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Abstract: This project implements a DDR RAM controller at the RTL level for the 

Altera Cyclone II FPGA on a DE2 development board. A PCB board was also 

designed and fabricated to provide an interface between the FPGA and the 

memory chip. DDR RAM is a widely used memory standard designed to provide 

storage and retrieval of large amounts of data at very high clock frequencies. 

The main distinction between this type of memory and other standards is that 

data is read and written on both rising and falling edges of the input clock. The 

motivation behind choosing this project was my desire to complement my 

classroom experience in designing digital systems on the FPGA with a real world 

application. This standard is used in many different digital systems, including 

high-performance graphics cards and modern personal computer systems. The 

challenge in this project is to develop a state machine capable of handling 

inputs at high clock frequencies while still maintaining an acceptable level of 

performance. The controller hardware was implemented using Verilog and the 

PCB board was designed using the ExpressPCB design software. 

 Simulation and verification was done in a Linux operating system 

environment. iVerilog was used to synthesize the code and run a simulation, and 

GTKWave was used to observe the output waveform and perform debugging. 

Micron provided a Verilog model of the DDR RAM, which was used inside a 

testbench along with DDR control module. The model provided feedback as to 

whether the DDR chip was receiving the proper input signals. A design flaw in 
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the Terasic DE2 board prevented me from implementing my top file on the 

Cylone II FPGA.  

Report Approved by 

Project Advisor ___________________________________________ Date: ____________ 

Executive Summary 

 Before work could begin on implementing the design requirements, 

background knowledge of Double Data Rate (DDR) RAM was established. 

Research was conducted on JEDEC DDR1 RAM standard as well as the Micron 

DDR1 memory module specifications. In particular the Micron implementation of 

the JEDEC standard for a DDR1 memory module was a starting point for the 

project. From this research, various considerations for the implementation of a 

DDR RAM controller were observed. Once a suitable foundation about specific 

requirements was established, work began on designing a hardware model for 

the Altera CycloneII FPGA. 

 Before a behavioral Verilog was implemented, much work was put in to 

designing the necessary components and state machines required to create 

the memory controller for DDR1 RAM. It was understood that the task of 

designing this controller would be considerably difficulty than first expected and 

therefore more thought needed to be put into the design process before an 

actual model was conceived. A main consideration throughout the initial design 

process was ease of use, given that the results of this project would potentially 

be used by students in future years.  

 Once the logical model was finalized, a behavioral Verilog model of the 

controller was implemented. Using design tools on a Linux system, including 

Icarus Verilog and GTKWave, a simulation of the controller was implemented. 

Micron’s DDR RAM Verilog model was used to verify that the controller was 
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interfacing properly with the RAM in simulations. The Micron DDR model was an 

invaluable tool in debugging the controller interface.  

 A testbench for the DDR controller was implemented utilizing the Micron 

Verilog model. This testbench can be used to test future modifications to the 

controller if additional features are required by the user. After a simulation model 

of the controller was fully functional, an attempt was made to modify it to work 

on an Altera Cyclone II FPGA residing on a Development and Education (DE2) 

board. Unfortunately due to a design flaw in the Terasic DE2 board the final 

version of the controller could not be interfaced with the DDR RAM chip. 

ExpressPCB, a company which specializes in fabricating PCB boards for small 

design projects, provided software necessary to design the PCB on which a DDR 

RAM chip was placed.
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Background 

Double data rate (DDR) RAM is a widely accepted class of memory 

storage used in many computers today. It allows for data of sizes up to 64-bit 

words to be transferred to be read and written from the RAM module on both 

the positive and negative edges of the clock. While there have been three 

different iterations of the DDR standard, with the current being DDR3, the first, 

commonly referred to as DDR1, allows for a maximum input clock frequency of 

200 MHz and a maximum storage size for one DDR Ram module of 1 GB. A 

typical module is shown below (figure 1).  

 

 

 

Figure 1. DDR RAM module with a DIMM socket interface 

It also interesting to note that the price for brand name 1 GB of DDR RAM 

rated at a clock frequency of 133 MHz is low as $50. The combination of cheap, 

but fast memory makes DDR RAM an ideal solution when extra memory 

capacity is needed for any hardware application. Indeed, the numerous 

variants of DDR RAM are already used in many devices such as the latest 

graphics processing cards. 
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Design Requirements 

The purpose of this design project is to develop a fully functional interface 

between the Altera CycloneII FPGA and a DDR1 RAM module running at an 

external clock of 133 MHz. The CycloneII FPGA resides on the DE2 board which 

contains, among other hardware, an expansion slot with 72 free expansion pins 

available (figure 2). A physical connector between the RAM module needs to 

be designed, along with the appropriate digital hardware drivers. The hardware 

will be freely available for any Cornell University students to use for projects 

involving the DE2 board. It is also hoped that in the process of doing this project, 

I will learn the tools used in industry for such designs, including the Linux 

development environment and associated software tools. 

While overall the goal will be to successfully interface the RAM with the 

CycloneII FPGA, ease of use will also be a consideration. A student should be 

able to integrate this design project into his or her own without much trouble. 

The following requirements will be addressed by the project: 

• Set up a solid developing environment for the development and 

simulation of the RAM controller 

• Develop a digital hardware module written in Verilog to allow the user to 

easily issue read and write and commands to memory 

• Allow several modes of memory access to give the user maximum 

flexibility in designing applications which use DDR RAM 

• Provide physical interface between a single DDR RAM chip and the Altera 

DE2 board 
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Figure 2. The DE2 board with a CycloneII FPGA 

Range of Solutions 

 Unlike previous designs implemented in the classroom, DDR RAM is a 

complex standard with very tight timing requirements. It is almost impossible to 

debug this memory controller without some kind of simulation and testbench. 

Simply writing up a behavioral model in Verilog and then downloading the code 

to the FPGA is not the most efficient way of implementing such a system. In fact, 

this approach can be quite painful as I learned early on. Even with the right tools 

and the right mindset, the process takes a long time and requires patience and 

perseverance.  

