection 

signal. 
PD0 

R/W Input Reading and 
writing selection 
signal 

PD1 

E Input Data reading and 
writing start signal 

PD2 

DB4-DB7 Input/output 4-bit operation data 
bus 

PD4-PD7 

Table.2 LCD Connection 
 
Analog Switches control 
The ADG706 is a low-voltage, CMOS analog multiplexers comprising 16 single 
channels. The ADG706 switches one of 16 inputs (S1–S16) to a common output, D, 
as determined by the 4-bit binary address lines A0, A1, A2, and A3. An EN input is 
used to enable or disable the device. When disabled, all channels are switched off. An 
8-bit parallel port is just good for two switches with both of the EN inputs are tied to 
VCC. They are used to switch the resistor networks between VOUT, VIN and RFB. The 
common terminals of these two switches are connected to VOUT and VIN respectively. 
The reference resistors are connected together to RFB on one end while the other ends 
are connected to different inputs on the switch. Similarly, the calibration resistors are 
connected together to VIN on one side. Figure 5 shows the connection of the resistor 



networks and switches. 

 
Fig. 5 Precision resistor networks 

Crystal Oscillator 
The frequency generator in AD5933 is based on DDS technique. There are two 
choices to get the reference frequency. The AD5933 has an on chip RC oscillator, 
which has an output frequency of 16.7MHz±0.2 MHz with a 330ppm jitter spec. 
Relatively high phase noise of this internal oscillator can seriously affect the output 
stimulus signal, thus the accuracy of the measured impedance because all the 
following calculation is based on the nominal output frequency. The other choice is 
using an external clock to feed the 16.6MHz reference. A crystal oscillator with high 
stability of 50ppm is used. Though it consumes extra power, the frequency accuracy 
of the output signal can be greatly improved. 
 

Software design 
I2C bus 
Since the commands and data bytes between microcontroller and AD5933 are 
transferred through I2C bus, it is necessary to establish a function library containing 
all the read and write functions for the communication before applying high level 
application commands. In this design, the function library is divided into two levels. 
As shown in Figure 6, the low level functions complete the basic operations including 
register setting, reading and writing. The high level functions are based on the low 
level one. They use these basic register operations, as well as appropriate timing and 
protocol of AD5933, to complete all the communication operations AD5933 supports. 
Those functions include byte writing/reading, block writing/reading, address point 
setting. They are the routines called by the application level. 
 



 
Fig. 6 I2C bus function library 

 
LCD display 
There are existing functions for LCD control in ATmage32 function library. But most 
of them are low level functions which can only complete such tasks as putting one 
character on the screen, move the cursor to certain point or clear the screen. Higher 
level functions are needed to bridge the low level to the application level. Since the 
only information that needs to be shown on the screen are the current testing 
frequency and the measured impedance, the format of the displayed words are similar. 
A function with two inputs, the frequency and impedance, is written as the interface to 
the application level. After every measurement, the application program calls this 
function to output the measured results. 
 
Estimate the unknown impedance 
The AD5933 is capable of measuring impedance values by providing the real (R) and 
imaginary (I) code. The magnitude of the real and imaginary data contents is given 

by 22)( IRfMagnitude += . This magnitude value is equal to a scaled value of the 

actual impedance under test at the frequency point f. In order to determine actual 
impedance value users must multiply the magnitude by a number called Gain Factor 
GF(freq, Vdd, temp), which is a value representing the accumulative gain through the 
signal path of the system for known calibration impedance for a specified value of 
output gain voltage/pre ADC gain and feedback resistor settings. Therefore the actual 
impedance at any sample instance is given by the following, 

)()(Im fMagnitudeGainFactorfpedance ×=  

The Gain Factor is measured using a known external impedance, e.g., a precision 
resistor, connected between Vout and Vin as close as possible to the pins. Calculating 
the GF in this way calibrates out the parasitic impedance between Vout and Vin at a 
given frequency. The parasitic impedance is made up of a parallel capacitance 



between Vout and Vin as well as a series resistance and series inductance mainly due 
to the bond wires and solder joints.  
 
As there are several gain settings on the signal path, any adjustment to the supply 
voltage, calibration frequency, output excitation level, external feedback resistance 
value, and pre-ADC voltage gain will require a recalculation of the GF. If the GF is 
not recalculated after any system gain parameter adjustment then the impedance value 
returned by the AD5933 will have an error associated with it. Therefore the accuracy 
of final results depends upon the value of the GF. 
 