Digital Hardware Implementation 

 In industry and in some classes I have taken, much of the hardware 

development takes place in a Linux environment. This environment provides 

some very handy tools for a digital hardware designer. Two tools of interest to 

me were the verilog synthesizer and simulator, iVerilog, and the waveform 

viewer GTKWave. iVerilog is used to compile the code, run the simulation, and 

generate a waveform. GTKWave reads the waveform file and allows me to view 

parts of it for debugging and verification purposes. 

 Micron, A DDR chip manufacturer, provides a behavioral model of the 

chip free of charge for download off their website. This allows me to interface 
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my controller with a verilog model of the DDR chip and run simulations to see 

whether my code works or not. As an added bonus, verifying the controller on a 

Micron model also ensures that the controller will work with a Micron-fabricated 

DDR chip. The DDR model also provides feedback and describes the exact error 

that the controller performed, such as an improperly timed DQS signal.  

 Combining the Linux environment, my code, and the Micron DDR model, I 

was able to successfully implement the RTL logic to control a DDR RAM chip. 

Before any code was ported to the Altera QuartusII software package, I verified 

my design by simulating it in iVerilog. This was done to avoid having to debug 

my controller while it was running on the FPGA, which as mentioned earlier is a 

tedious and intractable task. Below is a logical flow of my design process: 

Write code in Verilog
Simulate in Linux 

Environment
Run code on FPGA

Debug

 

 

 The controller is kept separate from the datapath. It is up to the user to 

decide how to interface the data IO of the DDR RAM with his or her design. The 

only goal of the controller is to allow the user initialize the RAM properly with 

specific operating parameters and send read, right, active, and refresh 

commands to the DDR RAM. This was done to simplify the state machine of the 

RAM controller and to allow as much flexibility as possible to the user. The user 

can operate the RAM with as much complexity or simplicity as the user requires.  

Physical Hardware Implementation 

 DDR RAM modules come in many different configurations. One standard 

module has a PCB with a DIMM interface and several DDR RAM chips. These are 

designed to handle words of up to 64 bits to be transferred at every clock edge. 

Adding in the requirement control signals and clocks, the number of pins 

required to use this interface exceeded the 72 pins provided at the DE2 
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expansion headers. Instead, I decided to use one Micron 256 MB DDR chip with 

a 16-bit data bus, which required 32 input/output (IO) pins. Since no interface 

between the DE2 board and a DDR RAM chip existed, I had to design one from 

scratch.   

 On the advice of my advisor, I chose the ExpressPCB software package to 

design a schematic and a PCB layout of my board. ExpressPCB has a quick 

turnaround time. For my board, it took them exactly a week to fabricate the 

design and ship it. Due to the large number of signal wires that needed to be 

routed in a small area, I chose to use 4 layers. Two layers were dedicated to 

power and ground. The top and bottom copper layers were used to route 

signals from the DDR chip to the 40-pin headers that mated with the DE2 board.  

 A schematic of the hardware was designed and linked to the PCB layout. 

This greatly eased the process of routing the traces to their correct pins at the 

expansion headers. Also, any changes that had to be made to make to 

accommodate for spacing constraints (such as two traces being too close to 

each other), could be made in the schematic first and then linked to the layout. 

Due to the many changes that needed to be to the board it was finally ready 

for fabrication, this process of modifying the schematic and linking the changes 

to the layout was invaluable.   
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DDR RAM Design Parameters 

Reading and writing to and from the RAM module is burst oriented. A 

location for reading or writing is selected via commands sent to the DDR RAM 

controller on the module. In addition to the location, the length and sequence 

of accesses is selected.  Once the appropriate commands have been received 

and the appropriate signals asserted, data is transferred via a bi-directional bus. 

A table in the appendix lists all the pins to control the RAM (figure A1). For proper 

operation the device must initialized and specific electrical requirements must 

be met: 

 

• VDD and VDDQ are driven by a single output at 2.5V ± .2 V 

• VTT is limited to 1.35 V 

• VREF tracks VDDQ/2 

 

Operational Parameters 

The mode of operation for the RAM module is selected by setting the 

appropriate bits in the Mode Register. The Extended Mode Register can also be 

set. However, as of this time as defined in the standard it does not affect any 

useful operational parameters. The following parameters can be defined in the 

Mode Register: 

 

Parameter Description 

Burst Length The number of words read or written to memory in a read or 

write command. Can be 2, 4 or 8 words. 

Burst Type Determines whether the burst is sequential or interleaved 

CAS Latency The clock cycle latency between the issuance of a read 

command and when the data is ready on the data bus. Can 

be 1.5, 2, 2.5, or 3 
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Operating 

Mode 

Selects normal operating mode or a vendor specific mode 

used for testing  

 

When a MODE REGISTER SET command is issued to the normal Mode Register, 

the following bits in the address bus determine its contents: 

 

• A[2:0] – burst length 

• A[3] – burst type 

• A[6:4] – CAS latency 

• A[13:7] – operating mode 

 

An example combination of burst length and type is 8 words and sequential 

starting with the 0th address. In this case, the words written or read from memory 

will follow the pattern 0-1-2-3-4-5-6-7. It is crucial the address register is set with 

the appropriate bits when a MODE REGISTER SET command is issued.  

 

Commands/Instructions 

Commands (also referred to as instructions) are issued via the CS, RAS, 

CAS, WE and address pins. All pins except the address pins are active high. 