The gain factor is dependant upon the ratio of the trans-impedance feedback 
resistance value RFB to the impedance under test, Zunknown. In order for the AD5933 to 
return accurate values, it is necessary to ensure that the largest signal is returned to the 
ADC while ensuring that gain factor will not vary significantly over the unknown 
impedance range. Minimising the gain factor variation is achieved by placing the 
AD5933 operating point in the flat region the variation of the gain factor. The ratio of 
feedback resistance to calibration impedance should lie in the range of 0.2~0.066, 
recommended in the data sheet. 
 
These two values are chosen based on the knowledge of the range of unknown 
impedance. A straightforward and good way to estimate the unknown impedance is 
trial and error. Figure 7 shows the impedance estimation flow diagram. The 
estimation starts from the middle of the measurable impedance range, e.g., 
27kΩ-57kΩ. The feedback resistor corresponding to this impedance range is chosen. 
Then the magnitude code of this unknown impedance under this feedback situation 
can be obtained. Compare this value with the upper and lower limit of the magnitude 
codes, which are the boundary values for the input signal staying in the linear range. 
If the measured value is not within the limits, the estimation process will stay in the 
loop and go through the steps discussed above again with a changed impedance 
range/feedback resistor. When the magnitude is larger than the upper limit, the next 
larger resistor will be chosen. When smaller, the next smaller resistor will be chosen. 
The loop will keep running until it finds a proper feedback resistor which makes the 
magnitude code within the limits or the unknown impedance is out of range. In either 
way, the loop stops. The magnitude code is recorded as one of the outputs of the loop 
when the impedance range is found while an error routine is called when it is out of 
range. 
 



 
Fig. 7 Impedance Estimation Flow Diagram 

 

System test and calibration 
The prototype of system is implemented with resistor networks consisting of high 
precision resistor (0.5%). Since these resistors are only accurate under low frequency, 
the test and calibration is conducted within its precision range. According to the 
discussion above, a proper feedback and calibration resistor should be chosen so as to 
get the best measurement accuracy. However, even if the case, the measurement 
results may not be within the accuracy range of 2%. An important assumption of the 
measurement is that the gain factor within one of those defined impedance ranges is 
constant. That is, the magnitude code is simply a linear function of the impedance. 
But the real situation is that the magnitude code becomes non-linear gradually as the 
unknown impedance approaches the boundaries of the defined impedance range. If 
the magnitude code of the calibration impedance is still used as a reference for such 
cases, results are not accurate. Figure 8 shows the linearity of magnitude code from 
33KΩ to 72KΩ. It can be seen that if the unknown impedance is located in the lower 
part of this impedance range, the results may have large errors due to the 
non-linearity. 
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Fig. 8 Linearity of magnitude code 

 
There are two ways to decrease the effect of this phenomenon. The first is to divide 
the impedance range into more sections. It is easy to see that if we can divide the 
impedance range shown in Figure 8 into 3 sections, 33K~45K~56K~72K, each of 
which is much more linear inside the range. However the cost of this way is to 
complicate the resistor networks, thus the whole system and more important, the 
measurement speed will be greatly lowered because of the nature of the impedance 
estimation method. In the worst case, the measurement time increases by three times 
as one impedance range is divided into three. The second way is to take advantage of 
the feature of signal path gain control on AD5933 to linearize the system. Since the 
magnitude code has linear relation to the gain through the system and the gain can be 
expressed as (1), changing the magnitude of output signal and/or the gain of the 
preamplifier has the same effect of changing the value of feedback resistor (gain 
setting resistor) on the magnitude code. So we can use two adjacent values of the 
feedback resistors (one in the impedance range where the unknown impedance 
located and the other in the adjacent range) to cover the same impedance range. Since 
the feedback resistors used in these two measurements are different, two different 
linearity curves can be obtained, which can be used to linearize the magnitude code to 
the desirable linearity. This needs to completely plot the linearity curves for all the 
impedance ranges and finely tune the parameters to get the best combination of these 
two linearity curves. But all these work can be done in the design stage. So it will not 
affect the measurement time during the use. The final design of this project adopted 
both of the two ways and the slowest measurement takes 0.5 second, which occurs in 
very low frequency range. Figure 9 shows the system linearity of the final design for 
the whole measurement range. The linearity can be calculated as 
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Fig. 9 System Linearity 

Conclusions and Future work 
A prototype of complex impedance meter is designed and implemented. The system is 
a microcontroller based, high precision and low power device. Due to the simple 
structure, it can be made as a portable impedance measurement device, which is used 
in a lot of scientific and industrial fields such as electrochemical analysis, 
bioelectrical impedance analysis and material property analysis. The accuracy of 2% 
is realized through the appropriate design and system calibration. This accuracy is 
good enough for most of the biomedical impedance measurement applications. 
 
Due to the limitation of the precision resistor networks used in the system, the 
accuracy is only proved in relatively low frequency. For the next step, frequency 
independent high precision resistors can be adopted and the system needs recalibrated 
for the best results. The second thing for the future work is the prototype can be 
further implemented on a PCB board to achieve less parasitic parameters and low 
noise. This may further increase the accuracy of the measurement. 
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Appendix 
 
Words define 
Since both the operation of I2C bus and control of AD5933 have lots of command and 
status words, it is convenient for use by defining those hex numbers to more 
meaningful constants. Similarly, all the register addresses in AD5933 are defined in 
the same way. 
 
/********************************************* 
This program was written by Yi Zhang in the 
design of a Complex Impedance Meter 
email: yz226@cornell.edu 
 
Project : A Design of Complex Impedance Meter 
Version : 1.0 
 
Chip type           : ATmega32 
Program type        : Application 
Clock frequency      : 16.000000 MHz 
Memory model       : Small 
External SRAM size   : 0 
Data Stack size       : 512 
*********************************************/ 
 
/* Use an 1x16 alphanumeric LCD connected 
  to PORTA as follows: 



    
  [LCD]   [Mega32 pin] 
   1 GND-  GND 
   2 +5V-  VCC 
   3 VLC 10k trimpot wiper (trimpot ends go to +5 and gnd)  
   4 RS -  PC0 
   5 RD - PC1 
   6 EN - PC2 
  11 D4 - PC4 
  12 D5 - PC5 
  13 D6 - PC6 
  14 D7 - PC7  
*/ 
 
#include <mega32.h> 
#include <math.h> 
#include <Delay.h> 
#include <stdio.h> 
 
#asm 
    .equ __lcd_port=0x1b 
#endasm 
#include <lcd.h> //LCD driver routines 
  
//Reference Code range 
#define CodeMax 25000 
#define CodeMin 10000 
#define CodeMid 21000 
 
 
#define LCDwidth 16 //LCD characters 
 
 
#define startfreq 5 //Start Frequency 
 
 
#define incfreq 100 //Incremental Frequency 
 
 
#define SUCCESS 0xff //Flag     
 
//Command 
#define Start 0xa4 
#define Stop 0x94 



#define Trans 0x84 
#define ACK 0xc4  
 
//I2C bus Status 
#define START 0x08 
#define ReSTART 0x10 
#define SLA_W 0x1a 
#define SLA_R 0x1b 
#define MT_SLA_ACK 0x18 
#define MT_SLA_NACK 0x20 
#define MR_SLA_ACK 0x40 
#define MR_SLA_NACK 0x48 
#define MT_DATA_ACK 0x28 
#define MT_DATA_NACK 0x30 
#define MR_DATA_ACK 0x50 
#define MR_DATA_NACK 0x58 
#define TWINT 0x80 
 
//AD5933 control codes 
#define Init 0x10 //Initialize with start Freq 
#define Sweep 0x20 //Start Frequency Sweep 
#define IncFreq 0x30 //Increment Frequency 
#define RepFreq 0x40 //Repeat Frequency 
#define MeaTemp 0x90 //Measure Temperature 
#define PowerDown 0xa0 //Power down mode 
#define Standby 0xb0 //Standby mode 
#define Range2V 0x00 //Output Voltage range 2V 
#define Range1V 0x06 //Output Voltage range 1V 
#define Range400mV 0x04 //Output Voltage range 400mV 
#define Range200mV 0x02 //Output Voltage range 200mV 
#define gainx5 0x00 //PGA gain x5 
#define gainx1 0x01 //PGA gain x1 
 
//AD5933 Register addresses 
#define Control_high 0x80 
#define Control_low 0x81 
#define Freq_high 0x82 
#define Freq_mid 0x83 
#define Freq_low 0x84 
#define FreqInc_high 0x85 
#define FreqInc_mid 0x86 
#define FreqInc_low 0x87 
#define NumInc_high 0x88 
#define NumInc_low 0x89 