There are a total of eight distinct commands the DDR RAM module is designed 

to accept.  The following table describes each command and indicates which 

bits are required: 

 

Command CS RAS CAS WE Addr Description 

NOP H  X1 X X X No operation 

ACTIVE L L H H Bank/Ro

w 

Selects the bank and row of a read 

or write access 

READ L H L H Bank/Col Selects bank and column for a read 
and starts read 

                                            
1 X – Denotes a don’t-care input 
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WRITE L H L L Bank/Col Selects bank and column for a write 
and starts write 

BURST OFF L H H L X Ends a read burst only if 
autoprecharge is disabled 

PRECHARGE L L H L Mask Determines which banks are 
automatically precharged 

depending on the mask 

AUTO refresh L L L H X Performs auto refresh if CKE is high 

when command is issued 

Mode 

Register Set 

L L L L Mask Sets the Mode Register according to 

the mask 

While data is transferred on both the rising and falling edges of clock, 

commands can only be issued on the rising edge.  

Initialization  

Following power up of the RAM, the device is initialized in a predefined 

manner. After the device is given power, there must be a 200 µs wait before 

commands can be executed. After 200 µs a NOP command is issued and the 

CKE input is driven high. Next, a PRECHARGE ALL instruction is applied followed 

by a MODE REGISTER SET command to the extended mode register. Another 

MODE REGISTER SET command is applied to the normal mode register. These two 

series of commands specify the operating parameters of the RAM, such as the 

burst length and sequence.  

Following the setting of the mode registers, there must be a wait of 200 

cycles before further commands can be applied. After 200 cycles, the device 

must be put into the idle state by another PRECHARGE ALL command. Once in 

idle, two AUTO refresh commands are issued followed by a MODE REGISTER SET 

command with the reset bit low. This will allow the normal operating parameters 

of the device to be established without resetting. The following summarizes the 

initialization procedure: 

• Wait 200 µs, THEN 

• Issue NOP with CKE pin high, THEN 

• Issue PRECHARGE ALL instruction, THEN 
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• Issue MODE REGISTER SET for the extended mode register, THEN 

• Issue MODE REGISTER SET for the normal mode register, THEN 

• Wait 200 cycles, THEN 

• Issue PRECHARGE ALL instruction, THEN 

• Issue two AUTO refresh commands, THEN 

• Issue MODE REGISTER SET for the normal mode register with reset bit low, 

• Device is ready for normal operation 

Note that the Mode Register can be reset at any time after initialization. The 

user can redefine his operation parameters after initialization.  

 

 

 

Prepping for a read or write 

Before data can be written to memory or read from memory in a specific 

row inside a bank, that row must be opened. This is done by issuing an ACTIVE 

instruction along with the bank and row to be opened, specified by bank bits 

B[1:0] and address bits A[13:0]. If another row from the same bank is to be 

accessed next, the previous row in that bank must be closed. This is done by 

issuing a PRECHARGE command to that row. A row in a different bank can be 

issued an ACTIVE command after the current row in the current bank is 

activated without a PRECHARGE command. This reduces overhead when 

accessing data from separate banks because no PRECHARGE command is 

needed after the initial row is opened.  

There is a minimal time interval between when a command can be issued to 

another bank, called tRRD. There is also a minimal time interval between when a 

bank is issued an active command and when READ or WRITE can be issued, 

called tRCD. For a DDR RAM module rated at 133 MHz, tRRD and tRCD is 

defined as follows.  
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• tRRD – 2 cycles 

• tRCD – 3 cycles 

 

The following timing diagram illustrates issuing ACTIVE commands followed by 

a memory access to banks x and y (figure 3). Note that tRRD and tRCD are the 

same length, although that is usually not the case.  

 

 

Figure 3. Timing diagrams for read/write prepping 

 

Reading 

Once the desired bank and row are activated and a tRCD number of 

cycles have passed, a READ command can be issued. Along with the read 

command, the starting column address is asserted as well as the auto 

precharge bit (A10). If the bit is high, the bank will automatically precharge 

(“close”) itself. This eliminates the need to specifically issue that command after 

the read is completed. However, if a long stream of columns needs to be read 

from the same bank and row, it would not make sense to have automatic 

precharge enabled as this would increase overhead. If the bank is not 

precharged immediately after the read, a different row on the same bank will 

not be ready for another READ or WRITE command.     

READ commands can be issued sequentially without waiting for data from 

the first READ command to complete bursting. If two READ commands are 
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issued sequentially, the read data from the first command will be ready for 

bursting according to the CAS latency settings in the mode register. The 

following timing diagram illustrates sequential read accesses with a CAS latency 

of 2 (figure 4). Note that READ commands can be issued in such a way that 

each new piece of data is from a different column, rather than a sequential 

one. This provides true random memory access for DDR RAM.  

 

 

 

Figure 4. Sequential read commands timing diagram  

 

Note that the DQS pin is an output here. It asserts itself low after the READ 

command is issued and high coinciding with the first piece of data ready to be 

read. A PRECHARGE command must be issued 1 cycle before the last burst of 

read data. This is required to allow an ACTIVE command to be issued to the 

same bank. The active command to the same bank can only be issued after a 

tRP cycles have passed after the PRECHARGE command is issued.  

 

Writing 

As with the READ command, the WRITE command requires an ACTIVE 

command for the target bank and row. Similarly, to write to a new row on the 
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same bank, the bank must be precharged. The DQS signal is a don’t care input 

until the WRITE command is issued. On the same clock cycle, DQS must go low. 

This is called the “write preamble”. The first valid data written can be issued after 

the first negative edge of clock cycle during which the WRITE command was 

issued. Data is written to RAM on the rising edge and falling edges of the DQS 

pin. DQS must be properly asserted within .75 to 1.25 clock cycles after the WRITE 

command is sent. The following timing diagram illustrates the operation of the 

DQS signal with respect to the timing requirement, called tDQSS (figure 5).  

Figure 5. Issuing a write command  

 

READ commands to the same bank and row can be issued at tWTR clock cycles 

after the last word of data has been written. 

WRITE commands can be issued sequentially. To write to sequential 

columns in the same row, the next WRITE command must be issued when half 

the data of the previous write has been written. This is illustrated in figure 6.  
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Figure 6. Sequential WRITE commands 
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Physical Hardware Interface 

 The physical link between the CyloneII FPGA and the DDR RAM is a major 

part of this design project. An improperly designed interface will cause the RAM 

malfunction, possibly destroying the chip itself. The Micron DDR chip used in this 

project is 256 MB in size. It has a 16-bit wide databus and requires specific 

reference and Vdd voltages at several pins on the chip. 16 bits is the largest 

databus possible on current DDR1 chips. In order to attain a higher read and 

write capacity, DDR RAM module manufacturers put several DDR chips on a 

PCB and access them in parallel (figure 1). 

 Due to the high speed interface, the DDR RAM board was designed to 

mate directly with the DE2 board using two female 40-pin headers. There were 

no ribbon cables used to connect the board to the expansion headers. This 

requires precise placement of the header through-holes relative to each other 

to ensure that the board mates successfully with the DE2 headers. Specifically, 

the pin 1 of the top header was exactly 20mm away vertically from pin 1 of the 

bottom the header. As I will explain later, this posed a difficult design challenge 

when doing the PCB layout. 

The Micron DDR chip requires 8 pins to be connected to a Vdd voltage of 

2.6V and 1 pin to be connected to a Vref voltage of 1.3V. To provide power I 

chose to use two Texas Instruments PTH 08080w miniature power modules. Each 

can be fed an input voltage of 5V and output a separate voltage which can be 

controlled by a voltage select input on the chip. This is convenient because the 

expansion headers on the DE2 board have +5V output pins. The following figure 

is a pinout diagram of the modules: 
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Figure 7. Pin out of the PTH power module 

 

 Pins 1 and 2 are input voltage and ground respectively. Pin 3 is the output 

voltage and pin 4 is the voltage select. A resistor attached to pin 4 determines 

the output voltage. The resistance required is determined by the following 

equation: 

 

Therefore in order to get the required output voltages of 2.6V and 1.3V, 

resistances of 3.40KΩ and 20.5KΩ were used respectively.  

 

Schematic Design 

 As mentioned earlier, the ExpressPCB design software was used to create 

a schematic and a PCB layout on the board. The schematic was the first step in 

the board layout process. The schematic is a circuit-level view of the board. It 

contains all the capacitors, resistors, chips and headers that require some type 

of routing in the PCB layout. An example component in the ExpressPCB 

schematic software can be seen in figure 8.  
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Figure 8. Schematic Entry for Power Module 

This component is the TI power module which generates the required 1.3V 

reference for the DDR chip.  The component is not part of the standard library of 

symbols that come with the software. This component was designed by 

manually drawing the rectangular shape and pins. It was saved as a custom 

library component. Note that the output at pin 3 is called +Vref. The 

corresponding pin that requires a Vref on the DDR Chip symbol is attached to a 

wire also called +Vref. Also note that the component name U3. This corresponds 

to a component name in the PCB layout. This allows the schematic to be linked 

to a PCB layout.    

 The other major hardware component on the PCB is the DDR RAM chip 

itself. In addition to the 8 power and reference pins, there are 8 ground pins and 

43 IO pins. There are 63 pins total, but some of them are not connected to 

anything. The IO pins are routed directly to the two 40-pin expansion headers. As 

with the TI power module, the schematic software did not have a library 

component for the RAM chip. The 66-pin component was also designed from 

scratch.  

 As seen on the schematic in the appendix, two types of capacitors were 

used to bypass power and ground. .1 µF capacitors were used for the DDR chip 

and 100 µF electrolytic capacitors were used for the power supply. These 
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capacitors helped reduce voltage fluctuations at the power inputs of the RAM 

chip.  

PCB Layout 

 The PCB design was one of the more difficult aspects of the project. The 

major constraint was the number amount of signal wires that needed to be 

routed in the small amount of space available. The Micron DDR chip comes in 

66-Pin TSOP package. It is a surface mount package that has a pitch of .65mm 

between each pin. 43 pins needed to be routed from the chip to the expansion 

header through-holes. Because the header through-holes needed to be placed 

in a specific location relative to the two headers on the DE2, I could not exploit 

tricks of moving the headers around to make routing easier. For example, I 

could not place headers on either side of the DDR chip and route signals on the 

two sides of the chip in opposite directions. 

 The ExpressPCB software did not have a layout component for the 

surface mount pads that the DDR chip is soldered on to. The layout out of the 

pads was customized (figure 9). The Micron DDR RAM datasheet provides the 

necessary information to design component in the PCB software (figure 10). A 

custom symbol was also designed the TI power module. This was significantly 

easier than designing the custom DDR component, given that the tolerances in 

the TI 5-pin package were more lenient.  

 

 

Figure 9. DDR RAM custom symbol 
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Figure 10. Pin layout 

 The most difficult part came when traces had to be routed from the DDR 

solder pads to the expansion header through-holes. The PCB schematic went 

through several iterations before a final routing was established. One symmetry I 

could exploit was traces on opposite sides of 

 

Figure 11. Trace Routing
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the chip to opposite sides of the connector (figure 11). As you can see, traces 

on the left side of the chip are routed to the left side of the connector, and vice 

versa for the right side. In the end this became the most efficient method of 

routing. The figure only contains traces on the top copper layer. The traces at 

the bottom-left, bottom-center, and bottom-right are sent to the bottom copper 

layer through vias. These are then routed to the top connector, exploiting the 

symmetry similarly. The final outcome of the design, including pictures, layout 

and schematic is shown in the appendix.   

Digital Hardware Interface 

 Designing and debugging a high-speed memory controller is inherently 

difficult without a logical design process. As mentioned earlier, one of the main 

goals of this project was to set-up a development environment to ease process 

of debugging my code. One consideration about the hardware that had to be 

addressed early on was the speed of the state machine which controlled the 

DDR RAM. The state machine had to cause all of its outputs to change before 

the next clock tick. While this was not a primary concern in my class projects, the 

RAM ran much quicker than anything else I had worked with. Much thought was 

put into how to design the controller as efficiently as possible and implementing 

it took up a majority of my time early on in the project. 