#define NumSettle_high 0x8a 
#define NumSettle_low 0x8b 
#define Status 0x8f 
#define Temp_high 0x92 
#define Temp_low 0x93 
#define Real_high 0x94 
#define Real_low 0x95 
#define Imag_high 0x96 
#define Imag_low 0x97    
 
 
 
/********************************************************************
******** 
 Function : char Init_TWI(void) 
 Setup the TWI module 
 Baudrate : 250kHz @ 16MHz system clock 
 Own address : OWN_ADR (Defined in TWI_driver.h) 
*********************************************************************
*******/ 
unsigned char Init_TWI(void) 
{ 
 //TWAR = OWN_ADR; //Set own slave address 
 TWBR = 0x18;       //Set baud-rate to 250 KHz at 16 MHz xtal 
 TWCR = 0x04;  //Enable TWI-interface 
 return 1; 
} 
 
/********************************************************************
******** 
 Function : void Wait_TWI_int(void) 
 Loop until TWI interrupt flag is set 
*********************************************************************
*******/ 
void Wait_TWI_int(void) 
{ 
 while(!(TWCR & TWINT)); 
} 
 
/********************************************************************
******** 
 Function :unsigned char Send_start(void) 
 Send a START condition to the bus and wait for the TWINT to be set and    
 see the result. If it failed, return the TWSR value, if succeeded, return  



 SUCCESS. 
*********************************************************************
*******/ 
unsigned char Send_start(void) 
{ 
 TWCR=Start;   //Send START 
  
 Wait_TWI_int();  //Wait for TWI interrupt flag to be set 
 
    if((TWSR & 0xF8)!=START || (TWSR & 0xF8)!=ReSTART) 
  return TWSR;  //If it failed, return the TWSR value     
    return SUCCESS; //If succeeded, return SUCCESS 
} 
 
/********************************************************************
******** 
 Function : void Send_stop(void) 
 Send a STOP condition to the bus 
*********************************************************************
*******/ 
void Send_stop(void) 
{ 
 TWCR = Stop;  //Send a STOP condition 
}   
 
/********************************************************************
******** 
 Function : unsigned char Send_adr(unsigned char adr)      
  
 Send a SLA+W/R to the bus 
*********************************************************************
*******/ 
unsigned char Send_adr(unsigned char adr) 
{ 
 Wait_TWI_int();  //Wait for TWI interrupt flag set 
 
 TWDR = adr; 
 TWCR = Trans;     //Clear int flag to send byte  
 
 Wait_TWI_int();  //Wait for TWI interrupt flag set 
 
 if((TWSR & 0xF8)!= MT_SLA_ACK || (TWSR & 0xF8)!= MR_SLA_ACK)  
  return TWSR;  //If NACK received return TWSR      
   



 return SUCCESS;  //Else return SUCCESS 
} 
 
/********************************************************************
******** 
 Function : unsigned char Send_byte(unsigned char data) 
 Send one byte to the bus. 
*********************************************************************
*******/ 
unsigned char Send_byte(unsigned char data) 
{ 
 Wait_TWI_int();  //Wait for TWI interrupt flag set 
 
 TWDR = data; 
  TWCR = Trans;     //Clear int flag to send byte  
 
 Wait_TWI_int();  //Wait for TWI interrupt flag set 
 
 if((TWSR & 0xF8)!= MT_DATA_ACK)      
  return TWSR;  //If NACK received return TWSR     
           
 return SUCCESS;  //Else return SUCCESS 
} 
 
/********************************************************************
******** 
 Function : unsigned char Set_pointer(unsigned char reg_loc) 
 Set the pointer to a register location. 
*********************************************************************
*******/ 
unsigned char Set_pointer(unsigned char reg_loc) 
{ 
 Send_start(); 
  Send_adr(SLA_W); 
    Send_byte(0xb0);  //Pointer command code '1011 0000' 
    Send_byte(reg_loc); //a register location at which the pointer points 
    return 1; 
} 
 
/********************************************************************
******** 
 Function : unsigned char Byte_write(unsigned char reg_addr, unsigned char data) 
 Write a byte to AD5933. 