Development Environment 

 After having worked on a hardware development team as part of an 

internship, I knew that the preferred development environment for digital 

hardware engineers is Linux. It provides many convenient tools, including the 

ability to execute shell scripts to compile a large project quickly. Indeed, some 

of my classes also used Linux for similar reasons. One of the main advantages is 

that the operating system, and simulation and waveform software is free of 
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charge and is well documented on-line. If I had any sort of issues I could find a 

website or bulletin board that could address it. The development environment 

can be broken down into three components: the virtual machine, iVerilog, and 

gtkwave.  

Virtual Machine 

 Conveniently, I did not need to have the Linux operating system installed 

on my machine to enjoy the benefits of Linux. Instead, I installed the VMWare 

player which could run a Linux virtual machine, that for all intents and purposes 

had the same functionality as a full Linux install. This cut down on the hassle of 

having to repartition the hard-drive on my laptop to accommodate for a new 

OS installation.  

 The particular virtual Linux operating system I used was called Fedora 

Core 7. It was one of the standard Linux OS’s out there. There already was plenty 

of support available online and it was compatible with the Eclipse IDE. The 

Eclipse IDE is a free Integrated Development Environment. While it did not 

support Verilog/HDL projects initially, a plug-in was downloaded to add this 

functionality. The code editor in Eclipse can recognize Verilog syntax and was 

useful for some debugging purposes. 

iVerilog 

 iVerilog is a free synthesis and simulation tool for Linux (or Windows) which 

supports the IEEE-1364 verilog standard. It can compile source code, run a 

simulation and generate an output waveform file. The program can be installed 

in the Linux Virtual Machine so that the iVerilog executables can be run from any 

directory using the command-line. Verilog code is compiled using the following 

command: 

iverilog [file1 file2…] -DSIMULATION -I../ -o tmp.vvp 

The file tmp.vvp is the synthesized verilog code, including simulation parameters. 

In order to run a simulation, the following command is issued 
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vvp tmp.vvp 

This will also generate a waveform output file which can be read by a waveform 

viewer. Since this project contains many verilog files that have modules used in 

the top file, it was necessary to write a shell script to compile all of the files for 

simulation. The script was very simple. It defined vfiles variable that contained 

the location of all files used in the project: 

 

 

vfiles="DDR_TOP_tb.v \ 
 ddr.v\ 
 altddio.v\ 
 ALTERA_DEVICE_FAMILIES.v\ 
 ../DDR_TOP.v \ 
 ../ddram_ctrl.v\ 
 ../ddr_init.v\ 
 ../ddr_read_write.v 
 ../mux_2dir_reg.v\ 
 ../mux_4dir_reg.v\ 
 ../reg_1stg.v" 

Rather than inputting all of the files needed for the simulation manually, the 

locations were defined in the script. A full version of the final top module 

simulation script is available in the appendix. 

GTKWave 

 After simulation, some of the debugging was done with GTKWave, a 

waveform viewer. The software has many convenient features to identify 

problems in the simulation. It allows the user to select signals from any module 

involved in the simulation and see their trace. The signal selection can be saved 

so that each new instance of GTKWave can read a signal file which loads all the 

signals used previously. Figure 12 contains a sample view of GTKWave. 
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Figure 10. Sample GTKWave View 

 

 The signals can be selected from the left hand pane. The top pane allows 

the user to change the time increments. Values for specific signals can be 

searched using the search menu. The current waveform view can also be saved 

as a postscript (.ps) file which can be converted via a command-line command 

in Linux, ps2pdf 

Digital Hardware Implementation 

 The most important part of the project was the implementation of the DDR 

Controller, initialization module and top file. The top file contained the 

DDR_TOP.v contained the interface between the controller, initialization module 

and the IO interface between the top file and the DDR RAM chip via the 

general purpose input output (GPIO) headers on the DE2 board. Even though 

the end-user is responsible for creating an interface between the databus of the 

DDR chip and his or her design, a sample read/write module was created to 

show how to do this. The sample read/write logic is placed inside the top file 

along with the DDR controller and initialization modules.  
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DDRAM_CTRL.V 

 The ddram_ctrl.v module controls the DDR RAM chip by setting the ras, 

cas, and we output bits in the top file as well as the address bits which control 

which row and column are read or written to. The rcw_o output contains the 

three bits. The control module receives command inputs from the top file and 

issues commands to the DDR chip via its state machine which determine the 

modules outputs. In all cases except when an extended command or idle 

command is issued, rcw_o contains values other than 3’b111. The addr_o output 

is connected to the address output bits in the top file and is used when both an 

extended command and normal command (i.e. read, write, activate) is being 

processed.  The done_o is a single bit flag used by the initialization module. It is 

activated when the controller finishes processing an extended command.  

 As was hinted earlier, the state machine which sets the control bits 

(ras,cas,we) and address bits for the DDR RAM chip was designed with speed in 

mind. A clever solution was implemented to ensure that the state machine was 

always in the correct state before the next rising edge of the DDR clock. The 

outputs of the controller are simply a subset of the bits that encode the state. 

This means that very little computation is required during each state. The only 

thing that occurs after a state transition is the calculation of the next state, 

which is in fact a few simple case statements.  

 After reset the state machine is the idle state and issues NOPs to the DDR 

RAM. The next state is selected by user the user issuing a NOP, read, write, 

refresh, activate or extended command. An extended command is issued by 

setting cpu_cmd_i input to 0. In this case the arb_cmd_i input, which determines 

whether the user wants to issue a NOP, read, write, refresh, activate is ignored. In 

the extended command state, a mux selects to proper address bits to input into 

the DDR RAM control so that the user can define operating parameters such as 

CAS latency. Since the extended command takes 1 cycle to process, the next 

state after an extended command is issued is extdn which sets the done_o flag 
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to 1, indicating to the initialization state machine that an extended command 

has been processed. The following explains what happens when a user issues a 

non-extended command. Note that in the idle state the controller issues a NOP 

for every cycle that it stays in the idle state. 

• Idle (arb_cmd_i = 00) – The controller issues a NOP for one cycle and goes 

back to the idle state 

• Refresh (arb_cmd_i = 01) – The controller issues a refresh command to the 

DDR RAM, goes into the waitrfdn state. Waits 5 cycles and goes to the idle 

state. 

• Write Activate (arb_cmd_i = 10) – Issues an activate command for a row 

and bank and issues 2 NOPs before going into the write state. The 

controller does not allow sequential activate commands to enable writing 

to multiple banks in one write burst. 

• Read Activate (arb_cmd_i = 11) –  Issues an activate command for a row 

and bank and issues 2 NOPs before going into the read state. The 

controller does not allow sequential activate commands to enable 

reading to multiple banks in one write burst. 

 

In both the read and write states, the controller waits until the read or write 

burst finishes. This is determined by the burst length the user selects when the 

mode register is set. If the burst length is 4, then the controller will wait 2 cycles 

(because it takes 2 full cycles to read or write 4 bursts). This is done by initializing 

a counter clmdn which counts down until the burst has finished. During the wait 

NOPs are issued to the DDR RAM. After the wait, the controller goes into the idle 

state and waits for its next command. The read and write state also mux in the 

starting column of the read or write burst via the amxs select bits. The encodings 

for each state and state transitions can be found in the appendix. Note that the 

controller does not set the bank address bits. Those are set by the user when 

issuing an activate or extended command. 
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DDR_INIT.V 

 An initialization module which links to the controller was implemented as 

RTL logic. This module implements the initialization procedure outline in the DDR 

Design Parameters section of this report. Due to several inconsistencies between 

the JEDEC standard and the Micron datasheet, the initialization module instructs 

the controller to issue 10 cycles of NOPs after each step during the initialization. 

This additional step was tested in the verilog model of the DDR RAM and verified 

to work properly.  

 The initialization module locks out the read/write state machine from 

issuing commands via the init_active signal. The state machine is turned on 

when reset is active high. After the reset, the signal goes high until initialization is 

complete. The state machine issues extended commands to the DDR Controller 

in the proper sequence. The two important states that determine the operating 

parameters of the chip are st_setmr and st_setmr: 

• st_setemr: sets the extended mode register. Currently there is no support 

for extended modes of operation in DDR1 standard. 

• st_setmr: sets the mode register for the following operating parameters 

� Operating mode: Normal 

� CAS Latency: 2 

� Burst Type: 0 – Sequential 

� Burst Length: 2  

 

Note that the CAS latency is set to 2. The controller is not designed to handle 

other CAS latencies. The controller will always insert two NOPs and then start 

read burst.  

  

DDR_READ_WRITE.V 

 Although the end user is responsible for providing a datapath based on 

whatever the user needs the DDR controller for, a sample module is provided to 
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show the user how to properly issue reads or writes. The burst length is set to 2. 

Therefore for each read or write command two 16-bit words are processed on 

the IO ports. The read/write state machine is designed in a similar manner as the 

DDR controller state machine. The encoding for each state is also part of the 

output of the state machine. 

 The read/write module issues two writes followed by two reads 

consecutively. After the reset is command is initiated, the state machine waits 

for the initialization of the RAM to complete. This is signaled via the init_active 

flag from the initialization module.  There are two read states and two write 

states:  

• st_wr1: Writes 0034 starting at bank 1 row 23 column 0 

• st_wr2: Writes 0034 starting at bank 0 row 5 column 0 

• st_rd1: Reads 2 16-bit words at bank 1 row 23 column 0 

• st_rd2: Reads 2 16-bit words at bank 0 row 5 column 0 

 

After the second read, the state machine signals that is done via the test_done 

flag and the simulation ends.  

DDR_TOP.V 

 This file links the initialization, DDR controller, and read/write modules 

together and provides several necessary signals for the DDR RAM chip as well 

the three modules. It generates the clocks for the entire system using PLL’s. The 

PLL’s smooth the clock so that the rising and falling edges have minimal skew. 

The output frequency is the same as the input frequency. The user needs to 

change the PLL’s configuration via the Altera PLL Megafunction to allow for a 

frequency other than 50 MHz to run the clock.   

 In order to handle reading and writing data on both clock edges the 

Altera altddio_bidir Megafunction was used (figure 11). 16-bit Write data is 

inputted to the datain_h and datain_l ports. At the positive edge, the word 
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datain_h is outputted on padio, which is connected to the 16-bit wide 

bidirectional data bus on the DDR chip. At the negative edge datain_l is 

outputted to the padio bus. Note that figure 11 is an example from the Altera 

altddio_bidir user guide. It is 

 

Figure 11. Altera Bidirectional IO block 

not representative of the module used in DDR_TOP. The DDR_TOP module has 

17-bit wide data busses and no asynchronous clear signal (aclr). The 17th bit is 

the DQS bit which is aligned with the write data. This is a simple workaround to 

having the DQS proerply aligned with the write data. The input ports are 

initialized to 0 at power-up.  Read data comes into the padio bus from the DDR 

chip at the rising and falling edge of the clock. The output enable port oe allows 

data from the padio bus to go to dataout_h and dataout_l at the positive 

positive edge. The oe port is driven by the read enable signal ren coming from 

the DDR controller. It is interesting to note that in essence, the DDR RAM 

becomes a single edge triggered RAM with a databus of 32 bits. Figure 12 shows 

the processes of first receiving read then issuing a write. 

In order to simulate the DDR_TOP module, a reset signal is designated as 

an input. The signal is removed when the DDR_TOP module is running on the 

FPGA. A button can be used as the reset switch in this case.  
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Figure 12. Sample Timing Diagram 

 

  

Limitations of the DE2 Board 

After the simulation of the DDR_TOP module was successful. Work shifted 

to incorporating the entire code base into the Altera Quartus II software. This 

software generates the netlist for the CycloneII FPGA and allows the user to 

interface his or her design with the DE2 board. Components on the DE2 board 

such as buttons, LEDs, and hex displays can be used. The code was successfully 

synthesized in QuartusII.  