*********************************************************************
*******/ 
unsigned char Byte_write(unsigned char reg_addr, unsigned char data) 
{ 
 Send_start(); 
  Send_adr(SLA_W); 
    Send_byte(reg_addr); 
    Send_byte(data); 
    Send_stop(); 
 return 1; 
} 
 
 
 
 
/********************************************************************
******** 
 Function : unsigned char Block_write(unsigned char reg_loc, unsigned char 
byte_num, unsigned char* data_p) 
 Write a block of data to AD5933. 
*********************************************************************
*******/ 
unsigned char Block_write(unsigned char reg_loc, unsigned char byte_num, unsigned 
char* data_p) 
{ 
 unsigned char i; 
  
 Set_pointer(reg_loc); //set the pointer location 
    Send_start();   //write the data block 
  Send_adr(SLA_W); 
    Send_byte(0xa0);  //Block write command code '1010 0000' 
    Send_byte(byte_num); //Num of data to be sent 
     
    for(i = 0;i < byte_num;i++)  //Send the data bytes 
    { 
     Send_byte(*(data_p+i));      
    } 
    Send_stop(); 
    return 1; 
} 
 
/********************************************************************
******** 
 Function : unsigned char Byte_read(unsigned char reg_loc) 



 Read a byte from AD5933. 
*********************************************************************
*******/ 
unsigned char Byte_read(unsigned char reg_loc) 
{ 
 Set_pointer(reg_loc); //set the pointer location 
  
 //Receive a byte 
 Send_start(); 
  Send_adr(SLA_R);  
 TWCR = Trans; 
 Wait_TWI_int();   //Wait for TWI interrupt flag set 
 return TWDR; 
} 
 
/********************************************************************
******** 
 Function : unsigned char Block_read(unsigned char reg_loc, unsigned char 
byte_num) 
 Read a block of data from AD5933. 
*********************************************************************
*******/ 
unsigned char Block_read(unsigned char reg_loc, unsigned char byte_num) 
{ 
 unsigned char i; 
 unsigned char* data_p; 
  
 Set_pointer(reg_loc); //set the pointer location 
     
    //write the data block 
    Send_start(); 
 Send_adr(SLA_W); 
  Send_byte(0xa1);  //Block read command code '1010 0001' 
  Send_byte(byte_num); //Num of data to be received   
   
  Send_start(); 
  Send_adr(SLA_R); 
  for(i = 0;i < byte_num;i++) //Receive all the bytes 
    {  
   
  TWCR = ACK;  //Clear int flag and enable acknowledge to receive data. 
  Wait_TWI_int();  //Wait for TWI interrupt flag set 
  *(data_p+i)=TWDR; 
 } 



  
 TWCR = Trans;     
 Wait_TWI_int();   //Wait for TWI interrupt flag set 
 
 *(data_p+i)=TWDR;  //Save Last byte 
  
  Send_stop(); 
  return data_p; 
} 
 
/********************************************************************
******** 
 Function : void Hit_botton7() 
 A function used in testing. 
*********************************************************************
*******/ 
void Hit_botton7() 
{ 
 unsigned char hit=1; 
 while(hit) 
 { 
   if(PIND==0x7f) 
   { 
    delay_ms(30);  
     if(PIND==0x7f) 
     hit=0; 
    } 
   } 
}  
 
/********************************************************************
******** 
 Function : unsigned long int Data_proc(unsigned char data_high, unsigned char 
data_low) 
 Calculate the code value from AD5933. 
*********************************************************************
*******/ 
unsigned long int Data_proc(unsigned char data_high, unsigned char data_low) 
{ 
 unsigned long int data; 
 data=(unsigned long int)data_high*256+data_low;  
 if(data > 0x7fff) 
 { 
  data=0x10000-data; 



 }  
 return data; 
} 
 
/********************************************************************
******** 
 Function : void error(unsigned char mode) 
 A function handles error situations. 
*********************************************************************
*******/ 
void error(unsigned char mode) 
{ 
 char lcd_buffer[17];     //LCD display buffer 
 lcd_init(LCDwidth);       //initialize the display 
    lcd_clear();         //clear the display 
    lcd_gotoxy(0,0);       //position to upper left on display 
     
    switch (mode) 
    { 
    case 1: 
     lcd_putsf("INF");  
     lcd_gotoxy(0,1);    //position to bottom left on display  
     lcd_putsf("Range:4.7K-1.1M"); 
     break; 
    case 2: 
     lcd_putsf("Error"); break;  
    } 
} 
 