While running my DDR_TOP file it was observed that the output voltage on 

clock was around 4.2V peak-to-peak (figure 13). Realizing that the pins on the 

GPIO header were set to output at a too high voltage, I quickly unplugged the 

DDR daughter board from the DE2 headers. DDR RAM operates at the SSTL-2 IO 

standard. This means the voltage being inputted into the RAM from the 

expansion headers (from signals such as RAS,CAS,WE) must not go above the 

reference voltage of 1.3V with a tolerance of 2%.   
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Figure 13. Clock Peak-to-Peak too high 

 The Quartus software however allows the user to change the IO standard 

on any of the IO banks (with some limitations) via the Pin Planner wizard. Banks 5 

and 6, which the GPIO units were running off, supported SSTL-2. However, a 

reference voltage was needed on pins 2 and 33 of the GPIO_0. Also, while this is 

not listed in the documentation in the Cyclone II datasheet, each IO bank can 

only support 9 output pins being driven when a reference voltage is required, 

such as in the case when the SSTL-2 standard is needed. This was discovered 

when the following error messaged popped up during compilation (figure 14).  

 

    Figure 14. An unfortunate error 

 This meant that the designers of the DE2 never intended for a DDR RAM 

interface to work with this board. While the Cyclone II does support the DDR 
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RAM IO standard, it would require the user to have access to 5 separate IO 

banks to accommodate for all the outputs, which is not the case with the DE2 

board. Further evidence to back up this conclusion can be found in the DE2 

schematic. While first GPIO header gives the user access to both voltage 

references to enable SSTL-2 output, the second GPIO header, which is driven by 

IO bank 6 only gives the user access to one of those pins. The other reference 

pin is used to drive a hex display output (figure 15). This is because in the event 

that a particular IO standard being used for bank 6 does not require a reference 

voltage, the Vref pin can be used as an output. The DE2 designers decided to 

take advantage of feature.  

 

Figure 15. Hex1_D5 connected to second voltage reference pin (V22) of bank 6 

 

 

Results and Conclusion 

 

Digital Hardware Results 

 While the final intended goal of running the DDR chip via the Cyclone II 

FPGA was not realized, the design was proven correct via DDR_TOP module 

simulation. The ddr.v file is provided by Micron for designers to simulate their 

hardware with a Verilog version of the DDR RAM for debugging via simulation. It 

allows the user to configure the DDR module exactly as it would appear in 

hardware. For example, the user can set the DDR verilog model to have a 16-bit 
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wide data bus at size of 256 MB. The module receives all the required input 

signals and gives feedback as to whether the DDR RAM controller is issuing 

commands properly. It also lets the user know whether the initialization steps 

have been properly completed. The feedback generated by the verilog model 

after running the simulation with the 2 writes and 2 reads described in the 

DDR_read_write.v can be seen in the appendix. Figure 16 shows waveform 

generated by the simulation. 

 

Figure 16. Result of the read/write simulation 

First an activate command is sent by the controller to the chip (011), followed by 

two NOPs, followed by a write command (100), followed by a precharge 

command (010) and another write command to set the column for the first 

write. The DQ bus gets two 16-bit words after the precharge and the DQS signal 

goes low to high. A similar sequence of steps occurs for the second write. 

Reading requires an activate command, followed two nops, read command, a 

precharge command, and another read command.  

Currently, the DDR controller only supports a CAS latency of 2. This is a 

minor limitation because a large majority of DDR chips support this CAS latency. 

Also, the controller does not support multiple active commands before a read 

or write. The user will not be able to access multiple banks in one read or write 

burst. This is part of the advanced functionality of the DDR standard and is used 

rarely. 

 Two important results were achieved however. I learned a great deal 

about a common real world standard and I was able to apply skills learned in 
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the classroom and through my own research to successfully design a working 

DDR RAM controller. I also learned how to use real world tools to develop a 

system much like an engineer would on the job. These two takeaways will help 

me greatly as I transition to working as an engineer for a top engineering 

company.  

Physical Hardware Result 

 The DDR chip board was a successful design. There were only 2 errors that 

were not caught before the board was ordered. These errors were fixed using a 

cutting tool to disconnect the erroneous traces. The spacing between surface 

mount pads was slightly off, but in the end the DDR chip was soldered on to the 

pads successfully. The board was also a little too big and a part of it had to be 

drilled off before it could be mated with the DE2 board. A picture of the board is 

located in the appendix. 

Conclusion 

 This project required me to learn skills on my own and apply them within 

the span of two semesters. This was an invaluable experience that it taught me 

how to solve problems on my own and how to overcome difficulties that are at 

first seemingly insurmountable. While the final intended goal was not achieved, I 

believe this project is a great success. The controller works perfectly in simulation 

and only the lack of foresight by the DE2 board designers prevented me from 

porting to the FPGA.  

 There is of course room for improvement in my design. It does not support 

all the possible functionality provided by the DDR standard. But it does good job 

with the features it does support. My hope is that someone will use my code with 

the Cyclone II situated on the appropriate hardware to build a truly outstanding 

project utilizing the high-capacity and high-speed provided by DDR RAM. 

Overall, this has been a great experience. It will be something that I will draw on 

in my future work endeavors.  
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Appendix 

 

 Table of the controller state encodings  

State rf spare ren wen dts amx done rcw 

st_idle 0 00 0 0 1 00 1 111 

st_extcmd 0 00 0 0 1 11 0 111 

st_extdn 0 01 0 0 1 00 1 111 

s_w_act 0 00 0 0 0 00 0 011 

st_w_nop1 0 00 0 0 0 01 0 111 

st_w_nop2 0 01 0 0 0 01 0 111 

st_write 0 00 1 0 0 01 0 100 

st_w_brst  0 00 1 0 0 01 0 111 

st_r_act 0 01 0 0 1 00 0 011 

st_r_nop1 0 01 0 0 1 01 0 111 

st_r_nop2 0 00 0 0 1 01 0 111 

st_read 0 01 0 1 1 01 0 101 

st_r_brst 0 01 0 1 1 00 0 111 

st_refr 1 00 0 0 1 00 0 001 

st_refrwtdn 1 00 0 0 1 00 0 111 

st_term 0 00 0 0 1 00 0 010 

st_nop2 0 11 0 0 1 01 0 111 
 

The spare bits are used to differentiate between states which output the same 

thing out of the DDR controller. For example, both the write activate state 
(st_w_act) and read activate state (st_r_act) issue the same activate command, 

but they are distinguished by the spare bits.  
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DDR Controller State Transition Logic 
 always @(state or clmdn or cmd[2:0] or rfdn) 
      case (state) 
         
        st_idle: 
          case (cmd[2:0]) //command to controller, 1xx is always extended 
            3'b000:  next = st_idle;  // no cmd 
            3'b001:  next = st_refr;  // refresh 
            3'b010:  next = st_w_act; // write 
            3'b011:  next = st_r_act; // read 
            3'b100:  next = st_extcmd;  
            3'b101:  next = st_extcmd; 
            3'b110:  next = st_extcmd; 
            3'b111:  next = st_extcmd; 
          endcase // case(cmd[1:0]) 
 
        st_refr:     next = st_rfwtdn; 
        st_rfwtdn:      
          case (rfdn) //rfdn is a delayed signal, takes a few cycles to be asserted 
            1'b0:    next = st_rfwtdn; 
            1'b1:    next = st_idle; 
          endcase // case(rfdn) 
         
        st_extcmd:   next = st_extdn; 
         
        st_extdn: 
          case (cmd[2])  
            1'b1:    next = st_extdn; 
            1'b0:    next = st_idle; 
          endcase  
         
        st_w_act:    next = st_w_nop1; 
        st_w_nop1:   next = st_w_nop2; 
        st_w_nop2:   next = st_write; 
        st_write: 
          case(clmdn)//counter for write burst, 0 means w_brst is still going 
            1'b0:    next = st_w_brst; 
            1'b1:    next = st_term; 
 
          endcase // case(clmdn) 
        st_w_brst: 
          case(clmdn) //counter for write burst, 0 means it’s still going 
            1'b0:    next = st_w_brst; 
            1'b1:    next = st_term; 
 
          endcase // case(clmdn) 
 
        st_r_act:    next = st_r_nop1; 
        st_r_nop1:   next = st_r_nop2; 
        st_r_nop2:   next = st_read; 
        st_read: 
          case(clmdn) //counter for read burst, 0m neas it’s still going 
            1'b0:    next = st_r_brst; 
            1'b1:    next = st_term; 
 
          endcase // case(clmdn) 
        st_r_brst: 
          case(clmdn) //counter for read burst, 0m neas it’s still going 
            1'b0:    next = st_r_brst; 
            1'b1:    next = st_term; 
 
          endcase // case(clmdn) 
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        default:     next = st_idle; //default state idle 
         
      endcase // case(state) 
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DDR RAM chip board 

 

Note the missing rectangular section on the top left-hand side. This was required 

to make sure the board could fit on to the DE2 board.  
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Results from running the simulation of 2 writes followed by reads as well 

initialization  

At time 10190.000 ns PRE  : Addr[10] = 1, Bank = 00 
At time 10410.000 ns EMR  : Extended Mode Register 
At time 10410.000 ns EMR  : Enable DLL 
At time 10630.000 ns LMR  : Load Mode Register 
At time 10630.000 ns LMR  : Burst Length = 2 
At time 10630.000 ns LMR  : CAS Latency = 2 
At time 10850.000 ns PRE  : Addr[10] = 1, Bank = 00 
At time 11070.000 ns AREF : Auto Refresh 
At time 11290.000 ns AREF : Auto Refresh 
test.ddram: at time 11290.000 ns MEMORY:  Power Up and Initialization 
Sequence is complete 
At time 11510.000 ns AREF : Auto Refresh 
At time 15570.000 ns ACT  : Bank = 1, Row = 0017 
At time 15630.000 ns WRITE: Bank = 1, Col = 000 
At time 15650.000 ns PRE  : Addr[10] = 0, Bank = 01 
At time 15660.000 ns WRITE: Bank = 1, Row = 0017, Col = 000, Data = 34 
At time 15670.000 ns WRITE: Bank = 1, Row = 0017, Col = 001, Data = 00 
At time 15730.000 ns ACT  : Bank = 0, Row = 0005 
At time 15790.000 ns WRITE: Bank = 0, Col = 000 
At time 15810.000 ns PRE  : Addr[10] = 0, Bank = 00 
At time 15820.000 ns WRITE: Bank = 0, Row = 0005, Col = 000, Data = 34 
At time 15830.000 ns WRITE: Bank = 0, Row = 0005, Col = 001, Data = 00 
At time 15890.000 ns ACT  : Bank = 1, Row = 0017 
At time 15950.000 ns READ : Bank = 1, Col = 000 
At time 15970.000 ns PRE  : Addr[10] = 0, Bank = 01 
At time 15990.000 ns READ : Bank = 1, Row = 0017, Col = 000, Data = 34 
At time 16000.000 ns READ : Bank = 1, Row = 0017, Col = 001, Data = 00 
At time 16050.000 ns ACT  : Bank = 0, Row = 0005 
At time 16110.000 ns READ : Bank = 0, Col = 000 
At time 16130.000 ns PRE  : Addr[10] = 0, Bank = 00 
At time 16150.000 ns READ : Bank = 0, Row = 0005, Col = 000, Data = 34 
At time 16160.000 ns READ : Bank = 0, Row = 0005, Col = 001, Data = 00 
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Final PCB Layout 
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Final PCB Schemtic 
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Figure A1. Control and Data pins of DDR1 RAM module 

 

 

 

 

 

 

 

 

 

 