/********************************************************************
******** 
 Function : void Display(unsigned long int frequency, unsigned long int 
impedance) 
 A function used to display the measured results. 
*********************************************************************
*******/ 
void Display(unsigned long int frequency, unsigned long int impedance) 
{ 
 char lcd_buffer[17];     // LCD display buffer 
 lcd_init(LCDwidth);       //initialize the display 
    lcd_clear();         //clear the display 
    lcd_gotoxy(0,0);       //position to upper left on display 
    lcd_putsf("Freq=");      //constant string from flash 
    lcd_gotoxy(0,1);     //position to bottom left on display  



    lcd_putsf("Imped=");   //constant string from flash 
     
    //display present freq 
    sprintf(lcd_buffer,"%-li",frequency); 
    lcd_gotoxy(5,0); 
    lcd_puts(lcd_buffer); 
     
    //display measured impedance at present freq  
    sprintf(lcd_buffer,"%-li",impedance); 
    lcd_gotoxy(6,1); 
    lcd_puts(lcd_buffer); 
}  
 
 
 
void main(void) 
{ 
 unsigned char i,a,b,cnt,f; 
 unsigned long int R,I;  //Real and Imag numbers 
 unsigned char* data_s, data_r; 
 unsigned long int freqcode,frequency,impedance; 
 //Refence Impedance values used in the system 
 unsigned long int 
ReImpedance[]={4700,10000,27000,57000,200000,470000,1000000}; 
 //Analog switches control code 
 unsigned char init_port[]={0x0f,0x1f,0x2f,0x3f,0x4f,0x5f,0x6f}; 
 unsigned char port[]={0x01,0x13,0x25,0x37,0x49,0x5b,0x6d}; 
 float GF,code,Calcode,tempcode; 
 
// Port B initialization 
PORTB=0x00; 
DDRB=0x00; 
 
// Port C initialization 
PORTC=0xff; 
DDRC=0x00; 
 
// Port D initialization 
PORTD=0x00; 
DDRD=0x00; 
 
// Timer/Counter 0 initialization 
// Clock source: System Clock 
// Clock value: Timer 0 Stopped 



// Mode: Normal top=FFh 
// OC0 output: Disconnected 
TCCR0=0x00; 
TCNT0=0x00; 
OCR0=0x00; 
 
// Timer/Counter 1 initialization 
// Clock source: System Clock 
// Clock value: Timer 1 Stopped 
// Mode: Normal top=FFFFh 
// OC1A output: Discon. 
// OC1B output: Discon. 
// Noise Canceler: Off 
// Input Capture on Falling Edge 
TCCR1A=0x00; 
TCCR1B=0x00; 
TCNT1H=0x00; 
TCNT1L=0x00; 
OCR1AH=0x00; 
OCR1AL=0x00; 
OCR1BH=0x00; 
OCR1BL=0x00; 
 
// Timer/Counter 2 initialization 
// Clock source: System Clock 
// Clock value: Timer 2 Stopped 
// Mode: Normal top=FFh 
// OC2 output: Disconnected 
ASSR=0x00; 
TCCR2=0x00; 
TCNT2=0x00; 
OCR2=0x00; 
 
// External Interrupt(s) initialization 
// INT0: Off 
// INT1: Off 
// INT2: Off 
MCUCR=0x00; 
MCUCSR=0x00; 
 
// Timer(s)/Counter(s) Interrupt(s) initialization 
TIMSK=0x00; 
 
// Analog Comparator initialization 



// Analog Comparator: Off 
// Analog Comparator Input Capture by Timer/Counter 1: Off 
// Analog Comparator Output: Off 
ACSR=0x80; 
SFIOR=0x00; 
 
// 2 Wire Bus initialization 
// Generate Acknowledge Pulse: On 
// 2 Wire Bus Slave Address: 0dh 
// General Call Recognition: Off 
// Bit Rate: 250.000 kHz 
 
DDRB=0xff; 
Init_TWI(); 
 
while(1) 
 {   
   //set start frequency 
        freqcode=startfreq*33.554432;  //calculate the hex frequency 
code 
        *data_s=0x000000ff & (freqcode>>16); *(data_s+1)=0x000000ff & 
(freqcode>>8); *(data_s+2)=0x000000ff & freqcode; 
        Block_write(Freq_high, 3, data_s); 
             
             
         //set Incremental frequency 
         freqcode=incfreq*33.554432;  //calculate the hex inc frequency code 
        *data_s=0x000000ff & (freqcode>>16); *(data_s+1)=0x000000ff & 
(freqcode>>8); *(data_s+2)=0x000000ff & freqcode; 
         Block_write(FreqInc_high, 3, data_s); 
     
            //Set Num of Inc 
            Byte_write(NumInc_high, 0x01); 
            Byte_write(NumInc_low, 0xf4); 
             
            //Set Num of Settling Time Cycles 
            Byte_write(NumSettle_high, 0x00); 
            Byte_write(NumSettle_low, 0x24); 
             
            //Working mode 
            Byte_write(Control_low, 0x00); 
            Byte_write(Control_high, 0xb0); 
             
restart: code=0; 



  cnt=1; 
        f=0; 
             
  while (code<CodeMin || code>CodeMax) 
    {      
         if(cnt==1)                   //Estimate the External 
Impedance 
            { 
             i=3;                    //The channel for External 
Impedance 
             PORTB=init_port[i];       
         }          
             
             else  
             { 
              if(i>6 || i<0)   //External Impedance out of measurement 
range 
              { 
               error(1); 
                  goto restart; 
              }  
               
              if(code>CodeMax) 
               PORTB=init_port[++i]; 
              else 
                  PORTB=init_port[--i]; 
                } 
           //Initialize 
            Byte_write(Control_high, 0x10); 
             
            //Start measurement 
            if(cnt==1) 
             Byte_write(Control_high, 0x26); //nominal output 1V, gain of 
PGA=5 
                 
            else 
             Byte_write(Control_high, 0x46); 
                    
            while(!(Byte_read(Status) & 0x02)); 
             
            a=Byte_read(Real_high); 
            b=Byte_read(Real_low); 
            R=Data_proc(a, b); 
              



            a=Byte_read(Imag_high); 
            b=Byte_read(Imag_low); 
            I=Data_proc(a, b); 
             
            code=sqrt(R*R+I*I); 
            cnt++; 
             
            if(cnt>=20) 
            { 
             error(2); 
             goto restart; 
            } 
              
        } 
          
            if(code>CodeMid) 
            { 
             tempcode=0; 
             if(i<=5) 
             { 
               PORTB=init_port[i+1]; 
               Byte_write(Control_high, 0x46); 
               while(!(Byte_read(Status) & 0x02)); 
             
               a=Byte_read(Real_high); 
               b=Byte_read(Real_low); 
               R=Data_proc(a, b); 
              
               a=Byte_read(Imag_high); 
               b=Byte_read(Imag_low); 
               I=Data_proc(a, b); 
             
               tempcode=sqrt(R*R+I*I); 
             } 
              
             if(tempcode<CodeMin) 
             {  
               PORTB=init_port[i]; 
               Byte_write(Control_high, 0x44); 
               while(!(Byte_read(Status) & 0x02)); 
             
               a=Byte_read(Real_high); 
               b=Byte_read(Real_low); 
               R=Data_proc(a, b); 



              
               a=Byte_read(Imag_high); 
               b=Byte_read(Imag_low); 
               I=Data_proc(a, b); 
             
               code=0.5*(code+sqrt(R*R+I*I)); 
               f=1; 
             } 
             else 
             { 
               code=tempcode; 
               i++; 
             } 
            } 
             
             PORTB=port[i];   //change channel to external impendance 
             delay_ms(1); 
             
             Byte_write(Control_high, 0x46); 
             while(!(Byte_read(Status) & 0x02)); 
             
             a=Byte_read(Real_high); 
             b=Byte_read(Real_low); 
             R=Data_proc(a, b); 
 
             a=Byte_read(Imag_high); 
             b=Byte_read(Imag_low); 
             I=Data_proc(a, b); 
             
             Calcode=sqrt(R*R+I*I); 
             
             if(f==1) 
             { 
              Byte_write(Control_high, 0x44); 
              while(!(Byte_read(Status) & 0x02)); 
              a=Byte_read(Real_high); 
              b=Byte_read(Real_low); 
              R=Data_proc(a, b); 
 
              a=Byte_read(Imag_high); 
              b=Byte_read(Imag_low); 
              I=Data_proc(a, b); 
              
              Calcode=0.5*(Calcode+sqrt(R*R+I*I)); 



  } 
 
            impedance=(unsigned long int)(ReImpedance[i]*code/Calcode); 
            Display(startfreq,impedance);       
      }                      
} 
 


